
Towards Hardware Embedded Virtualization Technology:

Architectural Enhancements to an ARM SoC

Paulo Garcia
Centro Algoritmi

University of Minho
Guimarães, Portugal

pgarcia@dei.uminho.com

Tiago Gomes
Centro Algoritmi

University of Minho
Guimarães, Portugal

tgomes@dei.uminho.com

Filipe Salgado
Centro Algoritmi

University of Minho
Guimarães, Portugal

fsalgado@dei.uminho.com

Joao Monteiro
Centro Algoritmi

University of Minho
Guimarães, Portugal

jmonteiro@dei.uminho.com

Adriano Tavares
Centro Algoritmi

University of Minho
Guimarães, Portugal

atavares@dei.uminho.com

ABSTRACT

Embedded virtualization possesses inherent challenges which
differentiate the domain from traditional virtualization ap-
plication fields such as server and desktop computing. Stan-
dard software virtualization solutions have a negative im-
pact, not only on memory footprint and performance, but
also on determinism and interrupt latency which are criti-
cal for the embedded real-time domain. Thus, efficient em-
bedded virtualization requires domain-specific software and
hardware support.
This paper presents work in progress results of hardware-
based Hypervisor implementation. The use cases of em-
bedded virtualization are analyzed, justifying the reasoning
for hardware-supported virtualization. Architectural and
micro-architectural improvements to an ARM v5TE proces-
sor are described, demonstrating the performance advan-
tages, and compared against ARM Virtualization Exten-
sions, identifying respective vulnerabilities and providing al-
ternative solutions which enable higher flexibility, minimiz-
ing virtualization costs. The research roadmap towards a
hardware-complete Hypervisor, based on the presented re-
sults, is described.

Categories and Subject Descriptors

C.3 [Special Purpose and Application Based Systems]:
Microprocessor/microcomputer applications; Real-time and
embedded systems; D.4.7 [Organization and Design]: Real-
time systems and embedded systems

General Terms

Performance, Design, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VtRES 2013 Workshop on Virtualization for Real-Time Embedded Systems

August 21st, 2013, Taipei, Taiwan
Copyright 2014 ACM Copyright is held by the authors. ...$15.00.

Keywords

Virtualization, Embedded Systems, FPGA, ARM

1. INTRODUCTION
The development of embedded systems has always been

subjected to very tight constraints, e.g, power consump-
tion, memory footprint [1]. With the emergence of com-
plex embedded systems which increasingly display charac-
teristics from general purpose computing, while still con-
strained by real time requirements (e.g., automotive sys-
tems, smartphones), as well as increasing security and safety
concerns in the safety-critical domain [2], the designer’s task
has become exponentially more difficult. Embedded virtu-
alization has emerged as a solution to address all the pre-
viously mentioned concerns [3]. Virtualization enables the
co-existence of Virtual Machines (VM), allowing systems to
partition concerns (real time vs rich applications, safety iso-
lation, etc). However, the design of Virtual Machine Mon-
itors (VMM or Hypervisor) for the embedded domain is a
non-trivial task, especially in the case of safety-critical sys-
tems [4].

Efficient embedded virtualization is an emerging concern
which spawned research at several levels. On the software
side, the problem of CPU and I/O virtualization, which in-
curs in high overheads, has been significantly addressed in
the literature. A multi-core virtualization layer has been
presented in [5]. The approach identifies the problem of
Memory Management Unit (MMU) virtualization, which
causes significant overhead if emulated by software, and thus
addresses the issue by implementing a virtualization com-
position kernel which enables guest operating systems to
operate in kernel space, emulating only a minimal set of
instructions. This approach is based upon new processor
generations which fall outside the traditional virtualization
model proposed by Popek and Goldberg [6]; further work on
formal requirements for virtualization in new hardware gen-
erations has been addressed in [7] more recently. Focusing
on I/O virtualization, which is typically the biggest perfor-
mance bottleneck, much work has been developed in order
to optimize virtualized systems. In [8], a virtual machine
dedicated to I/O scheduling is used to coordinate requests
among all other partitions. In [9], a different approach is

