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Abstract—Sensor processing is a common task within
many embedded system domains, such as in control systems
sensor feedback used for actuator control, etc. In this paper
we have surveyed several embedded system domains, and
extracted kernels of computation that are common across ap-
plications within a given domain, or across domains. We have
shown that adding architectural support for executing these
common kernels of computation can yield an overall better
system performance. We present a light weight, simplified
prototype of a Sensor Processing Unit (SPU) that offloads
these computations from the main Arithmetic Logic Unit
(ALU) of an embedded processor, and that accesses sensor
data in a low latency manner. Our SPU prototype shows an
average speed up factor of 2.48 over executing these kernels
on an embedded PowerPC processor. A large portion of this
speed up is due to our low latency method for accessing sensor
data. Isolating our speed up to purely computation still shows
an average speed up factor of 1.38 for these kernels.
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I.. INTRODUCTION

The severe constraints placed on embedded systems in

terms of power consumption, memory availability and pro-

cessing capability, and the ever increasing computational

demands placed on these systems make it crucial em-

bedded processors are designed to efficiently perform the

tasks required of them. A majority of embedded systems

involve interaction with the physical world through some

kind of sensing mechanisms. However, based on our survey

of a wide range of microprocessors/microcontrollers that

have been conveniently organized by researches such as

Bokareva [1], it is clear there are no specific resources

available on these devices for efficiently processing sensor

data. Given this is such a common task, exploring how

the addition of sensor processing resources can improve

system efficiency appears to be a path worth pursuing, and

is the focus of this paper.

Figure 1 gives a high level summary of the contributions

of this paper. There are three specific areas of contribution.

First, a number of common computational kernels for

sensor processing have been identified. This helps justify

the allocation of hardware resources for the processing

of sensor data. Second, we have proposed a specialized

functional unit call the sensor processing unit (SPU) to

efficiently assist in the execution of these computations.

In addition, we have noted that the autonomous nature

of our approach lends itself to potentially act as a base

for creating an intelligent power management scheme.

Third, we have integrated a simplified prototype of our

functional unit with an embedded processor and evaluated

its performance on an FPGA-based platform.

II.. RELATED WORK

This section reviews three areas of related work. First,

embedded system benchmarks are discussed. Research in

this area is used as the starting point for our work. Then

the current state of the art in embedded processors, and

their relevant features are discussed in order to place our

work in perspective.

A. Embedded Benchmarks

The industry standard Embedded Microprocessor

Benchmark Consortium (EEMBC) benchmarks [2] aims

to standardize a set of common benchmarks for different

embedded system domains. These benchmarks are based

on common processing tasks that are found in each respec-

tive domain (e.g. Controls, Automotive, Communications).

Having a set of such benchmarks is useful for evaluating

a processor’s suitability for a given application, and for

characterizing the strengths and weaknesses of different

processors. MiBench [3] is another benchmark that targets

embedded systems. MiBench was developed in the same

spirit as EEMBC, but unlike EEMBC it is freely available

to academia.

These benchmarks provide a nice organization of the

processing tasks found in embedded systems. However,

neither the MiBench or the EEMBC benchmarks clearly

isolate kernels of computation associated with sensor pro-

cessing. The EEMBC benchmarks does have a suite of

tests that focus on signal processing type tasks for which

digit signal processors (DSPs) are likely most appropriate.

Our work aims to extract simpler and more common sensor

processing kernels. It is envisioned that these kernels can

act as a starting point for developing a more extensive

sensor processing test suite in the future.

B. Embedded Processors

Bokareva surveys a number of sensor network nodes

(also know as motes), and processors that are used within



Fig. 1. 1) illustrates some high-level sensor dependent tasks identified within various embedded domains, 2) highlights common kernels
of computation that were identified, 3) shows conceptually how our sensor processing unit (SPU) integrates into an embedded system.

those nodes [1]. These processors range from simple 8-bit

microcontrollers (e.g. Atmel Atmega 128) to 32-bit micro-

processors (e.g. Intel XScale processor family). However,

from an examination of a representative set of processor

Datasheets [4] [5] [6] [7], none of these processor were

found to have any special functionality to support sensor

processing tasks. The closest feature found was on the

Intel XScale processor family, an external interface for

a DSP coprocessor. Our work puts forth a lightweight

architectural extension for processing common sensor data

computations for which using a full blown DSP would be

an overkill.

