
J
H
E
P
0
3
(
2
0
1
5
)
1
7
0

Published for SISSA by Springer

Received: December 24, 2014

Revised: February 20, 2015

Accepted: March 2, 2015

Published: March 31, 2015

Towards holographic higher-spin interactions:

four-point functions and higher-spin exchange

X. Bekaert,a J. Erdmenger,b D. Ponomarevc and C. Sleightb
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Parc de Grandmont, 37200 Tours, France
bMax-Planck-Institut für Physik (Werner-Heisenberg-Institut),
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1 Introduction

Bulk locality remains one of the most important and elusive properties of the anti-de Sitter/

conformal field theory (AdS/CFT) correspondence [1–4]. This property is expected to hold

in the usual regime where the duality is tested: when the AdS radius is large compared to

the Planck and string lengths which, on the CFT side, corresponds to a large-N expansion

and a gap in the spectrum of anomalous dimensions. The latter two properties were argued
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to provide necessary and sufficient conditions for a CFT to possess a local bulk dual [5–7]

(a third condition was added in [8]). On the other hand, the conjectured duality [9, 10]

between Vasiliev’s higher-spin gravity [11–13] and a vector model at a free or critical fixed

point provides a convenient playground for probing deep issues, such as bulk locality, in

holography. This is because it holds in a regime where in principle both sides are calculable,

in contrast to that of the standard AdS/CFT correspondence described above. A particular

example that should be tractable is the explicit computation of the quartic vertex in higher-

spin gravity, matching the four-point correlator of the free CFT. The result may shed some

light on the issue of bulk locality in higher-spin holography, and the present paper aims to

prepare the technical tools for attacking the above concrete match.

In the recent years, there has been great progress connecting CFT correlation func-

tions to scattering processes in AdS spacetime [14–17]. This progress was based on the

technology of Mellin amplitudes [18–21]. The programme of reconstructing bulk theories

from their dual CFTs via the rewriting of Mellin amplitudes as Witten diagrams appears

to apply to a large class of strongly-coupled CFTs. Unfortunately it does not directly1

apply to the simplest example of weakly-coupled CFTs: free scalar fields. Nevertheless,

a putative bulk dual appear to exist in the form of Vasiliev higher-spin gravity. At a

conceptual level, the fact that free CFTs fall outside the scope of the above holographic

reconstruction programme can be seen by inspecting the set of necessary and sufficient con-

ditions, proposed in [8], for a CFT to possess an “AdS effective field theory” dual: these

conditions are not satisfied by free large-N CFTs. Firstly, the spectra of free CFTs contain

a gapless infinite set of single-trace primary operators. Secondly and more importantly,

their Mellin amplitudes may not be bounded by a polynomial of Mellin space variables,

actually they may even not be defined at all (cf. footnote 1). In bulk terms, this translates

into the fact that, first, the spectrum of bulk fields contains an infinite tower of massless

fields with unbounded spin and, second, that the bulk theory does not admit an expan-

sion in (non-negative) powers of the cosmological constant. These properties are perfectly

consistent with key features of Vasiliev theory (see e.g. [22] for a nontechnical review), and

explain which assumptions of the Weinberg low-energy theorem2 generalised to AdS [8] are

circumvented by higher-spin gravity. Nevertheless, a tantalising open question remains:

what is precisely the status of locality in higher-spin theories?

Clarifying this issue is of fundamental importance, since locality is one of the core

properties of fundamental field theories. But even in the familiar setting of QFT, the

1Technically, this can be seen by computing the correlation function of four single-trace scalar operators

in the free O(N) vector model via Wick contraction. This gives

F (u, v) ∝ u∆ + (u/v)∆ + u∆(u/v)∆ (1.1)

where ∆ = d − 2 is the scaling dimension of the single-trace scalar operator and F (u, v) is the factor

depending on the two cross ratios that is not fixed by conformal symmetry in the four-scalar correlation

function. Following the prescription [18], the corresponding 4-point Mellin amplitude should be proportional

to the Mellin transform of F (u, v) over both variables. However, the former is not well-defined since the

function (1.1) is a sum of products of powers of u and v, while power functions do not admit a Mellin

transform.
2Which prevents long-range higher-spin exchanges.
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issue is a subtle one since for instance the Wilsonian view on QFT is based on effective

field theories, which are quasilocal. This is in the sense that they possess a perturbative

expansion (in powers of fields and their derivatives) where each individual term in the total

Lagrangian is local, though the total number of derivatives may be unbounded in the full

series.3 Indeed, a natural candidate of a suitably enlarged definition of “AdS effective field

theory” (in order to possibly contain Vasiliev theory as a paradigmatic example of bulk

dual to a free CFT) is quasilocality. An immediate proviso is the fact, often emphasised by

Vasiliev, that there is no well-defined derivative expansion around (A)dS background. More

precisely, the expansion in the number of (covariant) derivatives mixes with the expansion

in powers of the cosmological constant, since the commutator of two background covariant

derivatives is of the same order as the cosmological constant. A second proviso is the fact

that higher-spin interactions are weighted by powers of the AdS length. This property is

responsible for the absence of a weakly-coupled flat limit.

