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A B S T R A C T
We present new results for pulsating neutron stars. We have calculated the eigenfrequencies of
the modes that one would expect to be the most important gravitational wave sources: the
fundamental fluid f mode, the first pressure p mode and the first gravitational wave w mode,
for twelve realistic equations of state. From these numerical data we have inferred a set of
‘empirical relations’ between the mode frequencies and the parameters of the star (the radius R
and the mass M). Some of these relations prove to be surprisingly robust, and we show how
they can be used to extract the details of the star from observed modes. The results indicate
that, should the various pulsation modes be detected by the new generation of gravitational
wave detectors that come online in a few years, the mass and the radius of neutron stars can be
deduced with errors no larger than a few per cent.
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1 I N T RO D U C T I O N

1.1 Motivation

The day of the first undeniable detection of gravitational waves
should not be far away. In less than five years, at least five large
interferometric gravitational wave detectors (LIGO, VIRGO,
GEO600 and TAMA) will be operating. At the same time a new
generation of spherical resonant detectors (GRAIL, SFERA, etc.)
could be sensitive enough to detect signals from supernova collapse
and binary coalescences in the Virgo cluster of galaxies. In other
words, recent advancements in technology are heralding the era of
gravitational wave astronomy. However, for this field to reach its
full potential, theoreticians must point out in advance the most
promising sources, the optimal methods of detection and the
appropriate bandwidth to which the detectors should be tuned.
Hence, the theoretical effort is presently focused on various sources
of potentially detectable gravitational waves, in order both to
characterize the waves and to devise detailed detection strategies.
Once gravitational waves are detected the first task will be to
identify the source. This should be possible from the general
character of the waveform and may not require very accurate
theoretical models, but accurate models will be of crucial impor-
tance for a deduction of the parameters of the source, i.e. for
gravitational wave ‘astronomy’.

With this paper we contribute to this rapidly growing field in two
ways. We present results for the gravitational waves from a
pulsating relativistic star, e.g. the violent oscillations of a compact
object formed after a core collapse. These results provide a means
for taking the fingerprints of the source, and suggest optimal

bandwidths to which a detector should be tuned to enable detection
of such signals. Specifically, we discuss how the information carried
by gravitational waves from a pulsating star can be used to infer,
with good precision, both the mass and the radius of the star, data
that would strongly constrain the supranuclear equation of state
(EOS).

The idea behind the present work is a familiar one in astronomy.
For many years, studies of the light variation of variable stars have
been used to deduce their internal structure (Unno et al. 1989). The
Newtonian theory of stellar pulsation was to a large extent devel-
oped in order to explain the pulsations of Cepheids and RR Lyrae.
This approach, known as asteroseismology (helioseismology in the
specific case of the Sun), has been quite successful in recent years.
The relativistic theory of stellar pulsation has now been developed
for thirty years, but it has not yet been applied in a similar way. So far,
the relativistic theory has no immediate connections to observations
(that are not already provided by the Newtonian theory). We believe
that this situation will change once the gravitational wave window
to the Universe is opened, and with this article we discuss how the
information carried by the gravitational wave signal can be inverted
to estimate the parameters of pulsating stars. That is, we take the
first (small) step towards gravitational wave asteroseismology.

1.2 Detectability of the waves

At the present time it is not clear that the gravitational waves from
pulsating neutron stars will be seen by the detectors that are
presently under construction. Our relative ignorance in this matter
is a result of the lack of accurate, fully relativistic models of, for
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example, the gravitational collapse that follows a supernova. At
present we simply do not know how much energy will be radiated
through the oscillation modes of a nascent neutron star. However,
one can argue that the released energy could be considerable. One
generally expects the newly formed neutron star to pulsate wildly
during the first few seconds following the collapse. This pulsation
will be damped mainly through gravitational waves. This means
that the signal, which carries the signature of the collapsed object,
may be invisible in the electromagnetic spectrum, but the amplitude
of the emerging gravitational waves could be considerable. The
energy stored in the pulsation could potentially be of the same order
as the kinetic energy of the collapse. In fact, it is not unreasonable to
expect that a significant part of the mass energy of the newly formed
object would be radiated in this way.

The spectrum of a pulsating relativistic star is tremendously rich,
since essentially every feature of the star can be directly associated
with (at least) one distinct family of pulsation modes (McDermott,
Van Horn & Hansen 1988; Andersson, Kojima & Kokkotas 1996). It
seems likely, however, that only a few of these modes will carry
away the bulk of the radiated energy (Allen et al. 1998). From the
gravitational wave point of view, the most important modes are
the fundamental (f ) mode of fluid oscillation, the first and maybe
the second pressure (p) modes and the first gravitational wave (w)
mode (Kokkotas & Schutz 1992; Andersson, Kokkotas & Schutz
1995; Andersson, Kojima & Kokkotas 1996). Other pulsation
modes, eg. the g (gravity), higher order p modes, s (shear), t
(toroidal) and i (interface) modes, can be accounted for with
Newtonian dynamics since they do not emit significant amounts
of gravitational radiation (McDermott et al. 1988). For a historical
description of, and further details on, the theory of relativistic stellar
pulsation, we refer the reader to a recent review article by Kokkotas
(1997). A detailed discussion of the relativistic perturbation equa-
tions was recently provided by Allen et al. (1998).