Two features related to our work that are currently

found in either sensor network nodes and/or current high

performance processors are 1) waking up on the occur-

rence of an event, and 2) raising an exception when the

processor has surpassed a given temperature threshold.

Many processors/microcontrollers [8] [4] [5] [6], some of

which are currently used in sensor network nodes, have

the ability to go into a low power operating mode until an

interrupt indicates they should wake up. The Intel Centrino

chips also have the ability to come out of hibernation on

receiving data on their network interface (e.g. wake on

LAN technology [9]). Current chipsets such as the Intel

System Controller Hub can wake the main processor up

when a peripheral sends an event [10]. With respect to

thermal events, some microprocessors, such as the Intel

Atom Processor [11], have the ability to monitor their on-

chip temperature and response if this temperature surpasses

a given threshold (e.g. shutdown or transition into a lower

performance mode). The architecture of our light weight

SPU naturally allows interrupts to be used to notify the

main processor when simple to fairly complex combina-

tions of sensors values are detected. This capability and its

potential implications are discussed further in Section IV

while some common kernels of computatio identified by

us are described in Section III.

III.. COMMON KERNELS OF COMPUTATION

Due to the large and diverse set of domains in which

embedded systems are used, past works [2] [3] have tried

to identify common computational kernels that are used

across domains by abstracting away the specifics of indi-

vidual applications. Similarly, we have tried to boil down

the diverse set of sensor processing tasks to a small set of

core kernels that are generic enough to find application in

many fields, and common enough to warrant the allocation

of processor chip real estate.

While many applications require massive processing of

sensor data using digital signal processing type algorithms,

there is a large base of applications [12] [13] [14] [15] that

consist of simpler processing tasks, and do not warrant the

overhead of having a full blown DSP. We have identified

and extracted five such tasks from the MiBench benchmark

and various other sources: Linear Equations, Moving Av-

erage, Average, Delta Value, and Threshold/Range Check.

Linear Equations: One of the simplest tasks that can

be performed on sensor data is the execution of a linear

mathematical operation on a single value or multiple val-

ues. In the automotive domain converting between radians

and degrees is identified as a common task in [3].

In the controls system domain the Proportional-Integral-

Derivative (PID) controller is one of the most common

control algorithms used [16]. [17] and [14] give examples

of advanced PID controllers that can be boiled down to

calculating a set of linear equations involving sensor values

along with other computational functions.

Moving Average: Sometimes, sensors can be prone to

spurious spikes in their output. The moving average is

one method for reducing the effects of random “noise”

on sensor output. Over time measurements are averaged

together, and this average is used by the end application.

The impact of spikes in measurements are mitigated, while

actual changes in the physical quantity being measured are

eventually reflected by the average. The responsiveness of

the moving average can be tuned to reflect the known phys-



ical dynamics of the quantity being measured by added

appropriate weights to the previously computed average,

and the current sensor measurement (weighted moving

average). The moving average is a common method for

filtering sensor data [12] [18] [19] [20].

Average: Applications, such as sensor networks, often

measure physical quantities over a distributed area (e.g.

temperature). Averaging these distributed measurements is

a simple means for aggregating this information into a

compact form. This approach was used by Goebel [13],

Ganeriwal [21], and Nakamura [22]. In [12] Hellerstein

uses averaging as means of “cleaning” data obtained from

a group of sensors.

Delta Value: Often, the difference between the current

and previous value of the sensor (called delta) is used in

a lot of computation. eg: the “communication” suite of

benchmarks in [3] includes delta modulation, a process

of encoding which may be used to encode the output of

sensors before transmission. [15] presents another example

of using the “delta” value in a sensor based system.