used, where a VMM allows partitions to directly access I/O,
eliminating the need for software emulation; the Hypervisor
merely coordinates accesses. Both approaches fall within
the current trends in I/O virtualization presented in [10]:
namely, full and para-virtualization, software emulation and
bypass (direct) I/O. These approaches improve performance
at the cost of determinism and higher development time, un-
suited to the embedded domain, while the work presented in
this paper attempts to keep software development time short
by providing adequate hardware support without impact on
real-time execution. This approach follows the roadmap ex-
pected on the hardware side: several processor architectures,
namely ARM, the embedded market leader, already pro-
vide some sort of virtualization support on new-generation
processors [11]. This support eliminates several ARM vir-
tualization issues previously identified in [12]. The cata-
pulting of Field Programmable Gate Arrays (FPGA) from
mere prototyping to fully-fledged deployment platforms [13]
has opened the way to novel hardware-software co-design
approaches, namely for embedded virtualization technology.
Projects such as BASTION [14] and HAVEN [15] demon-
strate the advantages of this technology.

Most of the presented related work addresses limitations
in embedded virtualization, which can be overcome if hard-
ware support is available. In most cases, a great deal of
Hypervisor software is required to cope with virtualization
issues, negatively impacting performance and determinism.
The presented work is concerned with architectural features,
such as ARM virtualization support, which can simplify the
design and increase the efficiency of embedded virtualiza-
tion. Specifically, this paper presents work in progress to-
wards the development of an embedded co-designed Hyper-
visor; it presents virtualization extensions to an ARM v5TE
architecture and micro-architecture to reduce the required
VMM software. This virtualization technology is described,
detailing how processor, memory, peripheral and interrupt
virtualization is performed and contrasted to ARM Virtu-
alization Extensions (VE), and the preliminary results of
the performance impact are presented. The main contri-
bution of this work is the specification of architectural and
micro-architectural features at System-on-Chip (SoC) level
(encompassing processor, memory system and peripherals)
to enable high-performance virtualization, paving the way
for hardware implementation. The remaining of this paper
is organized as follows: Section II presents the rationale be-
hind the envisioned architecture for hardware embedded vir-
tualization technology. Section III presents the current state
of the research, describing the modifications performed on
the SoC to reduce VMM software base. Section IV presents
preliminary results on performance impact of the described
technology, based on specific VMM functionalities. Section
V presents the conclusions obtained from the currently avail-
able results and describes the roadmap for future research.

2. VIRTUALIZATION USE-CASES FOR EM-

BEDDED SYSTEMS
Virtualization in the embedded systems domain is an an-

swer to a set of challenges quite different from the ones en-
countered on the desktop and server domains. Hence, the
requirements and design hurdles are also substantially differ-
ent and must be addressed by adequate, embedded-oriented
solutions.

Figure 1: Hardware-Based Virtualization System
View

In the server domain, the de facto application field for
virtualization, VMMs are used for [3, 16]:

(a) Service consolidation, merging several physical ma-
chines onto a virtualized one;

(b) Load balancing, migrating VMs between hosts on-
the-fly for efficient Quality of Service (QoS);

(c) Power management, by exploiting live migration to
shut down low-load hosts;

On the embedded domain, however, the use-cases for vir-
tualization technology differ:

(d) Consolidation of legacy software stacks with mod-
ern, feature-rich OSs [17, 18] (e.g., integrating legacy
control systems with human-machine interface infras-
tructures);

(e) Co-existence of GPOSs and RTOSs [18, 19, 20] (e.g.,
designing systems with multiple contradictory require-
ments, such as smartphones);

(f) Functionality and temporal partitioning, in or-
der to address security and safety concerns [21], namely
fault isolation [22], and verification effort [23, 24];

Taking into account inherent characteristics of embedded
systems, a case can be made against the need for use cases
(a), (b) and (c): embedded systems are typically stable
throughout deployment time, except for occasional firmware
upgrades. Therefore, use case (a) does not apply. Use cases
(b) and (c) assume multiple hosts; in the embedded do-
main, multi-core systems are typically heterogeneous [25];
application specificity allows load and power management
to be coped with at design time. In the case of homogeneous
multi-core platforms, typically used for computationally-intensive
applications [26], use cases (b) and (c) may apply, but they
will most likely conflict with real time requirements, thus
should be carefully handled by the Hypervisor’s core parti-
tioning mechanisms [27] (i.e., finding the best tradeoff be-
tween static, semi-static and dynamic partitioning architec-
tures).