The pulsation modes of a neutron star are likely to be excited in
many dynamical processes, but will the resultant gravitational
waves be strong enough to be detectable on Earth? As already
mentioned, the answer to that question is unclear and demands more
accurate modelling, but it is straightforward to derive useful order-
of-magnitude estimates. As we have have recently shown elsewhere
(Andersson & Kokkotas 1996), we get

heff , 2:2 × 10¹21 E

10¹6 M(c2

� �1=2 2 kHz
f

� �1=2 50 kpc
r

� �
; ð1Þ

for the f mode, and

heff , 9:7 × 10¹22 E

10¹6 M(c2

� �1=2 10 kHz
f

� �1=2 50 kpc
r

� �
ð2Þ

for the fundamental w mode. Here we have used typical parameters
for the pulsation modes, E is the available pulsation energy, and the
distance scale used is that to SN1987A. In this volume of space one
would not expect to see more than one event per ten years or so.
However, the assumption that the energy released through gravita-
tional waves in a supernova is of the order of 10¹6 M(c2 is
probably conservative. If a substantial fraction of the binding
energy of a neutron star were released through the pulsation
modes they could potentially be observable all the way out to the
Virgo cluster. Then we could hope to see several events per year.

Suppose we want to know how much energy must go into each
mode to achieve an effective gravitational wave amplitude
heff , 10¹21 (the order of magnitude a signal must have to be
‘detectable’) when the source is at a distance of 15 Mpc. We can
invert the above relations, and find that at least 1 per cent of a solar

mass must be radiated through these modes if they are to be
detectable at the Virgo distance. The specific numbers are
E < 0:019 M(c2 for the f mode and E < 0:096 M(c2 for the w
mode. To assume that this amount of energy actually goes into these
modes seems somewhat optimistic, but the possibility should not be
ruled out. Anyway, the rough estimates indicate that the pulsations
of a nascent neutron star in the local group of galaxies could well be
detectable. This may not be a very frequent event, but as we shall
see the pay-off of its detection could be great.

1.3 Addressing the inverse problem

Considering the possibility of a future detection, it is relevant to
pose the ‘inverse problem’ for gravitational waves from pulsating
stars. Once we have observed the waves, can we deduce the details
of the star from which they originated? To answer this question we
have calculated the frequencies and damping times of the modes
that we expect to lead to the strongest gravitational waves for a
selection of EOS. The numerical method used for the calculation is
essentially that described by Andersson et al. (1995). The study
includes several stellar models for each EOS. The obtained data,
tabulated in Appendix A (below), extend previous results of
Lindblom & Detweiler (1983) in two ways: (i) a few modern
EOS are included, and (ii) we have added results both for p and w
modes. We have used this numerical data to create useful ‘empiri-
cal’ relations between the ‘observables’ (frequencies and damping
times) and the parameters of the star (mass, radius and possibly the
EOS). As we will show in the following, these relations can be used
to infer the stellar parameters from detected mode data.

In this study we have not taken into account the effects of
rotation. There are two reasons for this: first, rotation should have
a marginal effect, except in the most rapidly spinning cases, since
rotational effects scale as the angular velocity squared. Secondly,
and more importantly, there is at present no available method that
can be used to study pulsation modes of a rapidly rotating relati-
vistic star. Such methods must be developed, and once the relevant
results become available the present study can be complemented to
incorporate them.

Before we proceed to discuss the deduced empirical relations, a
few comments on our choice of stellar models are in order. In
Appendix Awe tabulate data for various oscillation modes (f , p and
w) for twelve different EOS listed in Table 1. The chosen pulsation
modes are those that (i) should produce the strongest gravitational
waves, and (ii) lie inside the bandwidth of the detectors which are
either planned or under construction. Most of the EOS were taken
from the old Arnett & Bowers catalogue (Arnett & Bowers 1974).
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Table 1. The twelve equations of state that were included in the study.

