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Abstract

With the ever-increasing complexity, accuracy, dimensionality, and size of simulations, a step in the direction

of data-intensive scientific discovery becomes necessary. Parameter-dependent simulations are an example of such

a data-intensive tasks: The researcher, who is interested in the dependency of the simulation’s result on a set of

input parameters, changes essential parameters and wants to immediately see the effect of the changes in a visual

environment. In this scenario, an interactive exploration is not possible due to the long execution time needed by

even a single simulation corresponding to one parameter combination and the overall large number of parameter

combinations which could be of interest.

In this paper, we present a method for computational steering with pre-computed data as a particular form of

visual scientific exploration. We consider a parametrized simulation as a multi-variate function in several parameters.

Using the technique of sparse grids, this makes it possible to sample and compress potentially high-dimensional

parameter spaces and to efficiently deliver a combination of simulated and precomputed data to the steering process,

thus enabling the user to interactively explore high-dimensional simulation results.
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1. Introduction

In the last decades the computational branch of science has made significant progress in both modeling and in

performing accurate simulations of very complex phenomena. A consequence of such a step is the availability of

large amounts of data generated by various simulations, and the focus now moves on to how to manage such data and

explore it in a convenient way for the researcher. Another unfortunate characteristic inherent to simulations is that

a higher accuracy (resolution) of the simulation demands a higher computational effort and thus significantly slows

down the exploration process.

In this paper we consider (visual) data exploration due to parameter variation, see Fig. 1. Inside a computational

steering environment, a researcher observes the effects of changes of the simulation’s main parameters to the simula-

tion results. The goal is, for example, to identify correlated as well as unimportant parameters, or to discover new and
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unexpected patterns in the data. Due to storage costs and computational effort, it is however not possible to generate

and store simulation results for every parameter combination of interest, especially in high-dimensional settings. Just

consider that taking only ten distinct values for each of five parameters into account would require to compute and

store 105 different simulation results. In order to deal with this problem, we introduce a method of sampling and com-

pressing the simulation’s parameter space based on sparse grids [1]. By reducing the size of the data, fast exploration

of certain multi-dimensional data sets is enhanced, while sufficiently good accuracy of the stored simulation results is

preserved.

Simulation

Sparse Grid
Repository

parameters simulation
results

Visualization
query

extract/interpolate

user

Figure 1: Workflow for computational steering for high-dimensional simulations.

The main idea is to consider the simulation as a function of various simulation parameters. Such a multi-

dimensional function can be numerically represented and treated; however, classical discretizations of the parameter

space suffer with increasing dimensionality from the so-called curse of dimensionality, the exponential dependency

of the effort on the number of dimensions. Sparse grids enable us to mitigate the curse of dimensionality to some

extent, allowing to tackle dimensionalities that are of interest in engineering settings, where models depend on a mod-

erate number of variables. Instead of running a simulation for every parameter combination—an unrealistic task in

itself—the sparse grid sampling dictates which parameter combinations actually need to be examined and stored. The

associated sparse grid interpolation scheme then offers access to all other parameter combinations.

To demonstrate our method, we show results from a simple computational fluid dynamics (CFD) simulation,

the so-called driven cavity. In this scenario, the fluid (e.g. water) in a cavity is stimulated by the cavity’s moving

lid. Location and shape of the emerging vortices mainly depend on the velocity of the lid and the viscosity of the

fluid. We assume these two parameters to be continuous within a certain range, and together with time they form a

three-dimensional parameter space. We then use a sparse grid to sample and approximate the flow in the considered

parameter range, without the need to run new simulations for every combination in between. This enables an efficient

real-time visualization of simulation results, well-suited for interactive computational steering.

