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Towards grid-basedO„N… density-functional theory methods: Optimized nonorthogonal
orbitals and multigrid acceleration

J.-L. Fattebert* and J. Bernholc
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202

~Received 13 September 1999!

We have formulated and implemented a real-spaceab initio method for electronic structure calculations in
terms of nonorthogonal orbitals defined on a grid. A multigrid preconditioner is used to improve the steepest
descent directions used in the iterative minimization of the energy functional. Unoccupied or partially occupied
states are included using a density matrix formalism in the subspace spanned by the nonorthogonal orbitals.
The freedom introduced by the nonorthogonal real-space description of the orbitals allows for localization
constraints that linearize the cost of the most expensive parts of the calculations, while keeping a fast conver-
gence rate for the iterative minimization with multigrid acceleration. Numerical tests for carbon nanotubes
show that very accurate results can be obtained for localization regions with radii of 8 bohr. This approach,
which substantially reduces the computational cost for very large systems, has been implemented on the
massively parallel Cray T3E computer and tested on carbon nanotubes containing more than 1000 atoms.
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I. INTRODUCTION

The relative simplicity and accuracy of density-function
theory ~DFT! has enabled great progress in electronic str
ture calculations.1,2 The fact that the exchange and corre
tion interactions between electrons can be quite accura
described by a potential that depends only on the electr
density and possibly its gradient@the local-density and gen
eralized gradient approximations~LDA ! and~GGA!, respec-
tively# is an enormous simplification that led toab initio
calculations for systems containing a fairly large number
atoms. However, the interest in complex and/or technolo
cal materials and structures is stimulating the developmen
methods that can substantially enlarge the number of at
that can be handled by DFT techniques.

The largest calculations usually employ pseudopotenti
which eliminate the need to explicitly consider core electro
in the Kohn-Sham~KS! equations. This enables the descr
tion of the electronic wave functions in a plane wave ba
which offers substantial advantages:~i! plane waves do no
depend on the atomic positions, which simplifies the cal
lation of the atomic geometry and makes the results m
precise, and~ii ! the accuracy is determined by a single p
rameter, the highest kinetic energy of the waves included
the calculations. The structure of the DFT equations is a
advantageously exploited in the plane-wave basis: the kin
energy is diagonal in Fourier space, while the potential te
are diagonal in real space. The transformation between
two spaces occurs via the well-known fast Fourier transfo
~FFT! algorithm, which is very fast on vector supercompu
ers and modern workstations. However, its performa
slows down on massively parallel computers since FFT
global operation.

Recently, there has been substantial interest in the
called real-space methods, which offer the promise of e
larger calculations. There are several reasons for this,
most obvious being easier parallelization, since specific
gions of space could just be assigned to particular pro
PRB 620163-1829/2000/62~3!/1713~10!/$15.00
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sors. More subtly, multiscale convergence accelera
techniques,3 which can substantially reduce the number
steps in an iterative solution, are usually formulated in r
space. Finally, and most importantly for the present article
real-space formulation is necessary for the implementatio
the O(N) techniques, which promise to reduce th
asymptoticO(N3) scaling of traditional electronic structur
methods with respect to the number of electrons or atom

Real-space bases that employ atom-centered functi
e.g., Gaussians or localized atomic orbitals, have long b
used in electronic structure calculations. However, large
merical bases are also very interesting since they allow
to attain any desired numerical accuracy by systematic
increasing the number of degrees of freedom. The numer
bases used in recent calculations include finite elements4–8

grids,9–17 and wavelets.18–20 These bases allow for natura
implementation of mesh refinement,9,11,12,14,15cluster bound-
ary conditions, and efficient domain decomposition a
proaches on massively parallel computers.12,13,15

The computational effort in traditional electronic structu
calculations must ultimately scale asO(N3), whereN is the
number of atoms. This is because the wave function of e
electron can, in general, extend over the whole material,
therefore computing one wave function will take at lea
O(N) operations. Since the number of electrons grows
early with the number of atoms, the computational eff
must grow at least asO(N2). Furthermore, the individua
wave functions must be orthogonal to each other and
orthogonalization or diagonalization effort will ultimatel
dominate, since they scale asO(N3).

Recently, a number of ingenious methods have been
posed for evaluating the total energy inO(N) operations.
These methods usually make alocalization approximation,
which involves either the use of a localized, Wannier-li
basis21–27or a neglect of off-diagonal elements of the dens
matrix r~r ,r 8! for ur2r 8u greater than an appropriate cuto
radius.28–33 In the wave function-based approaches the m
idea is to rewrite the total energy expression with the help
1713 ©2000 The American Physical Society
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1714 PRB 62J.-L. FATTEBERT AND J. BERNHOLC
basis functions that are unknown at the outset and are t
variationally optimized in the process of minimizing the to
energy. Each function is localized, i.e., confined to a giv
region in space, but the confinement regions for the vari
functions overlap. Since overlaps between functions loc
ized in regions sufficiently far away vanish, the number
nonzero overlaps isO(N). By exploring this sparsity and
avoiding the calculation of individual eigenfunctions, it
possible to evaluate the total energy inO(N) operations. In
the density-matrix approaches, when formulated for f
density-functional calculations with large numerical bases
is necessary to expand the density operator in a basi
localized orbitals,34–36in order to reduce its effective dimen
sion. Other methods, based on the divide-and-conq
algorithm,37,38 energy renormalization group for the dens
matrix,39 or calculation of the Green’s function,40 have also
been proposed. Recently, fully self-consistentO(N) DFT
calculations that used atomiclike orbitals as a basis h
been reported.41 A more comprehensive discussion and l
of references is given in recent reviews by Galli42 and
Goedecker.43