Model Reference

A Pandharipande (1971) (neutron)
B Pandharipande (1971) (hyperonic; model C)
C Bethe and Johnson Bethe & Johnson (1974) (model I)
D Bethe & Johnson (1974) (model V)
E Moszkowski (1974)
F Arponen (1972)
G Canuto & Chitre (1974)
I Cohen et al. (1970)
L Pandharipande, Pines & Smith (1976)
WFF Wiringa et al. (1988)
G240 Glendenning (1985) K240
G300 Glendenning (1985) K300



Although some of these EOS might be outdated, none of them is
ruled out by present observations. Furthermore, the range of
stiffness of the EOS listed by Arnett & Bowers is still relevant
today. This is important for the present study. In order for our
analysis to be robust it is necessary that our sample of EOS spans the
anticipated range of stiffness. However, we have also included three
more modern EOS: one of the models of Wiringa, Ficks &
Fabrocini (1988) and two models from Glendenning (1985). For
the EOS that were also considered by Lindblom & Detweiler (1983)
we have chosen identical stellar models to facilitate a comparison of
the results. Finally, we have only included stellar models the masses
and radii of which are within the limits accepted by current
observations (Finn 1994; van Kerkwijk, van Paradijs & Zuiderwijk
1995).

2 W H AT C A N W E L E A R N F R O M
O B S E RVAT I O N S ?

Our present understanding of neutron stars comes mainly from
X-ray and radio-timing observations. These observations provide
some insight into the structure of these objects and the properties of
supranuclear matter. The most commonly and accurately observed
parameter is the rotation period, and we know that radio pulsars can
spin very fast (the shortest observed period being the 1.56 ms of
PSR 1937+21). Another basic observable, that can be obtained (in a
few cases) with some accuracy from present day observations, is the
mass of the neutron star. As Finn (1994) has shown, the
observations of radio pulsars indicate that 1:01 < M=M( < 1:64.

Similarly, van Kerkwijk et al. (1995) find that data for X-ray pulsars
indicate 1:04 < M=M( < 1:88. The data used in these two studies is
actually consistent with (if one includes error bars) M < 1:44 M(.
We now recall that the various EOS that have been proposed by
theoretical physicists can be divided into two major categories: (i)
the ‘soft’ EOS, which typically lead to neutron star models with
maximum masses around 1:4 M( and radii usually smaller than 10
km, and (ii) the ‘stiff’ EOS with the maximum values M , 1:8 M(

and R , 15 km (Arnett & Bowers 1977). From this one can deduce
that, even though the constraint put on the neutron star mass by
present-day observations seems strong, it does not rule out many of
the proposed EOS. In order to arrive at a more useful result we
are likely to need detailed observations of the stellar radius
also. Unfortunately, available data provide little information
about the radius. The recent observations of quasiperiodic oscilla-
tions in low-mass X-ray binaries indicate that R < 6M, but again
this is not a severe constraint. Although a number of attempts have
been made, using either X-ray observations (Lewin, van Paradijs &
Taam 1993) or the limiting spin period of neutron stars (Friedman,
Ipser & Parker 1986), to put constraints on the mass–radius
relation, we do not yet have a method which can provide the desired
answer.

2.1 A detection scenario

In view of this situation, any method that can be used to infer
neutron star parameters is a welcome addition. Of specific interest
may be the new possibilities offered once gravitational wave
observations become reality. An obvious question is the extent to
which one can solve the inverse problem in gravitational wave
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Figure 1. The numerically obtained f mode frequencies plotted as functions
of the mean stellar density (M and R are in km and qf mode in kHz).

Figure 2. The normalized damping time of the f modes as functions of the
stellar compactness (M and R are in km and tf mode in s).



astronomy. In this paper we address this issue for the case of waves
from pulsating neutron stars. In Appendix A we provide extended
tables with frequencies and damping times for the most relevant
pulsation modes (as far as gravitational waves are concerned) of
various stellar models created from a range of realistic EOS. We
will suppose that these modes can be detected by some future
generation of gravitational wave detectors, and investigate the level
of precision to which we can hope to calculate the parameters of the
source from observed data.

Let us suppose that a nearby supernova explodes, say in the Local
Group of galaxies, and is followed by a core collapse that leads to
the formation of a compact object. As the dust from the collapse
settles, the compact object pulsates wildly in its various oscillation
modes, generating a gravitational wave signal which is composed of
an overlapping of different frequencies. We will assume that the
results of Allen et al. (1998) can be brought to bear on this situation,
i.e. that most of the energy is radiated through the f mode, a few p
modes and the first w mode. Our detector picks up this signal, and a
subsequent Fourier analysis of the data stream yields the frequen-
cies and the energy content in each mode.

