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Abstract: Cryptosystems based on supersingular isogeny are a novel tool in post-quantum cryptog-
raphy. One compelling characteristic is their concise keys and ciphertexts. However, the performance
of supersingular isogeny computation is currently worse than that of other schemes. This is primarily
due to the following factors. Firstly, the underlying field is a quadratic extension of the finite field,
resulting in higher computational complexity. Secondly, the strategy for large-degree isogeny eval-
uation is complex and dependent on the elementary arithmetic units employed. Thirdly, adapting
the same hardware to different parameters is challenging. Considering the evolution of similar
curve-based cryptosystems, we believe proper algorithm optimization and hardware acceleration
will reduce its speed overhead. This paper describes a high-performance and flexible hardware
architecture that accelerates isogeny computation. Specifically, we optimize the design by creating a
dedicated quadratic Montgomery multiplier and an efficient scheduling strategy that are suitable for
supersingular isogeny. The multiplier operates on Fp2 under projective coordinate formulas, and the
scheduling is tailored to it. By exploiting additional parallelism through replicated multipliers and
concurrent isogeny subroutines, our 65 nm SMIC technology cryptographic accelerator can generate
ephemeral public keys in 2.40 ms for Alice and 2.79 ms for Bob with a 751-bit prime setting. Sharing
the secret key costs another 2.04 ms and 2.35 ms, respectively.

Keywords: elliptic curve cryptography; isogeny-based cryptography; post-quantum cryptography;
Montgomery modular multiplier; application-specific integrated circuit

1. Introduction

Currently, asymmetric cryptosystems are threatened by the development of large-scale
quantum computers. Standard public key encryption algorithms, namely Rivest-Shamir-
Adleman (RSA) and elliptic curve cryptography (ECC), are built on the underlying difficulty
of factoring large integers and computing elliptic curve discrete logarithms. However,
these mathematical problems would be vulnerable to a quantum machine running Shor’s
algorithm [1].

To thwart this potential threat, the National Institute of Standards and Technology
(NIST) has initiated a process to solicit, evaluate, and standardize one or more quantum-
resistant public-key cryptographic algorithms [2]. Five renowned and universally accepted
classes of primitives have been submitted and assessed, code-based cryptography, lattice-
based cryptography, hash-based cryptography, multivariate cryptography, and isogeny-
based cryptography. Among these candidates, there are various trade-offs regarding their
underlying security assumptions, key sizes, and efficiency. Isogeny-based cryptography has
the apparent advantage of a minor key length, which helps mitigate the transmission load
and storage requirement. CSIDH is one such innovative scheme that has the smallest public-
key size as a post-quantum key exchange or encapsulation scheme [3]. It has public keys
of only 64 bytes at a conjectured AES-128 security level, matching NIST’s post-quantum
security category I. Moreover, primitives for the lattice-based encryption scheme NTRU [4],
the code-based encryption scheme McBits [5], and the ring-LWE-based signature scheme
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“New Hope” [6] have relatively large public and private keys. This drawback is especially
obvious when compared with traditional public-key algorithms.

Isogeny-based cryptography relies on the difficulty of the isogeny-finding problem.
An isogeny describes a morphism between elliptic curves that preserves the infinity point.
Rather than computing with a secret scalar point multiplication, isogeny-based cryptog-
raphy takes a secret walk on the isogeny graph to generate the public key or encrypt
the message. The idea of using isogeny to build a cryptosystem was first proposed by
Rostovsev, and Stolbunov [7] in 2006. This original isogeny scheme was later broken by
a subexponential quantum algorithm discovered by Childs [8]. In 2011, Jao and De Feo
proposed a key exchange protocol instead on isogenies between supersingular elliptic
curves. This scheme is known as the supersingular isogeny Diffie–Hellman (SIDH) key
exchange, The underlying supersingular isogeny problem is related to the claw problem,
which is immune to quantum algorithms. However, the scheme also reveals auxiliary
points in public keys, which exposes a potential vulnerability. In August 2022, Castryck and
Decru proposed an efficient classical key recovery algorithm that exploits this vulnerability
and allows for the attack of SIDH. The algorithm, which relies on the use of Richelot isoge-
nies and abelian surfaces, employs a “glue-and-split” method to successfully break SIDH.
In response to this attack, Moriya [9] and Fouotsa [10] proposed modifications to SIDH
that would avoid the Castryck and Decru family of attacks. However, these modifications
significantly degrade the performance and increase the key size of SIDH by at least an
order of magnitude. Fortunately, there are still several isogeny-based cryptosystems, such
as CGL [11], CSIDH [3], and SQIsign [12], which are not based on SIDH and, therefore,
unaffected by the above-mentioned attacks. In addition, the supersingular isogeny problem
has been used to create digital signatures [13,14] and undeniable signatures [15].

In this paper, we present a high-performance application-specific integrated circuit
(ASIC) isogeny hardware accelerator. The main contributions of this paper are as follows.

• We provide a quadratic Montgomery multiplier operating on Fp2 operands on cus-
tomized hardware which is suitable for supersingular isogeny. Our design architecture
can be straightforwardly applied to different sizes of finite fields.

• We exploit the parallelism of processing units and isogeny subroutines to create an
efficient scheduling strategy. It customizes the internal operation logics according to
the feature of modular arithmetic units.

• We prototype our hardware accelerator based on 65 nm SMIC technology by integrat-
ing the computing units and the control logic. For the 751-bit prime setting, the design
is 2.58 times faster than the state-of-the-art software design and 1.29 times faster than
the prior field-programmable gate array (FPGA) implementation. The overall runtime
drops to 6.77 ms and 6.10 ms for Alice and Bob in the key generation phase. and to
6.18 ms and 5.36 ms in the secret sharing phase.

The remainder of this paper is organized as follows. Section 2 provides an overview
of supersingular isogeny and an abstract introduction to the SIDH protocol. Section 3
lists the parameter settings and the design specifications that we are working on and
presents our quadratic Montgomery multiplier, which combines high-radix Montgomery
multiplication and quadratic finite field arithmetic. The advantages and limitations of this
design are also discussed. In Section 4, we introduce the hardware prototype of the isogeny
accelerator and the scheduling methodology of primary isogeny subroutines. Section 5
presents the performance results of our implementation and a comparison with prior works.
We also discuss potential improvements and show how our proposed design can help
accelerate other isogeny-based cryptosystems. The main contributions are concluded in the
final section.

2. Preliminaries

Before introducing our isogeny-based crypto-processor design, we present some pre-
requisite knowledge associated with elliptic curves and isogeny theory to help understand
the basic computation. An abstract SIDH protocol is also described. For more details on
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the mathematical background and cryptography protocol, we recommend [16,17]. Fast
software implementation of all subroutines involved in the key exchange scheme can be
found in [18].