2. The Sparse Grid Technique

Sparse grids help to overcome the curse of dimensionality to a great extent. Interpolating on a regular grid with

a resolution of N grid points in one dimension, they enable one to reduce the number of grid points significantly

in d dimensions from O(Nd) to O(N(log N)d−1) while maintaining a similar accuracy as in the full grid case. The

only requirement is that the underlying function f has to be sufficiently smooth [1]. Note that it has been shown that

even functions that do not meet the smoothness requirements can be successfully dealt with if adaptive refinement is

employed [2]; we will address adaptive refinement in Sec. 3.3. The notion sparse grids was coined in 1990 [3] for the

solution of high-dimensional partial differential equations, and they have meanwhile been successfully employed in

a whole range of applications, ranging from astrophysics and quantum chemistry to data mining and computational

finance, see, e.g., [1, 2] and the references cited therein. In the following, we briefly describe sparse grids and the

main principles they base upon, a hierarchical representation of the one-dimensional basis and the extension to the

d-dimensional setting via a tensor product approach; for further details, see [1, 2] again.

We consider the representation of a piecewise d-linear function fN : Ω → Γ for a certain mesh-width hn := 2−n

with some discretization level n. The function fN(x) thus maps a set of parameters x out of the parameter space Ω to

a simulation result Γ. For the parameter space Ω we consider rectangular domains which we scale to Ω := [0, 1]d.



D. Butnaru et al. / Procedia Computer Science 00 (2011) 1–10 3

To obtain an interpolant fN as an approximation to some function f , we discretize Ω and employ basis functions φi

which are centered at the grid points stemming from the discretization. fs is thus a weighted sum of N basis functions,

fs :=
∑N

j=1 α jφ j, with coefficients α j.

The underlying principle is a hierarchical formulation of the basis functions. In one dimension, we use the standard

hierarchical basis

Φl :=
{

ϕl′,i : l′ ≤ l, i ≤ 2l′ − 1 ∧ i odd
}

.

with piecewise linear ansatz functions ϕl,i(x) := ϕ
(

x · 2l − i
)

and ϕ(x) := max(1 − |x|, 0) for some level l ≥ 1 and an

index 1 ≤ i < 2l. The basis functions are centered at grid points xl,i = 2−li at which we interpolate f , see Fig. 2 (left)

for the basis functions up to level 3. Note that all basis functions on one level have pairwise disjoint supports and

cover the whole domain.

The hierarchical basis functions can be extended to d dimensions via a tensor product approach as

ϕl,i(x) :=

d
∏

j=1

ϕl j,i j
(x j) ,

with multi-indices l and i indicating level and index of the underlying one-dimensional hat functions for each dimen-

sion. The d-dimensional basis

ΦWl
:=
{

ϕl,i(x) : i j = 1, . . . , 2l j − 1, i j odd, j = 1, . . . , d
}

span hierarchical subspaces Wl. As before, the basis functions for each Wl have pairwise disjoint, equally sized

supports and cover the whole domain. The full-grid space of piecewise d-linear functions Vn can be obtained as a

direct sum of Wl,

Vn :=

n
∑

l1=1

· · ·

n
∑

ld=1

W(l1,...,ld) =
⊕

|l|∞≤n

Wl ,

but the hierarchical scheme of subspaces allows one to choose those subspaces that contribute most to the approxima-

tion. With respect to the L2-norm, this leads to the sparse grid space V
(1)
n ,

V (1)
n :=

⊕

|l|1≤n+d−1

Wl ,

e.g. The tableau of subspaces in 2d is shown in Fig. 2 (right) for n = 3.

To obtain non-zero values on the boundary, the one-dimensional basis of level 1 can be extended by the two basis

function ϕ0,0 and ϕ0,1. Unfortunately, even for a very coarse grid with a resolution of h1 = 1/2 this requires to obtain

3d simulation results—3d−1 parameter combinations being located on the boundary of the parameter spaceΩ. For our

application of computational steering, we assume that we start from a reasonable choice of Ω and that these extreme

parameter combinations are of less interest than the inner part of Ω. We therefore choose to interpolate only in the

inner part and to extrapolate towards the boundary, and use in the following the one-dimensional basis functions

ϕl,i(x) :=























































1 if l = 1 ∧ i = 1 ,
{

2 − 2l · x if x ∈
[

0, 1
2l−1

]

0 else

}

if l > 1 ∧ i = 1 ,

{

2l · x + 1 − i if x ∈
[

1 − 1
2l−1 , 1

]

0 else

}

if l > 1 ∧ i = 2l − 1 ,

ϕ
(

x · 2l − i
)

else

see Fig. 2 (second left).
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Figure 2: Classical one-dimensional hierarchical basis functions up to level 3 (left) and their modified, extrapolating

counterparts (second left), and the tableau of subspaces Wl up to level 3 in two dimensions together with the resulting

sparse grid for n = 3 (right).