The electronic structure of a physical system is easies
describe in the basis of eigenfunctions, but any set of fu
tions spanning the same subspace is also appropriate. H
ever, if one imposeslocalization constraints, which require
that a given function is zero outside of a prescribed locali
tion region, these different choices are no more equival
When searching for a basis set that most accurately app
mates the solution with the localization constraints, it is i
portant to work with a general nonorthogonal basis set.
quantities of interest need to be expressed in this set: the
energy, the steepest descent~SD! directions, preconditioners
and forces. This excludes the direct use of methods base
the search for the eigenvectors, e.g., Lanczos’, Davidso
or inverse iteration methods.

Real-space methods are inherently local, and there
suitable for imposing localization constraints on the ba
functions that span the subspace of the occupied orbitals
the present paper, we investigate the performance ofO(N)
techniques in the context of grid-based DFT calculations.
N denote the number of wave functions needed andM the
number of points of the grid used to discretize the KS pr
lem. In general,N is much smaller thanM. The computa-
tional cost for tractable systems is thus dominated by th
parts of the algorithm that grow likeM3N2. These opera-
tions usually consist of the construction ofN3N matrices
~overlap, Hamiltonian, etc.! in the basis of the trial wave
functions, and the update of the trial wave functions in
orthogonalization or Ritz procedure. This cost can be larg
reduced if spatial localization can be imposed on the orbi
that describe the ground state of the system. Localized o
als also reduce the memory requirement, which scales aN
3M , in general. Note that whenM@N, a good precondi-
tioner is also required for an efficient iterative minimizatio
Otherwise a convergence slowdown would be observed
the system size increases, which would make a nonacc
ated O(N) method slower than a preconditionedN3 tech-
nique.

The method proposed in this paper is closely related
several recently described techniques, particularly tha
Galli and Parinello,21 where the Kohn-Sham equations a
be
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rewritten in terms of nonorthogonal, localized orbitals e
panded in a plane-wave basis. Their basic idea is to use
nonuniqueness of the representation of the ground stat
the system in terms of nonorthogonal orbitals to find an
timally localized basis that accurately describes the electro
Our approach is more general and real-space oriented
include a multigrid preconditioner and allow for unoccupi
or partially occupied states. Indeed, numerical tests on r
istic systems show that the inclusion of some unoccup
states substantially accelerates convergence. The unoccu
states are included using techniques similar to the dens
matrix approach for nonorthogonal orbitals.30,34,35However,
we do not impose additional localization constraints on
density matrix for reasons of accuracy and numerical e
ciency, which results in a smallO(N3) part forN3N matrix
operations. This approach is efficient for a wide range
system sizes. For example, in our massively parallel imp
mentation on the Cray T3E supercomputer, theO(N3) part
does not exceed 20% of the computational cost for syst
containing over 1100 atoms~see Sec. IV!.

In our real-space calculations on a grid, we use a comp
and accurateMehrstellenfinite difference~MFD! scheme of
order 4,44 which has been successfully introduced in ele
tronic structure calculations a few years ago.12,14 It dis-
cretizes the entire differential equation, as opposed to
Laplacian, and only uses the first- and second-neigh
points on the three-dimensional grid. As a result, zero bou
ary conditions are easy to impose at the boundaries and
short range of the discretization also aids parallelizati
However, while the methodological discussion in this pap
explicitly uses the MFD discretization, most of the arg
ments are general and can be applied to any other real-s
method. For simplicity, the discussion is also restricted
real wave functions, but extensions to complex wave fu
tions andk points are straightforward.

The optimized localized orbitals are also very useful ap
from facilitating exceedingly large calculations. They ha
already enabled efficient calculations of quantum transp
properties, which rely on the expansion of Hamiltonian a
Green’s function matrices in terms of localized orbitals45

Since one can use very few short-range localized functi
per atom, e.g., three for the case of carbon atoms, the dim
sions of the relevant matrices are minimized, which has
to ab initio calculations of quantum conductance for lar
nanotube structures.46

The remainder of this paper is organized as follows.
Sec. II, the general method for minimization of the ener
functional in a nonorthogonal basis is described. The mu
grid acceleration scheme and the MFD discretization are
discussed. Section III focuses on the implementation of
calization constraints for nonorthogonal orbitals and their
fect on the scaling of the calculations. Section IV prese
numerical test results for long carbon nanotubes, contain
up to 1120 atoms. Some mathematical details are give
the Appendix.

II. GENERAL ITERATIVE ALGORITHM
FOR NONORTHOGONAL ORBITALS

A. Basis-invariant matrix formulation

This subsection describes a general matrix formulation
iterative density-functional calculations, where the iterat
updates and thus the number of iterations do not depen
the choice of the basis.
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Consider the standard problem of minimizing t
Hohenberg-Kohn total energy functional1

Et5(
j 51

N

f j^c j u2
1
2 ¹2uc j&1 1

2 E VH~r!r dr

1E Vion~r!r dr1Exc@r#1Eion2 ion ~1!

for N-occupied orbitals in the system, each represented
one-body wave functionc j , with the electron charge densit
r(r )5( j 51

N f j uc j (r )u2. The first term represents the kinet
energy, the second the electrostatic repulsion due to the
sical Hartree potentialVH(r )5*r(r 8)/ur2r 8udr 8, the third
the interactions of the electrons with all the nuclei, the fou
the exchange and correlation contributions, and the fifth
classical electrostatic interactions between all nuclei.