2.1. Elliptic Curves and Isogeny

Several classical ECC algorithms use a form of elliptic curves introduced by Mont-
gomery in 1987 [19]. Such curves defined over a finite field Fq are described as

E(a.b)/Fq : by2 = x3 + ax2 + x, (1)

where a, b ∈ Fq and b(a2 − 4) 6= 0. The Montgomery curves are the preferred choice
because they allow very efficient x-only arithmetic. This will also feature in isogeny-
based cryptography. All points (x, y) satisfying the above equation together with the
infinity point O compose an abelian group over point addition. Classical ECC relies
on the difficulty of solving the elliptic curve discrete logarithm problem in this group.
Specifically, it is hard to determine the scalar given any point P and its scalar multiplication
Q = kP = P + P + · · ·+ P. However, Shor’s algorithm [1] provides a sub-exponential
method of recovering the scalar multiple on a feasible quantum machine. Fortunately, this
is not the end of the story, as cryptographers have found that the supersingular elliptic
curve group over isogeny is quantum-resistant, allowing isogeny-based cryptography to
be constructed in such a way that ECC lives on.

Here, an isogeny is defined as a rational group morphism from an elliptic curve E to
another elliptic curve E′ that preserves its identity, written as

φ : E→ E′, φ(O) = O′. (2)

Given any finite subgroup κ of points on elliptic curve E, there is a unique isogeny φ
whose kernel is κ. Vélu has provided a method [20] of computing φ : E→ E/〈κ〉. On the
input of the coefficients of E and the points in κ, Vélu’s formula explicitly outputs the
expression of the coefficients of E′ and the morphism φ. The degree of isogeny is the
number of elements in the kernel κ, equal to its degree as a rational morphism. Two curves
E, E′ are isogenous if an isogeny exists between them. The following theorem captures an
interesting fact.

Theorem 1. E and E′ are isogenous if, and only if, they have a same number of points, #E = #E′.

Before elaborating on the SIDH protocol, two properties of elliptic curves should be
explained. namely isomorphisms and j-invariants. Isomorphisms are actually a special
case of an isogeny in which the kernel is {O}, which are isogenies of degree 1. The j-
invariant is a discriminant of an elliptic curve that determines the isomorphism class over
Fq. The j-invariant of a Montgomery curve is given by

j(Ea,b) =
256(a2 − 3)3

a2 − 4
. (3)

The relationship between the isomorphism class and the j-invariant can be stated
as follows.

Theorem 2. E, and E′ are isomorphic if, and only if, they have the same j-invariant, j(E) = j(E′).

Isogenous curves have different j-invariants. Thus, an isogeny can be seen as a
map from one isomorphism to another. The ostensible explanation of isogeny-based
cryptography is that, Alice and Bob walk randomly around the isogeny graph, from one
isomorphic class to another, one j-invariant to another, before eventually arriving at the
same j-invariant as the shared secret. Based on this, the difficult mathematical problem
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is that, given the origin curve and the terminal curve, one cannot find the exact isogeny
mapping between them in sub-exponential time. However, this problem is vulnerable when
using the original curves [8]. Hence, cryptographers moved on to supersingular elliptic
curves for which the isogeny problem is secure against classical and quantum cryptanalysis.

In algebraic geometry, supersingular elliptic curves are a certain class of elliptic curves
over a field of characteristic p > 0 with unusually large endomorphism rings of Z-rank
4. Supersingular curves are defined over Fp or Fp2 , and all can be represented in Fp2 .
The endomorphism ring is the ring composed of the set of endomorphisms of a given
elliptic curve and the null map. Endomorphisms are a special case of isogenies for which
the codomain is the same as the domain, written as

φ : E→ E, |ker(φ)| > 1. (4)

Eventually, we come to the specific case of isogenies on supersingular curves. Two
theorems are crucial to understanding the isogeny graph, which is formed by isomorphism
classes as vertices and l-isogenies as edges. Considering a specific l, this leads to a roughly
regular graph X(Sp2 , l) in which almost all nodes have l + 1 unique isogenies up to an
isomorphism of degree l. Figure 1 shows an excerpt of the 2-isogeny graph over F4312 [21].
In total, there are 37 j-invariants as nodes and 2 isogenies between them as edges.

Theorem 3. Let Sp2 be the set of supersingular j-invariants. Then #Sp2 = b p
12c+ b, b ∈ {0, 1, 2}.

Theorem 4. For every prime l - p, there exist l + 1 isogenies of degree l originating from a
supersingular base curve.

125

319

102

358

107

306i+426

356

325i+379

316

106i+379
6161

...

...

...

...

...

Figure 1. Portion of the 2-isogeny graph for p = 431.

2.2. SIDH Key Exchange

Building on supersingular isogeny theory, Jao and Le Feo [16] proposed the SIDH key
exchange scheme in 2011. The basic purpose of the Diffie–Hellman protocol is to enable
two parties to agree on a shared secret securely through a public channel under a passive
security model. SIDH works on elliptic curves in the same way as ECDH but replaces the
underlying computation by handling large degree isogenies.

Initially, the involved parties agree on the public parameters. Alice and Bob publicly
select a smooth isogeny prime in the form of Equation (5), where lA and lB are small primes,
eA and eB are positive integers, and f is a small cofactor to make p prime.

p = lA
eA · lB

eB · f ± 1 (5)

A supersingular curve E(Fp2) is defined over this number. This elliptic curve group is
the full (p + 1)-torsion which is isomorphic to Zp∓1 ×Zp∓1.

E(F2
p)
∼= Z(lA

eA lB
eB f ) ×Z(lA

eA lB
eB f ) (6)
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The cardinality of E is #E = (lA
eA lB

eB f )2. Next, Alice and Bob choose independent
elliptic curve points so that the subgroups E[lA

eA ] and E[lB
eB ] can be generated as E[lA

eA ] =
〈PA, PB〉 and E[lB

eB ] = 〈QA, QB〉. We now have all the necessary presuppositions.
The first phase of the SIDH protocol is ephemeral key generation. Alice chooses two

private keys mA, nA ∈ Z/lA
eAZ with the condition that they are not both divisible by lA

eA .
Analogously, Bob chooses mB, nB ∈ Z/lB

eBZ, where mB, nB are not both divisible by lB
eB .

The protocol then proceeds as follows.

• Alice computes the isogeny φA : E → EA with the kernel 〈RA〉 = 〈mAPA + nAQA〉.
Alice then projects Bob’s basis points under the new curve {φA(PB), φA(QB)} ⊂ EA.
Alice’s ephemeral public key is {EA, φA(PB), φA(QB)}.

• Bob computes the isogeny φB : E→ EB with the kernel 〈RB〉 = 〈mBPB + nBQB〉. Bob
then projects Alice’s basis points under the new curve {φB(PA), φB(QA)} ⊂ EB. Bob’s
ephemeral public key is {EB, φB(PA), φB(QA)}.
For the second phase of the protocol, Alice and Bob compute the shared secret as fol-

lows once they have received the exchanged information from the other party. The second
phase calculation is quite similar to that of the first phase, except that the basis points are
no longer pushed through the isogeny.

• Alice computes her isogeny φAB : EB → EAB with the kernel 〈φB(RA)〉 = 〈mAφB(PA)+
nAφB(QA)〉.

• Bob computes his isogeny φBA : EA → EBA with the kernel 〈φA(RB)〉 = 〈mBφA(PB) +
nBφA(QB)〉.

The curves EAB and EBA reside in the same isomorphism class, so the j-invariant of these
curves can be used as the shared secret. An abstract SIDH protocol is illustrated in Figure 2.

E EA=E/〈mAPA+nAQA〉
{φA (PB), φA (QB)}

EB=E/〈mBPB+nBQB〉
{φB (PA), φB (QA)}

EBA≌ EAB

φA 

φB 

φA
’

φB
’ 

Alice

Bob
Phase 1

Phase 2

Figure 2. High-level SIDH illustration.