The “unfolded” equations of Vasiliev (see e.g. [23, 24] for self-contained pedagogical

reviews) provide a compact system of equations for which diffeomorphism invariance and

formal consistency are manifest4 and whose linearisation is equivalent to a system of Frons-

dal’s equations [25, 26] describing an infinite tower of massless higher-spin fields. The price

to pay for their concision is that the fields appearing in these equations are generating func-

tions for the infinite collection of dynamical fields, together with a plethora of auxiliary

fields. Indeed, auxiliary fields are introduced at each of the three key steps of Vasiliev’s con-

struction: the frame-like formulation (one adds generalised spin-like connections for each

metric-like Fronsdal field), the unfolding procedure (introduction of an auxiliary field for

each on-shell non-trivial derivative of the dynamical fields) and the doubling step (an ex-

pansion in terms of the auxiliary variables Z which allows to reconstruct the interactions).

The unfolding procedure seems deeply rooted in the higher-derivative nature of higher-spin

interactions and symmetries. This procedure is also very natural from a mathematical5

viewpoint and should guarantee the absence of strong non-localities (such as inverse powers

of the wave operator).

Nevertheless, basic issues such as the precise form that the expected quasilocality takes

in higher-spin-gravity remain technically difficult to address in the unfolded formulation,

due to the dressing of each dynamical field with an infinite collection of auxiliary fields.

For that reason, we prefer to address the issue in the more pedestrian context of the

Noether approach for metric-like fields. A concrete well-posed question one might like

to address is whether the contact terms relevant for computing a fixed n-point function

via (tree) Witten diagrams are local or not. The answer to this restricted question is

more subtle than one may think because of the following two important constraints: the

3In more mathematical terms, a “quasi” (or “perturbatively”) local functional is the spacetime integral

of a power series on the (infinite jet) space spanned by the fields and all their possible derivatives.
4These properties are automatic because Vasiliev equations take the form of a what is often called a

“free differential algebra” in the physics literature.
5The philosophy underlying Vasiliev’s unfolding procedure is similar to Cartan’s prolongation method,

where one replace differential equations by a system of algebraic equations on the jet space of fields and

their derivatives.
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external legs of the n-point function are assumed to be fixed (thus their respective spins

are specified) and we focus on the contact interactions which are necessary to perform

the computation (i.e. that contribute to the n-point function). Relaxing any of these two

constraints in the above question would lead to a negative answer since, as is well known,

interacting higher-spin theory is non-local for a spectrum with unbounded spin.6 However,

the answer to the above question is actually known to be positive for n = 3: one can

compute any 3-point function involving a triplet (s1, s2, s3) of external spins via cubic

contact terms involving at most s1 + s2 + s3 derivatives.7 We are unaware of any similar

result for higher-point functions (n > 3).8 As emphasised in [22], the locality issue of

quartic interactions is important because any cubic vertex which is gauge invariant till this

order can be consistently completed by non-local higher-order (quartic, etc) vertices [38].

It is the assumption of (quasi)locality that imposes very strong constraints on the set of

possibilities.

To tackle this question, our strategy is to look to the AdS/CFT correspondence for

some assistance. We work in the context of bosonic higher-spin gravity on AdSd+1 (d > 2),9

which for un/broken higher-spin symmetry is conjectured to be dual to a CFTd of massless

scalars in the vector representation of an internal symmetry group at the free/critical fixed

point. The duality has already passed remarkable tests at tree level for 3-point Witten

diagrams [40, 41] (see also [42] for a review), and at one-loop level for vacuum free energies

and Casimir energies [43–46]. Moreover, the n-pt correlation functions of the free CFT3

have been obtained directly in the unfolded formulation via suitable traces in the auxiliary

twistor space [47–49]. Within the metric-like formulation, tests of the correspondence at

the quartic level (i.e. for four-point functions) are yet to be achieved, as they would require

the knowledge of quartic higher-spin interactions contributing to the total amplitude. As

mentioned above, these are currently unknown in the metric-like formulation. On the other

hand, in possession of the CFT result (which is relatively easy to compute) and the ability

to calculate the remaining contributing Witten diagrams that involve lower-order (known)

interactions (cf. refs in footnote 7.), one should instead be able to apply the correspondence

to infer the form of the quartic vertex and hence establish whether or not they are local.

The most natural place to begin this endeavour would be to simply consider the four-

point function of the scalar singlet bilinear operator in the d-dimensional free O (N) vector

model, which is proposed to be dual to the minimal higher-spin theory on AdSd+1 con-

taining gauge fields of all even spins s = 2, 4, . . . and a single real scalar field (s = 0). We

work in this minimal framework in the view that our results can easily be extended to the

non-minimal theory of all integer spins and a complex boundary scalar, and possible gen-

6This is particularly manifest in Vasiliev theory, since it makes use of star products producing infinitely

many possible contractions among the fields and their derivatives. In particular, the quartic vertex of four

scalar bulk fields arising from Vasiliev theory is expected to be quasilocal with an unbounded number of

derivatives, hence non-local.
7This is a straightforward consequence on known bounds on the total number of derivatives of nontrivial

cubic vertices on AdS for any given triplet of spins, see e.g. [27–29] for recent results. Bulk locality of

three-point functions was recently discussed in [30].
8However, see [31–37] on quartic interactions.
9For AdS3/CFT2 higher-spin holography, see [39] and references therein.
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Figure 1. Total four-point Witten diagrams contributing to the bulk computation of the four-

point function of the scalar singlet bilinear operator O∆ in the O (N) vector model. Here, ∆ is

the dimension of the bulk scalar dual to O∆, and the Pi are fixed points on the boundary of

AdSd+1. In the present paper, we compute diagram 1.(a) (the “s-channel”) for a spin-s gauge

boson ϕs. Computations for the remaining exchange channels 1.(b) and 1.(c) follow in the same

way. Diagram 1.(d) illustrates the quartic scalar contact interaction.

eralisations thereof. Within conformal field theory, the scalar four-point function is very

straightforward to work out via Wick contractions (and is essentially given in footnote 1).

