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ABSTRACT

We developed an automatic algorithm with the purpose to as-

sist pathologists to report Gleason score on malignant pro-

static adenocarcinoma specimen. In order to detect and clas-

sify the cancerous tissue, a deep convolutional neural network

that had been pre-trained on a large set of photographic im-

ages was used. A specific aim was to support intuitive inter-

action with the result, to let pathologists adjust and correct the

output. Therefore, we have designed an algorithm that makes

a spatial classification of the whole slide into the same growth

patterns as pathologists do. The 22-layer network was cut at

an earlier layer and the output from that layer was used to train

both a random forest classifier and a support vector machines

classifier. At a specific layer a small patch of the image was

used to calculate a feature vector and an image is represented

by a number of those vectors. We have classified both the

individual patches and the entire images. The classification

results were compared for different scales of the images and

feature vectors from two different layers from the network.

Testing was made on a dataset consisting of 213 images, all

containing a single class, benign tissue or Gleason score 3-

5. Using 10-fold cross validation the accuracy per patch was

81 %. For whole images, the accuracy was increased to 89 %.

Index Terms— Prostate cancer, Gleason Score, Deep

Learning, Convolutional Neural Networks

1. INTRODUCTION

The Gleason grading system is a widely used classification

system of malignant prostate adenocarcinomas based on the

growth patterns of the cancer cell population [?]. In the

current revision from the 2005 consensus meeting [?], visu-

ally detectable malignant growth patterns are organized into

three main groups (3,4,5), which are summarized into overall

scores based on patient outcome. The meeting also recom-

mended that benign patterns in group 1 and 2 should not

be reported separately. In the newly proposed revision [?],

the same growth patterns should be detected but are now

organized into new overall scores. This makes it possible to

develop the same image analysis system for both revisions,

by just changing the way that the scores are summarized and

grouped.

Automatic image analysis methods for Gleason grading

have already been proposed. Doyle et al. [?] described an

approach using hand-crafted features based mainly on detect-

ing individual nuclei, whereas both Gorelick et al. [?] and

Jacobs et al. [?] used features derived from super-pixels. An-

other method was proposed in [?] where histograms of SIFT-

features were used to classify the images.

With the advent of deep learning techniques [?], it might

be possible to reach high classification accuracy without using

hand-crafted features, since the features can be derived during

the training. One important technique is convolutional neural

networks (CNN), [?, ?]. These networks consist of multi-

ple layers with different functions. The first layer performs

convolution on the different color channels of the image, fol-

lowing layers consist of interleaved subsampling and convo-

lutional layers. A subsampling layer reduces the spatial reso-

lution and a convolutional layer combines information using

different kernels. With each new layer, a network of feature

vectors that represent the images is produced. The length and

number of these vectors can either increase or decrease with

each layer depending on the design of the network.

In this paper we used a pre-trained CNN, trained on a

dataset consisting of photographic images, and applied it on

pathology images, similar to the idea presented in [?]. For this

purpose the classification step in the network was removed

and replaced with other machine learning techniques to clas-

sify the feature vectors extracted from the network.

The algorithm development that this paper describes is a

part of a larger project envisioning a semi-automatic human-

computer system that pathologists could use to increase the

efficiency and accuracy when reporting the Gleason grade,



which implies that both the resolution and the speed of the

algorithms could be equally important as the accuracy. In this

paper, we evaluate the overall accuracy on a set of images as

well as the accuracy when the images are divided into small

patches, while keeping in mind that we want to keep the pro-

cessing time as low as possible.

2. MATERIAL

During the development phase, self-annotated images gener-

ated by the TCGA Research Network1, were used. The al-

gorithm was then evaluated using cross-validation on an in-

dependent set of images that was used by Lippolis [?]. The

images came from Beaumont Hospital in Dublin, Ireland and

PathXL Ltd in Belfast, UK and consisted of homogeneous

single class images classified by one or more pathologists. In

total we had 52 images of benign glands, 52 images of Glea-

son grade 3, 52 images of Gleason grade 4 and 57 images of

Gleason grade 5. The images were scanned in 40x magnifi-

cation, which were downsampled to both 10x and 5x magni-

fication to reduce the processing time and investigate how the

scale of the images affects the classification result.

3. METHODS

The analysis method can be divided into three parts: Feature

extraction, patch classification, and whole image classifica-

tion.