The first question to be answered by the gravitational wave
astronomer concerns what kind of compact object could produce
the detected signal. Is it a black hole or a neutron star? The
pulsations of these objects lead to qualitatively similar gravitational
waves, e.g. exponentially damped oscillations, but the question
should nevertheless be relatively easy to answer. If more than one of
the stellar pulsation modes is observed the answer is clear, but even
if we only observe one single mode the two cases should be easy to

distinguish. The fundamental (quadrupole) quasi-normal mode
frequency of a Schwarzschild black hole follows from

f < 12kHz
M(

M

� �
; ð3Þ

while the associated e-folding time is

t < 0:05ms
M

M(

� �
: ð4Þ

That is, the oscillations of a 10-M( black hole lie in the frequency
range of the f mode for a typical neutron star (see Appendix A).
However, the two signals will differ greatly in the damping time, the
e-folding time of the black hole being nearly three orders of
magnitude shorter than that of the neutron star f mode.

Having excluded the possibility that our signal came from a black
hole, we want to know the mass and the radius of the newly born
neutron star. We also want to decide which of the proposed EOS
best represents this star. To address these questions we can use a set
of empirical relations deduced from the data of Appendix A,
relations that can be used to estimate the mass, the radius and the
EOS of the neutron star with good precision.

2.2 Empirical relations

Let us first consider the frequency of the f mode. It is well known
that the characteristic time-scale of any dynamical process is related
to the mean density of the mass involved (see Misner, Thorne &
Wheeler, 1973, chapter 36.2). This notion should be relevant for the
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Figure 3. The damping time of the p modes as a function of the stellar
compactness (M and R are in km and tp mode in s).

Figure 4. The p mode frequencies plotted as a function of the compactness
of the star (M and R are in km and qp mode in kHz).



fluid oscillation modes of a star, and we consequently expect that
qf , r̄1=2. That is, we should normalize the f mode frequency with
the average density of the star. The result of doing this is shown in
Fig. 1. From this figure it is apparent that the relation between the f
mode frequencies and the mean density is almost linear, and a linear
fitting leads to the simple relation

qf ðkHzÞ < 0:78 þ 1:635
M̄

R̄3

� �1=2

; ð5Þ

where we have introduced the dimensionless variables

M̄ ¼
M

1:4 M(

and R̄ ¼
R

10 km
: ð6Þ

From equation (5) it follows that the typical f mode frequency is
around 2.4 kHz.

To deduce a corresponding relation for the damping rate of the f
mode, we can use the rough estimate given by the quadrupole
formula. That is, the damping time should follow from

tf ,
oscillation energy

power emitted in GWs
, R

R
M

� �3

: ð7Þ

Using this normalization we plot the functional ðtf M
3
=R4Þ¹1 as a

function of the stellar compactness, cf. Fig. 2. The data shown in
this figure lead to a relation between the damping time of the f mode
and the stellar parameters M and R,

1
tf ðsÞ

<
M̄3

R̄4 22:85 ¹ 14:65
M̄

R̄

� �� �
: ð8Þ

The small deviation of the numerical data from the above formula is

apparent in Fig. 2, and one can easily see that a typical value for the
damping time of the f mode is a tenth of a second.

For the damping rate of the p modes the situation is not so
favourable. This is because the damping of the p modes is more
sensitive to changes in the modal distribution inside the star. Thus,
different EOS lead to rather different p mode damping rates, cf.
Fig. 3. Previous evidence for polytropes (Andersson & Kokkotas
1997) actually indicate that this would be the case. Clearly, an
empirical relation based on the data in Fig. 3 would not be very
robust.

The situation is slightly better if we consider the oscillation
frequency of the p mode. From the data shown in Fig. 4 we can
deduce a relation between the p mode frequency and the parameters
of the star,

qpðkHzÞ <
1
M̄

1:75 þ 5:59
M̄
R̄

� �
; ð9Þ

and we see that a typical p mode frequency is around 7 kHz.
Although the data for several EOS deviate significantly from (9) it is
still a useful result. Stellar masses and radii deduced from it will not
be as accurate as ones based on f mode data, but on the other hand, if
M and R are obtained in some other way (say, from a combination of
observed f - and w modes) the p mode can be used to deduce the
relevant EOS.

That empirical relations based on p mode data would be less
robust and useful than those for the f mode was expected, since the p
modes are sensitive to changes in the matter distribution inside the
star. In contrast, the gravitational wave w modes should lead to
very robust results. It is well known (Kokkotas & Schutz 1992;
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Figure 5. The functional Rqw as a function of the compactness of the star (M
and R are in km and qw mode in kHz).

Figure 6. The functional M=tw as a function of the compactness of the star
(M and R are in km and tw mode in ms).



Andersson et al. 1996) that the w modes do not excite a significant
fluid motion. Thus, they are more or less independent of the
characteristics of the fluid. The frequencies do not depend on the
sound speed and the damping times cannot be modelled by the
quadrupole formula. Nevertheless, we can deduce the appropriate
normalization for the w mode data listed in Appendix A. Analytic
results for model problems for the w modes (Kokkotas & Schutz
1986; Andersson 1996) show that the frequency of the w mode is
inversely proportional to the size of the star. This is clear from the
data in Fig. 5. Meanwhile, the damping time is related to the
compactness of the star, i.e. the more relativistic the star, is the
longer the w mode oscillation lasts. This is shown in Fig. 6. These
properties have already been discussed in some detail by Andersson
et al. (1996) for uniform density stars.

