
Proceedings of The 12th International Conference on Natural Language Generation, pages 494–503,
Tokyo, Japan, 28 Oct - 1 Nov, 2019. c©2019 Association for Computational Linguistics

494

Towards Generating Math Word Problems from Equations and Topics

Qingyu Zhou∗

Harbin Institute of Technology
qyzhou@hit.edu.cn

Danqing Huang∗

Microsoft Research
dahua@microsoft.com

Abstract

A math word problem is a narrative with a

specific topic that provides clues to the cor-

rect equation with numerical quantities and

variables therein. In this paper, we focus

on the task of generating math word prob-

lems. Previous works are mainly template-

based with pre-defined rules. We propose a

novel neural network model to generate math

word problems from the given equations and

topics. First, we design a fusion mechanism

to incorporate the information of both equa-

tions and topics. Second, an entity-enforced

loss is introduced to ensure the relevance be-

tween the generated math problem and the

equation. Automatic evaluation results show

that the proposed model significantly outper-

forms the baseline models. In human evalu-

ations, the math word problems generated by

our model are rated as being more relevant (in

terms of solvability of the given equations and

relevance to topics) and natural (i.e., grammat-

icality, fluency) than the baseline models.

1 Introduction

A math word problem is a narrative which de-

scribes a story under a specific topic. Moreover,

it provides clues to the correct equation interpret-

ing mathematical relations of numerical quantities

and variables. The two example problems in Ta-

ble 1 belong to two different topics (ticket selling,

land purchase) respectively. Meanwhile they share

the same equation template interpreting the un-

derlying mathematical relations between numbers

and variables. To generate a math word problem,

a system needs to produce a topic-specific story

while maintaining the underlying equation.

There is a surge of interest in automatic math

word problem generation (K. and Elliot, 2002;

Deane and Sheehan, 2013; Polozov et al., 2015;

∗Equal contribution.

Koncel-Kedziorski et al., 2016). Previous at-

tempts are mainly based on templates. Polo-

zov et al. (2015) consider several components

(e.g., event graph construction, surface text real-

ization), each with manual defined templates and

rules. Koncel-Kedziorski et al. (2016) generate

math problems by revising existing problems into

a new topic. They use a problem as the verbal

template and simply replace nouns and verbs with

suitable words from the new topic. The genera-

tion of template-based systems is based directly

on existing items with high coherence. However,

they have clear limitations. As templates are fixed,

the possible outputs are limited to follow template

patterns without too many grammatical and lexical

options. Additionally, they require manual effort

to construct domain-specific templates.

Recently, neural network approaches to auto-

matic generation of questions (Du et al., 2017;

Zhou et al., 2017) and stories (Fan et al., 2018)

have shown promising results. Despite their suc-

cess, they cannot be directly applied to math word

problem generation, since generation of math

word problems need to maintain the underlying

mathematical operations between quantities and

variables, while at the same time ensuring the rel-

evance of the output problem and a given topic.

In this paper, we propose a novel neural net-

work model for Math word Problem Generation

from Equations and Topics (MAGNET). The pro-

posed model consists of three main components:

an equation encoder, a topic encoder and a math

problem decoder. The equation encoder is imple-

mented with a bidirectional recurrent neural net-

works (RNN) which takes the equation tokens as

input and produces a sequence of hidden vectors.

The topic encoder maps the given topic words into

continuous word representations. The decoder is a

single directional RNN with dual-attention mech-

anism, which can dynamically extract information

495

Equation Template:

x+ y = [num0]
[num1] ∗ x+ [num2] ∗ y = [num3]

Problem 1:

Tickets to local movie were sold at $4.00 for

adults and $2.50 for students. If 267 tickets

were sold for a total of $1042.50, how many

adult tickets were sold?

Topic: ticket selling

Equation:

x+ y = 267, 4 ∗ x+ 2.5 ∗ y = 1042.5

Problem 2:

A farmer bought 100 acres of land, part at

$300 an acre and part at $450, paying for the

whole $42,200. How much land was there in

each part?