Analyzing use-cases (d), (e) and (f), a set of conditions
for embedded virtualization, namely in the safety-critical
domain, is obtained: apart from efficient CPU, memory and

I/O virtualization, an embedded VMM must cope with real-
time constraints; an embedded VMM must provide fault iso-
lation between partitions and; an embedded VMM must not
be a single point of failure. Embedded virtualization which
does not comply with these requirements will cause: (1)
Real-time failure. A virtualized RTOS will not be able to
meet deadlines if VM time-partitioning which does not en-
compass real-time requirements is applied. (2) Fault prop-
agation. A faulty partition may corrupt other partitions or
the VMM itself, if no proper spatial-partitioning at all levels
(processor, memory and peripherals) is employed. (3) Sin-
gle points of failure. A corrupt Hypervisor (due to software
bugs/malware or hardware soft errors) will cause the entire
system to fail.

In function of these conditions, requirements for embed-
ded virtualization may be postulated:

(1) An embedded VMM must be a Type-0 Hypervisor [28].

(2) As much as possible, Hypervisor software should be
replaced by Hypervisor hardware.

(3) RTOSs must be at least partially paravirtualized (even
in fully virtualizable architectures) or, alternatively,
managed by the Hypervisor in a very specific way.

Fig. 1 depicts the envisioned architecture. The rationale
for these requirements is an analysis of how virtualization
is performed, under the light of the set of conditions previ-
ously specified for embedded virtualization.

A Type-2 Hypervisor runs on top of a GPOS. Therefore,
it is incapable of providing the real-time requirements of
the embedded domain. A Type-1 monolithic Hypervisor di-
rectly controls the hardware, thus representing a single point
of failure. Type-1 microkernel Hypervisors (sometimes re-
ferred to as Type-1.5) such as Xen [29], rely on a specific
guest OS to manage the hardware, again implementing a sin-
gle point of failure. A Type-0 Hypervisor offers only the bare
minimum to virtualize guest OSs, without support to hard-
ware control. As such, a Type-0 implementation presents
the smallest single point of failure out of VMM implemen-
tation options.

Minimizing the VMM software base to Type-0 means each
guest OS will control hardware independently. While for
processor virtualization, this can be easily coped with through
ISA extensions for virtualization, the same is not true for pe-
ripherals. Virtualization hardware must be employed at sys-
tem level to guarantee time and space partitioning through-
out the entire SoC. This paradigm also allows for fault tol-
erance capabilities by hardware, minimizing Hypervisor vul-
nerability without degrading performance, as in the case of
software fault tolerance. Although a hardware implementa-
tion is less flexible than a software one, this work assumes
two postulates: (1) several architectural capabilities (such as
ARM Virtualization Extensions and the features presented
in the following section) do not decrease flexibility, since
they merely provide mechanisms to simplify and expedite
VMM software execution (thus they scale well when the
number of partitions increases) and; (2) the use of FPGAs
and Intellectual Property (IP) Cores to develop embedded
systems opens the possibility for application-specific hard-
ware support, where scalability is not an issue and hardware
development time is amortized over implementations.

Assuring that real time guests are able to meet their dead-
lines requires partition scheduling specific to the guests’ needs.

Figure 2: PIT timekeeping (a) without virtual-
ization support; (b) with virtualization support
(shaded regions indicate hardware operation)

In the simplest case, co-existence of one general purpose
OS and one real time OS (which will be the most predom-
inant case in consumer electronics), the embedded Hyper-
visor must guarantee that scheduling the general purpose
partition will not interfere with the real time operation. In
order to do this, either: (a) the RTOS is paravirtualized,
using Hypercalls to inform the VMM of its scheduling needs
or; (b) the VMM monitors the RTOS state (in a temporally
non-intrusive way) in order to detect periods of idle task
running, during which the GPOS can run. In the case of
multiple real-time partitions, compositional scheduling [30]
must be performed by the VMM, in order to ensure all guests
are able to meet their deadlines, if schedulability cannot be
performed statically; otherwise, traditional Time Division
Multiple Access (TDMA) suffices [3, 30]. Compositional
scheduling falls outside the scope of this paper.