The orbitalsc j satisfy the Kohn-Sham equations2

Hc j5@2 1
2 ¹21Vion1VH~r!1mxc~r!#c j5e jc j , ~2!

which must be solved self-consistently for theN lowest ei-
genvaluese j , while imposing the orthonormality constrain
^c i uc j&5d i j . mxc5dExc@r#/dr is the exchange and corre
lation potential. Using Eq.~2!, the total energy expression
easily rewritten as

Et5(
j 51

N

f je j2
1
2 E VH~r!r dr2E mxc~r!r dr

1Exc@r#1Eion2 ion . ~3!

In the remainder of this subsection we will assume that e
orbital is fully occupied, i.e.,f j[2.

In practice we use norm-conserving nonlocal pseudo
tentials in the Kleinman-Bylander form

Vion5Vloc1Vnl ,

where

Vnl5(
i ,a

uwKB
i ,a&^wKB

i ,a u. ~4!

The indexi refers to the atoms anda to the projectors of the
nonlocal pseudopotentials.

Consider a trial basis of normalized function
$f1 , . . . ,fN%, that will define the subspace of the occupi
orbitals. This basis will be refined by iterative updates, and
convergence will accurately describe the true Kohn-Sh
ground state of the system. In order to derive basis-invar
expressions for the updates, it is convenient to use ma
notations. The functionsf j will thus be written as columns
of a matrixF

F5~f1 , . . . ,fN!.

An orthonormal basis of approximate eigenfunctions~Ritz
functions! can be obtained by a diagonalization in this su
space of dimensionN ~Ritz procedure!. We denote byC the
N3N matrix that transformsF into the basisC of orthonor-
mal Ritz functions,

C5~c1 , . . . ,cN!5FC. ~5!
a
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This matrix satisfies

CCT5S21,

where

S5FTF,

is the overlap matrix.
In the following, for an operatorA we will use the nota-

tion

A(C)5CTAC,

A(F)5FTAF.

We then have the relation

A(C)5CTA(F)C.

In order for Eq.~5! to define a transformation to a Rit
basis,C has to be a solution of the generalized symme
eigenvalue problem

H (F)C5SCL, ~6!

whereL is the diagonal, realN3N matrix that satisfies

L5CTHC.

The matrix C can actually be decomposed as a productC
5G2TU, whereG is the Cholesky factorization ofS,

S5GGT,

andU is an orthogonal matrix. KnowingG, the generalized
eigenvalue problem~6! is reduced to a standard symmetr
eigenvalue problem

G21H (F)G2TU5UL. ~7!

In the basisC, the SD directions, along which the energ
functional decreases at the fastest rate, are easy to com
They are given by the negative residuals of the Kohn-Sh
equations~2!, with the current potential kept fixed, and ca
be expressed as theN3M matrix

D (C)5CL2HC, ~8!

which satisfies the relation

CTD (C)50.

In the following, we consider a SD algorithm with a linea
preconditioning operatorK. Without preconditioning, the
convergence rate can be very slow, especially ifM@N. For
real-space finite difference~FD! discretizations, the multigrid
preconditioner described in Sec. II D greatly improves t
convergence. Introducing a pseudo-time-steph, C should
thus be corrected at each step according to

Cnew5C1hKD (C).

Note that in this algorithm all the trial wave functions a
updated simultaneously. Without preconditioning,h has to
be very small~for numerical stability reasons! and the con-
vergence can be very slow.

For optimum convergence rate, it is important to prese
the true steepest descent direction when working with t
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1716 PRB 62J.-L. FATTEBERT AND J. BERNHOLC
nonorthogonal orbitalsF. This direction can differ substan
tially from the derivative with respect tof j (r ) when the
basisF is highly nonorthogonal. Since the directionD (C) is
easy to compute, the simplest way to obtain the SD direc
in the basisF is to use the matrixC

D (F)5D (C)C215~CL2HC!C21

5FQ2HF, ~9!

where

Q5S21H (F). ~10!

The preconditioned steepest descent~PSD! direction in the
nonorthogonal basis is thus

dF5KD (C)C21

5K~FQ2HF!, ~11!

and the basisF is updated according toFnew5F1hdF. In
the particular caseK5Identity, Eq.~11! is equivalent to the
result given in Ref. 21. Note thatdF does not depend onC
and therefore does not require the solution of the eigenv
problem~6!.

Note that since by definition

Fnew5~C1hKD (C)!C215CnewC21,

the same subspace is generated at each iteration, inde
dently of the basis, if the same pseudotime step is used
principle, the above SD directions could also be used
gether with a conjugate gradient~CG! method,47 but the con-
vergence rate of the preconditioned algorithm described
low was fast enough, in all applications to date, to make
implementation of the CG approach unnecessary.

In actual calculations, the basis functionsF are corrected
at each iteration using the PSD directions~11!. A new elec-
tronic densityr(r ) is then generated according to

r~r !52 (
j ,k51

N

~S21! jkf j~r !fk~r !,

as well as the new Hartree and exchange-correlation po
tials. However, the old and the new potentials are then mi
linearly. The functional~1! is minimized iteratively until self
consistency is achieved.