The Witten diagrams entering the holographic computation are exchanges of gauge fields

of all even integer spin between two pairs of the real bulk scalar, and of course the quartic

scalar contact interaction we seek. These are displayed in figure 1. In the present paper,

we compute the exchange10 of a given massless spin-s gauge field between external scalars

of arbitrary mass in AdSd+1, laying down some of the ground work for the eventual extrac-

tion of the quartic vertex. It should be noted that although we compute the exchange in

the context of the minimal higher-spin theory containing only even-spin gauge fields, they

directly apply to the non-minimal theory containing all positive integer spin gauge fields.

This is because the non-trivial cubic vertices between two real scalars and a spin-s gauge

field entering the exchange computations are zero for odd spins.

In order to achieve this goal, certain technical hurdles first need to be overcome. For

example, the explicit forms of the bulk-to-bulk propagators of the massless bosonic spin-s

fields in the metric-like formalism need to be established. Scalar and spinor propagators

date back to the old literature on AdS field theory [62–65], while for the massive and

massless spin-1 fields they were obtained in [66]. More recently, massive and massless spin-2

propagators were established in [52, 67] and [68], where in the latter propagators for p-forms

were also derived. Spin-2 propagators were also established for de Sitter space in [69–72].

Unfortunately, the methods employed in these works become intractable when applied in

the hope of deriving analogous results for the higher-spin massless propagators. However,

10In the AdS/CFT literature, four-point exchange computations of lower spin (s ≤ 2) fields were computed

in [50–57]. In the context of higher-spins, see [58–61].
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Figure 2. Use of the split representation for the bulk-to-bulk propagators in the exchange results

in a decomposition in terms of products of three-point Witten diagrams, involving a pair of real

scalar fields and a field whose spin, s − `, is summed over. The common boundary point of the

three-point functions is integrated over. This is to be compared with the definition (3.64) of the

conformal partial wave expansion in conformal field theory.

recent applications of harmonic analysis in AdS space have been successful in determining

the traceless part of bulk-to-bulk propagators for massive bosonic fields of arbitrary integer

spin [61].11 In the present paper, we adapt these methods to establish the complete off-shell

form of the metric-like massless bosonic higher-spin bulk-to-bulk propagators, in arbitrary

dimensions and in various gauges. The possession of the propagators in multiple gauges

allows us to check the consistency of our results at various steps along the way.

A particular virtue of the harmonic analysis is that the resultant form of the bulk-

to-bulk propagators admits a split representation, in which they can be expressed as a

sum of integral products of two bosonic bulk-to-boundary propagators [77, 78].12 As a

consequence, their use in the exchange computation causes the amplitude to decompose

into products of three-point functions (see figure 2), for which effective methods to compute

are already known. This decomposition of the exchange amplitude is reminiscent of the

conformal partial wave expansion in conformal field theory. Drawing on this similarity,

we express our results for the exchange computation such that, when supplemented with

the results from the other exchange channels and summing the contributions from each

spin (figure 1), they can be directly compared with the analogous form of CFT result.13

Our computations are greatly facilitated by working in the ambient formalism, which is

particularly convenient when addressing higher-spin (AdS or conformal) fields. It has been

applied in many contexts, for example in [27, 28, 61, 76, 83–86].

In this holographic reconstruction of bulk quartic vertices, there are also certain sub-

tleties regarding cubic interactions that need to be confronted, which ultimately influence

the cubic vertices entering the exchanges. At the cubic level, there is a degree of arbi-

trariness provided by “trivial” vertices that vanish on the free-shell. In the language of

conserved currents (since any cubic interaction involving two scalar fields can be expressed

in terms of a coupling between a gauge field and a current), these correspond to “improve-

11For previous literature on higher-spin bulk-to-bulk propagators, see: [59, 73–76].
12The split representations of scalar, spin-1 and spin-2 propagators can be found in [14, 20, 61, 79]. Note

that the discussion generated in the literature by the split form of the graviton propagator [79, 80] was

recently addressed in [61].
13See for example [81, 82], and the ensuing discussions.
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ments” of genuine Noether currents.14 In the context of the computation of the exchange

diagrams, this ambiguity translates into the question of how such terms should enter in

the cubic vertices. In the present paper, we also briefly study the effect of improvement

terms in the four-point exchange. These are usually neglected in studies of cubic vertices,

however we find that such trivial vertices in fact enter non-trivially in exchange computa-

tions in the present context. Further, their presence in the exchange diagrams generates

quartic contact terms, such that the original exchange amplitude decomposes into an ex-

change governed by the on-shell part of the vertices, plus a quartic scalar contact diagram.

This highlights a collaboration between quartic and trivial cubic vertices, and we briefly

comment on the implication for the holographic study of quartic contact interactions in

the conclusion.

Summary of results. The road towards the results for the exchange computation in

this paper is a long one, establishing the necessary supplementary new results and making

numerous pit stops to introduce the required existing results along the way. In part, the

reason for this was to make the presentation self contained, and we therefore for convenience

briefly summarise our main results below.

