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We have formulated and implemented a real-sg@zénitio method for electronic structure calculations in
terms of nonorthogonal orbitals defined on a grid. A multigrid preconditioner is used to improve the steepest
descent directions used in the iterative minimization of the energy functional. Unoccupied or partially occupied
states are included using a density matrix formalism in the subspace spanned by the nonorthogonal orbitals.
The freedom introduced by the nonorthogonal real-space description of the orbitals allows for localization
constraints that linearize the cost of the most expensive parts of the calculations, while keeping a fast conver-
gence rate for the iterative minimization with multigrid acceleration. Numerical tests for carbon nanotubes
show that very accurate results can be obtained for localization regions with radii of 8 bohr. This approach,
which substantially reduces the computational cost for very large systems, has been implemented on the
massively parallel Cray T3E computer and tested on carbon nanotubes containing more than 1000 atoms.

[. INTRODUCTION sors. More subtly, multiscale convergence acceleration
techniques, which can substantially reduce the number of
The relative simplicity and accuracy of density-functional steps in an iterative solution, are usually formulated in real
theory (DFT) has enabled great progress in electronic strucspace. Finally, and most importantly for the present article, a
ture calculations:? The fact that the exchange and correla-real-space formulation is necessary for the implementation of
tion interactions between electrons can be quite accuratehe O(N) techniques, which promise to reduce the
described by a potential that depends only on the electroniasymptoticO(N®) scaling of traditional electronic structure
density and possibly its gradiefthe local-density and gen- methods with respect to the number of electrons or atoms.
eralized gradient approximatiosDA) and(GGA), respec- Real-space bases that employ atom-centered functions,
tively] is an enormous simplification that led &b initio  e.g., Gaussians or localized atomic orbitals, have long been
calculations for systems containing a fairly large number ofused in electronic structure calculations. However, large nu-
atoms. However, the interest in complex and/or technologimerical bases are also very interesting since they allow one
cal materials and structures is stimulating the development ab attain any desired numerical accuracy by systematically
methods that can substantially enlarge the number of atomacreasing the number of degrees of freedom. The numerical
that can be handled by DFT techniques. bases used in recent calculations include finite elenféfits,
The largest calculations usually employ pseudopotentialsgrids®~1” and waveletd®-2° These bases allow for natural
which eliminate the need to explicitly consider core electrongmplementation of mesh refinemeht!124*%cluster bound-
in the Kohn-Shan{KS) equations. This enables the descrip-ary conditions, and efficient domain decomposition ap-
tion of the electronic wave functions in a plane wave basisproaches on massively parallel computgérs:*®
which offers substantial advantagés: plane waves do not The computational effort in traditional electronic structure
depend on the atomic positions, which simplifies the calcucalculations must ultimately scale @N?), whereN is the
lation of the atomic geometry and makes the results mor&@umber of atoms. This is because the wave function of each
precise, andii) the accuracy is determined by a single pa_electron can, in general, extend over the whole material, and
rameter, the highest kinetic energy of the waves included ifherefore computing one wave function will take at least
the calculations. The structure of the DFT equations is als@(N) operations. Since the number of electrons grows lin-
advantageously exploited in the plane-wave basis: the kinetigarly with the number of atoms, the computational effort
energy is diagonal in Fourier space, while the potential term&ust grow at least a®(N?). Furthermore, the individual
are diagonal in real space. The transformation between th&ave functions must be orthogonal to each other and the
two spaces occurs via the well-known fast Fourier transfornPrthogonalization or diagonalization effort will ultimately
(FFT) algorithm, which is very fast on vector supercomput-dominate, since they scale @N?).
ers and modern workstations. However, its performance Recently, a number of ingenious methods have been pro-
slows down on massively parallel computers since FFT is #0sed for evaluating the total energy @(N) operations.
global operation. These methods usually makel@calization approximation,
Recently, there has been substantial interest in the sdvhich involves either the use of a localized, Wannier-like
called real-space methods, which offer the promise of eveRasis™ > or a neglect of off-diagonal elements of the density
larger calculations. There are several reasons for this, th@atrix p(r,r’) for [r—r’| greater than an appropriate cutoff
most obvious being easier parallelization, since specific reradius?®=33In the wave function-based approaches the main
gions of space could just be assigned to particular proceseea is to rewrite the total energy expression with the help of
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basis functions that are unknown at the outset and are to bewritten in terms of nonorthogonal, localized orbitals ex-
variationally optimized in the process of minimizing the total panded in a plane-wave basis. Their basic idea is to use the
energy. Each function is localized, i.e., confined to a giverlonuniqueness of the representation of the ground state of
region in space, but the confinement regions for the varioute system in terms of nonorthogonal orbitals to find an op-
functions overlap. Since overlaps between functions localtimally Iocallzed_ basis that accurately describes the_electrons.
ized in regions sufficiently far away vanish, the number of.our approach is more general and real-space oriented: we

nonzero overl ©O(N). By exploring thi arsity and include a multigrid preconditioner and allow for unoccupied
z verlaps IO(N). By exploring this sparsity or partially occupied states. Indeed, numerical tests on real-