3. TYPE-0 EMBEDDED VIRTUALIZATION

TECHNOLOGY
This section presents the hardware architecture that sup-

ports a Type-0, hardware-biased Hypervisor. Due to its
ubiquity in the embedded domain, the ARM architecture
was chosen as a development target. More specifically, an
ATMEL AT91SAM9XE, which implements the ARM v5TE
instruction set, was cloned and implemented on a Virtex
5 FPGA in order to test the VMM architecture. Using a
softcore (open-code) implementation was required in order
to modify key processor internal components (e.g., decode
logic) which would not have been possible with a COTS
product.

Although the in-house implementation is (most likely)
micro-architecturally different than the commercial one, the
architecture is 100% compatible. Hence, results may not
correspond exactly to equivalent implementations on the
commercial one, but it is the authors’ beliefs that micro-
architectural differences will correspond to minor variations.
For the purpose of fairness, all presented results are based
on tests run on the in-house clone, with and without the

virtualization extensions.
Hardware embedded virtualization technology cannot be

seriously considered, unless compared to ARM’s virtualiza-
tion extensions. The following technology specifications are
compared to ARM’s VE in terms of: how functionalities are
supported by hardware, while ARM VE provides software
support; and on performance improvements to ARM VE
limitations identified in the literature [11].

3.1 CPU Virtualization
Identically to ARM VE, the proposed architecture extends

the ARM modes with a special Hypervisor mode, more priv-
ileged than any other, and an instruction to enter this mode.
Hypercalls are implemented through this instruction, which
is considered privileged, trapping directly to guest OS if used
in User mode. Hypervisor mode possesses its own group
of banked registers, as well as additional control registers
which contain the guest partition number (which may be
required for future extensions to address peripherals or ac-
cess the virtually tagged caches) and the exception handling
register. The exception handling register allows configuring
processor exceptions (e.g., undefined instruction) to trap to
guest or to VMM. This register can be loaded upon each
world switch in order to provide guest specific control, thus
does not limit scalability or flexibility.

3.2 Memory Virtualization
ARM Virtualization Extensions supports two stage ad-

dress translation: guest virtual to guest physical and guest
physical to host physical, using a total of four levels of page
tables. For the embedded systems use-cases (small, fixed
number of VMs), memory segmentation between guests is
likely to suffice. Therefore, the implemented virtualization
technology simplifies guest segmentation by providing dedi-
cated registers. No guest memory access traps to Hypervisor
directly; instead, all accesses are mapped to the correspond-
ing guest’s memory segment by using the VMM registers
Guest Address Base and Guest Address Top. Only on a seg-
ment violation is the Hypervisor invoked, trapping to a new
VMM-only exception, Guest Memory Fault. This approach
reduces the overhead in address translation compared to the
architecture without virtualization support, and also elimi-
nates the need for second page table walk presented by ARM
VE. With the virtualization technology, a guest memory ac-
cess can be translated without accessing the main memory
for the VMM segment descriptor on each guest access (only
at the starting point of each guest’s time slice). Like the ex-
ception handling register, the segment control registers can
be loaded upon each world switch in order to allow flexible
segmentation. Number of segments is only limited by avail-
able physical memory and guests’ needs. This approach is
identical to KVM’ s implementation for the Power Architec-
ture [31], which benefits from having physically contiguous
memory assigned to guests. Access to memory mapped pe-
ripherals is treated in a specific way.

3.2.1 Peripheral and Interrupt Virtualization

At this point, peripheral virtualization support has only
been applied to the AT91SAM9XE’s Advanced Interrupt
Controller (AIC) and Periodic Interval Timer (PIT). The
PIT is one of the system peripherals, responsible for the OS
tick.