In section 3, we use harmonic analysis in anti-de Sitter space to derive, in arbitrary

dimensions and in various gauges, the complete off-shell form of the bulk-to-bulk propa-

gators for massless bosonic spin-s fields governed by Fronsdal’s equations. This is carried

out in the following gauges: de Donder gauge (eq. (3.23), section 3.3), a traceless gauge

(eq. (3.33), section 3.4), and a gauge which we refer to as the “manifest trace gauge” as it

expresses the propagator in a decomposition that makes manifest the metric dependence

(eqs. (3.35) and (3.51), section 3.5).

In section 4, we then compute the four-point exchange of a single spin-s gauge boson

between pairs of the real scalar for the “s-channel” — figure 1. (a). The computations

for the other two channels follow in the same way. This is done in the traceless gauge

(eq. (4.19), section 4.2) and the manifest trace gauge (eq. (4.24), section 4.3), and the

results are expressed in the form of a conformal partial wave expansion on the boundary.

We check that the computations in both gauges are in agreement.

Outline of paper. We begin by introducing the ambient formalism in section 2, where

both bulk AdS isometries and boundary conformal symmetries are manifest. In particular,

we review the material necessary for handling symmetric tensor fields on AdS and its

boundary in a compact way.

In section 3, the metric-like bulk-to-bulk propagators for symmetric tensor gauge

bosons on AdSd+1 of any spin are determined in three distinct gauges. To do so, in

section 3.1 we review the metric-like formulation of massless bosonic higher-spin fields in

anti-de Sitter space, and specify the equation that the corresponding bulk-to-bulk propa-

gators should satisfy. Solving the propagator equations is facilitated by working in a basis

of AdS harmonic functions, which we review in section 3.2. With this, we then proceed to

14The relevance of such terms was already emphasised in [87] in the particular case of the “Born-Infeld

tail”.
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solve for the propagators in de Donder gauge in section 3.3, a traceless gauge in section 3.4

and what we define as a “manifest trace gauge” in section 3.5.

Before proceeding to compute the exchange, we first review the existing ingredients

we use along the way. We begin with the ambient representation of AdS bulk-to-boundary

propagators for symmetric tensor fields in section 3.6. Then, in section 3.7 we introduce the

split representation of the derived bulk-to-bulk propagators, in which they are expressed

as sums of integral products of pairs of the aforementioned bulk-to-boundary propagators.

Further, we discuss the ensuing decomposition of exchange amplitudes, and recall ambient

methods to evaluate the resulting three-point bulk integrals. Parallels with the conformal

partial wave expansion in CFT are then drawn. We establish the explicit form of the cubic

vertex we use between the two bulk scalars and the exchanged higher-spin gauge field in

section 4.1.

Finally, in the traceless gauge in section 4.2 and in the manifest trace gauge section 4.3,

we compute the four-point exchange of a single spin-s gauge boson between two pairs of

real scalars in AdSd+1. In section 4.4 we verify for explicit examples that the exchange

computations in the two different gauges are consistent with each other. We then discuss

the subtleties related to improvements of bulk currents in the last section 4.5.

We briefly recapitulate our results in section 5, and list the issues that remain to be

addressed in order to concretely extract the quartic scalar vertex from the holographic

correspondence via the scalar singlet bilinear four-point function of the free vector model.

Some technical points have been relegated to appendices: appendix A contains various

useful formulae on ambient tensors, appendix B details the computation of the exchange

amplitude in the traceless gauge, while appendices C and D provide the formulae relating

respectively the single and multiple traces of bulk conserved currents to lower rank currents.

2 Ambient space formalism

In this paper, we work with fields defined on (d+ 1)-dimensional Euclidean anti-de Sitter

space which will be denoted in the sequel, with a slight but standard abuse of terminology,

as AdSd+1.15 In fact, Euclidean anti-de Sitter space is nothing but another name for

hyperbolic space. It is often realised as the (d+ 1)-dimensional Poincaré ball, therefore its

d-dimensional conformal boundary ∂AdSd+1 is topologically a sphere Sd.

As was first noted by Dirac [88, 89], in such a set up it is often useful to make the

mutual SO (d+ 1, 1) symmetry of AdSd+1 and its conformal boundary manifest, so that the

consequential symmetry constraints are manifestly realised. This is particularly effective

when considering fields of non-zero spin. In this formalism, AdSd+1 is viewed as one sheeted

of the hyperboloid Hd+1 of curvature radius L,

Hd+1 : X2 = −L2, X0 > 0, (2.1)

living in a (d+ 2)-dimensional flat ambient space Rd+1,1. Here we denote the Cartesian

coordinates of the ambient space by XA (A = +,−, 1, . . . , d), and the space itself is endowed

15All results can be Wick-rotated to Minkowski signature, with careful treatment of the iε prescription.
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Figure 3. Visualisation of the ambient space with space-like axes Xa (a = 1, . . . d), and light-like

axes X+ and X−. The hypercone X2 = 0 is in green and the hyperboloid X2 = −L2 is in blue.

The paraboloid is the Poincaré section obtained by intersecting the light cone with a light-like

hyperplane at constant X+, and is illustrated in the figure for X+ = 1.

with Minkowski metric ηAB of signature ( − + . . . + ) which defines the quadratic form

X2 = ηABX
AXB.

To be more precise, denoting the intrinsic coordinates on Hd+1 by xµ, we are consid-

ering the isometric smooth embedding

i : Hd+1 ↪−→ Rd+1,1 : xµ 7−→ XA (xµ) . (2.2)

For example, in Poincaré coordinates xµ = (z, ym), m = 0, .., d− 1,

XA =
1

z

(
1, z2 + y2, ym

)
. (2.3)

Towards the boundary of AdSd+1, the hyperboloid asymptotes to the light cone X2 = 0,

and the conformal boundary is identified with the ambient projective cone of light rays.