2.3. Large Degree Isogeny Decomposition

The main part of the SIDH protocol is computing the large degree isogeny given any
specific kernel. The breakdown of all computations for the supersingular isogeny is shown
in Figure 3, similar to a superset of the breakdown of point manipulation. The large degree
isogeny is the core whereby the secret kernel is pushed to the public key and then to the
shared secret. Thus, an efficient method of computing it is of the same importance as scalar
point multiplication in ECC.

Given a finite subgroup 〈R〉 ⊆ E/Fp2 [le] of order le, there is a unique isogeny φR

of degree le with the kernel 〈R〉, that maps E to an isogenous curve E/〈R〉. The direct
calculation of a large degree isogeny is quite hard, but it can be decomposed into e isogenies
of degree l, which then are computed in sequence using Vélu’s formulas. As proposed
in [16], we can initialise R0 := R and E0 := E and then compute

Ei+1 = Ei/〈le−i−1Ri〉,
φi : Ei → Ei+1,

Ri+1 = φi(Ri).

(7)
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For each i ∈ [0, e), the l-degree isogeny φi is computed upon the kernel 〈le−i−1Ri〉 of
order l, and then used to compute Ri+1. In each iteration, the point Ri is an le−i-torsion
point and so le−i−1Ri has order l. Eventually, through each φi, the starting subgroup will
be pushed to O. Therefore, it is obvious that φ = φR = φe−1 ◦ · · · ◦ φ0 has degree le with
kernel 〈R〉.

Finite Field Arithmetic

Point Group

Scheduling

Fp Arithmetic Fp
n Arithmetic

Point Addition and Doubling

Scaler Point Multiplication

Isogeny Computation and 
Evaluation

Large Degree 
Isogeny Computation

Figure 3. Underlying operations for supersingular isogeny cryptography and ECC.

There are two straightforward ways to compute φ based on this decomposition,
a multiplication-based strategy, and an isogeny-based method. The former iteratively
computes le−i−1Ri by scalar multiplication and φi by Vélu’s formulas at each step. The latter
method, however, only performs scalar multiplication once and stores every intermediate
Qi = liR, for i ∈ [0, e). By iteratively computing φi and φi(Qj), j < e− i, it is possible to
perform all of the l-degree isogenies, and, hence the composition φ. These two methods
are illustrated as the two left graphs in Figure 4 in the form of a directed acyclic graph.
Either scalar multiplications or isogeny evaluations of all nodes have to be processed,
which makes these straightforward strategies inefficient. It should be noted that explicit
expressions for isogeny evaluations are calculated through isogeny computations on leaf
nodes on the left. Thus, points on the right side of the graph can only be obtained after the
points on the left are processed. This also implies that we can concurrently execute isogeny
evaluations in the same column but not point multiplications in the same row.

(a) (d)(b) (c)

Figure 4. Strategies for performing large degree isogeny evaluation comprised of 6 small degree
isogenies. Horizontal lines represent l-isogeny evaluations of points. Vertical lines stand for l scalar
point multiplications. (a) Multiplication-based strategy, (b) isogeny-based strategy, (c) optimal serial
strategy with a more expensive point multiplication, and (d) optimal serial strategy with a more
costly isogeny evaluation.

The optimal approach to schedule the scalar multiplications and isogeny evaluations in
serial is first proposed in [16], which is the best permutation and combination of the above
two methods. Such strategies are compared and visualized as two right graphs in Figure 4.
We can traverse these graphs by storing the pivot points, rather than all intermediates,
to obtain the final composition efficiently. The optimal strategy for a large degree isogeny
evaluation may vary depending on the implementation, as the time required for certain
operations can be different. Graphs (c) and (d) illustrate the impact of these differences.
Graph (c) shows the case where isogeny evaluation takes an additional 20% time compared
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to point multiplication, while (d) shows the opposite case. Optimal strategies for parallel
execution will be more complex due to the additional factors involved, including the
number and delay of arithmetic units, data dependency, and the memory interface.

3. Quadratic Finite Field Arithmetic for Isogeny
3.1. Parameter Settings

We design our arithmetic unit to support four parameter settings predefined in the
SIDH specification of NIST’s post-quantum cryptography round 2 and round 3 submis-
sions [22], as listed in Table 1. Three of these primes have an even power for degree-2
isogeny, which facilitates the use of 4-isogeny. The primes p503 and p751 have been widely
studied [23–25]. For the underlying curve, we start from the supersingular Montgomery
curve E0/Fp2 : y2 = x3 + 6x2 + x by setting a = 6 and b = 1 without compromising
security. Every curve in the isogeny class derived from this curve has (p + 1)2 points and
is also supersingular. The starting curve E0 is part of the public parameter of the SIDH key
exchange protocol.

Table 1. Public parameters specification.

Prime Number of 4/3 Isogenies Public Key Size

p434 = 22163137 − 1 108/137 330
p503 = 22503159 − 1 125/159 378
p610 = 23053192 − 1 152/192 462
p751 = 23723239 − 1 186/239 564

3.2. Quotient Pipeline

From the public parameter settings and the leveled breakdown of the supersingular
isogeny protocol (Figure 3), it can be concluded that almost all fundamental arithmetic
operations required to evaluate a supersingular isogeny work in Fp2 . In Section 4, we
will quantitatively analyze the operations in each phase of the protocol and demonstrate
that modular multiplication is the most costly and frequently used building block. Thus,
a dedicated and efficient quadratic field arithmetic unit will improve the hardware imple-
mentation.

Previous SIDH hardware designs [24,26,27] have mostly been applied to FPGAs.
The typical Fp2 modular multiplier proposed in these works uses the native digital sig-
nal processors (DSPs) of reconfigurable hardware. The main part of the DSP slice is a
high-performance 27× 18 multiplier. By wiring through the programmable connectivity,
the DSP arrays or matrices consist of interleaved systolic Montgomery multipliers capable
of processing large operands. This architecture is regarded as a modular multiplier with
radix equivalent to the DSP bit-width, typically 16-bit. An appropriately higher radix will
reduce the number of iterations needed in each modular multiplication, resulting in perfor-
mance gains. FPGAs do not apply to native higher radix (e.g., 32-bit or 64-bit) because of
their slice structure. Customized hardware, however, can implement such multipliers to
enhance the computation speed.

When performing modular multiplication using the Montgomery method, it is essen-
tial to understand that the radix will significantly influence the architecture of the multiplier,
even the part built on the arithmetic units. The original Montgomery multiplication in-
dicates that a high radix decreases the number of iterations but increases the latency of
every single iteration. Thus, there is no generic way to minimize the latency of complete
modular multiplication. Specifically, the calculation of residue uses a carry-save adder
(CSA) to compress the partial products, which may mitigate the accrued latency caused by a
higher radix. The critical path of the CSA climbs slowly with respect to the bit-width of the
operands. However, to obtain the result of the quotient, we must use a carry propagation
adder (CPA), for which the computation time is highly dependent on the radix. To solve
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this problem, Holger [28] proposed a method to decouple the calculation of residue and
quotient, which allows for concurrent execution of modular multiplication.