3.1. Feature Extraction

To extract the initial features, an pre-trained convolutional

neural network, OverFeat, was used [?]. Overfeat is a 22-

layer network in several stages. The first stages include con-

volutional layers followed by a piecewise linear function, de-

fined as f(x) = max(0, x), and, in some of the stages, max-

pooling layers. Later stages include fully connected layers

and classification layer but these are not interesting for our

purpose. A summary of the first 5 stages in the fast version

of the network is shown in Table ??, the table shows the size

of the windows used for convolution and max-pooling. In the

first two stages the convolution is performed only on valid

pixels, later stages use zero-padding. The last column shows

the length of the feature vectors that the different stages out-

puts.

We have extracted features from both layer 9 and layer 16

corresponding to the output from stage 3 and stage 5 respec-

tively. In layer 9, a window of 87 × 87 pixels was used to

compute the feature vector. A new feature vector was com-

puted for the square 16 pixels to the right of the first one, a

schematic image of this is shown in Figure ??. This way, we

got several feature vectors representing the image and each

1http://cancergenome.nih.gov/

convoultion maxpool depth

stage 1 11× 11 window, 2× 2 window, 96

4× 4 stride 2× 2 stride

stage 2 5× 5 window, 2× 2 window, 256

1× 1 stride 2× 2 stride

stage 3 3× 3 window (full), none 512

1× 1 stride

stage 4 3× 3 window (full), none 1024

1× 1 stride

stage 5 3× 3 window (full), 2× 2 window, 1024

1× 1 stride 2× 2 stride

Table 1: Summary of the first 5 stages in the OverFeat net-

work, with the window sizes used for convolution and max-

pooling. The last column shows the layer depth after each

stage.

feature vector was represented by 512 features. The number

of feature vectors depends on the size of the input image. In

layer 16, these windows were larger, 167 × 167 pixels, with

32 pixels between the squares, see Figure ??, and the fea-

ture vectors consist of 1024 features each. The window size

of layer 9 is approximately half of the size of the window

in layer 16, this enables the comparison of the effect depth

while maintaining the same spatial resolution if the we feed

the layer 9 version with a 5x image and and the layer 16 ver-

sion with a 10x image, see Figures ?? and ??.

(a) Layer 9 in 5x (b) Layer 16 in 5x (c) Layer 16 in 10x

Fig. 1: Window sizes, image magnifications, and step sizes

used in our experiments. Note that feature vectors in (a) and

(c) covers the same spatial location, and that (b) and (c) use

the same window size.

3.2. Patch classification

Two different classifiers, Random Forest [?] and Support Vec-

tor Machines [?] were used to classify the feature vectors ob-

tained by OverFeat.

In Random Forest an ensemble of decision trees is trained

from the training data. Each tree uses a number of randomly

chosen features to build the decision tree. The classification

result depends on the number of trees in the forest and the

number of features used.

In Support Vector Machines, SVM, a separating hyper-

plane that separates the classes in the training set is found.



A drawback of the SVM is that it is a binary classifier, so it

has to be modified to support multiclass classification. Here

we have used the one-versus-all strategy [?]. This is done by

training four different classifiers and combining them. First,

we build a classifier for benign tissue versus Gleason grade

3, 4 and 5, then another one for Gleason grade 3 versus be-

nign tissue and Gleason grade 4 and 5 and so on. To classify

a new vector we look at the distances between the separat-

ing hyperplane and the feature vector for all models. In the

classifier benign versus all other classes the vectors that were

classified as benign will have positive distances and the vec-

tors that were classified as one of the other classes will have

negative distances. To classify a vector we compute the dis-

tance to the separating plane for all models and choose the

class that has the largest positive distance to the plane. Dif-

ferent kernel functions can be applied to the data to make the

SVM classifier non-linear.

3.3. Classification of whole images

The patch classification above classifies all individual vectors

in the images, where the vectors corresponds to patches of

size 87 × 87 or 167 × 167 pixels. To classify the whole im-

age we let all patches in an image vote for the different classes

and the class with the highest number of votes is chosen.

4. EXPERIMENTS

The proposed method was evaluated for different resolutions

of the images, 5x and 10x magnification. For 10x magnifi-

cation, only features obtained from layer 16 were evaluated.

For 5x magnification, features from both layer 9 and layer 16

were investigated. The area used to compute a feature vec-

tor in layer nine at 5x magnification roughly corresponds to

the area used to compute a feature vector in layer 16 at 10x

magnification.

We used 10-fold cross validation to evaluate the random

forest and the support vector machines. The number of trees

and the number of variables used was optimized during the

cross validation of random forest. Different kernel functions

were applied to the SVM classifier and the one with the lowest

test error was chosen. The kernel function that performed the

best differs between different experiments, but it is always

either a first or second order polynomial. Figure ?? shows the

mean training and mean test errors from the cross validation

for different magnifications and layers. The plot shows the

errors for the random forest classifiers and the error for the

best kernel functions of the support vector machines classifier.