These are described by ambient homogeneous coordinates PA, subject to

P 2 = 0, P ∼ λP, λ 6= 0, (2.4)

where the equivalence relation expresses that one deals with rays.

In the Poincaré patch,

PA =
1

y

(
1, y2, ym

)
, (2.5)

which traces out a Poincaré section of the light cone along X+ = 1. This set up is

summarised in figure 3.

Throughout this paper we use PA for the ambient space representation of points on

∂AdSd+1, and XA for the ambient AdSd+1 coordinates.

The isometry group SO (d+ 1, 1) acts linearly on the ambient Rd+1,1, which gives rise to

the isometry group action on AdSd+1 and the action of the conformal group on ∂AdSd+1.

By expressing fields on AdSd+1 and its conformal boundary in terms of SO (d+ 1, 1)-

covariant fields defined in the ambient space, their SO (d+ 1, 1) symmetry is made manifest.

Precisely how this is attained is reviewed in the following sections.
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2.1 Ambient AdS tensors

To compute the four-point exchange of arbitrary rank AdSd+1 tensors in the ambient

framework, it is required to establish how such tensors are represented. A smooth rank-r

covariant tensor field tµ1...µr (x) on AdSd+1 is represented in ambient space Rd+1,1 by a

SO (d+ 1, 1)-tensor TA1...Ar (X), whose pullback onto the AdS manifold satisfies

i∗ : TA1...Ar (X) 7−→ tµ1...µr (x) =
∂XA1 (x)

∂xµ1
. . .

∂XAr (x)

∂xµr
TA1...Ar (X (x)) . (2.6)

The pullback is surjective, so every such tensor on the AdS manifold has an ambient

representative, but it is not injective — they are not represented uniquely. This is be-

cause uplifting to one higher dimension introduces extra degrees of freedom. Indeed, since

for Hd+1

X2 = −L2 =⇒ ∂X

∂xµ
·X

∣∣∣∣
Hd+1

= 0, (2.7)

the kernel of the pullback (2.6) contains “pure gauge” tensors with components normal to

the AdS manifold, which have no influence in the theory defined on AdS.16

To obtain a unique representation of AdS tensors in ambient space, one needs to

eliminate the extra components introduced. This can be achieved by projecting the ambient

tangent bundle onto the hyperboloid tangent bundle. In practice, one considers ambient

tensors which are tangent to AdS in the sense that they satisfy

XA1TA1...Ar

∣∣∣∣
Hd+1

= 0. (2.8)

Explicitly, one can apply the projection operator

PBA = δBA +
XAX

B

L2
, (2.9)

which acts on ambient tensors as

(PT )A1...Ar
:= PB1

A1
. . .PBrAr TB1...Br , XAi (PT )A1...Ai...Ar

= 0. (2.10)

For example, the intrinsic AdS metric

gµν =
∂XA

∂xµ
∂XB

∂xν
ηAB, (2.11)

can be represented by the ambient tensor

GAB = PCAPDB ηCD = ηAB +
XAXB

L2

= ηAB +XAXB. (2.12)

In the final equality of the above we set the AdS radius L = 1, which we adopt throughout

the rest of the paper.

16For example, for ambient vector fields V A (X), the kernel is spanned by vector fields of the form

V A (X) = XAS (X).
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It is natural to expect that the ambient representative ∇A of the covariant derivative

∇µ in AdS space is related to taking a partial derivative ∂A in the flat ambient space.

However care must be taken: schematically,

∇ = P ◦ ∂ ◦ P (2.13)

which ensures that the result is tangent to the AdS manifold, and also crucially that the

partial derivative is acting on an object which already represents an AdS tensor. For

example,

∇BTA1...Ar = PBCPA1
C1 . . .PArCr

∂

∂XC
(PT )C1...Cr

(X) . (2.14)

Symmetric AdS tensors. We consider higher-spin fields in AdSd+1 represented by

symmetric tensors, and often work with tensors which are both symmetric and traceless.

In the following, we review how such tensors can be managed in a compact way.

For symmetric tensors, to handle the indices efficiently we can encode them in gener-

ating functions. For intrinsic symmetric tensors,

tµ1...µr (x) −→ t (x, u) =
1

r!
tµ1...µr (x)uµ1 . . . uµr , (2.15)

where we have introduced the constant auxiliary variable uµ.

For the corresponding ambient tensors, tangent to AdSd+1

TA1...Ar (X) −→ T (X,U) =
1

r!
TA1...Ar (X)UA1 . . . UAr , with X · U = 0. (2.16)

Here, the constrained ambient auxiliary vector UA ensures that we are working modulo

components which drop out after projection (2.9) onto the tangent space of Hd+1, via

X · U = 0.

In sum, the ambient representative TA1...Ar (X) of a symmetric tensor tµ1...µr (x) on

AdSd+1 can be fully encoded in a polynomial T (X,U) defined on the submanifold X2+1 =

0 = X · U .