The PIT was extended with an additional Timer counter,

Table 1: SYNTHESIS RESULTS - ARMV5TE
CORE, 16KB ICACHE, 8KB DCACHE, MMU,
PIT, AIC, DDRII CONTROLLER, USART, SD
CARD CONTROLLER

Synthesis Results
Without

Virtualization
Technology

With
Virtualization

Technology
Slice Registers 25549 (36%) 26234 (37%)

Slice LUTs 43993 (63%) 44211 (63%)
Block RAM 108 (72%) 108 (72%)

Embedded DSPs 15 (23%) 15 (23%)
Clock Frequency 41.966 41.966

accessible only in Hypervisor mode, which provides the VMM’s
tick. The HyperPIT can trigger an interrupt which bypasses
the AIC, feeding the ARM core directly and causing a tran-
sition to Hypervisor mode, jumping to the VMM Sched-
uler interrupt vector. The standard PIT Timer counter was
extended with update logic. In all non-Hypervisor modes,
it behaves as traditionally. When writing the counter in
Hypervisor mode, the loaded value is automatically added
with the HyperPIT value, thus simplifying guest timekeep-
ing when the VMM restores a guest context. If the value
surpasses the overflow limit, a PIT interrupt is immediately
dispatched to the guest. Whenever the ARM core transits
to Hypervisor mode, the guest PIT components are auto-
matically halted. This time-keeping behavior is depicted on
Fig. 2. The Advanced Interrupt Controller was also ex-
tended with a Hypervisor protected register, the HyperIMR
(Interrupt Monitoring Register), designed to facilitate inter-
rupt virtualization. The AIC behavior when an interrupt is
pending depends on the current value of the interrupt mask
register (controlled by the currently running partition) and
the value of the HyperIMR, which dictates how the AIC han-
dles each interrupt source. If interrupt source x is pending
and:

(1) AIC_IMR[x] clear and HyperIMR[x] clear: the inter-
rupt is intended to another partition only, and will be
handled when the Hypervisor schedules that partition.
No action is performed by the AIC:

(2) AIC_IMR[x] clear and HyperIMR[x] set: the interrupt
is intended to another partition, and must be serviced
as soon as possible (real time requirement). The AIC
causes the core to transit to Hypervisor mode, to the
VMM Scheduler interrupt vector, so the Hypervisor
can schedule the correct partition to handle the inter-
rupt as soon as possible. This possibility may com-
plicate temporal partitioning, but may be useful for
certain applications which do not require strict tem-
poral separation.

(3) AIC_IMR[x] set and HyperIMR[x] clear: the interrupt
is intended for the current partition only, so the AIC
triggers an interrupt which is handled by the running
partition immediately.

(4) AIC_IMR[x] set and HyperIMR[x] set: the interrupt
may be intended to one of several partitions, so the
AIC causes the core to transit to Hypervisor mode, to
the VMM Partition Interrupt vector, where software

can decide to which partition the interrupt should be
forwarded.

These additions to the Advanced Interrupt Controller give
the VMM fine grained control over interrupt handling, al-
lowing for highly efficient interrupt virtualization. ARM
VE only allows global interrupt configuration, i.e., either
all trap to Hypervisor, or all trap to guest (a very unlikely
case [11]). The presented approach has the potential to of-
fer greater performance benefits thanks to the flexible con-
trol. This implementation does not conflict with scheduling
theory or temporal partitioning, since interrupt control is
determined by the Hypervisor and specified at design time.
Thus, it is not possible for an application from the General
Purpose world to "claim" to be real-time and preempt the
Real-Time world. Several ARM Virtualization Extension
features, such as the System MMU for I/O, have not yet
been contemplated in this work. The advantages these fea-
tures provide are not ignored, but will be incorporated in
future work, exploiting the possibilities for improvement.

4. PERFORMANCE RESULTS
The implemented virtualization technology was tested on

a Xilinx ML505 board. Performance results were obtained
through system simulation on Xilinx ISE development suite
(ISIM simulator) and validated on-chip using Xilinx Chip-
Scope. Table 1 displays synthesis results for area and clock
frequency with and without the Virtualization Technology,
as obtained from Xilinx ISE.

Performed tests compare software execution with and with-
out the virtualization technology in terms of clock cycles.
For both cases, tests were performed with caches disabled,
thus represent worst-case execution in terms of memory ac-
cess. As the Hypervisor software scales down, it will be
interesting to explore dedicated local memory for its code in
future work. When caches are enabled, Hypervisor software
must first invalidate caches, since these are virtually indexed
- virtually tagged. Clock cycles are measured since the first
instruction is fetched until the last instruction finishes exe-
cution through the pipeline. At this point, results are only
relevant to the execution of specific tasks, e.g., interrupt for-
warding. No benchmarking has yet been performed, so it is
not possible to determine how much the performance gain
in each task will contribute to overall system performance.
Performance results are displayed on Table 2.