At each step, the kinetic energyEkin can be evaluated in
the nonorthogonal basisF as

Ekin52 (
j ,k51

N

~S21! jk^F j u2
1
2 ¹2uFk&.

To obtain the ground-state energyEt , the first term on the
right-hand side of Eq.~3! can be expressed as a trace ofQ,

(
j 51

N

2e j52 Tr~L!52 Tr~Q!.

B. Computations with unoccupied orbitals

We have found that the inclusion of unoccupied or p
tially occupied orbitals substantially enhances the conv
gence rate~see Sec. IV!. The PSD algorithm described abov
n

ue

en-
In
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e-
e

n-
d
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r-

can be used to improve the trial subspace ofN computed
orbitals, regardless whether they are occupied or empty
the computation of the electron density and the total ene
however, one needs to account for the occupations. To
end, we introduce a density-matrix formalism in the non
thogonal basis.

For a chemical potentialm, define theN3N matrix Y by
its matrix elements

Y i j 5d i j f @~e i2m!/kBT#,

wheref is a Fermi-Dirac distribution. The density operatorr̂
is then given by

r̂5CYCT5FCYCTFT.

For T50, the operatorr̂ is a projector onto the states o
eigenvalues lower thanm. In a grid-based approach, the d
mension of this discrete density matrix is given by the nu
ber of degrees of freedom, i.e., the number of points on
real-space grid. This number is, in general, so large that
impossible to apply iterative methods that requirer(r ,r 8)
~matrix of sizeM3M ). However, one can representr̂ in the
basisF

r (F)5FTr̂F5C2TYC21.

As in Ref. 30, we introduce the matrixr̄ (F)

r̄ (F)5S21r (F)S215CYCT. ~12!

This matrix can be used to obtain the expectation valueĀ of
an operatorA represented in the basisF

Ā52 Tr~YA(C)!52 Tr~ r̄ (F)A(F)!.

In particular, the total number of electrons in the system
given by

Ne52 Tr~ r̄ (F)S!.

Note that if all the computed states are fully occupied,
haver (F)5S and r̄ (F)5S21.

Using the solutionC of the generalized symmetric eigen
value problem~6!, one can compute the matrixr̄ (F) using
Eq. ~12!. The electronic density is then given by

r~r !52 (
j ,k51

N

~ r̄ (F)! jkf j~r !fk~r !. ~13!

The first term on the right-hand side of Eq.~3!, commonly
referred to as the band-structure energy, can be compute

2(
j 51

N

e j f @~e j2m!/kBT#52 Tr~Lr (C)!

52 Tr~H (F)r̄ (F)!. ~14!

Note that in the present approachr̄ (F) is used only to
obtainr(r ) and the energyEt , unlike the method of Ref. 34
where it is also explicitly used to define the correction dire
tion dF. Furthermore, the dimension of the subspaceF re-
mains fixed during the calculations, in contrast to the me
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PRB 62 1717TOWARDS GRID-BASEDO(N) DENSITY-FUNCTIONAL . . .
ods of Refs. 27 and 36, where the rank of the overlap ma
S decreases to the number of occupied orbitals at con
gence.

In the calculations of the forces on the ions, the only te
that differs from calculations with eigenfunctions is the o
associated with the nonlocal part of the pseudopotential.
energy term for this part is given by

Enl5Tr~FTVnlFr̄ (F)!.

At present, we obtain the forces on the ions by evaluatin
numerical derivative of the energy with respect to the io
positions. This is done by computing changes in the to
energy for small virtual displacements of the ions, witho
the need for full self-consistent calculations. The associa
computational cost is thus insignificant.

C. Mehrstellen finite difference discretization

To compute an approximate numerical solution to
KS equations we use aMehrstellenfinite difference~MFD!
method. Upon discretization, one obtains a linear alge
eigenvalue problem

Hc5eBc,

where H and B are real, sparseM3M matrices, withM
being the number of points on the real-space grid. The de
of the MFD methodology and its implementation on ma
sively parallel computers using domain decomposition
described in Ref. 12.

In the above notation,C and F denote matricesM3N,
the columns of which correspond to the values of wave fu
tions on the discretization grid. The steepest descent di
tions are given by

D (C)5BCL2HC, ~15!

and

D (F)5D (C)C21

5BFQ2HF, ~16!

where

Q5~B(F)!21H (F).

For the MFD schemeH (F) should be replaced in Eqs.~6!,
~7!, and~14! by

HB5S~B(F)!21H (F).

As shown in the Appendix,HB is a symmetric matrix at
convergence. In practice, before reaching convergence
explicitly symmetrizeHB .

In the above approach, the electron density at the poinr i
is given by

r i i 52(
j ,k

f j~r i !fk~r i !~ r̄ (F)! jk .

The implementation issues of this algorithm are discus
in Sec. IV.
ix
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D. Multigrid preconditioning

Obtaining O(N) scaling for the most expensive par
of the calculations is useful only if its prefactor is n
much larger than forO(N3) calculations. It is thus impor-
tant to have a preconditioner that works well for nonorth
gonal orbitals. The importance of an efficient precondition
for electronic structure calculations with large numeric
bases has been recognized in Ref. 48, in the context of
plane-wave method. For real-space electronic structure
culations several efficient iterative solvers have been de
oped recently,12,14,16,17,49based on multilevel acceleratio
techniques.3 For O(N) methods, the importance of precon
ditioning has recently been discussed in Ref. 50.