Symmetric and traceless AdS tensors. Generating functions are especially useful for

manipulations with symmetric and traceless tensors. Here, the tracelessness is enforced by

further requiring that the auxiliary vectors are null:

tµ1...µr (x) −→ t (x,w) =
1

r!
tµ1...µr (x)wµ1 . . . wµr , w2 = 0. (2.17)

And for the ambient representative,

TA1...Ar (X) −→ T (X,W ) =
1

r!
TA1...Ar (X)WA1 . . .WAr , X ·W = W 2 = 0. (2.18)

The two conditions X ·W = W 2 = 0 on the ambient auxiliary vector WA imply that the

ambient tensor TA1...Ar (X) is only determined up to radial or pure trace tensors, i.e. it

is an equivalence class TA1...Ar ∼ X(A1
SA2...Ar) + η(A1A2

SA3...Ar) of which one can always

choose a tangential and traceless representative.
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Just as the ambient representative GAB of the AdS metric defines a projector PAB onto

tensors tangential to the hyperboloid Hd+1, one can apply

P{A1

B1 . . .PAr }
Br =

1

r!

∑
π

PAπ1

B1 . . .PAπr
Br − traces, (2.19)

to a general rank-r ambient tensor to make it symmetric, traceless and tangential to Hd+1.

The above sum is over all permutations of the indices, and the traces are subtracted

using GAB.

When working with generating functions, we implement the above projection by a

differential operator KA [61, 86, 90]

1

r!
(
d−1

2

)
r

KA1 . . .KArW
B1 . . .WBr = P{A1

B1 . . .PAr }
Br , (2.20)

where (a)r = Γ (a+ r) /Γ (a) is the rising Pochhammer symbol. Accordingly, KA is tangent(
XAKA = 0

)
, symmetric (KAKB = KBKA) and traceless

(
KAKA = 0

)
. In this paper, KA

is used primarily to implement contractions between symmetric and traceless tensors. Its

explicit form is lengthy, and is given by (A.3) in appendix A.

By using KA to make symmetric and traceless contractions, involved manipulations

of symmetric and traceless tensors can be made more manageable. For example, the

divergence of a symmetric and traceless rank-r tensor can be computed as17

(∇ · T ) (X,W ) =
1

r!
(
d−3

2 + r
) (∇ ·K)T (X,W ) . (2.21)

Then manipulations involving the divergence of T (X,W ) can be simplified by combining

the above with other identities involving KA. A collection of those used in this work can

be found in appendix A.

Throughout, we reserve WA and the corresponding intrinsic wµ as auxiliary variables

for tensors which are both symmetric and traceless only. For symmetric tensors, we use

UA and uµ.

2.2 Ambient boundary tensors

To make contact with the dual CFT in the four-point exchange computations, in this

section we include the extension of the ambient formalism to fields defined on the conformal

boundary of AdSd+1.

In the boundary CFT, the operators dual to the higher-spin fields in the bulk are

primary operators represented by symmetric and traceless tensors. A spin-r primary field

fm1...mr (y) of dimension ∆ is represented in the ambient formalism by a SO (d+ 1, 1)-

tensor FA1...Ar (P ) on the light cone P 2 = 0 (2.4). This ambient tensor is also symmetric

and traceless, as well as homogeneous of degree −∆:

FA1...Ar (λP ) = λ∆FA1...Ar (P ) , λ > 0. (2.22)

17One should note that ∇ ·K = K · ∇ on the submanifold X2 + 1 = X ·W = W 2 = 0.
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To be tangent to the light cone, FA1...Ar (P ) must satisfy

PA1FA1...Ar = 0. (2.23)

This eliminates one of the two additional components per index compared to the corre-

sponding intrinsic field fm1...mr (y) in two lower dimensions. The remaining component

is accounted for when one notices that anything proportional to PA (with the correct

symmetry properties) lies in the kernel of the pull back

fm1...mr (y) =
∂Y A1 (y)

∂ym1
. . .

∂Y Ar (y)

∂ymr
FA1...Ar (P (y)) , (2.24)

just like the “pure gauge” tensors in the ambient description of AdS space in the previous

section. However, in this case being on the light cone (2.4) means that the tangential con-

dition (2.23) is not sufficient to resolve the ambiguity introduced by the non-trivial kernel.

Therefore FA1...Ar (P ) is defined up to the addition of an arbitrary tensor proportional to

PA, and this “gauge invariance” takes care of the residual freedom.

Analogous to the ambient description symmetric and traceless tensors in AdS space

in section 2.1, the symmetric and traceless boundary tensors can be encoded in generating

polynomials

FA1...Ar (P ) −→ F (P,Z) =
1

r!
FA1...Ar (P )ZA1 . . . ZAr , Z2 = 0. (2.25)

Tangentiality to the light cone (2.23) can be enforced by requiring F (P,Z + αP ) =

F (P,Z) for any α, and the “gauge freedom” is represented by the constraint Z · P = 0.

Contractions between symmetric and traceless tensors can be implemented by the

boundary counter part [86, 90–92] of (2.20),

DA
Z =

(
d

2
− 1 + Z · ∂

∂Z

)
∂

∂ZA
− 1

2
ZA

∂2

∂Z · ∂Z
. (2.26)

3 Massless higher-spin bulk-to-bulk propagators

To compute four-point higher-spin exchanges, we first need to derive bulk-to-bulk propa-

gators for massless bosonic higher-spin fields. To this end, in section 3.1 we recapitulate

free massless bosonic higher-spin fields in AdS and specify the equation that the propa-

gators should satisfy. We then review various features of harmonic bi-tensors, which will

be useful in solving for the propagators in different gauges in the subsequent sections 3.3

to 3.5. We conclude by preparing the ground for the computation of the higher-spin ex-

change, which will be given in the form of a boundary conformal partial wave expansion:

we briefly recall existing results for bulk-to-boundary propagators, the split representation

for the bulk-to-bulk propagators and the subsequent factorisation of exchange amplitudes.