The first task (Memory access address translation) as-
sumes the VMM uses segmentation to separate guests ad-
dress spaces. Without virtualization technology, the VMM
must implement shadow page tables and manage the ad-
dress translation through them. Results display Hypervisor
updating of page tables after a page fault was caused by
the Guest access (which happens only without Virtualiza-
tion Technology). The second task (PIT partition context
restore) measures the execution of adjusting the PIT timer
value when the guest state is restored. Without virtualiza-
tion technology, the VMM must read the current PIT value,
add it to the guest PIT image in memory, update the PIT
timer, and set the corresponding interrupt in case of PIT
overflow.

The four interrupt cases refer to combinations of guest
AIC_IMR and HyperIMR (case 00 refers to AIC_IMR clear
and HyperIMR clear, respectively). Results display the time
since the AIC hardware started handling the interrupt, until:

Table 2: Virtualization Technology Performance Re-
sults

Tested task

Without
Virtualization

Technology

With
Virtualization

Technology
Number of

VMM
instructions

Clock
Cycles

Number of
VMM

instructions

Clock
Cycles

Memory
access

address
translation

(segmented)

27 756 0 0

PIT
partition
context
restore

15 424 2 56

Interrupt
case 00

0 0 0 0

Interrupt
case 01

239 6692 0 12

Interrupt
case 10

NA NA 0 12

Interrupt
case 11

0 12 0 12

the guest resumes execution (case 00); the Hypervisor enters
its scheduler to determine the guest to which the interrupt
should be forwarded (case 01); the current guest enters its
ISR (case 10) and; the Hypervisor enters the VMM Parti-
tion Interrupt vector to decide on which guest should receive
the interrupt (case 11). For the cases without virtualization
technology, cases refer to guest (virtual) AIC_IMR and real
AIC_IMR.

5. CONCLUSIONS AND FUTURE WORK
This paper presented work in progress towards the de-

velopment of an embedded co-designed Hypervisor, biased
towards hardware. Specifically, the implementation of virtu-
alization support on an AT91SAM9XE ARM v5TE was de-
scribed, specifying additions to the processor core, Periodic
Interval Timer, Advanced Interrupt Controller and memory
system. The rationale behind the research was presented,
explaining why certain design decisions were taken, in the
context of safety-critical embedded systems.

The implemented virtualization technology allows decreas-
ing the required VMM software and, as demonstrated by
preliminary results, results in performance increase. Re-
sults have only shown the performance gains for specific
VMM functionalities, as no system-level testing has been
performed at this point. As previously mentioned, micro-
architectural differences will account for result variations in
other processor implementations, but it seems highly un-
likely it will cause erroneous results. Some flaws in the ARM
VE were identified, namely on the interrupt virtualization,
and an approach to offer greater flexibility and higher per-
formance was presented.

Work in the near future will focus on performing system
level testing: specifically, a Linux image will be run in par-
allel with a RTOS (supported by an OKL4 Hypervisor) and
all VMM execution will be characterized in order to iden-

tify possible performance improvement points. ARM VE’s
support to these points will be analyzed, in an attempt to
identify further limitations.
Research will continue towards the migration of Hypervisor
code to hardware, leaving enough flexibility in the software
side to tackle application variability. Taking advantage of
FPGAs and, knowing system requirements at design time,
application-specific virtualization technology, encompassing
full and para-virtualization mechanisms for processor, mem-
ory, interrupts and peripherals will be developed. The ulti-
mate goal is to allow fully-virtualized guests to run at near
native performance with minimum guest modification by
taking advantage of the architectural support; ideally, defin-
ing novel architectural and micro-architectural features for
virtualization support in future SoC architectures. These
will most likely include hardware-based partition schedul-
ing, Hypervisor-level hardware interrupt handling (in paral-
lel with guest software execution) and peripheral specific vir-
tualization support, such as described for the PIT and AIC
in the presented test architecture. Fault Tolerance mech-
anisms will be explored, measuring the tradeoffs between
software and hardware FT at Hypervisor level.