Threshold/Range Check: There are various applications

in which the sensors values are required to be within

particular range or below/above a certain threshold for

the proper operation of the system. In such systems, some

sort of mechanism is needed to monitor the sensor values.

Alternatively, the systems might need to take some kind

of action when the sensor value breaches the defined

range/threshold bound.

This is by no means an exhaustive list of such kernels,

but having identified some common kernels of computation

across fields, in the next section we propose a unit, the

SPU, which could be a part of the architectures of future

embedded processors.

IV.. SENSOR PROCESSING UNIT (SPU) ARCHITECTURE

This section presents our lightweight mechanism for

sensor processing. First we provide and overview of the

SPU and some possible applications. Then we describe its

architecture. Finally we describe the development platform

and the prototype limitations.

A. Overview

The SPU is designed to be a functional unit within

an embedded processor. It has two main purposes 1)

to efficiently offload the execution of common sensor

processing tasks from the main ALU, and 2) to detect

events that are a function of sensor values. Here we discuss

the two major uses of the SPU, and how it could potentially

be used for power management.

Sensor Processing Offload: The SPU has been designed

to operate in the following manner. First a user application

programs the SPU with functions that need to be performed

on the output of one or more sensors. Once programmed

the SPU computes these functions continuously as sensors

data flows into the SPU. The output of the sensors are

directly connected to the SPU, thus the SPU reevaluates

its programmed functions autonomously of the rest of the

processor. When the user application requires the result of

one of the programmed function, it simply issues a single

instruction to fetch this value from a special register. This

is opposed to the traditional approach of 1) reading all

sensor values required by a function, and 2) computing the

function in software. In addition to increasing the speed at

which a given sensor processing function can be computed,

discussed in Section V, the SPU allows the rest of the

processor to focus on other tasks.

Event Detection: Each function programmed into the

SPU can have an event associated with it. An event checks

if the result of a given function is <,>,or = to a fixed

value, or if the result of a function is within or outside

a given range. It the associated condition is true then an

interrupt is sent to the main processor. The purpose of this

functionality is to allow the processor to work on other

tasks until a given event fires off, as opposes to having to

continuously poll sensor values and compute this event

checks in software. This capability targets application

that need to take actions when sensor values surpass a

given threshold (e.g. thermal shutdown condition), or fall

outside a acceptable range (e.g. voltage supply stability).

As indicated in Section II, current processors do have the

ability to react to simple events such a thermal overload.

The SPU is a lightweight means to generalize the type of

events that a processor can detect and respond to.

Power Management: Again, as discussed in Section II,

many processors and microcontrollers support a low power

mode from which they can be woken up by an inter-

rupt. Given the SPU’s ability to operate on sensor data

autonomously of the rest of the processor, the SPU could

potentially be used as a lightweight mechanism that allows

the rest of the processor to go into, or come out of a low

power state based on sensor data.

B. Architecture

In this section we discuss the architecture of the SPU,

which is made up of five major component: Sensor Data

Extractor, Configuration Storage, Processing Unit, Result

Storage, and Interrupt Generator. Figure 2 illustrates the

architectural layout of the SPU.

Sensor Data Extractor: This block is responsible for

connecting the SPU to available sensors. It continuously

streams sensor data to the SPU’s Processing Unit, and

Interrupt Generator.

Configuration Storage: This is where configuration

information sent by a user application is stored. This

information includes the set of sensors a given functions

operates on, the operations and constants that define a

function, and threshold and range values associated with

events that can generate interrupts to the main processor.



Fig. 2. Architecture of the SPU

Processing Unit: This unit is responsible for all com-

putations in the SPU. It is a simple Multiply-Accumulate

module that multiplies sensor values with their associated

weights (found in Configuration Storage). After a function

has been computed, its value is stored in the Result Storage

block, and the Processing Unit is reinitialized. Then the

configuration parameters, and sensor values for the next

function are loaded into the Processing Unit. This allows

the Processing Unit to be time shared among many func-

tions. If each function is assumed to executed in a single

clock cycle, then this unit can scale to a large number of

functions before noticeable latency issues associated with

stale data arise.