For the re-writing of the exchange amplitude, we also review the conformal partial wave

expansion in conformal field theory.
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3.1 Free massless higher-spin fields in AdS

The actions describing non-interacting spin-s massless particles in the Minkowski space

and in (A)dS were established by Fronsdal [25, 26]. In (A)dSd+1, it reads18

S =
s!

2

∫ √
|g| dd+1x ϕs(x, ∂u)

(
1− 1

4
u2∂u · ∂u

)
Fs(x, u,∇, ∂u)ϕs(x, u)

∣∣∣
u=0

, (3.1)

where Fs(x, u,∇, ∂u) is the Fronsdal operator [84, 93]

Fs(x, u,∇, ∂u) = �−m2
s − u2(∂u · ∂u)− (u · ∇)

(
(∇ · ∂u)− 1

2
(u · ∇)(∂u · ∂u)

)
, (3.2)

m2
s ≡ s2 + s(d− 5)− 2(d− 2),

and ϕs(x, u) is a generating function for the off-shell spin-s Fronsdal field, which is a rank-s

symmetric double-traceless tensor

ϕs(x, u) ≡ 1

s!
ϕµ1µ2...µsu

µ1uµ2 . . . uµs , (∂u · ∂u)2ϕs(x, u) = 0. (3.3)

The action (3.1) is gauge invariant with respect to transformations

δϕs(x, u) = (u · ∇)εs−1(x, u), (3.4)

where εs−1(x, u) is a generating function for a rank-(s− 1) symmetric and traceless gauge

parameter

εs−1(x, u) ≡ 1

(s− 1)!
εµ1µ2...µs−1u

µ1uµ2 . . . uµs−1 , (∂u · ∂u)εs−1(x, u) = 0. (3.5)

One can introduce an interaction with a current by adding a term

Sint = −s!
∫ √

|g| dd+1x ϕs(x, ∂u)Js(x, u)
∣∣∣
u=0

, (3.6)

where it is required by consistency with higher-spin gauge symmetry that the current is

double-traceless and conserved up to pure trace terms. That is,

(∂u · ∇)Js(x, u) = u2Qs−3(x, u) (3.7)

for some Q(x, u). The associated equation of motion is(
1− 1

4
u2∂u · ∂u

)
Fs(x, u,∇, ∂u)ϕs(x, u) = Js(x, u). (3.8)

It is also possible to relax the trace constraints (3.5) on the gauge parameter and the

corresponding double-trace constraints (3.3) on the gauge field [58, 94, 95]. Consequently,

the unconstrained external current Js, with which the gauge field interacts, must be strictly

conserved

(∂u · ∇)Js(x, u) = 0. (3.9)

This is in contrast to the double-traceless Js of the constrained formulation above, which

are only required to be partially conserved (3.7).

18For the rest of the paper, when expressing tensor contractions through generating functions we implicitly

set the auxiliary vector to zero — as in (3.1).
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Bulk-to-bulk propagators. We define the spin-s bulk-to-bulk propagator

Πs(x1, u1, x2, u2) as a bi-tensor that determines the spin-s field sourced by the double-

traceless current Js(x, u)

ϕs(x1, u1) = −s!
∫ √

|g| dd+1x2 Πs(x1, u1, x2, ∂u2)Js(x2, u2)
∣∣∣
u2=0

.

We see that the propagator must then satisfy(
1− 1

4
u2

1∂u1 · ∂u1

)
Fs(x1, u1,∇1, ∂u1)Πs(x1, u1, x2, u2) =

− {{(u1 · u2)s}} δ(x1, x2) + (u2 · ∇2)Λs,s−1(x1, u1, x2, u2), (3.10)

where {{•}} is a projection onto u1-double-traceless part:19

(∂u · ∂u)2 {{f(u, x)}} = 0,

and {{f(u, x)}} = f(u, x) iff (∂u · ∂u)2f(u, x) = 0.

In (3.10) Λs,s−1 is a bi-tensor which is traceless in tangent indices at x2 and double-traceless

in tangent indices at x1

(u2 · ∂u2)Λs,s−1 = s− 1, (u1 · ∂u1)Λs,s−1 = s,

(∂u2 · ∂u2)Λs,s−1 = (∂u1 · ∂u1)2Λs,s−1 = 0.

It acts as a pure gauge term, and will cancel out when integrating (3.10) against any

conserved current. This ambiguity leads to the ambiguity in the definition of the propagator

Πs(x1, u1, x2, u2) ∼ Πs(x1, u1, x2, u2) + (u2 · ∇2) E2,s,s−1(x1, u1, x2, u2),

where E2 is defined by Λ.

Fixing Λ does not yet specify the propagator uniquely. Indeed, due to gauge invari-

ance (3.4), the left hand side of (3.10) is not sensitive to variations of the propagator of

the form

Πs(x1, u1, x2, u2) ∼ Πs(x1, u1, x2, u2) + (u1 · ∇1) E1,s−1,s(x1, u1, x2, u2),

where E1 has the same rank and trace properties as E2, but with ‘1’ and ‘2’ interchanged.

The latter freedom is usually fixed by imposing a gauge, which makes the operator on the

left hand side of (3.10) non-degenerate and hence, it defines the propagator uniquely.

To summarise, the gauge ambiguity in the definition of the propagator is

Πs(x1, u1, x2, u2) ∼ Πs(x1, u1, x2, u2) (3.11)

+ (u1 · ∇1)E1,s−1,s(x1, u1, x2, u2) + (u2 · ∇2)E2,s,s−1(x1, u1, x2, u2).