A general mathematical analysis of parallel multilev
preconditioners for discretized partial differential equatio
has been given in Ref. 51. Here we introduce a specific m
tigrid preconditioner appropriate for electronic structure c
culations in a nonorthogonal basis. Given a SD directiond, a
preconditioned SD directionu5Kd is computed. The opera
tor K represents an iterative multigrid solver (V cycle!3 for
the Poisson equation

2 1
2 ¹2u5d, ~17!

with an initial u given byu052ad, and limited to the grids
with a number of points larger thanN, where Jacobi itera-
tions are used as a smoother. The coefficienta is an estimate
of the smallest eigenvalue of (H2e j )

21 on the coarsest grid

a5
1

2

4Lh2
1uVmax2e1u

,

whereL denotes the number of coarse grids used,Vmax the
maximum of the total potential, ande1 the lowest eigenvalue
of HB . The role of the preconditioner is to systematica
reduce high-frequency components in the SD directio
This preconditioner has the important property that its e
ciency does not depend on the basis we work in and is v
cheap~less than 20% of a self-consistent step!. Moreover, it
can be applied in the same manner to localized or delo
ized orbitals.

The purpose of the iterative corrections of the wa
functions is to reduce as fast as possible the compon
orthogonal to the subspace one is solving for. Since
above preconditioner deals much better with components
sociated with the highest eigenvalues of the Hamilton
than with the ones associated with the lowest eigenvalue
due to the similarity between the eigenfunctions associa
with the largest eigenvalues of the Hamiltonian and those
the Laplacian operator—the larger theN the better it works.
In practice, taking into account cost and efficiency, it is a
vantageous to introduce some unoccupied states~10–30 %!
in F.

Figure 1 shows the convergence of the multigr
preconditioned SD algorithm for theC60 molecule for differ-
ent numbers of coarse grid-levels, starting from random
tial functions. The convergence rate without the coarse gr
with just Jacobi smoothing iterations for Eq.~17!, is already
good compared to a simple SD algorithm~not plotted here!.
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1718 PRB 62J.-L. FATTEBERT AND J. BERNHOLC
However, the use of one or two coarse grids significan
improves the convergence rate at a very low additional c
The good efficiency of the preconditioner allows us to av
the conjugate-gradient algorithm, which would largely i
crease the cost per iteration. Note that one self-consis
~SC! iteration consists of only one simultaneous PSD corr
tion for all the orbitals, followed by an update of the electr
density and the potential. At each iteration, the Poisson eq
tion for the Hartree potential is iteratively solved by a sta
dard multigrid algorithm.

III. LOCALIZATION AND PARTIAL LINEAR SCALING

In the method described above, the removal of the
thogonalization step has been replaced by a more com
cated and expensive SD calculation, Eq.~9!, so that the com-
putational cost of the minimization scheme is roughly t
same. Furthermore, the calculation of the electron densit
much more expensive when using a basis different from R
functions, since in the latter caser (F) becomes diagonal
However, when working with nonorthogonal functionsF in-
stead of the Ritz functionsC, one can easily impose loca
ization constraints onF to reduce the cost of the calculatio
Localization is imposed by forcing the functions to be ze
outside of a spherical region centered on an ion. In particu
such truncation will linearize the computational cost ofD (F)

in Eq. ~9! andr in Eq. ~13!, the most expensive parts of th
algorithm. In addition, the nonorthogonal basis allows for
use of techniques that accelerate convergence for sys
with a small band gap, see, e.g., Ref. 52.

The application of the MFD Laplacian operator to a wa
function localized in a sphere of radiusRc generates a func
tion localized in a sphere of radiusRc1hA3, which is used
as the localization radius forHf j andBf j . This truncation
suppresses some components ofHf j that are generated b
the nonlocal, short-range projectors of the pseudopoten
operator. These components are not used to correct the w
functions since the latter should remain localized. Howev
they are included exactly in the computation of the matrixQ
and the total energy by writingH (F) as the sum of two ma
trices

FIG. 1. Convergence rate of the multigrid-preconditioned
for different numbers of grid levels, using the C60 molecule as an
example. The number of orbitalsN was 180.
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H (F)5FT~H2BVnl!F1FTBVnlF,

which isolates the nonlocal potentialVnl in the second term.
This term can be easily computed inO(N) operations using
only the values of (Bfj )

TwKB
i ,a and (wKB

i ,a)Tfj . Therefore, the
only approximation in this approach is the use of a locali
tion radius to limit the spatial extent of each nonorthogo
orbital.

If unoccupied states are used, both inverses and eigen
tors of N3N matrices are needed. Since the eigenfunctio
are, in general, not localized, the matrixC that solves Eq.~6!
is not sparse, and thus the required number of operation
proportional toN3. However, when no partially occupie
states are present and an estimate of the chemical potentm
is available, one can use the method of Refs. 28–30 to c
pute r̄ (F). Specifically,r̂ can be defined as the operatorX̂
that minimizes the functional

V@X̂#5Tr$@3~X(C)!222~X(C)!3#@~B(C)!21H (C)2mI #%.
~18!

This minimum can be computed iteratively by a conjuga
gradient algorithm using the true steepest descen
directions.53 In the nonorthogonal basisF, defining X̄(F)

5S21X(F)S21, one has to minimize~see Appendix!

V@X̄(F)#5Tr@~3X̄(F)SX̄(F)22X̄(F)SX̄(F)SX̄(F)!

3~HB2mS!#. ~19!

The localization constraints,X̄i j
(F)50 if the localization re-

gions of orbitalsi and j are separated by a distance larg
than a truncation radiusRr , can be imposed at each step
the iterative minimization in order to achieve linear scalin
This procedure is justified by the exponential decay
r(r ,r 8) as ur2r 8u→` in insulators or metals at a finite
temperature.54 However, the matrix elements obtained fro
Eq. ~19! are, in general, not exactly the same one wo
obtain in anN3 calculation. Moreover, good accuracy can
obtained only by keeping the number of nonzero element
X̄ much larger than inS.33,34

WhenM@N, the full evaluation ofS21, Q, or r̄ (F), even
with an orderN3 algorithm, constitutes a small fraction o
the calculations for a large range of system sizes. For
ample, in parallel multigrid calculations of Ref. 12, th
Cholesky decomposition and the diagonalization of theN
3N matrices were not even parallelized, since they
counted for a negligible part of the computational effort f
practical system sizes. When using localized orbitals,
maximum practical system size increases substantially,
the cost of theN3N matrix operations remains a small fra
tion of the total for a large range of systems, if these ope
tions are effectively parallelized using standard librari
such as PBLAS~Parallel Basic Linear Algebra Subpro
grams! and ScaLapack.55 Table I shows some timings for th
Scalapack diagonalization routine used in theO(N3) part of
our method. For systems with more than 1000 orbitals,
agonalization on a single processor becomes very expen
if required at each self-consistent iteration. However, sin
the multigrid calculations are fully parallel, it is natural t
also parallelize the diagonalization, which substantially
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duces the elapsed time and thus greatly increases the m
mum system size that can be studied at reasonable cos

In the current calculations,S, H (F), Q, and r̄ (F) are
stored as fullN3N matrices, distributed on the processo
according to PBLAS and ScaLapack requirements. Althou
most of the operations on these matrices can be optim
using their sparsity—except the diagonalization in Eq.~7!—
the full storage approach is adequate for a substantial ra
of calculations. It is also the easiest to implement given
numerical libraries and the parallel computers we have
cess to. The solution of the eigenvalue problem~7! is clearly
the dominant part of theseO(N3) operations.

Since the method described above determines the ei
functions of the Kohn-Sham equations in the basis of loc
ized functions, it can be viewed as a generalization ofab
initio methods that use a linear combination of atomic orb
als ~LCAO! or Gaussians functionsG to expand the eigen
functions:C j5( iciGi . The main difference is that our loca
functionsF i are defined by their values on a grid and a
variationally optimized. In particular, the functionsF i have
many more degrees of freedom and one can systemati
increase the accuracy of the calculations by mesh refinem
or expansion of the localization domain. The number of ba
functions in high-precision calculations can thus be mu
smaller than in Gaussian or LCAO approaches, which m
mizes theO(N3) part. Furthermore, since exact and expli
O(N3) diagonalization is performed, cf. Eq.~7!, both par-
tially occupied and unoccupied orbitals can be used, wh
permits calculations for metallic as well as semiconduct
systems. However, calculations for metals may require m
localized orbitals or larger localization radii for an accura
description. Having a small number of basis functions is a
important in other contexts. For example, transfer-mat
based calculations of quantum transport benefit substant
from the small size of the basis and the optimized functio
F have already been used to evaluate the conductance
carbon nanotubes.46 The above approach is also very use
for evaluating the effects of localization constraints alo
while maintaining highlocal accuracy. However, for very
large future calculations theO(N3) terms will eventually
dominate, and the formulation~19! may become advanta
geous.

IV. APPLICATIONS TO TEST SYSTEMS

The algorithm described above has been implemented
the massively parallel Cray T3E supercomputer and te
on C60 and carbon nanotubes of varying lengths. Our cal
lations used the pseudopotentials of Hamann56,57 and the
LDA for mxc . The pseudopotentials were filtered in order
remove high frequency components that cannot be re

TABLE I. Diagonalization times of a typical Hamiltonian ma
trix, using the ScaLapack subroutine PSSYEV, as a function of
number of processing elements~PE’s! on the Cray T3E.

~s! 1 PE 4 PE’s 16 PE’s 64 PE’s

N5560 12.8 4.5 2.6 1.9
N51120 98 26.5 11.2 7.2
N52240 175 60 28.8
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sented on the grids employed.12 Periodic boundary condi-
tions were used in all cases. The starting trial basis functi
were atom-centered random functions strongly localiz
around their respective atoms. In order to improve the c
ditioning of the overlap matrix, the functions localized on t
same atom were kept orthonormal during the entire calc
tion. The initial trial density was a linear combination o
atom-centered Gaussians, neutralized by the positive i
The density also defined the initial potential. To impro
stability, the initial potential was kept fixed during the fir
2-3 SC iterations. Thereafter, the potential was updated
each step, mixing usually 20–50 % of the current poten
with the KS potential associated with the previous density
our test cases the condition number of the overlap matriS
increased during the iterations, but it remained small eno
to ensure stable numerical results.