For the present numerical data (shown in Figs 5 and 6) we find the
following relations for the frequency and damping of the first w
mode:

qwðkHzÞ <
1
R̄

20:92 ¹ 9:14
M̄
R̄

� �� �
; ð10Þ

and

1
twðmsÞ

<
1
M̄

5:74 þ 103
M̄

R̄

� �
¹ 67:45

M̄

R̄

� �2
" #

: ð11Þ

We see that a typical value for the w mode frequency is 12 kHz, but
since the frequency depends strongly on the radius of the star it
varies greatly for different EOS. For example, for a very stiff EOS
(L) the w mode frequency is around 6 kHz, while for the softest EOS
in our set (G) the typical frequency is around 14 kHz. The w mode

damping time is comparable to that of an oscillating black hole with
the same mass, i.e. it is typically less than a tenth of a millisecond.

2.3 A simple experiment

In principle, the relations we have deduced between the various
pulsation modes and the stellar parameters can be used to infer M
and R (or some combination thereof) from detected mode data. The
five relations (5)–(11) form an over-determined system of five
equations for the two unknown quantities R and M. One would
expect this system to provide an accurate characterization of the star
in the ideal case when the gravitational wave signal carries energy
in all modes (f , p and w).

This idea is promising and simple enough, but we need to
examine how well it can work in practice. To do this we have
constructed a set of independent polytropic stellar models
(p ¼ Kr1þ1=N ) with varying polytropic indices (N ¼ 0:8; 1; 1:2).
We have determined the f mode, the first p mode and the slowest
damped w mode for each of these models. We let this data represent
‘observed’ gravitational wave signals, and use various combina-
tions of the relations (5)–(11) to extract the values of the masses and
radii of the stellar models.

In Fig. 7 we show the result of a combination of the relations for f
and w modes [(5), (8), (10) and (11)] for one of the polytropic
models. In the figure, a filled circle represents the true parameters of
the star, and it is clear that estimates based on the above relations
can be very accurate. More detailed results are listed in Table 2. The
typical errors of a parameter estimation based on the oscillation
frequencies of the f and the w mode [the combination of (5) and
(10)] are (5, 2 per cent) where the first number is the error in the
radius and the second is the error in the mass. Combining the
frequency and damping of the f mode [(5) and (8)] we find (6.5, 17.6
per cent). The f mode frequency and the w mode damping rate [(5)
and (11)] lead to (5.6, 1.4 per cent), while the w mode frequency and
the f mode damping [(10) and (8)] yield (3.2, 1.9 per cent). A
combination of the w mode frequency and damping rate [(10) and
(11)] leads to (3.9, 1.6 per cent). Finally, by combining the damping
rates of the f and the w mode [(11) and (8)] we get (2.1, 6.3 per cent).
These results are rather impressive. The robustness of our empirical
relations for f and w modes, and the precision with which they can
be used to deduce stellar masses and radii, is surprising. The errors
are notably larger when we replace either the f or the w mode with
the p mode. For example, for the combination (5) and (9), the
oscillation frequencies of the f and p modes, the method estimates
the stellar parameters to within (23, 123 per cent). That is, from this
combination we can at best get upper and lower bounds of the
parameters of the observed object.

That the p mode relation is less useful for an inversion to yield the
stellar mass and radius is, however, not completely bad news. Once
we have estimated the mass and the radius we want to identify
which of the proposed EOS best fits the observed data. When
combined with data deduced from the other modes, the p modes can
provide the answer to this question, e.g. via the results in Fig. 3. If
we observe a p mode we should at least be able to exclude the
unsuitable EOS.

The most suitable EOS can, of course, also be deduced from the
mass and radius of the star. As we show in Fig. 8, the mass–radius
relation is characteristic for each EOS in our sample. From this data
it should not be difficult to infer which EOS can lead to a mass and
radius obtained via the empirical relations. Alternatively, one can
use the approach suggested by Lindblom Lindblom 1992. He has
shown how one can reconstruct the density–pressure relation in the
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Figure 7. An illustration of how accurately the radius and the mass of a star
can be inferred from detected mode data and our empirical relations.



interior of a neutron star from a sample of observed masses and
radii.