avoiQing the calculation of individual eigenfuncti.ons, it s jstic systems show that the inclusion of some unoccupied
possible to evaluate the total energy@{N) operations. In  siates substantially accelerates convergence. The unoccupied
the density-matrix approaches, when formulated for fullstates are included using techniques similar to the density-
density-functional calculations with large numerical bases, itnatrix approach for nonorthogonal orbitdfs***>However,
is necessary to_expand the density operator in a basis @fe do not impose additional localization constraints on the
localized orbital$*~>%in order to reduce its effective dimen- density matrix for reasons of accuracy and numerical effi-
sion. Other methods, based on the divide-and-conquegiency, which results in a smal(N2) part forNx N matrix
algorithm3"-38 energy renormalization group for the density operations. This approach is efficient for a wide range of
matrix° or calculation of the Green’s functidfi,have also  system sizes. For example, in our massively parallel imple-
been proposed. Recently, fully self-consistéN) DFT  mentation on the Cray T3E supercomputer, @\®) part
calculations that used atomiclike orbitals as a basis havéoes not exceed 20% of the computational cost for systems
been reported* A more comprehensive discussion and listcontaining over 1100 atorsee Sec. V.
of references is given in recent reviews by Galland In our real-space calculations on a grid, we use a compact
Goedeckef?® and accuratd/lehrstellenfinite difference(MFD) scheme of
The electronic structure of a physical system is easiest t8"der 4% which has been successfully mtroduged in elec-
describe in the basis of eigenfunctions, but any set of funclfonic structure calculations a few years 480" It dis-
tions spanning the same subspace is also appropriate. Ho retizes the entire differential equation, as opposed to the

ever, if one imposefocalization constraints, which require aplacian, and only uses the first- and second-neighbor

that a given function is zero outside of a prescribed localizaPONts 0N the three-dimensional grid. As a result, zero bound-
ry conditions are easy to impose at the boundaries and the

ssrr:e;eg:eoz:r,cLri]r?gs?ocrjIgebrggitscshecil(t:r?;t erlr:gsrt]c;ggS:Zt:@/u;\;)e;fonghort range _of the discretizatiqn aIsp aid; parallglization.
- . o | aPPrOXo\vever, while the methodological discussion in this paper
mates the solutlor_1 with the localization constraints, it is 'm'explicitly uses the MFD discretization, most of the argu-
portant to work with a general nonorthogonal basis set. Allhens are general and can be applied to any other real-space
quantities of interest need to be expressed in this set: the totglathod. For simplicity, the discussion is also restricted to
energy, the steepest desc€®b) directions, preconditioners, rea| wave functions, but extensions to complex wave func-
and forces. This excludes the direct use of methods based @@ns andk points are straightforward.
the search for the eigenvectors, e.g., Lanczos’, Davidson’s, The optimized localized orbitals are also very useful apart
or inverse iteration methods. from facilitating exceedingly large calculations. They have
Real-space methods are inherently local, and thereforalready enabled efficient calculations of quantum transport
suitable for imposing localization constraints on the basigroperties, which rely on the expansion of Hamiltonian and
functions that span the subspace of the occupied orbitals. IBreen’s function matrices in terms of localized orbit&ls.
the present paper, we investigate the performanc® (i¥) Since one can use very few short-range localized functions
techniques in the context of grid-based DFT calculations. Leper atom, e.g., three for the case of carbon atoms, the dimen-
N denote the number of wave functions needed Bhthe  Sions of the relevant matrices are minimized, which has led
number of points of the grid used to discretize the KS probi0 ab initio calculations of quantum conductance for large
lem. In generalN is much smaller tham. The computa- nanotube structuré.

tional cost for tractable systems is thus dominated by those 1h€ remainder of this paper is organized as follows. In
parts of the algorithm that grow lik#1 X N2. These opera- fSec. A tf|19 general method If%r nj|n!m|(§at|onbo:‘j ﬂ]l'eh energljy
tions usually consist of the construction Nf<XN matrices unctional in a nonorthogonal basis Is described. The multl-

(overlap, Hamiltonian, etg.in the basis of the trial wave grid acceleration scheme and the MFD discretization are also

functions, and the update of the trial wave functions in andlscussed. Section Il focuses on the implementation of lo-

o ; : calization constraints for nonorthogonal orbitals and their ef-
orthogonalization or Ritz procedure. This cost can be Iargel¥ect on the scaling of the calculations. Section IV presents

. . "Miumerical test results for long carbon nanotubes, containing
that describe the ground state of the system. Localized orblhp to 1120 atoms. Some mathematical details are given in
als also reduce the memory requirement, which scalé$ as e Appendix.

XM, in general. Note that wheN >N, a good precondi-
tioner is also required for an efficient iterative minimization. Il. GENERAL ITERATIVE ALGORITHM
Otherwise a convergence slowdown would be observed as FOR NONORTHOGONAL ORBITALS
the system size increases, which would make a nonacceler-
ated O(N) method slower than a precondition&tf tech-
nigue. This subsection describes a general matrix formulation for
The method proposed in this paper is closely related tdterative density-functional calculations, where the iterative
several recently described techniques, particularly that ofipdates and thus the number of iterations do not depend on
Galli and Parinelld! where the Kohn-Sham equations are the choice of the basis.