In addition to the influence of the selected radix, another possible improvement in-
volves building a specific Fp2 modular multiplier instead of an Fp arithmetic unit. The tra-
ditional way to compute an extension field multiplication is to apply the Karatsuba–Ofman
algorithm to the prime field multiplier. An Fp2 multiplication requires at least three Fp
multiplications, with some pre- and post-additions. If operating using the schoolbook
algorithm, the Fp2 multiplication will be resolved as Equation (8), where A = a0 + a1i and
B = b0 + b1i, A, B ∈ Fp2 , a0, a1, b0, b1 ∈ Fp.

A · B =(a0 + a1i) · (b0 + b1i)

=(a0b0 + (−a1)b1) + (a0b1 + a1b0)i
(8)

By defining an operator σ(x0, x1, x2, x3) , x0x1 + x2x3, the Fp2 multiplication can be
rewritten [29] as

A · B = σ(a0, b0,−a1, b1) + σ(a0, b1, a1, b0)i. (9)

A dedicated σ processing unit will help to build an Fp2 multiplier with similar latency
to the Fp computation at a reasonable area cost. The design of the Fp2 modular multiplier
will be discussed after its theoretical foundations are presented.

In the Montgomery multiplication, the following equation is the most costly iteration,
where M is the modulus, r is the radix, and M′ is the precomputed parameter satisfying
M′ = (−M−1) mod 2r.{

qi =(((Si + bi A) mod 2r) ·M′) mod 2r

Si+1 =(Si + qi M + bi A)/2r (10)

To simplify the qi calculation, we first combine M′ with M and rewrite as M =
(M′ mod 2r)×M. Then qi can be defined as

qi = (Si + bi A) mod 2r. (11)

The residue calculation in each iteration can be expressed as

Si+1 = (Si + qi ·M + bi A)/2r. (12)

Furthermore, by pre-scaling A by 2r and adding one iteration to compensate for this
extra factor, high-radix Montgomery multiplication can be performed in the following form.{

qi =Si mod 2r

Si+1 =(Si + qi ·M)/2r + bi A
(13)

Although the quotient determination only needs to reduce mod 2r by right shifting,
it is not trivial because Si exists in carry-save form. The ordinary form of Si has to be
determined before it is used to calculate qi. The data dependency between Si and qi
limits the performance of the high-radix Montgomery multiplier. The quotient pipelining
technique [28] delays the use of the quotient digit qi−d by d iterations, giving the carry
ample time to propagate and ensuring there is sufficient time to determine a quotient at the
cost of d extra iterations. The disadvantages of this method are the extra cycles required
to merge q−1, q−2, · · · , q−d and the larger operand bit-width. The overhead will become
more significant as the delay increases. In our situation, a delay of one cycle (d = 1) is
sufficient to remove the interference between the residue and the quotient calculation.
By involving several precomputed parameters, the cost of the 1-stage quotient pipeline can
be further mitigated.

The key point in decoupling the quotient and residue calculation is to remove the qi
term from the Si+1 expression, allowing Si+1 and qi to be determined in parallel. By defining
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M̃ = (1 + M)/2r, Si+1 can then be represented as Si+1 = Si/2r + qi M̃ + bi A. Furthermore,
the core iteration of high-radix Montgomery multiplication becomes

Si+1 − qi M̃ = Si/2r + bi A

= (Si − qi−1M̃ + qi−1M̃)/2r + bi A,

S′i+1 = S′i/2r + qi−1M̃/2r + bi A

= S′i/2r + qi−1M̃1 + bi A.

(14)

where M̃1 = (1 + M1)/22r, M1 = (M′1 mod 22r) × M, and M′1 = (−M−1) mod 22r are
pre-determined. The index 1 indicates that these pre-computed parameters work for a
1-stage quotient pipeline. The reason that specific factors have to be proposed for the
delayed variant is that the correctness of the algorithm is built on 22r dividing 1 + M1.
From Equation (14), we can tell that S′i+1 is now independent of qi, which decouples the
calculation in each iteration.

Furthermore, it is obvious that the σ operator can be straightforwardly implemented
with a minor modification to Equation (14). Setting up a sufficient digit range, the Mont-
gomery algorithm can merge the post-addition with multiplication. The large integer
addition can be processed along with the compression of partial products. Additionally,
the σ operator produces a similar effect as Karatsuba–Ofman multiplication. Karatsuba
proposed a method for computing a complex multiplication, such as Equation (15), by
saving a real number multiplication. Correspondingly, the σ operator reduces the number
of partial products in the AB + CD computation by a quarter, which results in a lower area
than two individual Fp multipliers. This design is highly suitable for supersingular isogeny
calculation considering that these curves are defined over Fp2 .

x× y = (x0 + x1i)(y0 + y1i)

= (z0 − z2) + z1i

z0 = x0y0

z1 = (x1 + x0)(y1 + y0)− z1 − z2

z2 = x1y1

(15)

We obtain the final form of the high-radix Montgomery multiplication from Algorithm 1.

Algorithm 1 1-Stage High-Radix Montgomery Multiplication with Quotient Pipeline

Require: A prime modulus M > 2, a positive radix r, a positive integer n, such that 16M <

2r(n−1). Integer R−1, where (2rnR−1) mod M = 1, and integers M1 = −M−1 mod
22r ×M, M̃1 = (M1 + 1)/22r, M = −M−1 mod 2r ×M, M̃ = (M + 1)/2r. Operands
A, B, C, D where 0 ≤ A, B, C, D < 4 · 2r ·M, B = ∑n−1

i=0 bi2ri, D = ∑n−1
i=0 di2ri

Ensure: Integer Sn+2 = (AB + CD)× R−1 mod M < 4 · 2r ·M
1: S0 = 0, q−1 = 0
2: for i = 0 to n do
3: qi = Si mod 2r

4: Si+1 = Si/2r + qi−1M̃1 + bi A + diC
5: end for
6: Sn+2 = Sn+1 + qn M̃

Proof of Algorithm 1. To verify the specific variant of Montgomery multiplication, we can
simply accumulate each iteration.
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2r(i+1)Si+1 = −
i

∑
j=0

qj2rj +
i−1

∑
j=0

qj2j+2M̃1 +
i

∑
j=0

(bj A + djC)2rj · 2r

Sn+1 =
∑n−1

j=0 qj M12rj + (AB + CD) · 2r − qn2rn

2r(n+1)

Sn+2 = (AB + CD)2−rn +
∑n−1

j=0 qj M12rj + qn M2rn

2r(n+1)

= (AB + CD)2−rn mod M

(16)

Considering that M < 2r ·M and M1 < 22r ·M, the last term of Sn+2 has an upper
bound of 2 · 2r ·M. Additionally, A, B, C, and D should individually have upper bounds
of α · 2r · M. Therefore, the result satisfies Sn+2 < 2α2 · 22r M22−rn + 2 · 2r · M. On the
condition that 16M < 2r(n−1), the output and input share the same range Sn+2 < 4 · 2r ·M,
which means the algorithm can be applied recursively.

3.3. Quadratic Finite Field Multiplier

From the perspective of circuit design, we can use a customized multiplier built
with Booth encoding and a Wallace tree to implement the quadratic field modular mul-
tiplication unit (QMM). Without the limitation of the FPGA slice architecture, a larger
elementary integer multiplier can be built to achieve a more efficient finite field arithmetic
unit. The modified Booth-2 encoder reduces the number of partial products by half at
little cost, which in turn allows us to process more bits with the same hardware resource.
The Wallace tree is employed to accumulate partial products in carry-save form with a
short critical path. These two techniques are usually combined to implement a dedicated
large-size multiplier because of their regularity and efficiency.