6. ACKNOWLEDGMENTS
This work has been supported by FCT – Fundação para

a Ciência e Tecnologia within the Project Scope: PEst-
OE/EEI/UI0319/2014.

7. REFERENCES
[1] D. Andrews, D. Niehaus, R. Jidin, M. Finley,

W. Peck, M. Frisbie, J. Ortiz, E. Komp, and
P. Ashenden, “Programming models for hybrid
fpga-cpu computational components: a missing link,”
Micro, IEEE, vol. 24, no. 4, pp. 42–53, July 2004.

[2] F. Reichenbach and A. Wold, “Multi-core technology
– next evolution step in safety critical systems for
industrial applications?” in Digital System Design:
Architectures, Methods and Tools (DSD), 2010 13th
Euromicro Conference on, Sept 2010, pp. 339–346.

[3] G. Heiser, “The role of virtualization in embedded
systems,” in Proceedings of the 1st Workshop on
Isolation and Integration in Embedded Systems, ser.
IIES ’08. New York, NY, USA: ACM, 2008, pp.
11–16. [Online]. Available:
http://doi.acm.org/10.1145/1435458.1435461

[4] C. Jeffery and R. Figueiredo, “A flexible approach to
improving system reliability with virtual lockstep,”
Dependable and Secure Computing, IEEE
Transactions on, vol. 9, no. 1, pp. 2–15, Jan 2012.

[5] T. Nakajima, Y. Kinebuchi, A. Courbot, H. Shimada,
T.-H. Lin, and H. Mitake, “Composition kernel: A
multi-core processor virtualization layer for highly
functional embedded systems,” in Dependable
Computing (PRDC), 2010 IEEE 16th Pacific Rim
International Symposium on, Dec 2010, pp. 223–224.

[6] G. J. Popek and R. P. Goldberg, “Formal
requirements for virtualizable third generation
architectures,” Commun. ACM, vol. 17, no. 7, pp.
412–421, Jul. 1974. [Online]. Available:
http://doi.acm.org/10.1145/361011.361073

[7] H. Dong and Q. Hao, “Extension to the model of a
virtualizable computer and analysis on the efficiency

of a virtual machine,” in Computer Modeling and
Simulation, 2010. ICCMS ’10. Second International
Conference on, vol. 2, Jan 2010, pp. 503–507.

[8] Y. Guo, X. Wang, W. Dong, G. Shi, and Y. Li, “A
cooperative model virtual-machine monitor based on
multi-core platform,” in Future Computer and
Communication (ICFCC), 2010 2nd International
Conference on, vol. 1, May 2010, pp. V1–802–V1–807.

[9] Z. Li, L. Xiao, and L. Ruan, “A novel
hardware-assisted virtualization approach for network
interface card,” in Research Challenges in Computer
Science, 2009. ICRCCS ’09. International Conference
on, Dec 2009, pp. 225–228.

[10] B. Zhang, X. Wang, R. Lai, L. Yang, Y. Luo, X. Li,
and Z. Wang, “A survey on i/o virtualization and
optimization,” in ChinaGrid Conference (ChinaGrid),
2010 Fifth Annual, July 2010, pp. 117–123.

[11] P. Varanasi and G. Heiser, “Hardware-supported
virtualization on arm,” in Proceedings of the Second
Asia-Pacific Workshop on Systems, ser. APSys ’11.
New York, NY, USA: ACM, 2011, pp. 11:1–11:5.
[Online]. Available:
http://doi.acm.org/10.1145/2103799.2103813

[12] A. Suzuki and S. Oikawa, “Implementing a simple
trap and emulate vmm for the arm architecture,” in
Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2011 IEEE 17th International
Conference on, vol. 1, Aug 2011, pp. 371–379.

[13] H. Guzman-Miranda, L. Sterpone, M. Violante,
M. Aguirre, and M. Gutierrez-Rizo, “Coping with the
obsolescence of safety- or mission-critical embedded
systems using fpgas,” Industrial Electronics, IEEE
Transactions on, vol. 58, no. 3, pp. 814–821, March
2011.