Result Storage: This block is used to store the results

calculated by the Processing Unit. When an application

requests the result of a given function, the value is fetched

from this block. As the number of functions computed

by the Processing Unit increases the staleness of the data

stored in the Result Storage block increases. However,

given that the clock rate of a processor is typically much

higher than the rate of change of sensors, the relatively

small time lag should be acceptable for most applications,

even for a computing a significantly large number of

functions.

Interrupt Generator: The Interrupt Generator is re-

sponsible for detecting when a sensor value, or function

computed by the Processing Unit satisfies criteria specified

by a user application. If a criteria is met, then an “event”

is said to have taken place. On the occurrence of an event

this unit sends an interrupt to the main processor.

C. Implementation

Here we describe the developmental platform used to

implement the SPU and point out the limitations of the

simplified prototype.

1) Development Platform: The platform used for this

work is based on reconfigurable hardware technology

call Field Programmable Gate Arrays (FPGAs). FPGAs

are devices that consist of a sea of generic logic gates

that can be configured to realize any arbitrary hardware

logic function. In addition to this powerful capability,

advanced families of FPGAs have on-chip resources such

as PowerPC processor cores, high-performance multipliers,

SRAM based memory blocks, sophisticated programmable

clock managers, and analog to digital converters that allow

sensors to connect directly to the FPGA’s computation

fabric. Specifically, our platform is the ML507 evaluation

platform. It is manufactured by Xilinx Corporation [23].

The development board hosts one of the most advanced

FPGA devices called the Virtex-5.

2) Prototype: A simplified prototype, which was simi-

lar to the proposed method except for being non scalable,

was implemented in order to run the experiments for

evaluation. The main limitations of the prototype were 1)

the prototype included an adder and multiplier for each of

the sensors instead of having the Processing Unit time-

shared, 2) the System Monitor was used for extracting

sensor data in some of the test cases, while others simply

used a dummy sensor which supplied a constant value, 3)

the prototype only supports a single user program function,

and 4) it only supports three sensors.

Table I gives the logic resources consumed by the SPU

prototype implemented on the Virtex-5. As can be seen,

the SPU is very lightweight.

TABLE I
RESOURCE UTILIZATION ON VIRTEX 5

Resource Used Available

Slice Registers 108(0.2%) 44800
Slice LUTs 206(0.4%) 44800

V. EVALUATION

In this section we present our methodology along with

our observations and analysis.

A. Methodology

A prototype of the SPU was implemented on an Xilinx

Virtex 5 FPGA on a Xilinx ML507 evaluation board [23].

The embedded PowerPC 440 is used as the processor while

the SPU is implemented in the FPGA fabric. The SPU is

connected to the processor using the Fabric Coprocessor

Bus (FCB). Both the FCB and the processor are run

at 200 MHz. The FCB connection allows User Defined

Instructions (UDIs) to be used to read the sensor data. A

Processor Local Bus(PLB) [24] also connects the PowerPC

to a pseudo sensor. Evaluation experiments the following

three setup:

• PLB : The pseudo sensor was read over the PLB by

the processor. The PLB is a part of the CoreConnect

specification and hence is the way in which many



Fig. 3. Comparing the execution time of various common kernels
on all three experimental setups. As seen here, the SPU is
typically fastest for most kernels.

cores are interfaced with the embedded PowerPC. On

such an embedded chip, the sensor signals would

usually be available to the processor only over the

PLB.

• UDI : The fact that the FCB is faster than the PLB

contributes somewhat to the improved performance of

the propose architecture. However, to show that this

is not the sole reason for the improvement we have

included this additional case, where the data is read

over the faster FCB, but without the SPU.

• SPU : The SPU was implemented on the FPGA, and

connected over the FCB. The processor used UDIs to

program the SPU, as well as to read data from it.

The three setups were compared with respect to three

metrics:

• Execution Time The amount of time required to

complete a certain number of iterations of the control

loop.

• Code Density Size of the compiled programs.