The architecture of the proposed QMM, shown in Figure 5, is equipped with a modified
Booth-2 encoder, a Wallace tree, and a carry propagate adder (CPA). The multiplication
dataflow is started by pushing the multiplicand into the shift register while padding its
head and tail with sign bits and zeros. This register allows the Booth encoder to manipulate
different segments of the multiplicand on each iteration, and is, therefore, suitable for
diverse operand widths. Next, the Booth encoder takes a multiplicand segment from the
ahead register and a multiplicator radix to produce the partial products of bi A, diC, qi M̃.
A bundle of partial products is dropped into the Wallace tree and passes through a 6-layer
4:2 CSA. This yields the final result of Si in carry-save form. While the CPA combines
Si, the Wallace tree steps into the next iteration to process the next segment, which is the
fundamental idea behind the quotient pipeline.

To work with operands of different bit widths, it is useful to develop a flexible mul-
tiplier architecture that can accommodate a range of input sizes. The radix of the multi-
plicators determines the number of partial products we need to compress in one cycle,
and thus the critical delay of the multiplier. Additionally, the radix affects the size of the
final addition which sums up the outputs from the Wallace tree. Theoretically, the 4:2 CSA
tree has a latency of ∼3 · 9 · blog2(

3
2 · radix)c, whereas the CPA has a latency of 2 · radix.

To balance the performance of different parts and ensure a regular digit width, the mul-
tiplier uses a 64-bit radix. Afterward, the multiplicands expand to meet the requirement
of the quotient pipeline. they are so large that an unnecessary connectivity delay will be
introduced. Thus, the multiplicands are segmented and processed iteratively. According to
the typical primes we are studying, the extended widths of the multiplicands are 570, 639,
746, and 887 bits, as listed in Table 2. Considering the QMM utilization rate in each field
and the circuit size of the processing unit, we would propose a multiplicand batch size of
128 bits for each iteration.

The workflow of QMM is summarised in Algorithm 2, which explains how the em-
bedded iterations work. The total loop time depends on the size of the operands presented
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in Table 2. v and w indicate the batch number of the multiplicand and multiplicator, respec-
tively, and the total number of loops can be calculated as v · (w + 2) + 3. The superscript
C, S indicates that Si is stored in a carry-save form which does not affect the correctness of
the algorithm. Right before the quotient determination, the CPA is applied to Si to derive
the original form. For each iteration, the Wallace tree compresses 98 integers into a single
carry-save result. This can be efficiently implemented by cascading the six layers of 4:2
CSA. A schematic of the 1-bit CSA is given in Figure 5. Each pair of lines constitutes a
carry-save encoding of input, output, or ‘double’ carry. The 4:2 structure has a more regular
layout compared with 3:2 adders, which allows the use of binary tree structures. It can
be seen as an adder taking two carry-save encoding numbers and producing the result in
the same representation. To support the QMM and the subsequently introduced modular
adder, the accelerator is equipped with 128-bit width memories for storing intermediate
variables and caching larger operands. The specific design of the memory and access unit
will be discussed in Section 4.

Modified Booth Encoder

Shift Register
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Selector

Wallace Tree

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

4:2 Carry-Save Adder 4:2 CSA 4:2 CSA……

4:2 CSA 4:2 CSA……4:2 CSA

4:2 CSA 4:2 CSA……
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Figure 5. Schematic of quadratic field modular multiplier.

The dedicated design of the QMM offers several salient performance improvements
over an individual field multiplier. The advantages depend to a certain extent on the
specific Fp2 scenario and, therefore, have some limitations.



Electronics 2023, 12, 1235 12 of 21

Table 2. Quadratic multiplier unit parameters determination.

Parameters p434 = 22163137 − 1 p503 = 22503159 − 1 p610 = 23053192 − 1 p751 = 23723239 − 1

Operand width 500 567 676 817
Partial product width 570 639 746 887
Multiplicand batch (v) 5 5 6 7
Multiplicator batch (w) 8 9 11 13

Total number of iterations 43 48 69 94

Radix Booth encoder batch size Number of partial products

64 128 96

Algorithm 2 Quadratic field modular multiplier workflow

Require: A prime modulus M > 2, a positive radix r, a positive integer n such that 16M <

2r(n−1). Integer R−1, where (2rnR−1) mod M = 1, and integers M1 = −M−1 mod
22r ×M, M̃1 = (M1 + 1)/22r, M = −M−1 mod 2r ×M, M̃ = (M + 1)/2r. Operands
A, B, C, D where 0 ≤ A, B, C, D < 4 · 2r ·M, B = ∑n−1

i=0 bi2ri, D = ∑n−1
i=0 di2ri

Ensure: Integer (AB + CD)× R−1 mod M < 4 · 2r ·M
1: S0 = 0, q−1 = 0, carry−1 = 0, overlap−1 = 0
2: for i = 0 to w do
3: {carryi, qi} = CPA(SC,S

i,0 [r− 1 : 0]) . Quotient determination
4: for j = 0 to v− 1 do
5: PPj = BoothEncode(Aj, bi, Cj, di, M̃1,j, qi−1)
6: if j == 0 then
7: {overlapj, SC,S

i+1,j} = WallaceTree(PPj, {SC,S
i,j+1[r − 1 : 0], SC,S

i,j >>

r}, overlapj−1, carryi−1)
8: else
9: {overlapj, SC,S

i+1,j} = WallaceTree(PPj, {SC,S
i,j+1[r − 1 : 0], SC,S

i,j >>

r}, overlapj−1)
10: end if
11: end for
12: overlap−1 = overlapv−1
13: end for
14: for j = 0 to v− 1 do
15: PPj = BoothEncode(M̃j, qw) . Last iteration
16: if j == 0 then
17: {overlapj, SC,S

w+2,j} = WallaceTree(PPj, {SC,S
w+1,j+1[r − 1 : 0], SC,S

w+1,j >>

r}, overlapj−1, carryw)
18: else
19: {overlapj, SC,S

w+2,j} = WallaceTree(PPj, {SC,S
w+1,j+1[r − 1 : 0], SC,S

w+1,j >>

r}, overlapj−1)
20: end if
21: end for
22: return SC,S

w+2 = {SC,S
w+2,j}

• Performance and area. The σ operator merges two Fp multiplications together, which
saves a post-addition and reduces the number of partial products of bi A and diC by a
quarter. Although the QMM has to compress more partial products in each iteration,
the critical path increases slightly because of the Wallace tree architecture. It takes
two σ operations in series or in parallel to complete an Fp2 multiplication, where one
QMM has an area cost of 205k equivalent gates and a latency cost of 2.316 ns.

• Flexibility. Our design is flexible enough to support different operand sizes, including
p434, p503, p610, and p751 with a high hardware utilization ratio. The architecture is
intended for use with the parameters predefined in the SIDH protocol. Furthermore,
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the newly proposed primes in the round 3 submission of SIKE [22] are also supported
by this circuit. The downside that the ASIC implementation is less scalable has been
mitigated. Additionally, setting C and D to zero trivially transforms this quadratic
modular multiplier into a normal multiplier.