[14] D. Champagne and R. Lee, “Scalable architectural
support for trusted software,” in High Performance
Computer Architecture (HPCA), 2010 IEEE 16th
International Symposium on, Jan 2010, pp. 1–12.

[15] “High assurance virtualization engine (haven),”
Polytechnic Institute of NYU, Final Technical Report,
May 2009.

[16] M. J. Z. F. Bazargan, C. Y. Yeun, “State-of-the-art of
virtualization, its security threats and deployment
models,” International Journal for Information
Security Research (IJISR), vol. 2,
September/December 2012.

[17] F. Armand and M. Gien, “A practical look at
micro-kernels and virtual machine monitors,” in
Consumer Communications and Networking
Conference, 2009. CCNC 2009. 6th IEEE, Jan 2009,
pp. 1–7.

[18] A. Aguiar and F. Hessel, “Embedded systems’
virtualization: The next challenge?” in Rapid System
Prototyping (RSP), 2010 21st IEEE International
Symposium on, June 2010, pp. 1–7.

[19] G. Heiser, “Virtualizing embedded systems - why
bother?” in Design Automation Conference (DAC),
2011 48th ACM/EDAC/IEEE, June 2011, pp.
901–905.

[20] G. "Heiser, “Hypervisors for consumer electronics,” in
Consumer Communications and Networking
Conference, 2009. CCNC 2009. 6th IEEE, Jan 2009,

pp. 1–5.

[21] A. Acharya, J. Buford, and V. Krishnaswamy, “Phone
virtualization using a microkernel hypervisor,” in
Internet Multimedia Services Architecture and
Applications (IMSAA), 2009 IEEE International
Conference on, Dec 2009, pp. 1–6.

[22] T. Gaska, B. Werner, and D. Flagg, “Applying
virtualization to avionics systems 2014; the integration
challenges,” in Digital Avionics Systems Conference
(DASC), 2010 IEEE/AIAA 29th, Oct 2010, pp.
5.E.1–1–5.E.1–19.

[23] S. Edwards and E. Lee, “The case for the precision
timed (pret) machine,” in Design Automation
Conference, 2007. DAC ’07. 44th ACM/IEEE, June
2007, pp. 264–265.

[24] A. Hansson, K. Goossens, and M. Bekooij, “Compsoc:
A template for composable and predictable
multi-processor system on chips,” in Transactions on
Design Automation of Electronic Systems, p. 2009.

[25] J.-C. Yeh, K.-M. Ji, S.-W. Tung, and S.-Y. Tseng,
“Heterogeneous multi-core soc implementation with
system-level design methodology,” in High
Performance Computing and Communications
(HPCC), 2011 IEEE 13th International Conference
on, Sept 2011, pp. 851–856.

[26] S. Jena and M. B. Srinivas, “On the suitability of
multi-core processing for embedded automotive

systems,” in Cyber-Enabled Distributed Computing
and Knowledge Discovery (CyberC), 2012
International Conference on, Oct 2012, pp. 315–322.

[27] K. Lakshmanan, R. Rajkumar, and J. Lehoczky,
“Partitioned fixed-priority preemptive scheduling for
multi-core processors,” in Real-Time Systems, 2009.
ECRTS ’09. 21st Euromicro Conference on, July
2009, pp. 239–248.

[28] LynuxWorks, “"low-level & boot-level rootkits
revisited",” "White Paper -
http://www.slideshare.net/aziv69/whitepaper-lynx-
secure-
rootkit-detection-protection-by-means-of-secure-
virtualization, Tech.
Rep.

[29] S. Xi, J. Wilson, C. Lu, and C. Gill, “Rt-xen: Towards
real-time hypervisor scheduling in xen,” in Embedded
Software (EMSOFT), 2011 Proceedings of the
International Conference on, Oct 2011, pp. 39–48.

[30] J. Yang, H. Kim, S. Park, C. Hong, and I. Shin,
“Implementation of compositional scheduling
framework on virtualization,” SIGBED Rev., vol. 8,
no. 1, pp. 30–37, Mar. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1967021.1967025

[31] S. Yoder, “Kvm on embedded power architecture
platforms,” KVM Forum, Vancouver, Canada -

August 2011.