Topic: land purchase

Equation:

x+ y = 100, 370 ∗ x+ 450 ∗ y = 42200

Table 1: Math word problems of the same equation

template but with different topics.

from equations and topic words. To leverage both

the equation and topic information, we design an

equation-topic fusion mechanism to enable the de-

coder to choose which information to use. Fur-

thermore, to ensure that the generated math word

problem is highly related to the given equations,

we introduce a novel entity-enforced loss function

which considers the correspondence between vari-

ables in the given equations and entities in the out-

put problem.

Large-scale annotated math problem datasets

play a crucial role in developing neural math prob-

lem generation systems. We propose to adapt

Dolphin18K (Huang et al., 2016) as the train-

ing, development and test sets, since it is one of

the current largest math problem datasets with di-

verse problem types. It contains 18,460 elemen-

tary math problems from Yahoo! Answers1, with

annotation of equations and answers.

Extensive experiments are conducted on the

Dolphin18K dataset. We first propose three base-

line methods: 1) a retrieve-based model that find

the closest math problems in the training set; 2)

a sequence-to-sequence model which takes only

the equation as input (Equ2Math); 3) a neu-

ral decoder model conditioned on topic words

1https://answers.yahoo.com/

(Topic2Math). We use three commonly used au-

tomatic evaluation metrics in recent text gener-

ation works, i.e., BLEU (Papineni et al., 2002),

ROUGE (Lin, 2004) and METEOR (Denkowski

and Lavie, 2014). Evaluation results on all three

metrics show that our MAGNET model outper-

forms the baseline methods. To further examine

the quality of generated math word problems, we

also conduct human evaluations. Human evalua-

tion results show that our MAGNET model per-

forms better than the baseline systems on three as-

pects, i.e., 1) solvability to the given equation; 2)

relevance to the given topic and 3) grammaticality

and fluency of language.

Our contributions are three-folds:

1. We propose a novel end-to-end neural net-

work model MAGNET to generate math

word problems based on given equations and

topics.

2. We introduce an Equation-Topic Fusion

mechanism which helps the decoder incorpo-

rate both the information from the equation

and the topic.

3. We design an entity-enforced loss function to

improve the relevance between the generated

math word problem and the given equations.

2 Related Work

Automatic question generation from text aims to

generate questions taking text as input, which has

the potential value of education purpose (Heilman,

2011). Previous question generation works focus

on generating natural language questions from a

given piece of text. Heilman (2011) employs a

syntactic parser to parse the input text into a tree

and extract answer candidates. Then a rule-based

system transforms the tree into the correspond-

ing question. Recently, generative neural network

methods are also applied to this area since large-

scale manually annotated passage-question pairs

become available. Du et al. (2017) and Zhou et al.

(2017) propose to use SQuAD (Rajpurkar et al.,

2016) question answering dataset as the training

data of question generation. In SQuAD dataset,

the given passage is a piece of text from Wikipedia

and the answer is a sub-span in it. Du et al. (2017)

use a sequence-to-sequence model on the passage-

question pair to generate questions. Their model

takes the passage text as input to generate a ques-

tion from it. Different from Du et al. (2017), they

add the answer position to the model input as BIO

496

tagging features. However, these methods cannot

directly applied to math word problem generation.

There are previous approaches specifically tar-

geting math problem generation. Most of them

are template based, such as natural language

schemas (K. and Elliot, 2002) and semantic frames

of conceptual structures (Deane and Sheehan,

2013). Polozov et al. (2015) propose a pipeline in-

cluding equation generation, plot generation and

surface text realization, which requires manually

defined ontology and templates. These approaches

are ensured to maintain highly-coherent story, but

with the manual cost of template construction,

which is difficult to extend to more domains. Re-

cently, Koncel-Kedziorski et al. (2016) propose a

rewrite-based approach. They generate new prob-

lems by simply replacing noun phrases and verbs

in the existing math problems with words in the

target topic. However, they do not consider global

optimization of the whole problem that results in

semantic incoherence.