• Regularity. Compared with the Karatsuba method, an additional advantage of de-
ploying the QMM is its regularity, which benefits both scheduling and circuit layout.
To parallelize the hundreds of field arithmetic calculations in the protocol, the se-
quencer needs to handle the data dependency and processing unit workload carefully.
In the classical approach, a fully parallelized Fp2 occupies three basic modular multi-
pliers simultaneously. If the number of modular multipliers is not a multiple of 3, it
becomes less convenient to schedule the operations. From this point of view, QMM
uses two σ operations, which makes it easier to sequence different subroutines.

3.4. Quadratic Finite Field Adder

Modular addition and subtraction are similar to standard arithmetic operations, ex-
cept that the results must be wrapped around to fit within the finite field. As subtraction
can be implemented by a minor modification to an adder, we will focus on the design of
modular addition first. We design a hierarchical carry-lookahead adder (HCLA) as the
basic unit to process the modular addition. It consists of two layers, with the upper layer
comprised of m ripple adders that process l-bit additions and the lower layer generating
carry lookahead signals. The adder has a delay of 2 log2 rA + 2l + 1, where rA = l ·m is the
bit-width of operands and l is the bit-width of each ripple adder. To match the critical path
delay of QMM, rA is set to 256, and l is set to 16 in this work.

To avoid the additional time cost of modular reduction, two HCLA units are incor-
porated to work in parallel, with one only computing addition and the other computing
addition with reduction. The final output is selected from two results based on their most
significant bit. This architecture is suitable for large bit-width arithmetic due to the use
of parallel carry generation and the modular design of units. Our proposed quadratic
modular adder (QMA) employs four HCLAs to compute addition in extension finite field
concurrently, and its schematic is shown in Figure 6. To support the four parameter settings
defined in the SIKE specification, we use the elementary 256-bit HCLA to perform field
additions of different sizes through iterative calculation. It takes two to four clock cycles to
calculate an addition in a quadratic field.
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Adder
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Adder
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Figure 6. Schematic of quadratic field modular adder.

3.5. Finite Field Inverse Unit

Several algorithms can be used to compute modular inverses. Fermat’s Little Theo-
rem is an effective method in cases where modular exponentiation is highly optimized.
However, this algorithm is unsuitable for fields with smooth characteristics p = ∏i lei

i − 1
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used in large degree isogeny. This method requires roughly the same number of modular
squares as the bit-width of the modulus and a certain number of modular multiplications.
Even if the addition chain can accelerate the computation. The efficiency is still relatively
low. The Euclidean extended algorithm and the Kaliski inversion can significantly reduce
the complexity of modular inversion from O(log3 n) to O(log2 n). The drawback is their
non-constant execution time, leading to side-channel leakage.

The Kaliski algorithm is designed specifically for the Montgomery modular arith-
metic [30]. It takes an original field element as input and calculates its inverse in the
Montgomery domain. Savas extends this algorithm to high-radix mode and proposes a
new Montgomery modular inverse algorithm [31], which replaces the k− n iterations in
Phase II with up to three Montgomery multiplications. This algorithm is more suitable
for our design. For example, computing the modular inverse in Fp751 using Fermat’s Little
Theorem requires approximately 745 modular squares and 150 modular multiplications.
By comparison, the new Montgomery inversion requires roughly 1066 iterations, with each
iteration consisting of several additions and subtractions, as well as two to three additional
modular multiplications.

Unlike the optimization employed for quadratic modular multiplication and addition,
which require multiple operations in the base field for extension field arithmetic, modular
inversion in Fp2 can be reduced to just one inversion in Fp. Therefore, we design an
inversion unit that operates solely in Fp, as described in Algorithm 3. It utilizes the
previously developed QMA and QMM components, obviating the need for a dedicated
inversion unit. In particular, two QMAs perform two Fp subtractions and one Fp addition in
parallel, thereby completing phase I of the Montgomery inversion. The final multiplications
required in phase II can then be executed using the QMM.

Algorithm 3 New Montgomery modular inversion datapath

Require: A2rn(mod M), rn, 22rn(mod M), and M
Ensure: A−12rn(mod M)

1: u = M, v = A2rn(mod M), r = 0 and s = 1 . Phase I: AlmMonInv
2: while v > 0 do
3: if u[0] = 0 then u = u� 1, s = s� 1
4: else if v[0] = 0 then v = v� 1, r = r � 1
5: else
6: t1 = u− v, t2 = v− u, t3 = r + s
7: if t1,borrow = False then u = t1 � 1, r = t3, s = s� 1
8: else v = t2 � 1, s = t3, r = r � 1
9: end if

10: end if
11: k = k + 1
12: end while
13: t1 = r−M, t2 = (M� 1)− r
14: if t1,borrow = True then t1 = t2
15: end if
16: t2 = rn− k, t3 = k + rn . Phase II: correction
17: if t2,borrow = False then
18: t1 = QMM(t1, 22rn)
19: k = t3
20: end if
21: t1 = QMM(t1, 22rn)
22: A−12rn(mod M) = QMM(t1, 22rn−k)

4. High-Level Architecture Design

We aim to build an efficient and scalable isogeny accelerator to support isogeny-based
cryptography with different parameters based on the arithmetic unit mentioned above. At a
high level, the isogeny accelerator has four components. The arithmetic logic unit, which
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includes several modular multipliers, modular adders, and a Keccek hash module, handles
the intensive computation. The control unit manages the runtime, fetches instructions,
and generates signals for the other components. The ROM stores the instruction sequence
created by the scheduling script, and the RAM holds intermediates such as pivot point
coordinates during computation. The datapath width is set to 256-bit, which meets the
throughput requirements of the modular adder and multiplier. A true dual-port RAM is
used as the cache, with a memory depth of 1024 and the ability to store 128 Fp2

751
operands

to support pivot points storage.
The instruction sequence is generated by a scheduling strategy and each instruction

has a bit-width of 32 bits. The first 12 bits comprise the opcode, which mainly specifies the
arithmetic operation. Bits 12–21 and 22–31 represent the data addresses accessed by Port A
and Port B, respectively. The first three bits in the opcode control memory load and store.
Bits 3–5 instructs the modular adder to perform addition or subtraction with or without
reduction. Bits 6–7 control the QMM to calculate either modular multiplication, modular
squaring, or base field multiplication. The 8th bit is reserved for modular inversion, and bits
9–10 are the selection signal for the result multiplexer of the arithmetic unit. The 11th bit
serves as a no-operation flag.

The scheduling strategy is structured into three hierarchical layers: extension field
arithmetic, primary subroutine, and large-degree isogeny. Lower-level operations serve as
abstractions to upper-level ones. Firstly, all operations in Fp2 are natively implemented as
the arithmetic unit, eliminating the need for optimization like previous implementations.
Secondly, primary subroutines are scheduled based on field arithmetic operations. Since
modular multiplication takes approximately ten times longer than modular addition and
subtraction, multiplication has a higher priority in the same time slot. The scheduling also
takes the number of instantiated multiplication units into consideration. For example, in the
case of 4_iso_eval, three QMMs can reduce the delay by one multiplication operation
compared with two QMMs. The step-by-step workflow is shown in Table 3 for these
two scenarios. The required arithmetic operations of all subroutines after scheduling
can be found in Table 4. Lastly, the large degree isogeny was computed by iteratively
calculating the base isogeny operations. The optimal strategy for serial execution of
subroutines is known, as described in Section 2.3. Due to the different relative weights
of scalar multiplications and isogeny evaluations under various parameters, strategies
were generated separately based on Table 5, which shows the number of clock cycles
each subroutine needs. It shows that the latency of some subroutines, such as j_inv,
increases more rapidly between parameters. This is because modular inversion requires
more iterations.