3. The Sparse Grid Repository

The scenario we consider is a scientist studying the effects of changes in the parameters of some physical phenom-

ena on the simulation results, a classical parameter study. It is typically done by running a large number of simulations

on a massively parallel system and storing the results which are later analyzed. Common tasks making use of param-

eter studies are optimization problems where a certain optimal choice of parameters for a measure of error or quality

is searched for. The higher the number of parameters, the more difficult and costly this task gets.

Computational steering was initially defined as the interactive control over a computational process during ex-

ecution [4], with the purpose of significantly reducing the time between changes to parameters and the viewing of

the results. Approaches to computational steering can be split into application specific computational steering sys-

tems tailored to a very specific simulation and scenario [5], domain specific computational steering systems working

with various scenarios for a specific application, and more generally applicable computational steering environments

which act as problem-solving environments. VASE [6], SCIRun [7], and CUMULVS [8] are examples of the latter

ones. All of them display data obtained from a live-running simulation and their interactivity depends on the how

fast the simulation can deliver data. Other approaches to extract data from multi-dimensional precomputed simula-

tion data are query-driven visualizations [9] based on bitmap indices data structures [10]. Such approaches answer

multi-variate, multi-dimensional queries by first indexing a set of precomputed datasets and then using these specially

tailored indices to efficiently return one of them as an answer to a query.

The approach presented in this paper moves away from delivering only presimulated data, trying to extract as

much information as possible from precomputed simulations. For any parameter combination in a certain range,

an approximation can be immediately delivered without having to wait for the exact simulation to finish execution.

This can be supported by simulations running in the background to increase the accuracy in regions of interest in an

incremental way.

3.1. Compressing a Multi-Dimensional Parameter Space

Computational steering, as we are considering, enables a researcher to interactively study parameter-dependent

simulation results. This allows researchers to qualitatively identify the influence of one or several parameters on

the considered model by changing them (steering) and visually assessing the changes in the corresponding result.

Experts can demonstrate dependencies to non-experts, and non-experts can obtain an intuition about the behavior of a

certain model. A fundamental criterion for computational steering is the speed with which the data is delivered to the

visualization in order to make the exploration process acceptable for the user.

Most realistic, high resolution simulations just cannot produce the data in time in order to guarantee a smooth

exploration. We therefore propose to use a repository of precomputed simulation results based on a sparse grid
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discretization of the parameter space at hand. Due to the incremental nature of sparse grids, this even allows to

combine the precomputed results with results from simulations running in the background during steering.

The repository thus consists of simulation results dependent on a sparse grid discretization of the parameter space

which is determined by the sparse grid structure introduced in the previous section. Figure 3 (left) shows a sparse grid

for n = 3 in the two-dimensional parameter space.
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Figure 3: A 2D sparse grid discretization (left) requires the function value (simulation data) only for the parameter

combinations for the sparse grid’s points. A 2D interpolation on a sparse grid (right) reconstructs the simulation result

for a previously unsimulated parameter combination, here (0.7, 90), by a combination of stored simulation results.

To set up the repository, the following steps are performed:

1. Discretize the parameter space. All the parameter combinations belonging to a suitable sparse grid are gen-

erated up to the predefined level. The higher the dimensionality is, the more parameter combinations can be

saved compared to a classical full grid discretization.

2. Generate initial data. For all parameter combinations, a simulation is executed and the result is stored in the

repository. If time is one of the parameters, a single time-dependent simulation can provide multiple results.