Math problem solving, which can be format-

ted as learning the mapping from math problem

to equations, is also related to our work. In

this paper, we adapt a math problem dataset Dol-

phin18K for development. Dolphin18K (Huang

et al., 2016) is constructed from Yahoo! Answer

containing over 18,000 math problems. Previous

to that, there are several datasets with size less

than 2,000, such as VERB-375 (Hosseini et al.,

2014), ALG514 (Kushman et al., 2014) and Dol-

phin1878 (Shi et al., 2015).

3 Problem Statement

Given an equation template and a target topic, our

goal is to generate a math word problem in nat-

ural language. In this section, we first define the

equation template and the topic, and then give the

formal introduction of our task.

3.1 Equation Template

Equation template, introduced in Kushman et al.

(2014), is a unique form of an equation system.

For example, given an equation system as follows:

x+ y = 20;x− 4 = y

We replace the numbers with tokens and general-

ize the equations as the following template:

x+ y = [num0];x− [num1] = y

Equation is a solution for a specific math prob-

lem, while an equation template can correspond

to several math problems. Therefore, an equation

template can be seen as an abstraction of a set of

equations.

3.2 Topic

As pointed out in Koncel-Kedziorski et al. (2016),

math problems are coherent stories with different

topics (e.g., ticket selling or land purchase). In

one math problem, there are words that act as

topic indicators. For the problems in Table 1, the

corresponding topic indicators are:

Problem 1: {tickets, movie, adults, students,

sold}
Problem 2: {farmer, bought, dollar, land, pay}

Therefore, we extract the keywords of a math

problem as its topic words for representing the

topic. The details of topic words extraction will

be described in Section 3.4.

3.3 Math Problem Generation

Now we can formally define the task of math word

problem generation. Given an equation template

E and a set of topic words T as input, the goal is

to generate a math word problem P , satisfying:

(1) P is a piece of natural language text whose

topic is T ;

(2) P maintains the mathematical operations be-

tween numerical quantities and variables in the

equation template E.

3.4 Dataset Creation

We create the math word problem genera-

tion dataset based on the Dolphin18K (Huang

et al., 2016) dataset. Specifically, we construct

(E, T, P) triple where E is an equation, T is a set

of topic words, and P is the corresponding math

word problem. In the Dolphin18K dataset, the

equation E and math word problem P are given.

Therefore, we need to extract the topic words from

the text of P .

There are previous studies on the task of topic

word extraction, such as simple counting of word

frequency and LDA topic model (Blei et al., 2003).

We practically observe that the TF-IDF method is

effective which satisfies our needs. We calculate

497

the scores of the words as follows:

tfij =
nij

∑

k nkj

(1)

idfi = log
|P |

|j : ti ∈ Pj |+ 1
(2)

scoreij = tfij ∗ idfi (3)

where tfij is the term frequency of word i in prob-

lem Pj , and idfi is the inverse document frequency

of word i. We sort the score of each word i in Pj ,

and keep the top ntp words as the problem’s topic

words.

4 MAGNET

As shown in Figure 1, our MAGNET model con-

sists of three main parts, namely, the topic en-

coder, the equation encoder and the math word

problem decoder. The topic encoder and equation

decoder are used to map topic words and equations

to continuous vectors. The decoder is a single di-

rectional recurrent neural network equipped with

dual-attention mechanism which leverages by the

equation-topic fusion mechanism.

4.1 Topic Encoder

The input topic T contains a set of keywords
{

t1, t2, . . . , tntp

}

. Considering the fact that these

topic words do not have sequential or temporal re-

lationships, we represent them as a set of word

embeddings
{

tp1, tp2, . . . , tpntp

}

as shown in the

upper-left part of Figure 1. Specifically, the topic

encoder is a lookup table which maps input topic

words to the corresponding real-valued vectors.