To take advantage of the localization constraints, sev
nonoverlapping localized orbitals were stored in the sa
global array that represents a function extending through
the whole discretization grid. These orbitals can thus be
laxed simultaneously at the same cost as the relaxatio
one spatially extended orbital. In practice, when comput
matrix elements between pairs of orbitals, the real-space
was divided into regular blocks whose contributions we
summed up. For this purpose, it is important that only o
orbital of each global function is non-zero on each block,
that the contributions can be associated with one and o
one orbital. On a massively parallel computer, a block can
a subdomain associated with a processor, or a fraction of
subdomain. The main advantage of the above approac
that it avoids indirect addressing and can efficiently use s
dard, optimized linear algebra libraries in each block.

As mentioned in Sec. II B, the introduction of unoccupi
states in the calculations can substantially improve the c
vergence rate. This effect is illustrated in Fig. 2, which co
pares the convergence rates for C60 when either no or one
unoccupied state per carbon atom is included in the calc
tions. When introducing localization constraints, the inc
sion of unoccupied states has an even greater effect s
these states introduce additional degrees of freedom that
tially compensate for the localization-induced truncation.
the impractical limit of having as many localized function
as the number of grid points, the localized and nonlocaliz

FIG. 2. The effect of unoccupied states on the convergence
for the case of C60.
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results would be equal at convergence.
The tests with localization constraints were carried out

carbon nanotubes of various lengths. Three localized orb
per atom were used, i.e., one unoccupied orbital per at
The grid spacing wash50.34 bohr, which was sufficiently
small for the pseudopotentials employed.56

In the minimization of the energy functional with loca
ization constraints, one cannot exclude the possibility of
cal minima.25 However, if the number of localized function
is larger than the number of occupied orbitals, Kimet al.27

observed that trapping does not occur. Moreover, if the
calization regions are large enough, one can expect tha
difference in energy between two local minima close to
ground state is lower than the useful accuracy—the e
introduced by the localization constraint. In practice, we
not observe any apparent trapping in high-energy lo
minima.

At each step of the iteration process, the computed c
rections were truncated in order to preserve the confinem
of the orbitals in their assigned localization regions. At so
point, the truncated part may then become more impor
than the part actually used. In order to evaluate the accu
of the localization approximation, it is thus important
compare the Kohn-Sham energies obtained with and with
localization for realistic test cases. Figures 3 and 4 show
convergence rates and the absolute error for a 160-a
nanotube. For a fixed number of orbitals, the rate of conv
gence decreases with increasing localization when the n
ber of orbitals is kept fixed. Turning to accuracy, the log
rithmic plot in Fig. 4 shows that an accuracy of 1022 @Ha/
atom# for a system of 160 carbon atoms is obtained in 20
iterations. Convergence towards more precise results
depends on the localization radii. Significantly more ite
tions are required to reach a precision of 331023 @Ha/atom#,
which is sufficient to obtain a good estimate of eigenva
differences, e.g., the highest occupied molecular orbit
lowest unoccupied molecular orbital~HOMO-LUMO! gap.
The calculated value of this gap depends on the localiza
radius, see Table II. In particular,Rc58 bohr is sufficient to
reproduce the value obtained without the localization
proximation.

The accuracy of 331023 @Ha/atom# is not sufficient to

FIG. 3. Convergence rate for different localization radii for t
~10,0! carbon nanotube. The supercell contained 160 atoms and
calculations used three orbitals per atom.
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reliably compute total energy differences between differ
atomic configurations, e.g., in order to extract defect form
tion energies. However, it is still adequate to compute for
and initiate atomic relaxations. Only a small number of S
iterations is required for each ionic configuration in order
have reliable forces that lead the atoms to their equilibri
positions. The wave-function components that require
merous iterations before being completely relaxed are t
improved step by step during the relaxations, and are su
ciently well converged by the time the atoms reach th
equilibrium positions.

Our tests of relaxation and of total energy differenc
used the~10,0! carbon nanotube, either perfectly symmet
or with the ~5-7-7-5! defect.58 The supercell contained 16
atoms. All atoms were relaxed with and without localizati
constraints. An accurate relaxed atomic configuration co
be obtained with a localization radius as small as 6 bo
Moreover, with a localization radius of 8 bohr the absolu
total energies of the relaxed supercells, with and without
defect, were shifted upwards by less than 0.02@Ha#. The
defect formation energy, defined as the difference betw
the two total energies, was 0.13@Ha# both without localiza-
tion and withRc58 bohr.

A contour plot of a typical localized orbital for the~10,0!
nanotube is shown in Fig. 5. The orbital is strongly localiz
in the region of a carbon-carbon bond and smoothly
creases to zero when approaching the localization bound
If the localization radius were reduced, one would mainly c
off the tail of the orbital. However, these tails are importa
in the evaluation of the total energy and calculations w

he FIG. 4. The error, i.e., the difference between the conver
DFT total energy without localization and the current energy a
function of the number of self-consistent iterations. Different loc
ization radii are compared. The supercell for the~10,0! carbon
nanotube contained 160 atoms.

TABLE II. HOMO-LUMO gap for a ~10,0! nanotube. The su-
percell contained 160 atoms.