A. Basis-invariant matrix formulation
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Consider the standard problem of minimizing the This matrix satisfies
Hohenberg-Kohn total energy functiohal

CC'=s1
N
a=;;fx¢n—%V4¢o+%_vaunpdr where
S=o'P,
+f Vion(p)p dr +Ex[p]+ Eion-ion 1) is the overlap matrix.
In the following, for an operatoA we will use the nota-

for N-occupied orbitals in the system, each represented by #on
one-body wave functiog; , with the electron charge density A T AW
p(r)=ElN:1fj|¢j(r)|2. The first term represents the kinetic N '
energy, the second the electrostatic repulsion due to the clas- A®) = HTAD
sical Hartree potentiaV/,(r)=fp(r’)/|r—r’|dr’, the third '
the interactions of the electrons with all the nuclei, the fourthWe then have the relation

the exchange and correlation contributions, and the fifth the
classical electrostatic interactions between all nuclei.

The orbitalsy; satisfy the Kohn-Sham equaticns In order for Eq.(5) to define a transformation to a Ritz

Ho=[—1V24+V. +V + —eh, (2 basis,C has to be a solution of the generalized symmetric
;i 2 jon H(p) ch(p)]lrlfj € ¥ 2 eigenvalue problem

AW =cTa®) .

which must be solved self-consistently for tNelowest ei- ©
genvalues; , while imposing the orthonormality constraints H*)C=SCA, (6)

(il )= 5ij . pxc=OE«d p]/p is the exchange and corre- \yhere A is the diagonal, realx N matrix that satisfies
lation potential. Using Eq(2), the total energy expression is

easily rewritten as A=TTHV,
N The matrixC can actually be decomposed as a proddct
Et:zl fjej—%f Vu(p)p dr—J el p)p dr =G U, whereG is the Cholesky factorization &,
=

S=GG',

+Exd ]+ Eion—ion- () . . ) .
] ] ] . andU is an orthogonal matrix. Knowin@, the generalized
In the remainder of this subsection we will assume that eacBjgenvalue problent6) is reduced to a standard symmetric

In practice we use norm-conserving nonlocal pseudopo-
tentials in the Kleinman-Bylander form G H®G"TU=UA. (7
Vion=Vioct Vni, In the basis?, the SD directions, along which the energy

functional decreases at the fastest rate, are easy to compute.
They are given by the negative residuals of the Kohn-Sham
_ _ equations(2), with the current potential kept fixed, and can
an:iE |k oKs|. (4)  be expressed as tiexX M matrix

o . DM =WA-HW, 8)

The indexi refers to the atoms and to the projectors of the ) o )
nonlocal pseudopotentia|s_ which satisfies the relation

Consider a trial basis of normalized functions, vTIDM =0
{}1, . ...d\}, that will define the subspace of the occupied '
orbitals. This basis will be refined by iterative Updates, and at In the fo”owing, we consider a SD a|gorithm with a linear
convergence will accurately describe the true Kohn-Shamyreconditioning operatoK. Without preconditioning, the
ground state of the system. In order to derive ba&s—mvanar&onvergence rate can be very slow, especiallyl i N. For
expressions for the updates, it is convenient to use matrixeal-space finite differend@D) discretizations, the multigrid
notations. The functiong; will thus be written as columns  preconditioner described in Sec. Il D greatly improves the
of a matrix convergence. Introducing a pseudo-time-stgp¥ should

thus be corrected at each step according to
O=(¢1, ..., dn).

new_ v
An orthonormal basis of approximate eigenfunctidistz W=+ KD,
functiong can be obtained by a diagonalization in this sub-Note that in this algorithm all the trial wave functions are
space of dimensiol (Ritz procedurg We denote byC the  updated simultaneously. Without preconditioning has to
N X N matrix that transformg into the basisV of orthonor-  be very small(for numerical stability reasopsand the con-
mal Ritz functions, vergence can be very slow.
For optimum convergence rate, it is important to preserve
V=(41, ... 4n)=PC. (5)  the true steepest descent direction when working with the

where



1716 J.-L. FATTEBERT AND J. BERNHOLC PRB 62

nonorthogonal orbital®. This direction can differ substan- can be used to improve the trial subspaceNotomputed

tially from the derivative with respect te;(r) when the orbitals, regardless whether they are occupied or empty. In
basis® is highly nonorthogonal. Since the directié") is  the computation of the electron density and the total energy,
easy to compute, the simplest way to obtain the SD directiotowever, one needs to account for the occupations. To this

in the basisb is to use the matrixC end, we introduce a density-matrix formalism in the nonor-
(@) _ A (¥) 1 . thogonal basis.
D¥Y=D"C  =(VA-H¥)C For a chemical potentigk, define theNx N matrix Y by
— PO —HD 9) its matrix elements
where Yij= 6 f[(€—p)/kgT],
O=S5 4@ (100  Wherefis a Fermi-Dirac distribution. The density operafor

" o is then given by
The preconditioned steepest desc@M8D direction in the

nonorthogonal basis is thus p=YY¥T=0CYCTD.