4.2 Equation Encoder

The encoder is implemented as a single-layer bidi-

rectional GRU (Cho et al., 2014) (BiGRU). We

concatenate all the equations together with a spe-

cial delimiter “,” (indicates the end of an equa-

tion). The BiGRU reads the input equation tokens

one-by-one, producing a sequence of hidden states

hi = [~hi; ~hi] with:

~hi = GRU(xi,~hi−1)

~hi = GRU(xi, ~hi+1)

(4)

(5)

The initial states of the BiGRU are set to zero vec-

tors, i.e., ~h1 = 0 and ~hn = 0.

4.3 Math Word Problem Decoder

At each time-step t, the decoder GRU holds its

previous hidden state st−1, the embedding of pre-

vious output word yt−1 and the previous context

vector ct−1. With these previous states, the de-

coder GRU updates its states as given by Equa-

tion 6. To initialize the GRU hidden state, we use

a linear layer with the last backward encoder hid-

den state ~h1 of equation as input:

st = GRU(wt−1, ct−1, st−1)

s0 = tanh(Wd
~h1 + b)

(6)

(7)

Then the decoder first generates a readout state

rt and passes it through a maxout hidden layer

(Goodfellow et al., 2013) to predict the next word

with a softmax layer over the output vocabulary.

rt = Wrwt−1 +Urct +Vrst

r′t = [max{rt,2j−1, rt,2j}]
⊤
j=1,...,d

p(yt|y<t) = softmax(Wor
′
t)

(8)

(9)

(10)

where Wr, Ur, Vr and Wo are weight matrices.

wt−1 is the word embedding of the previously gen-

erated word yt−1. The readout state rt is a 2d-

dimensional vector, and the maxout layer (Equa-

tion 9) picks the max value for every two numbers

in rt and produces a d-dimensional maxout vector

r′t. We then apply a linear transformation on r′t to

get a target vocabulary size vector and predict the

next word yt with the softmax operation.

4.4 Equation-Topic Fusion

To incorporate both the information of equation

and topic, we propose the Equation-Topic fusion

mechanism. Intuitively, the Equation-Topic Fu-

sion mechanism enables the decoder to pay differ-

ent portions of attention to the equation templates

and topic words. For instance, when the decoder

is generating descriptive words about the story, it

should pay more attention to the topic words. Vice

versa, the decoder should pay more attention to the

equation if it is generating numbers or variables

in the equation. In detail, the context vector ct in

Equation 6 and 8 is a fused vector of equation and

topic. We employ two attention modules to pro-

duce the corresponding context vectors of equa-

498

m

...ℎ3 ℎ4 ℎ5ℎ2ℎ1
Equation

+ n - [num0]

class boy girl ratio manyTopic

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 ...

Decoder

𝑠6 𝑠7 𝑠8 𝑠9𝑆3 𝑇𝐶3
𝐸𝐶3 𝑐3

Figure 1: The overview diagram of MAGNET. For simplicity, we omit some units and connections. This figure

shows the detail that the decoder is generating the third word by fusing the information from both the input equation

and topic words.

tion and topic :

et,i = v⊤a tanh(Wast +Uarepr(·)i)

αt,i =
exp(et,i)

∑n
i=1 exp(et,i)

c(·)t =

n
∑

i=1

αt,irepr(·)i

(11)

(12)

(13)

where repr(·)i represents the vector of encoded

equation tokens or topic words, which can be hi
or tpi. The v⊤a , Wa and Ua are learnable parame-

ters. Since the equation and topic information are

of different types, we use two sets of these param-

eters for equation and topic attention modules.