3 C O N C L U D I N G R E M A R K S

This paper concerns the feasibility of gravitational wave astero-
seismology. That is, whether it is realistic to expect to be able to
infer stellar parameters [mass, radius and EOS] from observations
of gravitational wave signals from pulsating neutron stars. To
address this issue we have calculated the details of the modes that

we expect to provide the strongest gravitational waves: the f mode,
the first p mode and the first w mode, for a sample of twelve realistic
EOS. Our chosen EOS span a range of stiffness that should include
all proposed models. From the obtained data we have deduced a set
of empirical relations that can be used to infer the mass and the
radius (or rather, combinations thereof) from observed mode
frequencies. In the ideal case, when both the f and the w mode
are detected, our empirical relations predict M and R with surprising
precision.

These results are undoubtedly interesting, but so far we have
discussed an ideal scenario. In order for gravitational wave aster-
oseismology to become reality, the detectors that are presently
under construction or at the planning stage must be able to detect
these mode signals. We have argued that this may be possible in a
‘hand-waving’ way, but we have as yet no detailed results. The
answer depends to a large extent on how much energy is radiated
through the pulsation modes of, for example, a nascent neutron star
immediately following the collapse. At the present time there are no
reliable predictions of this, and fully relativistic collapse simula-
tions are desperately needed. This is a challenge for numerical
relativity, and hopefully the answer will be known in the near future.
Another related issue, that we have not addressed concerns the
expected detection errors. When the signal is noisy, as is likely to be
the case, there will be statistical errors associated with the observed
mode data. These errors will obviously affect the precision with which
the stellar parameters can be deduced from our empirical relations.

Finally, the detectors which will be in operation in the next
decade will mainly be sensitive to frequencies below 5–6 kHz. The
f modes are well inside this bandwidth, as is the first p mode for
most of the EOS we have considered, but only for the stiffest EOS
does the first w mode have a frequency around 6 kHz. This is bad
news for the proposed parameter detection/inversion. As we have
seen, however, a detection of the w mode could lead to a very
accurate deduction of the stellar mass and radius. The astrophysical
pay-off would thus be considerable, and the situation illustrates the
need to complement the currently planned detectors with ones
dedicated to a search for high-frequency gravitational waves.
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Table 2. Results from a simple ‘experiment’. We have used the empirical relations for mode frequencies of realistic EOS to deduce the stellar parameters of a set
of independent polytropic models. In the first three columns we list the parameters of the polytropes: the polytropic index, the radius and the mass. The following
columns give the percentage error in the estimated parameters (radius, mass) when the polytropic mode frequencies are used in our relations for f and w modes
[(5), (8), (10) and (11)]. We have not used the p mode data here, since the corresponding empirical relations are less robust than for the other modes.

N RðkmÞ MðM(Þ (5) and (10) (5) and (8) (5) and (11) (10) and (8) (10) and (11) (11) and (8)

0.8 10.03 1.08 (¹3.5, 0.1) (¹15.3, ¹ 5.4) (¹3.9, ¹1.3) (¹2.6, ¹1.0) (¹2.2, ¹1.3) (¹2.8, ¹1.3)
0.8 9.49 1.35 (¹0.02,-1.8) (4.7, 11.8) (0.8, 0.6) (¹4.6, ¹0.6) (¹2.9, ¹1.1) (¹1.5, ¹0.5)
0.8 8.99 1.50 (1.3, ¹1.1) (0.1, ¹5.1) (2.1, 1.1) (¹6.8, ¹1.6) (¹1.6, ¹1.4) (0.6, 0.02)
1.0 9.65 1.13 (3.4, ¹4.0) (9.7, 15.2) (4.4, ¹0.6) (¹0.5, ¹1.5) (¹0.3, ¹1.6) (¹0.5, ¹1.7)
1.0 8.86 1.27 (6.6, ¹3.0) (¹3.5, ¹40.0) (7.9, 1.5) (¹1.7, ¹2.5) (1.9, ¹2.0) (¹0.8, ¹28.9)
1.0 7.42 1.35 (9.7, 2.7) (10.9, 6.6) (10.2, 4.2) (¹4.4, ¹1.4) (7.7, 1.9) (4.3, ¹8.7)
1.2 12.77 1.24 (¹1.6, 1.6) (-12.0, ¹32.0) (¹2.5, ¹0.9) (3.0, ¹4.2) (0.7, ¹1.5) (4.4, ¹1.8)
1.2 10.48 1.44 (7.4, ¹3.5) (¹2.2, ¹38.7) (7.8, ¹1.9) (3.8, ¹3.0) (5.6, ¹3.2) (¹3.2, ¹4.7)
1.2 8.97 1.46 (11.4, 0.3) (10.3, ¹3.4) (11.2, ¹0.2) (1.8, ¹1.5) (12.0, 0.5) (1.3, ¹8.9)