sd=KDMC™! For T=0, the operatop is a projector onto the states of
_ . eigenvalues lower thap. In a grid-based approach, the di-
K(®O—H®), (11) mension of this discrete density matrix is given by the num-
and the basi® is updated according ®"*"=® + »56®. In  ber of degrees of freedom, i.e., the number of points on the
the particular cas& = Identity, Eq.(11) is equivalent to the real-space grid. This number is, in general, so large that it is
result given in Ref. 21. Note thatP does not depend o8  impossible to apply iterative methods that requirfe,r’)

and therefore does not require the solution of the eigenvalugnatrix of sizeM x M). However, one can represenin the
problem(6). basis®
Note that since by definition
@) —dpTod—-Tyve-1
q)newz(q,+ nKD(\I’))Cflz\I,newcfl, p = p(I)_C YC -
. . ._q))
the same subspace is generated at each iteration, indepéahs- in Ref. 30, we introduce the matrp¢
dently of the basis, if the same pseudotime step is used. In ) a1 (P)a-1_ T
principle, the above SD directions could also be used to- prU=STptS T=CYC (12
gether with a conjugate gradief@G) method:” but the con-  This matrix can be used to obtain the expectation valu
vergence rate of the preconditioned algorithm described bey, operatod represented in the bask
low was fast enough, in all applications to date, to make the
implementation of the CG approach unnecessary. A=2Tr(YAM)=2 Tr(p®A®)),
In actual calculations, the basis functiobsare corrected
at each iteration using the PSD directigiid). A new elec- Iq particular, the total number of electrons in the system is
tronic densityp(r) is then generated according to given by

Ne=2 Tr(p(®)s).

Note that if all the computed states are fully occupied, we

N
p(r>=2j§1 (S™Y) ki (1) i1,

as well as the new Hartree and exchange-correlation potellf'—ave)'?((p)zs andg((p):S g _ o
tials. However, the old and the new potentials are then mixed USing the solutiorC of the generalized symmetric eigen-
linearly. The functional1) is minimized iteratively until self ~value problem(6), one can compute the matri¥®) using
consistency is achieved. Eq. (12). The electronic density is then given by

At each step, the kinetic enerdg;, can be evaluated in

N
the nonorthogonal basi® as o
9 p(N=2 3 (P™)ui(1) (1), (13
N “
Ekm=2AkEl (S Hi( Dy =3V D). The first term on the right-hand side of E®), commonly
jk=

referred to as the band-structure energy, can be computed as
To obtain the ground-state ener@y, the first term on the

N
right-hand side of Eq(3) can be expressed as a trace®of
9 93 P eh 23, &fl(e= m)/kaTI=2 Tr(Ap")

N
;1 2¢;=2Tr(A)=2TK(O). —2THH@Y®) (14

Note that in the present approaph® is used only to
obtainp(r) and the energ¥,, unlike the method of Ref. 34,

We have found that the inclusion of unoccupied or par-where it is also explicitly used to define the correction direc-
tially occupied orbitals substantially enhances the convertion §®. Furthermore, the dimension of the subspdree-
gence ratésee Sec. IY. The PSD algorithm described above mains fixed during the calculations, in contrast to the meth-

B. Computations with unoccupied orbitals



PRB 62 TOWARDS GRID-BASEDO(N) DENSITY-FUNCTIONAL ... 1717

ods of Refs. 27 and 36, where the rank of the overlap matrix D. Multigrid preconditioning
S decreases to the number of occupied orbitals at conver- Obtaining O(N) scaling for the most expensive parts
gence. of the calculations is useful only if its prefactor is not

In the calculations of the forces on the ions, the only termyuch larger than foO(N®) calculations. It is thus impor-
that differs from calculations with eigenfunctions is the ON€iant to have a preconditioner that works well for nonortho-
associated with the nonlocal part of the pseudopotential. Thﬁonal orbitals. The importance of an efficient preconditioner

energy term for this part is given by for electronic structure calculations with large numerical
T —@) bases has been recognized in Ref. 48, in the context of the
En=Tr(® Vy@pt™). plane-wave method. For real-space electronic structure cal-

gulations several efficient iterative solvers have been devel-

2,14,16,17,49 . .
numerical derivative of the energy with respect to the ionicoP€d _reczntly}, based on multilevel acceleration
positions. This is done by computing changes in the totafechniques. For O(N) methods, the importance of precon-
energy for small virtual displacements of the ions, withoutditioning has recently been discussed in Ref. 50.

the need for full self-consistent calculations. The associated A 9eneral mathematical analysis of parallel multilevel
computational cost is thus insignificant. preconditioners for discretized partial differential equations

has been given in Ref. 51. Here we introduce a specific mul-
tigrid preconditioner appropriate for electronic structure cal-
culations in a nonorthogonal basis. Given a SD directipa

To compute an approximate numerical solution to thepreconditioned SD direction=Kd is computed. The opera-
KS equations we use Mehrstellenfinite difference(MFD)  tor K represents an iterative multigrid solvev gycle)® for
method. Upon discretization, one obtains a linear algebréhe Poisson equation
eigenvalue problem

At present, we obtain the forces on the ions by evaluating

C. Mehrstellenfinite difference discretization

—3V2u=d, 17

H = B,
with an initial u given byug=2ad, and limited to the grids

Wh_ere H and B are rez_il, sparséixXm matrices, withM _with a number of points larger thaN, where Jacobi itera-
being the number of points on the real-space grid. The detallﬁ

L . ons are used as a smoother. The coefficierg an estimate
of the MFD methodology an_d Its |mpl.ementat|0n ON MaS"f the smallest eigenvalue oF(— €,) ~* on the coarsest grid,
sively parallel computers using domain decomposition are !
described in Ref. 12.

In the above notationy and ® denote matriced/ XN,
the columns of which correspond to the values of wave func-
tions on the discretization grid. The steepest descent direc- — +[Vmax— €l

L\2
tions are given by 4*h

1

a= ’

whereL denotes the number of coarse grids uségd,, the
maximum of the total potential, and the lowest eigenvalue
and of Hg. The role of the preconditioner is to systematically
reduce high-frequency components in the SD directions.
D®=pMc-1 This preconditioner has the important property that its effi-
B ciency does not depend on the basis we work in and is very
=B2O-H®, (16) cheap(less than 20% of a self-consistent gtejdoreover, it
where can be applied in the same manner to localized or delocal-
ized orbitals.
0= (B®)"1H®), The purpose of the iterative corrections of the wave
functions is to reduce as fast as possible the components
For the MFD schemél(®) should be replaced in Eq&), orthogonal to the subspace one is solving for. Since the
(7), and(14) by above preconditioner deals much better with components as-
sociated with the highest eigenvalues of the Hamiltonian
Hg=S(B(®)~1H(®), than with the ones associated with the lowest eigenvalues—
) ) ) ) ) due to the similarity between the eigenfunctions associated
As shown in the AppendixHg is a symmetric matrix at \ith the largest eigenvalues of the Hamiltonian and those of

DM =BWA-HV, (15)

explicitly symmetrizeHg . _ ~In practice, taking into account cost and efficiency, it is ad-
In the above approach, the electron density at the point yantageous to introduce some unoccupied stéités-30 %
is given by in @.
Figure 1 shows the convergence of the multigrid-
=2 (1 PO preconditioned SD algorithm for theégy molecule for differ-
pi % $i(r) Alr) (P ent numbers of coarse grid-levels, starting from random ini-

tial functions. The convergence rate without the coarse grids,
The implementation issues of this algorithm are discussediith just Jacobi smoothing iterations for Ed.7), is already
in Sec. IV. good compared to a simple SD algoritiinot plotted herg
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10 : . H®=dT(H-BV,)®+P"BV, P,
0 —— D coarse levels S ]
10 N 1 coarse levels which isolates the nonlocal potentid},, in the second term.
g 107 kN ———- 2coarse levels This term can be easily computed@(N) operations using
= only the values of B¢ "¢k and (pkg) " ;. Therefore, the
§ 107 only approximation in this approach is the use of a localiza-
g 10° tion radius to limit the spatial extent of each nonorthogonal
g’ orbital.
g 10™ If unoccupied states are used, both inverses and eigenvec-
5 tors of NXN matrices are needed. Since the eigenfunctions
5 10 are, in general, not localized, the mat@xhat solves Eq(6)
107 \\ S ] is not sparse, and thus the required number of operations is
_7 N e . proportional toN3. However, when no partially occupied
10 20 20 . 60 80 states are present and an estimate of the chemical potgntial

is available, one can use the method of Refs. 28—30 to com-

pute p®). Specifically,p can be defined as the operator
FIG. 1. Convergence rate of the multigrid-preconditioned SDthat minimizes the functional

for different numbers of grid levels, using thggdGnolecule as an

example. The number of orbitalé was 180.

SC iterations

Q[X]=Tr{[3(X("))2=2(XM)3I[(BM) "tHM) — ul ]},

18
However, the use of one or two coarse grids significantly 19
improves the convergence rate at a very low additional costlhis minimum can be computed iteratively by a conjugate
The good efficiency of the preconditioner allows us to avoidgradient algorithm using thetrue steepest descent
the conjugate-gradient algorithm, which would largely in- directions>® In the nonorthogonal basi®, defining X(®)
crease the cost per iteration. Note that one self-consistent S™X(®)S™1 one has to minimizésee Appendix
(SO iteration consists of only one simultaneous PSD correc-
tion for all the orbitals, followed by an update of the electron
density and the potential. At each iteration, the Poisson equa-
tion for the Hartree potential is iteratively solved by a stan-
dard multigrid algorithm.

QXD =Tr(3XPIS YD) — 2X(P)S XIS XP))
X(Hg—uS)]. (19

The localization constraints{|”’=0 if the localization re-
gions of orbitalsi andj are separated by a distance larger
than a truncation radiug,,, can be imposed at each step of

In the method described above, the removal of the orthe iterative minimization in order to achieve linear scaling.
thogonalization step has been replaced by a more complithis procedure is justified by the exponential decay of
cated and expensive SD calculation, B3, so that the com- P(f.r') as |r4—r’|—>oo in insulators or metals at a finite
putational cost of the minimization scheme is roughly thetemperaturé. I_-|owever, the matrix elements obtained from
same. Furthermore, the calculation of the electron density i§9- (19 are, in general, not exactly the same one would
much more expensive when using a basis different from Rit2btain in anN*” calculation. Moreover, good accuracy can be
functions, since in the latter cagé® becomes diagonal. ©btained only by keeping the number of nonzero elements in
However, when working with nonorthogonal functiosin- X much larger than irg3%*
stead of the Ritz function®, one can easily impose local- ~ WhenM> N, the full evaluation o582, ©, or p(®), even
ization constraints of to reduce the cost of the calculation. with an orderN® algorithm, constitutes a small fraction of
Localization is imposed by forcing the functions to be zerothe calculations for a large range of system sizes. For ex-
outside of a spherical region centered on an ion. In particulaiample, in parallel multigrid calculations of Ref. 12, the
such truncation will linearize the computational cosdf) Cholesky decomposition and the diagonalization of khe
in Eq. (9) andp in Eq. (13), the most expensive parts of the x N matrices were not even parallelized, since they ac-
algorithm. In addition, the nonorthogonal basis allows for thecounted for a negligible part of the computational effort for
use of techniques that accelerate convergence for systerpgactical system sizes. When using localized orbitals, the
with a small band gap, see, e.g., Ref. 52. maximum practical system size increases substantially, but

The application of the MFD Laplacian operator to a wavethe cost of theN x N matrix operations remains a small frac-
function localized in a sphere of radi& generates a func- tjon of the total for a large range of systems, if these opera-
tion localized in a sphere of radilg,+h+/3, which is used tions are effectively parallelized using standard libraries,
as the localization radius fdi ¢; andB¢; . This truncation such as PBLAS(Parallel Basic Linear Algebra Subpro-
suppresses some componentsHap; that are generated by grams and ScaLapack Table | shows some timings for the
the nonlocal, short-range projectors of the pseudopotentigcalapack diagonalization routine used in @EN®) part of
operator. These components are not used to correct the wawgar method. For systems with more than 1000 orbitals, di-
functions since the latter should remain localized. Howeveragonalization on a single processor becomes very expensive,
they are included exactly in the computation of the maf#ix if required at each self-consistent iteration. However, since
and the total energy by writingl(®) as the sum of two ma- the multigrid calculations are fully parallel, it is natural to
trices also parallelize the diagonalization, which substantially re-

IIl. LOCALIZATION AND PARTIAL LINEAR SCALING
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TABLE |. Diagonalization times of a typical Hamiltonian ma- -5.55 : r r .
trix, using the Scalapack subroutine PSSYEV, as a function of the — 180 states
number of processing elemen®E’s) on the Cray T3E. | |+ - 120 states
=560}

(9 1PE 4 PE'’s 16 PE’'s 64 PE’s g

N=560 12.8 4.5 2.6 1.9 E

N=1120 08 26.5 11.2 7.2 g 565

N=2240 175 60 28.8 S A
c NS,
Y570}

duces the elapsed time and thus greatly increases the maxi-

mum system size that can be studied at reasonable cost.

In the current calculationsS, H®), @, and p(® are 578 0 20 30 40 50 60 70 80
stored as fullNXN matrices, distributed on the processors SC iterations

according to PBLAS and ScalLapack requirements. Although
most of the operations on these matrices can be optimized FIG. 2. The effect of unoccupied states on the convergence rate
using their sparsity—except the diagonalization in &p—  for the case of &.
the full storage approach is adequate for a substantial range
of calculations. It is also the easiest to implement given thesented on the grids employéd Periodic boundary condi-
numerical libraries and the parallel computers we have actions were used in all cases. The starting trial basis functions
cess to. The solution of the eigenvalue probi@nis clearly  were atom-centered random functions strongly localized
the dominant part of thes®(N?®) operations. around their respective atoms. In order to improve the con-
Since the method described above determines the eigegitioning of the overlap matrix, the functions localized on the
functions of the Kohn-Sham equations in the basis of localsame atom were kept orthonormal during the entire calcula-
ized functions, it can be viewed as a generalizatioralof tion. The initial trial density was a linear combination of
initio methods that use a linear combination of atomic orbit-atom-centered Gaussians, neutralized by the positive ions.
als (LCAO) or Gaussians functionS to expand the eigen- The density also defined the initial potential. To improve
functions:¥ ;= 2;c;G; . The main difference is that our local stability, the initial potential was kept fixed during the first
functions®; are defined by their values on a grid and are2-3 SC iterations. Thereafter, the potential was updated at
variationally optimized. In particular, the functiods, have  €ach step, mixing usually 20-50 % of the current potential
many more degrees of freedom and one can systematicalwith the KS potential associated with the previous density. In
increase the accuracy of the calculations by mesh refinemegtr test cases the condition number of the overlap m&rix
or expansion of the localization domain. The number of basighcreased during the iterations, but it remained small enough
functions in high-precision calculations can thus be mucHO ensure stable numerical results.
smaller than in Gaussian or LCAO approaches, which mini- To take advantage of the localization constraints, several
mizes theO(N®) part. Furthermore, since exact and explicit Nonoverlapping localized orbitals were stored in the same
O(N?®) diagonalization is performed, cf. E¢7), both par- global array that represents a function extending throughout
tially occupied and unoccupied orbitals can be used, whictihe whole discretization grid. These orbitals can thus be re-
permits calculations for metallic as well as semiconductingaxed simultaneously at the same cost as the relaxation of
systems. However, calculations for metals may require moréne spatially extended orbital. In practice, when computing
localized orbitals or larger localization radii for an accuratematrix elements between pairs of orbitals, the real-space grid
description. Having a small number of basis functions is alsgvas divided into regular blocks whose contributions were
important in other contexts. For example, transfer-matrix-summed up. For this purpose, it is important that only one
based calculations of quantum transport benefit substantial§rbital of each global function is non-zero on each block, so
from the small size of the basis and the optimized functionghat the contributions can be associated with one and only
® have already been used to evaluate the conductances @fe orbital. On a massively parallel computer, a block can be
carbon nanotube®. The above approach is also very useful & subdomain associated with a processor, or a fraction of this
for evaluating the effects of localization constraints alonesubdomain. The main advantage of the above approach is
while maintaining highlocal accuracy. However, for very thatit avoids indirect addressing and can efficiently use stan-
large future calculations th©(N3) terms will eventually —dard, optimized linear algebra libraries in each block.