Table 3. Comparison of a 4-isogeny evaluation with two and three quadratic modular multipliers.

Time Slots QMA #1 QMA #2 QMM #1 QMM #2 QMM #3

1A t0 = XQ + ZQ t1 = XQ − ZQ

Idle

1M + 1A XQ = t0 × K2 ZQ = t1 × K3
2M + 1A t3 = XQ + ZQ ZQ = XQ − ZQ t2 = t0 × t1

2M + 1S + 1A t3 = t2
3 ZQ = Z2

Q
3M + 1S + 1A t2 = t2 × K1
3M + 1S + 2A XQ = t3 + t2 t4 = ZQ − t2
4M + 1S + 2A X′Q = XQ × t3 Z′Q = ZQ × t4

1A t0 = XQ + ZQ t1 = XQ − ZQ
1M + 1A XQ = t0 × K2 ZQ = t1 × K3 t2 = t0 × t1
1M + 2A t1 = XQ + ZQ ZQ = XQ − ZQ
2M + 2A t2 = t2 × K1 t1 = t2

1 ZQ = Z2
Q

2M + 3A XQ = t1 + t2 t3 = ZQ − t2
3M + 3A X′Q = XQ × t1 Z′Q = ZQ × t3
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Table 4. Summary of the primary subroutines. Define (A+
24 : C24) = (A + 2C : 4C), (A+

24 : A−24) =

(A + 2C : A− 2C), and (a+24 : 1) = (A + 2C : 4C).

Subtoutine Functions Total Ops
Minimum Latency (Ops)

2 QMMs 3 QMMs

2_iso_curve
A+

24 = Z2
P2
− X2

P2 2S+A S+A -
C24 = Z2

P2

2_iso_eval
X′Q = 2XQ(XP2 XQ − ZP2 ZQ) 4M+6A 2M+3A -
Z′Q = 2ZQ(XQZP2 − XP2 ZQ)

3_iso_curve

A−24 = (3X2
P3
+ 2XP3 ZP3 − Z2

P3
)(9X2

P3
− 6XP3 ZP3 + Z2

P3
)

2M+3S+13A M+2S+7A M+S+7AA+
24 = (3X2

P3
− 2XP3 ZP3 − Z2

P3
)(9X2

P3
+ 6XP3 ZP3 + Z2

P3
)

K1 = XP3 − ZP3

K2 = XP3 + ZP3

3_iso_eval
X′Q = XQ · 4(XP3 XQ − ZP3 ZQ)

2
4M+2S+4A 2M+S+2A -

Z′Q = ZQ · 4(XQZP3 − XP3 ZQ)
2

4_iso_curve

A+
24 = 4X4

P4

4S+5A 2S+A -
C24 = 4Z4

P4

K1 = 4Z2
P4

K2 = XP4 − ZP4

K3 = XP4 + ZP4

4_iso_eval
X′Q = (4(XQXP4 −ZQZP4 )

2 + 4Z2
P4
(X2

Q−Z2
Q)) · 4(XQXP4 −ZQZP4 )

2
6M+2S+6A 4M+S+2A 3M+3A

Z′Q = (4(XP4 ZQ−XQZP4 )
2− 4Z2

P4
(X2

Q−Z2
Q)) · 4(XP4 ZQ−XQZP4 )

2

xDBL
X[2]P = C24(X2

P − Z2
P)

2
4M+2S+4A 2M+S+3A -

Z[2]P = (C24(XP − ZP)
2 + 4A+

24XPZP) · 4XPZP

xTPL

X[3]P = ((X4
P − 6X2

PZ2
P − 8XPZ3

P − 3Z4
P)A+

24 − (X4
P − 6X2

PZ2
P +

8XPZ3
P − 3Z4

P)A−24)
2 · 2XP 7M+5S+10A 4M+3S+2A 3M+2S+3A

Z[3]P = ((3X4
P + 8X3

PZP + 6X2
PZ2

P − Z4
P)A+

24 − (3X4
P − 8X3

PZP +

6X2
PZ2

P − Z4
P)A−24)

2 · 2ZP

xDBLADD

X[2]P = (X2
P − Z2

P)
2

7M+4S+8A 4M+2S+2A 3M+S+3AZ[2]P = ((XP − ZP)
2 + 4a+24XPZP) · 4XPZP

ZP+Q = 4(XQZP − XPZQ)
2XQ−P

ZP+Q = 4(XPXQ − ZPZQ)
2ZQ−P

j_inv j = 256(A2−3C2)3

C4(A2−4C2)
3M+4S+8A+I 2M+2S+4A+I -

get_A a =
(1−xP xQ−xP xQ−P−xQ xQ−P)

2

4xP xQ xQ−P
− (xP + xQ + xQ−P) 4M+S+7A+I 3M+6A+I -



Electronics 2023, 12, 1235 17 of 21

Table 5. An overview of the latency associated with the primary subroutines (in clock cycles).

Subroutine
p434 p503 p610 p751

1 2 3 1 2 3 1 2 3 1 2 3

2_iso_curve 101 54 54 113 61 61 155 82 82 207 109 109

2_iso_eval 230 115 115 262 131 131 346 173 173 458 229 229

3_iso_curve 326 190 143 377 219 167 482 282 209 633 371 273

3_iso_eval 310 155 155 348 174 174 474 237 237 632 316 316

4_iso_curve 223 101 101 253 113 113 337 155 155 447 207 207

4_iso_eval 418 249 162 470 278 183 638 383 246 850 512 327

xDBL 310 162 162 348 183 183 474 246 246 632 327 327

xTPL 634 343 256 714 382 287 966 529 392 1286 708 523

xDBLADD 573 296 209 644 330 235 875 456 319 1166 610 425

j_inv † 2215 2046 2046 3558 3366 3366 4389 4134 4134 6978 6640 6640

get_A † 2114 2013 2013 3445 3332 3332 4234 4079 4079 6771 6564 6564
† The delay of Kaliski inversion may vary depending on different operands, the worst-case scenario is presented.

5. Experimental Results and Discussion

We developed a hardware prototype for the isogeny accelerator under SMIC’s 65 nm
technology, following the high-level design and arithmetic unit specification. The circuit
was validated through post-synthesis simulation via the known answer test from the SIDH
documentation. To evaluate the scalability of the isogeny accelerator, two implementations
are created incorporating two and three modular multipliers, respectively. Programs for
different parameters are executed on both designs, and the results indicate that the critical
path delay remained stable in various scenarios. The longest latency of 1.912 ns was
selected as the operating clock of the final design. The latency results for processing the
SIDH protocol with predefined parameters can be found in Table 6. The total delay is
the sum of encapsulation and decapsulation. Key generation is not included as it can be
performed offline.