In sections 3.3 to 3.5 we solve (3.10) in different gauges, after introducing the tools we use

to do so in section 3.2. Note that the propagator is symmetric only if the symmetries asso-

ciated with E1 and E2 are fixed accordingly. Also, let us stress that the traceless-transverse

gauge, which can be achieved everywhere for free Fronsdal fields, cannot be achieved for

the propagator due to presence of the source term on the right hand side of (3.10).

19This makes the result also double-traceless in u2 as a consequence.
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3.2 Basis of harmonic functions

After fixing a gauge, solving equation (3.10) for the bulk-to-bulk propagators is facilitated

by working in a particular basis of AdS bi-tensorial harmonic functions,20 which we review

in this section. The problem is then reduced to an algebraic one, i.e. to identify coefficients

of the basis functions in which the propagators are expanded. In this basis, we shall see that

the task essentially amounts to algebraic manipulations of symmetric and traceless tensors,

the machinery for which has already been well established (in the ambient formalism, see

for example [61, 86])

The AdS bi-tensorial harmonic functions Ων,` (x1, u1, x2, u2) are spin-` eigenfunctions

of the Laplacian operator21(
�1 +

d2

4
+ ν2 + `

)
Ων,` (x1, u1, x2, u2) = 0, ν ∈ R (3.12)

which are also traceless and transverse

(∂u1 · ∂u1) Ων,` (x1, u1, x2, u2) = 0, (∇1 · ∂u1) Ων,` (x1, u1, x2, u2) = 0. (3.13)

Tracelessness in particular means that Ων,` (x1, u1, x2, u2) can equivalently be represented

with Ων,` (x1, w1, x2, w2), w2
1 = w2

2 = 0.

That these functions provide a basis for arbitrary spin bulk-to-bulk propagators is due

to the completeness relation

(w1 · w2)r δd+1 (x1, x2) =

r∑
`=0

∫ ∞
−∞
dν cr,` (w1 · ∇1)` (w2 · ∇2)` Ων,r−` (x1, w1, x2, w2) , (3.14)

where

cr,`(ν) =
2` (r − `+ 1)`

(
d
2 + r − `− 1

2

)
`

`! (d+ 2r − 2`− 1)`
(
d
2 + r − `− iν

)
`

(
d
2 + r − `+ iν

)
`

. (3.15)

Then the set of bi-tensors{
(w1 · ∇1)` (w2 · ∇2)` Ων,r−` (x1, w1, x2, w2)

∣∣ ν ∈ R, ` = 0, 1, . . . , r
}
, (3.16)

form a complete basis for arbitrary rank-r symmetric and traceless tensors in AdSd+1.

In the following, we utilise this basis to solve for the massless higher-spin bulk-to-bulk

propagators in particular gauges. Namely, de Donder gauge (section 3.3) and a traceless

gauge (section 3.4).

3.3 de Donder gauge

It is often useful to eliminate gradients and divergences from the Fronsdal tensor (3.2). To

do so, one usually imposes de Donder gauge

(∇ · ∂u)ϕs(x, u)− 1

2
(u · ∇)(∂u · ∂u)ϕs(x, u) = 0. (3.17)

20See for example section 4.C in [96], and more recently in a similar context: [61].
21It should be noted that the r.h.s. of the bi-linear equation (3.12) is exactly equal to zero everywhere.
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In this gauge, the Fronsdal tensor reads

Fs(x, u,∇, ∂u)ϕs(x, u) = (�−m2
s)ϕs(x, u)− u2(∂u · ∂u)ϕs(x, u). (3.18)

The double-traceless propagator can be decomposed into two traceless parts as follows

Πs(x1, u1, x2, u2) = Π{0}s (x1, u1, x2, u2) + u2
1u

2
2Π
{1}
s−2(x1, u1, x2, u2),

(∂u1 · ∂u1)Π{0}s = (∂u2 · ∂u2)Π{0}s = 0 = (∂u1 · ∂u1)Π
{1}
s−2 = (∂u2 · ∂u2)Π

{1}
s−2 . (3.19)

Analogously, we can decompose

{{(u1 · u2)s}} = {(u1 · u2)s}+
s(s− 1)

2(d+ 2s− 3)
u2

1u
2
2

{
(u1 · u2)s−2

}
. (3.20)

As a consequence, (3.10) splits in two parts

(�1 −m2
s)Π

{0}
s (x1, u1, x2, u2) = −{(u1 · u2)s} δ(x1, x2), (3.21)

(�1 −m2
t )Π

{1}
s−2(x1, u1, x2, u2) =

s(s− 1)

(d+ 2s− 3)(d+ 2s− 5)

{
(u1 · u2)s−2

}
δ(x1, x2),

where

m2
t = s2 + (d− 1)s− 2. (3.22)

Solving for the propagator. Both Π
{0}
s and Π

{1}
s−2 are traceless, so we can expand them

in the basis (3.16) of harmonic functions for symmetric and traceless tensors,

Π{0}s =

s∑
`=0

∫ ∞
−∞

dνf
{0}
s,` (ν) (W1 · ∇1)` (W2 · ∇2)` Ων,s−` (X1, X2;W1,W2) , (3.23)

Π
{1}
s−2 =

s−2∑
`=0

∫ ∞
−∞

dνf
{1}
s−2,` (ν) (W1 · ∇1)` (W2 · ