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ABSTRACT

We propose an alternative router design to fill the gap be-

tween PC-based open source software routers and commer-

cial high-end routers. Our hardware accelerated software

router uses commodity PC hardware running an open source

software router for the control path, and couples it with pro-

grammable switching hardware by delegating most of the

packet forwarding to the switch. We describe a prototype

implementation and show that it is capable of handling the

traffic requirements of an existing carrier aggregation net-

work.

1. INTRODUCTION

Open source routing software [3] is already deployed

within enterprise and ISP networks for specialized tasks. Its

quality is approaching what is commonly referred to as “car-

rier grade”. However, PC based routers with open source

routing software do not offer the throughput, port density,

and/or reliability needed for ISPs’ purposes. On the other

hand, we observe that Ethernet switches often provide layer-

3 functionalities and contain components, e.g., TCAMs, for

performing longest prefix matching at line rate and offer

multiple terabit throughput.

In this paper, we leverage the decoupling of the tradi-

tional tasks of a router, i.e., maintaining up-to-date routing

information and forwarding packets. We propose an alterna-

tive router design that couples a commodity PC running an

open source software router with lower-cost programmable

switching hardware. Such switches usually have very lim-

ited FIB memory, not enough to keep a complete Internet

routing table of more than 300k entries. We are using the

switch as a flexible forwarding engine for high-performance

forwarding for most of the traffic. The PC acts as a route

controller and furthermore handles the traffic that is chosen

not to be forwarded by the switch. Our prototype is based on

an OpenFlow-enabled switch [2], and a Linux-PC running

the open source routing suite Quagga [3]. We have imple-
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Figure 1: Our alternative router design with its slow path

(dashed black arrow), fast path (solid black arrow), and

communication channel (grey arrow).

mented an OpenFlow controller, RouteVisor, that serves as

the glue logic combining Quagga and the switch.

We believe that our approach has the potential to bring

the flexibility of software routers into previously unexplored

contexts, such as data centers and aggregation networks.

2. DESIGN / IMPLEMENTATION

Figure 1 illustrates the components that form our router

design, along with their interactions. The programmable

switch serves as our fast path, the PC as our route controller.

Our architecture relies on a communication channel and al-

ternative forwarding path (slow path) between the switch and

the PC, maintained by our controller RouteVisor.

2.1 Programmable switch

Crucial for our router design is the availability of an ad-

vanced switch control interface, such as Openflow [2], for

modifying FIB contents as well as for retrieving traffic statis-

tics. For our prototype, we use the HP ProCurve 5406zl

which supports up to 2000 wildcarded FIB entries which we

use as a FIB cache. It takes roughly 90ms to obtain statistics

for 1000 FIB entries, and the modification of a single FIB

entry is completed in 3ms on average.

2.2 RouteVisor

The main tasks of RouteVisor include 1) allowing

Quagga to operate on physical switch ports as if they were

local interfaces, 2) monitoring routing table updates by

Quagga, 3) maintaining traffic statistics, and 4) populating

the FIB of the switch with the most popular destination pre-

fixes. Although we rely on Quagga for our prototype, any

other Linux software router should work as a plug-in re-



placement, since no source code modifications to Quagga

are necessary.

To meet 1), RouteVisor establishes a VLAN trunk be-

tween switch and PC, with unique VLAN identifiers per

switch port, providing visibility of all physical switch in-

terfaces to Quagga. The VLAN interfaces are configured

to see only routing protocol messages, ARP as needed, and

slow path traffic. Any router adjacent to the switch can then

establish a BGP, OSPF, or IS-IS session with Quagga. The

Linux networking stack forwards packets across the VLAN

interfaces. To the outside world, the switch-PC combination

acts as if it was a conventional IP router.

For 2), RouteVisor monitors changes to the PC’s routing

table by Quagga via the Linux netlink subsystem. In ad-

dition, to achieve 3), RouteVisor maintains packet counters

per routing table entry for both slow path, via Linux forward-

ing table counters, as well as fast path, through OpenFlow

statistics queries.

The information gathered in 2) and 3) is evaluated by

our prefix selection strategy FIBpredict. With respect to

4), RouteVisor periodically calls FIBpredict to compose a

new selection of prefixes which are expected to contribute

most of the upcoming traffic, and updates the switch FIB ac-

cordingly. Incoming BGP updates that change forwarding

decisions are immediately propagated to the switch.

2.3 FIBpredict

The design criteria for FIBpredict are to keep most traffic

on the fast path while minimizing FIB churn and making it

hard for an attacker to target the slow path. To keep most of

the traffic on the fast path we rely on the Zipf-like property

of destination popularity in Internet traffic and use past traf-

fic statistics to predict upcoming popular prefixes. To keep

churn low we rely on long term trends, and to ensure flexi-

bility and short reaction times, e.g., in case of traffic changes

or DoS attacks, we also include recently popular prefixes.

2.4 Forwarding

As we are constrained by limited FIB memory on the

switch, we introduce a fast path and a slow path for packet

forwarding, as depicted on Figure 1. If a packet (Pkt1)

matches a prefix as present in the switch FIB, the switch

can forward the packet on its own, we call this our fast path.

The OpenFlow switch takes care of rewriting the MAC ad-

dresses, and the upcoming release of OpenFlow 1.1 intro-

duces support for decrementing IP TTL.

If the destination of a packet (Pkt2) is unknown to the

switch FIB, it is directed towards the PC via the VLAN

trunk. The PC learns about the packet’s ingress port by in-

specting the VLAN identifier. Then, Linux determines the

appropriate egress interface based on its local routing table

as maintained by Quagga. Finally, after rewriting the layer-

2 header and decrementing the IP TTL value, the packet is

sent back to the switch where it is then forwarded to the ap-

propriate network interface based on the VLAN identifier.
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Figure 2: FIBpredict performance.

3. PERFORMANCE

In this section we show that our FIBpredict strategy

performs sufficiently well for handling traffic demands of

a carrier aggregation network. We base our study on an

anonymized 48 hours packet-level trace of 20.000 residential

DSL lines collected in 2009 at an aggregation point within

a large European ISP [1]. We focus our study on the re-

quired slow path capacity and the number of FIB modifica-

tions needed, both as a function of FIB cache size.

Figure 2(a) shows the impact of FIB cache size on the re-

sulting slow path rate for different prefix selection strategies.

The optimal one updates the FIB every 10s and has perfect

knowledge. The simple strategy selects the most popular

prefixes as seen during the last bin. FIBpredict is our strat-

egy which relies on both short-term and long-term trends.

For a reasonably sized FIB, all three strategies keep the slow

path rate low. Figure 2(b) however shows that FIBpredict

outperforms both the optimal and the simple last bin strate-

gies substantially in terms of FIB modifications per second.

We also compare against LRU and LFU, whose applica-

bility is questionable since for each cache miss, a FIB mod-

ification is needed before the packet can be forwarded.

4. SUMMARY AND FUTURE WORK

In this work we propose a hardware accelerated software

router design and present a prototype based on Quagga,

OpenFlow, and our controller RouteVisor. In future work

we will be investigating its applicability to different deploy-

ment scenarios, e.g., data centers. Furthermore, we plan to

enhance RouteVisor such that it actively detects malicious

activity and provides countermeasures against attacks.
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