3. “Compress”. Working in-place, the compression process is specific to the sparse grid method. For each grid

point j, the corresponding hierarchical coefficient α j has to be computed, a process which is called hierarchiza-

tion. Knowing them, approximations for new parameter combinations can be computed, see below.

3.2. The Data Extraction Process: Interpolation

The whole purpose of the repository is to deliver simulation data as fast as possible to the visualization tool in order

to speed up the exploration process. Instead of running new simulations, the visualization receives approximated data

obtained by interpolating in the multi-dimensional space of pre-computed simulations. This is just the evaluation of

the underlying sparse grid function (d-linear interpolation). Figure 3 (right) depicts which stored results are required

to obtain an interpolation for the new parameter combination (0.7, 90). Following the notation from Sec. 2, first the

hierarchical basis functions φl,i with support over the point of interest are identified, evaluated and weighted with the

hierarchical coefficients αl,i computed during the set-up of the repository. The sum of all these weighted contributions

is the interpolated value at the desired point of interest x ∈ Ω:

fN(x) :=
∑

|l|1≤n+d−1

vl,i · φl,i(x),

Basically, the interpolation is reduced to several constant-vector multiplications followed by a summation. This can

be executed very efficiently on accelerator cards or other parallel environments and guarantees a delivery of data to

the visualization which is fast enough for interactive interaction [11].

3.3. Increasing the Accuracy of the Repository with Adaptivity

The initial construction of the repository presented in Sec. 3.1 requires to run several initial simulations. Starting

from that, the steering (exploration) process can begin. However, the accuracy of the initial interpolation may not be

accurate enough to capture certain features in the parameter space of the simulation.
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For our task, a very convenient property of the sparse grid method is its hierarchical and incremental structure.

New sparse grid points (simulations) can be added to the grid by just extending the storage and computing their

weight (hierarchical coefficient). In our current environment, the user can assist the growth of the repository during

the exploration process by specifying where new refinements have to be performed, i.e., where a higher accuracy is

desired.

Figure 4 presents such a refinement in a two-dimensional parameter space. Each refinement triggers a series of

simulations which are executed in background and whose results are automatically integrated in the repository as

soon as available, without interrupting the exploration process. A cue in the visualization environment signals the

researcher (who might have changed the parameters of the current view in the meantime) that data with a higher

accuracy is available and can be displayed. Upon exiting the exploration environment the current repository is stored

to disk and reloaded at the start of a new steering task. This way, results from previous explorations are not lost but

contribute to an ever increasingly-accurate simulation repository.
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Figure 4: Refinement in a two-dimensional parameter space. Each refinement introduces new grid points in the

parameter space. The positions of these points are restricted to the sparse grid’s structure. In this example, four

additional points are created, each corresponding to a combination of the two parameters (Re, t). For each of them, a

simulation is started, and the results are added to the repository.

4. Application to a CFD scenario

As a test-case, we consider a well-known benchmark problem for viscous incompressible fluid flow, the lid-driven

cavity [12]. To describe the flow, the 3d Navier-Stokes equations are used with an explicit scheme for the time steps.

The geometry at stake is shown in Fig. 5 in two dimensions: a square cavity consisting of three rigid walls with no-slip

conditions and a lid moving with a given tangential velocity. The movement of the lid influences the fluid which is

stagnant at the beginning. (The lower left corner of Ω always has a reference static pressure of zero.) With time

passing by, this results in a series of vortices at several locations and with different rotation directions. Starting from a

state of rest, the flow tends to some steady behaviour, even though the patterns during this process are quite complex.

The two main target values of interest computed by the underlying fluid simulation are the pressure and the velocity

at each point in the three-dimensional coordinate system.

4.1. Parameters

The lid-driven cavity is well-suited as a proof-of-concept scenario for our computational steering application.

There are three parameters of interest which influence position, shape, and size of the vortices; they exhibit char-

acteristics that are different enough to raise interesting problems and challenges; and grids in a three-dimensional

parameter space can still be visualized. The parameters are
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Figure 5: Central (CV), bottom left (BLV), and bottom right (BRV) vortices of a two-dimensional lid-driven cavity in

the stationary case for a random parameter combination.