dominate, and the formulatiofl9) may become advanta- As mentioned in Sec. Il B, the introduction of unoccupied
geous. states in the calculations can substantially improve the con-

vergence rate. This effect is illustrated in Fig. 2, which com-
IV. APPLICATIONS TO TEST SYSTEMS pares the convergence rates faj,@hen either no or one
unoccupied state per carbon atom is included in the calcula-
The algorithm described above has been implemented otions. When introducing localization constraints, the inclu-

the massively parallel Cray T3E supercomputer and testegion of unoccupied states has an even greater effect since
on G and carbon nanotubes of varying lengths. Our calcuthese states introduce additional degrees of freedom that par-
lations used the pseudopotentials of Hantdnhand the tially compensate for the localization-induced truncation. In
LDA for u,.. The pseudopotentials were filtered in order tothe impractical limit of having as many localized functions
remove high frequency components that cannot be repreas the number of grid points, the localized and nonlocalized



1720 J.-L. FATTEBERT AND J. BERNHOLC PRB 62

-5.60 — 10"
—— Rc=6a.u.
e RC = 8 AU 100 M
- % Rc =inf. '('Ia .
T 565 < 10
£ 5
S % 107
3 =
P o
2 g 10°
g B0 reem—— i
510"
&
107
-5.75 ' ‘ P — -
0 20 40 60 80 100 120 140 10° . ‘ N . . .
SC iterations 0O 20 40 60 80 100 120 140

SC iterations
FIG. 3. Convergence rate for different localization radii for the ) )
(10,0 carbon nanotube. The supercell contained 160 atoms and the FIG. 4. The error, i.e., the difference between the converged

calculations used three orbitals per atom. DFT total energy without localization and the current energy as a
function of the number of self-consistent iterations. Different local-
results would be equal at convergence. ization radii are compared. The supercell for 10,0 carbon

The tests with localization constraints were carried out fonanotube contained 160 atoms.
carbon nanotubes of various lengths. Three localized orbitals ] )
per atom were used, i.e., one unoccupied orbital per atonf€liably compute total energy differences between different

The grid spacing wak=0.34 bohr, which was sufficiently atomic configurations, e.g., in order to extract defect forma-
small for the pseudopotentials employ¥d. tion energies. However, it is still adequate to compute forces

In the minimization of the energy functional with local- @nd initiate atomic relaxations. Only a small number of SC
ization constraints, one cannot exclude the possibility of loiterations is required for each ionic configuration in order to
cal minima2® However, if the number of localized functions have reliable forces that lead the atoms to their equilibrium
is larger than the number of occupied orbitals, Kétal 2’ position;. Thg Wave—function components that require nu-
observed that trapping does not occur. Moreover, if the loIMerous iterations before b_elng Complete_ly relaxed are thu_s
calization regions are large enough, one can expect that tHEProved step by step during the relaxations, and are suffi-
difference in energy between two local minima close to theciently well converged by the time the atoms reach their
ground state is lower than the useful accuracy—the errofduilibrium positions. _
introduced by the localization constraint. In practice, we did Our tests of relaxation and of total energy differences
not observe any apparent trapping in high-energy |ocapseq the(10,0 carbon nanotube, either perfectly symmetric
minima. or with the (5-7-7-5 defect®® The supercell contained 160

At each step of the iteration process, the computed coratoms. AII atoms were relaxed with an(_JI Witho_ut Iocfalization
rections were truncated in order to preserve the confineme§nstraints. An accurate relaxed atomic configuration could
of the orbitals in their assigned localization regions. At some?e obtained with a localization radius as small as 6 bohr.
point, the truncated part may then become more importarﬁ”'oreover! wlth a localization radius of 8 pohr the gbsolute
than the part actually used. In order to evaluate the accura tal energies of_the relaxed supercells, with and without the
of the localization approximation, it is thus important to defect, were shifted upwards by less than O[Bi2]. The
compare the Kohn-Sham energies obtained with and withol#éfect formation energy, defined as the difference between
localization for realistic test cases. Figures 3 and 4 show thie two total energies, was 0.1Ba] both without localiza-
convergence rates and the absolute error for a 160-ato#Pn and withR.=8 bohr. _ _
nanotube. For a fixed number of orbitals, the rate of conver- A contour plot of a typical localized orbital for thd0,0
gence decreases with increasing localization when the nunﬁlanotube is shown in Fig. 5. The orbital is strongly localized
ber of orbitals is kept fixed. Turning to accuracy, the loga-in the region of a carbon-carbon bond and smoothly de-
rithmic plot in Fig. 4 shows that an accuracy of £0[Ha/  creases to' zero When approaching the localization bqundary.
atorr] for a system of 160 carbon atoms is obtained in 20-349f the Iocgllzatlon rad_lus were reduced, one _vvould _malnly cut
iterations. Convergence towards more precise results the?ff the tail of the orbital. However, these tails are important
depends on the localization radii. Significantly more itera-IN the evaluation of the total energy and calculations with
tions are required to reach a precision of 80~ 3 [Ha/aton,
which is sufficient to obtain a good estimate of eigenvalue
differences, e.g., the highest occupied molecular orbital-P
lowest unoccupied molecular orbitdHOMO-LUMO) gap.

TABLE Il. HOMO-LUMO gap for a(10,0 nanotube. The su-
ercell contained 160 atoms.