~eV! Rc55 bohr Rc56 bohr Rc58 bohr Rc5`

LUMO 1.53 1.27 1.17 1.17
HOMO 0.64 0.41 0.32 0.32
Gap 0.89 0.86 0.85 0.85



na

s

e
e

ca

m
e

go
ys
lo
o
ad
s

nd
m-
ace

is of
ns
res
to

he
the
ity.
ze
i-

ient
t di-
ver-
ns,
ion
nal

the

ith

ally
al-
on

figu-
ob-

d
r
ial
ien-
nd
oD

ns

ue

ta

-
o

e

PRB 62 1721TOWARDS GRID-BASEDO(N) DENSITY-FUNCTIONAL . . .
Rc,5 bohr may lead to unphysical results.
The computer time for the relaxation of the nonorthogo

orbitals scales as;N(Rc /h)3, whereRc is the localization
radius andh the grid spacing. In self-consistent iteration
additional time is spent inN3N matrix operations, including
the solution of Eq.~7!. In Table III, we provide timings for
the~5,5! nanotube withRc56.2 bohr. Comparisons are mad
with a constant number of atoms per processor. With a p
fect coding and linear scaling, the timings would be identi
for all the examples. The solution of Eq.~7!, the only strictly
O(N3) part, takes less than 20% of the total time for syste
with as many as 3360 orbitals. It is also clear that furth
restructuring and optimization of the code could result in
significant speedup.

One should stress that the localization of the nonortho
nal orbitals reduces the cost of the calculations only for s
tems significantly larger than the sizes of the individual
calization regions. Furthermore, the minimal number
atoms for which nonorthogonal localized orbitals become
vantageous depends on the number of nonzero overlap
tween the orbitals, and thus on the atomic geometry.

FIG. 5. Contour plot of the square of a typical localized orbi
in the plane defined by the cylindrical surface of the~10,0! nano-
tube. The contour of lowest value~close to zero! shows the local-
ization region with a radius of 6 bohr.

TABLE III. Timing for 1 SC step for electronic structure calcu
lations for~5,5! nanotubes of several lengths on the Cray T3E. F
140 atoms, the global grid is 96356356. The number of storage
functions denotes how manyglobal arrays—extended over th
whole grid—were required to store all the localized orbitals.

No. of atoms 140 280 560 1120

No. of orbitals 420 840 1680 3360
No. of PEs 32 64 128 256
No. of storage func. 237 252 255 255
CPU time/PE~s! 69 82 104 173
Solution of Eq.~7! ~s! 1.4 2.6 9 30
l
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V. SUMMARY AND CONCLUSIONS

An efficient and accurate method for self-consistentab
initio electronic structure calculations was developed a
implemented on the massively parallel Cray T3E superco
puter. The method is based on a description of the subsp
spanned by the occupied orbitals in a nonorthogonal bas
variationally optimized localized functions. These functio
are defined on a grid and are strictly zero outside of sphe
centered on the atoms. The localization is essential
achieve a linear scaling of the computational effort for t
most expensive part of the calculation—the relaxation of
basis functions and the evaluation of the electronic dens
A Mehrstellenfinite-difference scheme is used to discreti
the Laplacian operator on the grid. A multigrid precond
tioner has been developed in order to have a very effic
minimization scheme for basis-invariant steepest descen
rections. Since it appears to be essential for a high con
gence rate to include unoccupied orbitals in the calculatio
a density-matrix formalism is used to define the occupat
of the orbitals in the subspace defined by the nonorthogo
basis functions. This requires operations onN3N matrices
that scale asO(N3), but when efficiently parallelized this
part is relatively cheap when compared to the cost of
relaxation of the orbitals. Our tests show that theO(N3) part
is less than 20% of the total time for carbon nanotubes w
as many as 1120 atoms.

The accuracy of the calculations can be systematic
improved by mesh refinement and/or by extending the loc
ization regions of the grid-based orbitals. Numerical tests
carbon nanotubes show that accurate relaxed atomic con
rations, band-gap, and total energy differences can be
tained for localization radii as small as 8 bohr.

ACKNOWLEDGMENTS

We wish to thank Dr. E. L. Briggs for discussions an
providing his parallel orthogonal-orbital multigrid code fo
the Cray T3E. J.-L. F. gratefully acknowledges the financ
support of the Fonds National Suisse de la Recherche Sc
tifique. This work was also supported in part by NSF a
ONR. Supercomputer calculations were carried out at D
and NC Supercomputing Centers.

APPENDIX: MATRIX EXPRESSIONS
IN A NONORTHOGONAL BASIS

The relation~5! can be used to derive matrix expressio
in the basisF. In the basis of the Ritz functionsC one has at
convergence

~B(C)!21H (C)5L,

whereL is a real diagonal matrix. Therefore,

L5~CTB(F)C!21~CTH (F)C!

5C21~B(F)!21H (F)C

5CTS@~B(F)!21H (F)#C.

The matrixC is then a solution of the generalized eigenval
problem

l

r
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HBC5SCL

for HB5S(B(F))21H (F). Since (B(C))21H (C) is symmetric
at convergence and

HB5S~B(F)!21H (F)

5SC~B(C)!21H (C)C21

5C2T~B(C)!21H (C)C21,

HB is also symmetric at convergence. Furthermore,
~B(C)!21H (C)2mI 5C21@~B(F)!21H (F)2mI #C.

Using the invariance of the trace of an operator when cha
ing the basis,

V@X̄(F)#5Tr@~3X̄(F)SX̄(F)22X̄(F)SX̄(F)SX̄(F)!

3~HB2mS!#

follows then directly from definition~18!.
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