Reynolds number Re. The Reynolds number expresses the ratio of inertial (resistant to change or motion) forces to

viscous (heavy and gluey) forces. For example, a lower Reynolds number is characteristic for a viscous fluid

(such as honey). We consider Reynolds numbers in a range spanning from 50 to 450.

Lid velocity u. With increasing lid-velocity the main vortex takes shape faster, is flattened and pushed to the right. In

the following, the range of the lid-velocity ranges from 1 m/s to 5 m/s.

Simulation time t. While not a parameter in itself as are the previous ones, the abilility to navigate in simulation time

and instantly being able to observe the changes in the simulation state is very useful during the steering process.

Furthermore, the influence of the parameter time on the flow field is completely different from the other ones,

providing a good test case. Starting at t = 0, the state of rest quickly changes, while after some time, here for

t = 1, a stationary flow field evolves. Even more, simulation data for a certain time step can be costly to obtain

as all previous time steps have to be simulated. For a certain choice of Reynolds number and lid velocity, the

whole time span of interest has to be simulated, but only time steps belonging to sparse grids points have to

be stored, thus significantly reducing the size of the repository. And queries for new parameter combinations

during steering can be answered by a fast interpolation rather than having to simulate for many time steps.

For the lid-driven cavity in three dimensions, both parameter and simulation space are three-dimensional and can thus

be visualized which helps to interprete and understand the results obtained during the computational steering process.

And finally, the scenario is well-understood, which enables one to focus on the demands and challenges building up a

sparse grid compressed repository for real-time steering.

4.2. Results

Figure 6 shows snapshots (interpolated simulation data retrieved from the sparse grid repository) in three spatial

dimensions from our visualization environment for three different Reynolds numbers and lid velocities at time t =

0.5 s. The flow in the cavity is displayed using particle tracing. The particles are released from probes, which could

be moved by a user, at one or two locations of interest. After a probe is placed, any of the three parameters can be

changed in real-time as the corresponding flow-field data is delivered instantly from the sparse grid repository. In the

top row, the Reynolds number is increased from left to right. As one might expect, the central vortex is pushed in the

flow direction further to the right with decreasing viscosity. In the bottom one, the velocity of the lid is changed from

slow to fast. The bottom-right vortex takes shape earlier for higher velocities, which can be clearly seen.

The sparse grid method to compress the multi-dimensional parameter space allows a fast delivery of interpolated

simulation data to the visualization environment. Neither a simulation is required nor many time steps have to be

considered. And, as a further development, the simulation results could be compressed by an (adaptive) sparse grid-

based sampling, too.
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Figure 6: The interpolated flow field in a three-dimensional lid-driven cavity for different parameter values. In the top

row, a probe is placed in the central vortex and the Reynolds number is increased from left to right. As expected, the

central vortex is pushed in the direction of the flow. In the bottom row, the lid velocity is increased from left to right

causing the bottom-right vortex to take shape: the higher the lid-velocity the sooner the bottom-right vortex appears.

To examine how well the sparse grid sampling of the parameter space is suited for the interactive exploration

process, we now consider the approximaton accuracy of the flow fields obtained by the evaluation of a sparse grid

repository function fN . We measure the L2-norm of the approximation error of the velocity field for each parameter

combination. To this end, the parameter space Ω was sampled with level three, leading to a resolution of 15 inner grid

points in each dimension: for 15 × 15 parameter combinations of Re and u, 15 time steps are computed each. The

simulations were performed with OpenFOAM1. For a repository based on a full grid sampling of the parameter space,

all 3375 flow fields would have to be computed and stored. In our case, we only have to store a small fraction (31) of

the simulation results, and we would have to simulate only for 17 combinations of Reynolds number and lid velocity

rather than for 225 different ones. The advantages of the sparse grid sampling are obvious.