We represent the equation context vector

c(equation)t and topic context vector c(topic)t as

ECt and TCt respectively. To fuse ECt and TCt

together, we predict a fusion coefficient gt using

an MLP:

gt = sigmoid(Wfst + b) (14)

ct = gt · ECt + (1− gt) · TCt, (15)

where gt is the fusion gate. Therefore, the context

vector ct is the combination of equation template

and topic which is determined by the current de-

coding state st.

4.5 Entity-Enforced Loss

As we mention before, the generated math prob-

lems should be highly relevant to the given equa-

tion template. The entities in the generated math

problem should correspond to the variables in the

equations (e.g., m, n, [num0]). To ensure high

relevance of equation template and the generated

math problem, we propose an entity-enforced loss:

acce =

L
∑

t=1

gtαt,e

Le =
∑

∀e∈equation

ReLU(1− acce)

(16)

(17)

where L is the length of output problem, and

ReLU is rectifier function defined as:

ReLU(x) = max(0, x) (18)

The intuition behind the entity-enforced loss is

that the model needs to attend to the entities in the

given equations. In Equation 16, we accumulate

the attention scores of variables in the equation for

all the decoding time steps. Then a ReLU function

is applied on (1− acce) to ensure that the entity e
is attended for at least one time during decoding.

4.6 Objective Function

Given a training dataset with n
equation-topic-question triples D =
{(E(1), T (1), P (1)), . . . , (E(n), T (n), P (n))},

the training objective is to minimize the negative

log likelihood loss L with respect to the model

parameter θ:

L = −

n
∑

i

log p(P i|Ei, T i; θ) + λLe (19)

where λ is a hyper-parameter that controls the con-

tribution of entity-enforced in the loss.

499

5 Experiment

In this section, we evaluate our model with both

automatic and human evaluations.

5.1 Datasets

We conduct our experiments on the Dolphin18K

dataset2. Since we need equation templates as in-

put to generate math problems, we use its sub-

set with equation annotation, which sums up to

10,644 problems with 5,738 equation templates.

The average sentence length of a problem is 2.70.

The average number of words in a problem is

32.72. We train on 8,515 examples and evaluate

on 2,129 test examples, following the split setting

in Huang et al. (2016).

As pre-processing, we obtain equation template

and topic words for each problem as their input.

We extract at most ntp = 10 words with high-

est TF-IDF scores as the topic words in our ex-

periments. According to the statistic, the average

number of extracted topic words are 7.7 and 7.5 in

the training and testing datasets respectively.

5.2 Baselines

We provide three baselines of math word problem

generation, considering the input of equation tem-

plate and topic words respectively3.

KNN finds the closest problem in the training

set given the input topic words. It first nar-

rows down training problems to those with

the same input equation template. Then a TF-

IDF vector for topic words was created and

KNN is applied to retrieve the nearest train-

ing problem.

Topic2Math generates math problems only given

the input of topic words. Topics words are

encoded by Topic Encoder component de-

scribed in Section 4.1.

Equ2Math generates math problems only given

the input of equation template. Equation tem-

plate is encoded by Equation Encoder com-

ponent described in Section 4.2.

2Other datasets are small and biased on problem types,
which can be seen as subsets of the dataset we used.

3Previous works are not comparable: 1) The rules used in
Polozov et al. (2015) are not publicly available; 2) Koncel-
Kedziorski et al. (2016) have a different input from us, that
their system needs a full math word problem and then rewrite
it. While our system tries to generate a problem from scratch.

5.3 Implementation Details

The dimension of encoder/decoder hidden state

and embedding are set to 512. The hyper-

parameter λ in Equation 19 is 0.7. Dropout rate

is set to 0.6. All model parameters are initial-

ized using a Gaussian distribution with Xavier

scheme (Glorot and Bengio, 2010). We use the

Adam (Kingma and Ba, 2015) optimizer with its

hyper-parameters set as: learning rate α = 0.001,

momentum parameters β1 = 0.9 and β1 = 0.999,

and ǫ = 10−8. We also apply gradient clip-

ping (Pascanu et al., 2013) with range [−5, 5]. The

beam size is set to 3 in the decoding stage. We re-

lease the source code at an anonymous URL for

blind review.

5.4 Automatic Evaluation

Though the automatic evaluation methods have

their limitations in natural language generation

evaluation, we use them as important evaluation

methods since they are easily reproducible. Fur-

thermore, in the task of math word problem gener-

ation, retaining some key information such as the

quantities and entities can be well measured by the

automatic evaluation methods.

5.4.1 Evaluation Metrics

We evaluate the performance of our model using

three evaluation metrics following recent text gen-

eration works (Du et al., 2017; Zhou et al., 2017;

Fan et al., 2018):

BLEU (Papineni et al., 2002) is a widely used

evaluation method in machine translation and

text generation.

ROUGE (Lin, 2004) is commonly to evalu-

ate n-gram overlap of summaries with gold-

standard sentences.

METEOR (Denkowski and Lavie, 2014) is

provided following previous work (Koncel-

Kedziorski et al., 2016).

5.4.2 Evaluation Results

Table 2 shows the evaluation results on automatic

metrics. From the table, we can see that MAG-

NET significantly outperforms the baseline mod-

els on all metrics. On one hand, our model obtains

a large improvement compared to the Equ2Math

model (+19.24 ROUGE-1, +17.08 ROUGE-2,

+14.02 ROUGE-L). On the other hand, compared

to the Topic2Math model, our model has a (+1.15

500

Models BLEU ROUGE-1 ROUGE-2 ROUGE-L METEOR

KNN 11.97 43.93 23.08 36.14 16.78

Equ2Math 5.00 35.88 12.94 29.56 13.51

Topic2Math 12.26 53.97 28.79 42.19 23.90

MAGNET w/o Entity 12.28 54.28 28.77 42.88 24.73

MAGNET 12.47 55.12 30.02 43.58 24.76

Table 2: Automatic evaluation results on Dolphin18K. MAGNET w/o Entity indicates the ablation model without

entity-enforced loss.

Models Equation Relevance Topic Relevance Solvability Language Fluency

score Kappa score Kappa score Kappa score Kappa

KNN 1.65 0.75 1.80 0.90 2.07 0.90 2.92 0.80

Equ2Math 1.97 0.68 1.58 0.85 1.98 0.80 2.62 0.75

Topic2Math 1.63 0.58 2.88 0.85 1.50 0.55 1.98 0.52

MAGNET w/o Entity 1.85 0.40 2.90 0.90 1.73 0.65 2.35 0.50

MAGNET 2.08 0.43 2.90 0.90 2.07 0.65 2.57 0.77

Table 3: Human evaluation results: the average scores from the three annotators together (ranged from 1 to 3,

higher is better).

ROUGE-1, +1.23 ROUGE-2, +1.39 ROUGE-L)

relative gain respectively. The improvement over

the baselines demonstrates the usefulness of both

equation and topic input. Moreover, without the

entity-enforced loss, the performance drops on all

metricsthe, which shows its effectiveness.

5.5 Human Evaluation

To better evaluate the performance of our system,

we recruit three human annotators to judge the

quality of the generated math problems, in addi-

tion to the automatic metrics. We randomly select

50 instances in the test set, and show the equa-

tion template and topic words with generated math

problems from different models. We then ask the

annotators to rate the outputs with scores ranged

1 to 3 from the following four aspects (detailed

guidelines attached in supplementary):

1. Equation Relevance: the generated problem

is relevant to the given equation;

2. Topic Relevance: the generated problem is

relevant to the given topic words;

3. Solvability: the generated problem can be

solved by an (given) equation;

4. Language Fluency: the generated problem is

grammatical and fluent.

Table 3 reports the human evaluation results.

As we can see, MAGNET has the highest scores

across the three criteria of equation relevance

(2.08), topic relevance (2.9), solvability (2.07),

outperforming all the baselines and the ablation

test. KNN performs the best in terms of language

fluency, since as a retrieval-based method its out-

puts are existing problems in the training data.

The Kappa (Randolph, 2005) values on all models

range from 0.4 to 0.9, indicating relatively inter-

mediate to excellent agreement among annotators.

The human evaluation result is consistent with the

automatic evaluation.

6 Discussion

To better understand the model, we show the at-

tention visualization and qualitative analysis with

some examples.

6.1 Effect of Model Fusion

To illustrate how MAGNET leverages both inputs,

we visualize the output fusion coefficient g (top),

and attention of topic words (middle) and equation

template (bottom) in Figure 2.

We can see MAGNET generates a reasonable

math problem. When generating the words such

as “product”, “decreased” in the output, the fu-

sion module is concentrated on the topic words;

501

Equation Template: m = [num0]/[num1]/60
Topic words: sun approximately light kilometer planet travels travel rate take minute

KNN: what is [num0] of [num1] ?

Equ2Math: if i ran [num0] mile in [num1] minute , what is my meter per hour ?

Topic2Math: find the speed of the light [num0] kilometer in [num1] minute [num2] minute .

MAGNET-Entity: a light travels [num0] kilometer at [num1] kilometer per h. how far would it

take to travel [num2] kilometer ?

MAGNET: if a man travels [num0] kilometer in [num1] minute , what is the speed in kilometer per

h ?

Ground truth: the sun is approximately [num0] kilometer from the planet saturn , and light from

the sun travels to saturn at the rate of approximately [num1] kilometer per second. approximately

how many minute does it take for light to travel from the sun to saturn?

Table 4: An example of generated math word problems.

th
e

pr
od

uc
t

of [n
um

0]
an

d
a nu

m
be

r
de

cr
ea

se
d

by [n
um

1]
is [n
um

2]
. wh

at
is th
e

nu
m
be

r
?

g

number
decreased

product

[num0]
*
m
-

[num1]
=

[num2]

Figure 2: Fusion coefficient g and attention visualiza-

tion example.

while the attention is focused on the equation tem-

plate when generating the corresponding numbers

([num0], [num1], ...).

6.2 Qualitative Results

Table 4 shows an example case from the test set.

We can see that MAGNET generates a more rea-

sonable math problem, with respect to equation

solvability and topic relevance. Please note that

the equation template does not exist in the train-

ing data. Surprisingly, MAGNET has captured the

constant “60” in the equation template and gener-

ates “kilometer per h” as unit conversion of minute

to hour. The ablation model MAGNET-Entity

does not generate reasonable problem as well as

the baselines, while MAGNET generates “speed”

word problem, perfectly describing the division of

two numbers. This further demonstrates the effec-

tiveness of the entity-enforced loss which encour-

ages the relevance between the equation template

and the output problem. Due to space limit, we

attach more examples in the supplementary.

6.3 Error Analysis

Furthermore, we observe two main types of er-

rors by our model (examples shown in Supple-

mentary): (1) Problem soundness. The generated

problem lacks semantic coherence. For example,

the model generates “plants [num0] feet of fence

to build a fence” that is non-comprehensive; (2)

Equation matchness. The input equation template

is partially correlated to the output, but not an ex-

act solution of it. This is somewhat expected, since

we use the entity-enforced loss only as a soft con-

straint to ensure the relevance with equation.

7 Conclusion

In this work, we present MAGNET, a novel model

for math word problem generation. It considers

the input of both equations and topics using a fu-

sion module. Additionally, an entity-enforced loss

is introduced to ensure the relevance of equation

and the problem during training. Experiments on

a large-scale math problem dataset demonstrated

our model can produce fluent math word problems

that are highly relevant to the given equations and

topics.

Future work could incorporate language mod-

els to improve the language fluency, and design

more fine-grained models to improve the seman-

tic coherence by employing harder constrains of

equation template. Furthermore, we would like

to extend to more diverse topics with external re-

sources.

502

8 Acknowledgements

We would like to thank the annotators for their

efforts in the evaluation process. Thanks to the

anonymous reviewers for their helpful comments

and suggestions.

References

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. J. Mach. Learn.
Res., 3:993–1022.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings
of the EMNLP 2014, pages 1724–1734, Doha, Qatar.
Association for Computational Linguistics.

Paul Deane and Kathleen Sheehan. 2013. Automatic
item generation via frame semantics: Natural lan-
guage generation of math word problems. In Pro-
ceedings of the Annual Meeting of the National
Council on Measurement in Education, Chicago,
America.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In Proceedings of the EACL
2014 Workshop on Statistical Machine Translation.

Xinya Du, Junru Shao, and Claire Cardie. 2017. Learn-
ing to ask: Neural question generation for reading
comprehension. In Proceedings of the 55th ACL,
pages 1342–1352, Vancouver, Canada. Association
for Computational Linguistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. In Proceedings of
the 56th ACL, pages 889–898. Association for Com-
putational Linguistics.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Aistats, volume 9, pages 249–256.

Ian J Goodfellow, David Warde-Farley, Mehdi Mirza,
Aaron C Courville, and Yoshua Bengio. 2013. Max-
out networks. ICML (3), 28:1319–1327.

Michael Heilman. 2011. Automatic factual question
generation from text. Ph.D. thesis, Carnegie Mellon
University.

Mohammad Javad Hosseini, Hannaneh Hajishirzi,
Oren Etzioni, and Nate Kushman. 2014. Learning
to solve arithmetic word problems with verb catego-
rization. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Process-
ing.

Danqing Huang, Shuming Shi, Chin-Yew Lin, Jian Yin,
and Wei-Ying Ma. 2016. How well do comput-
ers solve math word problems? large-scale dataset
construction and evaluation. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics.

Singley Mark K. and Bennett Randy Elliot. 2002. Item
generation and beyond: Applications of schema the-
ory to mathematics assessment. In Irvine, Sidney
H.; Kyllonen, Patrick C. (eds.) Item Generation for
Test Development. Mahwah, NJ: Lawrence Erlbaum
Associates.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of 3rd International Conference for Learning Repre-
sentations, San Diego.

Rik Koncel-Kedziorski, Ioannis Konstas, Luke Zettle-
moyer, and Hannaneh Hajishirzi. 2016. A theme-
rewriting approach for generating algebra word
problems. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 1617–1628, Austin, Texas. Associ-
ation for Computational Linguistics.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out: Proceedings of the ACL-04 work-
shop, volume 8. Barcelona, Spain.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. ICML (3), 28:1310–1318.

Oleksandr Polozov, Eleanor O’Rourke, Adam M.
Smith, Luke Zettlemoyer, Sumit Gulwani, and Zo-
ran Popović. 2015. Personalized mathematical word
problem generation.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Justus J Randolph. 2005. Free-marginal multirater
kappa (multirater k [free]): An alternative to fleiss’
fixed-marginal multirater kappa. Online submission.

http://dl.acm.org/citation.cfm?id=944919.944937
https://aclweb.org/anthology/D16-1168
https://aclweb.org/anthology/D16-1168
https://aclweb.org/anthology/D16-1168
https://www.microsoft.com/en-us/research/publication/personalized-mathematical-word-problem-generation/
https://www.microsoft.com/en-us/research/publication/personalized-mathematical-word-problem-generation/
https://aclweb.org/anthology/D16-1264
https://aclweb.org/anthology/D16-1264

503

Shuming Shi, Wang Yuehui, Chin-Yew Lin, Xiaojiang
Liu, and Yong Rui. 2015. Automatically solving
number word problems by semantic parsing and rea-
soning. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing.

Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan,
Hangbo Bao, and Ming Zhou. 2017. Neural ques-
tion generation from text: A preliminary study.
arXiv preprint arXiv:1704.01792.