• Response Latency Latency between an event occuring

and its response starting execution (used for the

interrupt generation feature of the SPU).

B. Observations and Analysis

In this section we present the results of experimenta-

tion on our prototype implementations described in sec-

tion IV-C.

1) Execution Time: As can be seen from Figure 3, the

execution time for the SPU was the lowest for most of

the kernels. When a function is implemented in hardware

it is usually expected that it will be faster, hence this

result presents no surprise. Also the execution time of both

the PLB and UDI cases varies as the tasks become more

complex, and will also vary as the number of sensors that

are used is varied (see Figure 4). On the other hand, for

the SPU the execution time remains more or less constant

for functions directly supported by the SPU. For functions

not directly supported by the SPU, execution times do

increase with the complexity. However, the execution time

Fig. 4. Experiments to show the effect of increasing the number
of sensors on the execution time of the “Average” kernel. As
seen here, regardless of the number of sensors, the time taken
for reading the result from the SPU will remain constant.

Fig. 5. Comparing the executable size for various common
kernels on all three experimental setups. As seen here, the SPU
case is the smallest in most cases.

of the SPU will remain constant as the number of sensors

increases. It should be noted that as the number of sensors

increases the result provided by the SPU will become more

and more stale. Also as the number of sensors supported

increases, the resources required also increases. Across all

cases, the average speedup obtained using the SPU was

2.48 fold faster then the PLB setup. Against the UDI setup,

the SPU showed an average speedup factor of 1.38. This

shows the speedups obtained over the PLB setup are not

just because of the SPU using the faster FCB interface.

2) Code Density: As seen in Figure 5, the SPU presents

a clear advantage over the PLB setup in terms of code

density. This is again expected since communicating over

the PLB would entail some extra instructions for the

arbitration of the PLB. The SPU cases remain almost the

same as the UDI cases in terms of code density. The SPU

being only slightly better. On average the programs that

use the SPU were 68.6% the size of programs that used

the PLB. The difference in code size between the SPU and

UDI cases were negligible. It should be noted that the size

of the programs using the SPU varies very little with the

number of sensors being used, while the size of both the

PLB and UDI setups will increase.



Fig. 6. Comparing the response latency across setups. The PLB
and UDI setups use polling, and the SPU generates interrupts.
Although the SPU case has a large latency, it gives a higher
throughput from the processor.

Another interesting point that should be noted is that

there is very little difference in the code sizes between

the UDI and SPU setups. Thus, even if the SPU itself is

not implemented on a processor, simply including such

a single instruction method of sensor access also gives

improvements in code size.

3) Response Time: As is clearly seen in Figure 6,

the response time of the SPU is much higher than the

other two setups due to the overhead of performing a

context switch by the interrupt handler. However, we have

considered only the simplest of cases where in the PLB and

UDI setups continuously polls the sensor without doing

anything else. In situations where the response time is

tightly constrained, such tight polling may be the only

option, but in cases where the response time is allowed to

be larger, the SPU presents another option. With the SPU

option the processor can continue executing other code

while the sensor monitoring responsibility is relinquished

to the SPU. The rest of the processor could even be put

into a low power state, and woken up only when specific

conditions are met. In this context it might be worth

looking into ways to reduce the context switching overhead

in embedded microprocessors in order to allow for better

response times (e.g. as in [25]).

VI.. CONCLUSION AND FUTURE WORK

In this paper we have 1) described a set of common

sensor processing tasks, 2) proposed a sensor processing

architectural extension for executing these common task,

and 3) prototyped and evaluated the performance of this

extension. Our evaluations show an average speed up

of 2.48 fold in processing these kernels on our sensor

processing unit (SPU), as compared to executing these

kernels purely in software over a standard peripheral bus.

We still show an average speed up of 1.38 fold over

executing these kernels purely in software, and using

a low latency coprocessor interface. Considering many

applications might require a large number of sensors, a

next step in this work is to further explore a scalable

architecture for the SPU. The scalability could be not only

in terms of additional sensors but also support for more

than one equation at a time.
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