In Fig. 7, the relative error is plotted for all 153 parameter combinations of Reynolds number, lid velocity, and

time. The size of each block correponds to the L2-norm of the error between the interpolated flow field and the exact

one obtained via simulation for the corresponding parameter set. Even though the sampling is rather coarse (level

three), the approximation results are rather good; high errors are only obtained towards one side of Ω.

The increase of the error towards t = 0 is not surprising: On the one hand, we extrapolate towards the boundary,

and the largest errors can thus be expected close to the domain’s boundary. On the other hand, the situation for t = 0

is physically impossible, leading to a singularity, as the lid moves with a certain velocity whereas the fluid right next

to it is still motionless. Figure 7 (right) shows the L2-norm error plot of three traversals in the most critical parameter

time starting from three random grid points (indicated on the left) through the parameter space. Where the traversals

1www.openfoam.com
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Figure 7: Left, L2-norm of the approximation error for all 153 parameter combinations. Right, L2-norm of the error for

three traversals through the three-dimensional parameter space. The path of each traversal is indicated with spheres

on the left.

coincide with grid points contained in the sparse grid, the repository contains the exact solution. In-between, an

interpolation error is obtained which increases with decreasing t. Close to the boundary, the error increases in both

directions, as the simulation results are obtained by extrapolation rather than by interpolation there.

If the overall error has to be reduced, or if the user of the steering application is interested in the exact properties of

the flow field towards t = 0, a refinement of the sparse grid can be triggered. This can be done either automatically or

semi-automatically, either by a standard criterion for adaptive refinement based on the coefficients in the hierarchical

representation [2], e.g., or by the user specifiying to refine around the current point of interest. Refining a grid

point results in new parameter combinations for which simulation results have to be obtained. As soon as they are

available, the current view can be updated. Here, we refined the single grid point with the smallest t-value (and the

highest hierarchical coefficient), resulting in six new parameter combinations. The refinement significantly reduces

the interpolation error towards t = 0, see Fig. 8, demonstrating the feasability of our approach. Note that we would

still obtain relatively high errors due to extrapolation for t < 1/16 in the right plot.

5. Conclusions and Future Work

In this paper, we have studied a first scenario for an interactive real-time computational steering environment

for the exploration of parameter-dependent simulation data. A repository of pre-computed simulation results based

on a sparse grid sampling of the parameter space under consideration allows to treat more parameters than with

conventional approaches and to quickly obtain approximations for new parameter combinations via interpolation. We

have applied the method to the lid-driven cavity, a well-known scenario in CFD, and have obtained good results in

terms of accuracy already for coarse discretizations. Parameters with completely different influences on the simulation

results can be dealt with. We have demonstrated how the results in regions of greater interest or with a higher

dependency on the simulation parameters can be improved by refining appropriate grid points. Furthermore, adaptivity

enables one to control the error in regions where the underlying multi-dimensional function looses its smoothness.

The three-dimensional interactive steering performed for the lid-driven cavity serves as a proof of concept and will

be generalized to higher-dimensional scenarios. The long-term goal is to perform computational steering for a simu-

lation of carbon dioxide sequestration which involves multi-phase flows and geological properties. The simulations

can depend on up to ten parameters of interest, and they are typically time-consuming to compute even on massively

parallel systems. Using the approach presented here, we aim to be able to explore a ten-dimensional parameter space

interactively as accurate as possible.
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Figure 8: Left, L2-norm of the approximation error for all 153 parameter combinations after the refinement of a single

grid point. Right, L2-norm of the error for the same three traversals of the three-dimensional parameter space as

before.

With the increase in dimensionality, the scalability of storing and retrieving (interpolating) simulation data be-

comes crucial to ensure interactive steering. Efficient algorithms performing the interpolation on accelerator cards

such as GPGPUs are already under development [11], while dynamic extensions of the parameter ranges and auto-

matic refinement based on user behavior and error measure need to be addressed in the near future. The quality of

the visualization and user interaction are also critical for the success of any visual computational steering process,

and thus in the focus of our project. Finally, a large-scale visualization in a CAVE environment for high-resolution

simulation data is also under development.
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