The training error is shown in blue and the test error in red.

Confusion matrices for the the best classifier for the dif-

ferent magnifications and layers are shown in Table ?? - ??.

Table ?? shows the result for 10x magnification and layer 16,

Table ?? the result for 5x magnification and layer 9 and Ta-

ble ?? the result for 5x magnification and layer 16.

RF SVM RF SVM RF SVM

training error

test error

10x magnification
layer 16

5x magnification
layer 9

5x magnification
layer 16

5 %

10 %

15 %

20 %

25 %

30 %

35 %

40 %

Fig. 2: Training and test error per small patch for both ran-

dom forest and support vector machines for different magni-

fications and layers. Some of the training errors are very close

to zero which could be an indication of overfitting.

estimated class

benign 3 4 5

true class

benign 4812 843 665 511

3 1440 2167 1635 1126

4 474 738 4579 1361

5 269 438 778 9097

Table 2: Confusion matrix for 10x magnification, layer 16,

classified with support vector machines. The matrix shows

the classified patches. The overall error is 33.2 %.

estimated class

benign 3 4 5

true class

benign 3987 632 194 78

3 716 2620 696 353

4 213 636 4099 306

5 58 239 176 7772

Table 3: Confusion matrix for 5x magnification, layer 9, clas-

sified with support vector machines. The matrix shows the

classified patches. The overall error is 18.9 %.

For the binary classification of benign tissue versus can-

cerous tissue we discovered a true positive rate of 94.5 % and

a false negative rate of 5.5 % using Table ??.

Figure ?? shows the training and test errors for different

magnifications and layers when whole images were classified.

The plot shows the errors for the random forest classifiers and

the error for the best kernel functions of the support vector

machines classifier. The training error is shown in blue and

the test error in red.



estimated class

benign 3 4 5

true class

benign 774 50 45 38

3 178 244 178 154

4 56 82 539 278

5 23 29 81 1493

Table 4: Confusion matrix for 5x magnification, layer 16,

classified with random forest. The matrix shows the classified

patches. The overall error is 28.1 %.

RF SVM RF SVM RF SVM

training error

test error

10x magnification
layer 16

5x magnification
layer 9

5x magnification
layer 16

5 %

10 %

15 %

20 %

25 %

30 %

35 %

Fig. 3: Training and test error per whole image for both ran-

dom forest and support vector machines for different magni-

fications and layers. Also here some of the training errors are

very close to zero.

Confusion matrices for the best classifier for the different

magnifications and layers when whole images were classified

are shown in Table ?? - ??. Table ?? shows the result for 10x

magnification and layer 16, Table ?? the result for 5x magnifi-

cation and layer 9 and Table ?? the result for 5x magnification

and layer 16.

estimated class

benign 3 4 5

true class

benign 52 0 0 0

3 9 26 5 12

4 0 5 37 10

5 0 0 3 54

Table 5: Confusion matrix for 10x magnification, layer 16,

classified with random forest. The matrix shows the classified

images. The overall error is 20.7 %.

For the binary classification benign tissue versus cancer-

ous tissue in whole images we discovered a true positive rate

of 96.3 % and a false negative rate of 3.7 % using Table ??.

estimated class

benign 3 4 5

true class

benign 52 0 0 0

3 4 40 3 5

4 2 6 42 2

5 0 0 1 56

Table 6: Confusion matrix for 5x magnification, layer 9, clas-

sified with support vector machines. The matrix shows the

classified images. The overall error is 10.8 %.

estimated class

benign 3 4 5

true outcome

benign 47 4 1 0

3 7 24 14 7

4 4 8 34 6

5 0 3 3 51

Table 7: Confusion matrix for 5x magnification, layer 16,

classified with support vector machines. The matrix shows

the classified images. The overall error is 26.8 %.

5. CONCLUSIONS AND FUTURE WORK

As a first step towards a semi-automatic tool for analyzing

prostate biopsies we have presented a method to automati-

cally classify images into benign tissue and Gleason score 3-

5. The framework perform with an accuracy of 81.1 % when

analyzing small patches of the image, retaining the spatial res-

olution of the classification. When classifying entire images

the accuracy was 89.2 %. This level of accuracy is on the

same level as previous work, but without using hand-crafted

features or other pre-processing of the images. In the future,

it would be very interesting to see if a network trained on

pathologiy images could perform even better.
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