The resource cost of our design and a comparison with other SIDH Fp751 implemen-
tations in the literature are shown in Table 7. Our implementation with three QMMs
shows a delay that is almost equivalent to the previous most efficient implementation [32],
completing encapsulation and decapsulation within 9.37 s at a clock frequency of 523 MHz.
The comparison of the area is not straightforward, as other implementations utilized FPGA
platforms such as Virtex-7 and Ultrascale+. In accordance with the metric presented in [27],
we convert the resource utilization of the FPGA into slice equivalent cost and further
transform it into equivalent gate counts at a rate of 19.2 ASIC gates per slice. The experi-
mental results, including latency, normalized area, and AT product, are presented in Table 2.
The AT product is calculated by multiplying latency with the equivalent gate cost.

Our isogeny accelerator shows an advantage in terms of delay, with an economical
utilization of area. This is primarily attributed to the design of the specific Fp2 arithmetic
unit, reducing the redundant computation commonly incurred when performing Fp2

operations using an Fp operator. On the other hand, it should be noted that due to the
scalable design of our circuit, it is not as compact as the implementation targeting one
parameter set. It is not feasible for all operands of different sizes to properly occupy the
arithmetic unit, particularly when the radix is comparable with the size of operands.
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Table 6. Performance of the scalable isogeny accelerator under different parameter settings.

Function
p434 p503 p610 p751

2 3 2 3 2 3 2 3

KeyGen 0.847 0.756 1.121 1.002 1.897 1.685 3.219 2.854

Encaps 1.432 1.209 1.898 1.609 3.233 2.708 5.415 4.530

Decaps 1.515 1.282 2.009 1.706 3.414 2.870 5.756 4.835

Encaps + Decaps 2.947 2.492 3.906 3.315 6.647 5.578 11.172 9.365

5.1. Other Isogeny-Based Schemes

Despite the vulnerability of SIDH to Catryck and Decru family of attacks, there exist a
number of isogeny-based cryptosystems, such as CGL, CSIDH, and SQIsign, which do not
exploit auxiliary points and are thus unaffected by these particular attacks. For instance,
Charles introduced a provable collision-resistant hash function derived from supersingular
isogeny graphs [11]. These graphs, as proven by Pizer [33], are instances of Ramanujan
graphs, which are expander graphs with excellent mixing properties. This allows the CGL
hash function to offer a high level of collision resistance. Supersingular isogeny graphs
utilized in CGL are similar to those used to evaluate a large-degree isogeny. A toy example
of such a graph is shown in Figure 1. It is defined over a finite field and consists of vertices
representing supersingular elliptic curves over that field, with edges representing isogenies
between these curves.

The CGL hash function operates by walking around a supersingular isogeny graph
based on the input without any backtracking. The final output is the compressed j-invariant
of the terminal elliptic curve. In cases of 2-isogenies, a step in the walk involves finding
and ordering the 2-torsion points of the current curve and then calculating the next elliptic
curve from the selected 2-torsion. Our proposed isogeny accelerator can perform each
step in 23,583 clock cycles, equating to approximately 41.25 µs and yielding a 24.24 kbps
throughput without optimization.

5.2. Side-Channel Considerations

Side-channel attacks (SCA) on implementations of cryptographic algorithms are also
an important topic. Despite the theoretical security of the primitives, the software or
hardware implementations may leak sensitive information through side channels, such
as power consumption and electromagnetic radiation. For instance, various studies have
investigated SCAs on key encapsulation mechanisms (KEMs). Refs. [34,35] have explored
side-channel assisted plaintext-checking oracle attacks on KEMs. Ref. [36] presented a pro-
filing SCA on an FPGA implementation of CRYSTALS-Kyber employing the sliced multi-bit
error injection. Ref. [37] studied profiled SCA against Dilithium, targeting the first number
theory transform stage and polynomial multiplication, and proposed countermeasures
against such attacks. Ref. [38] mainly focused on the fault detection methods of Saber and
Falcon. Ref. [39] discovered a vulnerability in KEM algorithms, where implementations
using a Boolean conversion procedure similar to Saber’s may be susceptible to message
recovery attacks, even in the case of higher-order masked implementation.
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Table 7. Performance comparison with other implementations using the 751-bit prime setting.

Work #Slices #DSP #BRAM Frequency
(MHz)

Latency
(×106 cc)

Latency
(ms)

Equivalent
Gates ‡

(×103)

AT Product
(×103)

[22] 15,452 † 512 43.5 296.9 4.54 15.3 1363 20,854

[40] * 8131 162 39.0 141.6 8.64 61.0 542 33,062

[27] ** 15,384 512 43.5 163.1 4.53 27.8 1362 37,864

[41] 11,136 452 41.5 232.7 5.93 25.5 1161 29,606

[42] 15,246 456 54.0 182.3 3.32 18.2 1272 23,150

[32] 27,286 834 73.5 155.8 1.44 9.27 2266 21,005

Ours - - - 523.0
4.90 9.365 1651 15,462

5.84 11,172 1293 14,445
† An Ultrascale+ CLB has two slices inside. * The work is a compact hardware/software co-design targeting

speed/area trade-off. ** The implementation in this work is similar to that in SIDH specification, except for the
execution platform. ‡ SEC = 100 × BRAMs + 100×DSPs + Slices [42], SEC = 19.2 equivalent gates.

Compared to other cryptographic algorithms, curve-based schemes exhibit vulner-
abilities at special points owing to the special characteristics of elliptic curves as a cyclic
group. For instance, traditional ECC is susceptible to attacks, such as zero value, invalid
curve, and invalid point. Randomized coordinates, point coherence checks, and curve in-
tegrity checks are commonly used to mitigate these attacks. In the context of isogeny-based
cryptography, some attacks that target ECC, including refined power analysis, can also
be utilized. In [43], Koziel employed three techniques to target SIDH. He analyzed the
representation of zero in the context of quadratic extension fields and isogeny arithmetic
and presented three distinct refined power analysis attacks on SIDH. The first and second
attacks focused on the three-point Montgomery ladder, using partial-zero and zero-value
attacks, respectively. The third attack suggested a method of exploiting zero-values in the
context of isogenies to break the large-degree isogeny. The attacks proposed in this article
raise further concerns about the security of using static-key in SIDH.

6. Conclusions

Isogeny-based cryptography has the apparent advantage of a minor key length, which
helps mitigate the transmission load and storage requirement. It is meaningful to improve
the efficiency of isogeny operations. We propose a scalable and high-performance isogeny
accelerator that supports four parameter sets. The accelerator features a suite of special-
ized arithmetic units, including a Fp2 quotient pipelining multiplier, a Fp2 modular adder,
and a Fp Kaliski inversion unit reutilizing these Fp2 blocks. The primary subroutines are
scheduled specifically for these units. Customized instruction sequences are generated for
different parameters individually to improve parallelism and performance while maintain-
ing scalability. Our prototype 65 nm accelerator is capable of completing encapsulations in
4.53 ms and decapsulations in 4.84 ms under a 751-bit prime setting. This performance is
comparable to the previous highest-performance FPGA implementation but with a more
efficient area cost. The area time product is reduced by about a quarter compared with
previous works. Additionally, we show that the proposed architecture can accelerate other
isogeny applications such as the cryptographic hash function.

Author Contributions: Conceptualization, G.S. and G.B.; methodology, G.B.; validation, G.S.; formal
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