Figure 8. The mass–radius relation for the twelve EOS in our sample. These
data can be used to identify which of the EOS agrees best with the estimated
parameters of a star. From the graph one can easily identify the relative
stiffness of the EOS. In order of increasing stiffness they can be ordered
G < B < F < A < E < D < WFF < C < G240 < G300 < I < L.
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A P P E N D I X A : R E S U LT S F O R VA R I O U S
E Q UAT I O N S O F S TAT E

This appendix provides the numerical data for mode frequencies of
12 realistic EOS. These data were used to infer the empirical
relations discussed in the main body of the paper. We provide the
data in the form of one table for each EOS. In each table we list the
central density, the radius and the mass of the stellar model, and the
frequencies and damping times of the f mode, the first p mode and
the first w mode.
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Table A1. Data for the EOS A (Pandharipande 1971).

rc × 1015 R M qf tf qp tp qw tw

gr=cm3 km M( kHz s kHz s kHz ms

3.980 8.426 1.653 3.090 0.109 7.838 4.640 9.824 0.064
3.000 8.884 1.620 2.888 0.106 7.822 2.475 10.165 0.045
2.344 9.268 1.535 2.704 0.109 7.819 2.163 10.766 0.032
1.995 9.493 1.447 2.579 0.117 7.818 2.293 11.444 0.027
1.698 9.688 1.328 2.447 0.132 7.807 2.726 12.344 0.022
1.259 9.924 1.050 2.203 0.183 7.543 5.218 14.328 0.017

Table A2. Data for the EOS B (Pandharipande 1971).

rc × 1015 R M qf tf qp tp qw tw

gr=cm3 km M( kHz s kHz s kHz ms

5.012 7.317 1.405 3.598 0.091 8.957 2.994 11.577 0.053
7.684 7.682 1.360 3.393 0.089 8.739 1.615 12.094 0.037
3.388 7.951 1.303 3.236 0.091 8.515 1.406 12.638 0.029
3.000 8.143 1.248 3.113 0.095 8.314 1.403 13.183 0.025
1.995 8.761 0.971 2.661 0.144 7.467 1.635 15.770 0.015

Table A3. Data for the EOS C (Bethe & Johnson 1974) (model I).

rc × 1015 R M qf tf qp tp qw tw

gr=cm3 km M( kHz s kHz s kHz ms

3.0 9.952 1.852 2.656 0.121 6.432 1.548 8.843 0.062
1.995 10.778 1.790 2.383 0.124 6.209 1.452 9.214 0.040
1.778 11.009 1.746 2.304 0.129 6.126 1.514 9.444 0.035
1.413 11.441 1.619 2.144 0.146 5.925 1.766 10.124 0.028
1.122 11.832 1.435 1.975 0.181 5.664 2.264 11.003 0.023
1.0 12.017 1.322 1.885 0.208 5.505 2.741 11.496 0.021
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Table A4. Data for the EOS D (Bethe & Johnson 1974) (model V).

rc × 1015 R M qf tf qp tp qw tw

gr=cm3 km M( kHz s kHz s kHz ms

3.548 9.262 1.652 2.833 0.108 6.646 0.822 9.954 0.049
3.0 9.597 1.649 2.699 0.110 6.662 0.900 10.001 0.043
2.512 9.945 1.632 2.560 0.114 6.456 1.106 10.114 0.037
1.778 10.448 1.549 2.356 0.127 5.911 1.763 10.543 0.029
1.413 10.678 1.425 2.235 0.147 5.881 1.945 11.371 0.024
1.122 10.968 1.187 2.045 0.194 5.351 2.455 12.792 0.019

Table A5. Data for the EOS E (Moszkowski 1974).

rc × 1015 R M qf tf qp tp qw tw

gr=cm3 km M( kHz s kHz s kHz ms

2.818 9.171 1.713 2.805 0.109 7.553 3.503 9.593 0.053
2.239 9.562 1.626 2.642 0.111 7.474 2.372 10.175 0.038
1.778 9.915 1.476 2.467 0.123 7.327 2.256 11.170 0.027
1.585 10.066 1.378 2.376 0.135 7.212 2.476 11.812 0.024
1.259 10.316 1.145 2.180 0.179 6.865 3.404 13.321 0.018

Table A6. Data for the EOS F (Arponen 1972).

rc × 1015 R M qf tf qp tp qw tw

gr=cm3 km M( kHz s kHz s kHz ms

5.012 7.966 1.464 3.403 0.097 7.349 0.826 11.123 0.0551
3.981 8.495 1.450 3.138 0.098 7.087 0.631 11.318 0.0409
3.162 9.087 1.413 2.859 0.104 6.855 0.601 11.560 0.0316
2.239 9.934 1.335 2.478 0.130 6.585 0.948 12.011 0.0235
1.585 10.462 1.225 2.231 0.157 6.361 1.653 12.655 0.0194
1.122 10.892 1.031 1.980 0.475 6.039 3.194 13.705 0.0167