The calculated value of this gap depends on the Iocalizatioﬁev) Ro=5 bohr R.=6 bohr R.=8 bohr R.==

radius, see Table Il. In particulaR.=8 bohr is sufficientto LUMO 1.53 1.27 1.17 1.17
reproduce the value obtained without the localization apHoOMO 0.64 0.41 0.32 0.32
proximation. Gap 0.89 0.86 0.85 0.85

The accuracy of %10 2 [Ha/aton] is not sufficient to
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V. SUMMARY AND CONCLUSIONS

An efficient and accurate method for self-consistaht
initio electronic structure calculations was developed and
implemented on the massively parallel Cray T3E supercom-
puter. The method is based on a description of the subspace
spanned by the occupied orbitals in a nonorthogonal basis of
variationally optimized localized functions. These functions
are defined on a grid and are strictly zero outside of spheres
centered on the atoms. The localization is essential to
achieve a linear scaling of the computational effort for the
most expensive part of the calculation—the relaxation of the
basis functions and the evaluation of the electronic density.
A Mehrstellenfinite-difference scheme is used to discretize
the Laplacian operator on the grid. A multigrid precondi-
tioner has been developed in order to have a very efficient
minimization scheme for basis-invariant steepest descent di-
rections. Since it appears to be essential for a high conver-
gence rate to include unoccupied orbitals in the calculations,
a density-matrix formalism is used to define the occupation

FIG. 5. Contour plot of the square of a typical localized orbital Of the orbitals in the subspace defined by the nonorthogonal
in the plane defined by the cylindrical surface of 16,0 nano-  basis functions. This requires operationsdX N matrices
tube. The contour of lowest valuelose to zerbshows the local- that scale aO(N®), but when efficiently parallelized this
ization region with a radius of 6 bohr. part is relatively cheap when compared to the cost of the
relaxation of the orbitals. Our tests show that @N?®) part
is less than 20% of the total time for carbon nanotubes with
@s many as 1120 atoms.

. . o The accuracy of the calculations can be systematicall
orb!tals scales a&l_\l(RC/h)_3, whereR; is th_e Ioca_llzatu_)n improved by meysh refinement and/or by extend?/ng the Iocal>f
fad'!{s andh thg grid spacing. In s_elf—cons!stent_ |terat!ons, ization regions of the grid-based orbitals. Numerical tests on
additional time is spent il X N matrix operations, including - carhon nanotubes show that accurate relaxed atomic configu-

the solution of Eq(?_). In Table IIl, we proviqle timings for  ations, band-gap, and total energy differences can be ob-
the (5,5 nanotube wittR.=6.2 bohr. Comparisons are made t5ined for localization radii as small as 8 bohr.

with a constant number of atoms per processor. With a per-

fect coding and linear scaling, the timings would be identical

for all the examples. The solution of E), the only strictly

O(N3) part, takes less than 20% of the total time for systems We wish to thank Dr. E. L. Briggs for discussions and

with as many as 3360 orbitals. It is also clear that furthemproviding his parallel orthogonal-orbital multigrid code for

restructuring and optimization of the code could result in athe Cray T3E. J.-L. F. gratefully acknowledges the financial

significant speedup. support of the Fonds National Suisse de la Recherche Scien-
One should stress that the localization of the nonorthogotifique. This work was also supported in part by NSF and

nal orbitals reduces the cost of the calculations only for sysONR. Supercomputer calculations were carried out at DoD

tems significantly larger than the sizes of the individual lo-and NC Supercomputing Centers.

calization regions. Furthermore, the minimal number of

atoms for which nonorthogonal localized orbitals become ad- APPENDIX: MATRIX EXPRESSIONS

vantageous depends on the number of nonzero overlaps be- IN A NONORTHOGONAL BASIS

tween the orbitals, and thus on the atomic geometry.

R.<5 bohr may lead to unphysical results.
The computer time for the relaxation of the nonorthogona
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The relation(5) can be used to derive matrix expressions

. ) in the basisb. In the basis of the Ritz function® one has at
TABLE Ill. Timing for 1 SC step for electronic structure calcu- convergence

lations for(5,5) nanotubes of several lengths on the Cray T3E. For
140 atoms, the global grid is 966x56. The number of storage
functions denotes how manglobal arrays—extended over the
whole grid—were required to store all the localized orbitals.

(B(‘P))*lH(‘I')zA,

whereA is a real diagonal matrix. Therefore,

No. of atoms 140 280 560 1120 A= (CTB((I))C)_]_(CTH((I))C)

No. of orbitals 420 840 1680 3360 1 (D)) — 1y (B)

No. of PEs 32 64 128 256 =C (B RYEC

No. of storage func. 237 252 255 255 = CTS[(B(‘I’))*lH(‘D)]C.

CPU time/PE(s) 69 82 104 173

Solution of Eq.(7) (s) 1.4 26 9 30 The matrixC is then a solution of the generalized eigenvalue

problem
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HgC=SCA

for Hg=S(B(®) "H(®) Since 8™)) *H™) is symmetric
at convergence and

HBZS(B(‘D))le(‘D)
:S(XB(‘I'))—lH(*I')C—l
= C_T(B(q’))_lH(q’)C_l,

Hg is also symmetric at convergence. Furthermore,
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(B "IHM — y1=C™H(B®) " H®) — u1]C.

Using the invariance of the trace of an operator when chang-

ing the basis,
QIX@]=Tr (BXPISX®P) — 2X (IS YPIS X))
X(Hg=u9)]

follows then directly from definition(18).
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