Table A7. Data for the EOS G (Canuto & Chitre 1974).

rc × 1015 R M qf tf qp tp qw tw

gr=cm3 km M( kHz s kHz s kHz ms

6.042 7.010 1.356 3.801 0.091 9.029 1.994 11.931 0.056
4.503 7.472 1.327 3.526 0.087 8.722 1.223 12.402 0.037
3.498 7.898 1.253 3.264 0.091 8.387 1.024 13.146 0.026
2.631 8.397 1.114 2.927 0.111 7.897 1.194 14.556 0.019
2.376 8.556 1.057 2.813 0.123 7.705 1.360 15.069 0.017

Table A8. Data for the EOS I (Cohen et al. 1970).

rc × 1015 R M qf tf qp tp qw tw

gr=cm3 km M( kHz s kHz s kHz ms

1.585 12.468 2.418 2.063 0.158 5.444 7.729 6.758 0.083
1.259 13.023 2.324 1.943 0.154 5.415 3.796 7.100 0.058
1.0000 13.498 2.154 1.822 0.163 5.358 3.270 7.685 0.042
0.7943 13.885 1.894 1.689 0.193 5.255 3.736 8.571 0.032
0.6310 14.128 1.562 1.551 0.255 5.087 5.294 9.686 0.025
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Table A9. Data for the EOS L (Pandharipande et al. 1976).

rc × 1015 R M qf tf qp tp qw tw

gr=cm3 km M( kHz s kHz s kHz ms

1.500 13.617 2.661 1.874 0.173 5.099 7.716 6.142 0.092
1.259 13.935 2.649 1.816 0.168 5.123 7.829 6.204 0.079
1.000 14.297 2.579 1.746 0.170 5.147 8.204 6.401 0.063
0.794 14.678 2.391 1.655 0.183 5.179 5.451 6.940 0.047
0.631 14.986 2.044 1.534 0.216 5.215 6.067 8.007 0.034
0.600 15.022 1.959 1.508 0.229 5.215 6.552 8.259 0.032
0.500 15.053 1.636 1.415 0.312 5.152 9.755 9.224 0.026
0.398 14.885 1.214 1.303 11.494 4.865 17.094 10.629 0.020

Table A10. Data for the EOS WFF (Wiringa et al. 1988).

rc × 1015 R M qf tf qp tp qw tw

gr=cm3 km M( kHz s kHz s kHz ms

4.0 9.177 1.827 2.854 0.123 7.010 3.949 8.824 0.081
3.0 9.612 1.840 2.695 0.120 7.000 3.014 8.893 0.062
2.6 9.849 1.828 2.609 0.119 7.003 2.743 8.993 0.054
2.0 10.277 1.759 2.449 0.121 7.016 2.478 9.383 0.040
1.8 10.440 1.710 2.382 0.124 7.016 2.504 9.662 0.035
1.4 10.774 1.538 2.216 0.142 6.976 3.050 10.726 0.026
1.216 10.912 1.403 2.118 0.163 6.911 3.628 11.506 0.023
1.0 11.036 1.178 1.977 0.203 6.745 5.004 12.767 0.019
0.9 11.073 1.044 1.897 1.927 6.609 6.214 13.547 0.017
0.8 11.101 0.889 1.804 5.598 6.387 9.275 14.514 0.015

Table A11. Data for the EOS G240 (Glendenning 1985).

rc × 1015 R M qf tf qp tp qw tw

gr=cm3 km M( kHz s kHz s kHz ms

2.515 10.907 1.553 2.346 0.134 5.456 0.505 10.417 0.030
1.889 11.531 1.536 2.140 0.153 5.289 0.704 10.406 0.027
1.429 12.146 1.485 1.942 0.183 5.163 1.086 10.515 0.025
1.088 12.651 1.405 1.774 0.221 5.079 1.809 10.719 0.023
0.762 13.148 1.240 1.581 4.965 4.971 3.975 11.205 0.020
0.587 13.338 1.079 1.464 10.812 4.842 6.998 11.752 0.018

Table A12. Data for the EOS G300 (Glendenning 1985).

rc × 1015 R M qf tf qp tp qw tw

gr=cm3 km M( kHz s kHz s kHz ms

2.063 11.790 1.788 2.151 0.141 5.278 0.713 9.145 0.036
1.543 12.343 1.762 1.991 0.157 5.196 0.984 9.225 0.032
1.162 12.920 1.685 1.818 0.186 5.157 1.556 9.489 0.028
0.883 13.362 1.562 1.669 0.227 5.152 2.724 9.878 0.025
0.645 13.681 1.345 1.512 0.812 5.127 5.832 10.581 0.022
0.518 13.736 1.156 1.419 4.894 5.029 9.772 11.256 0.019


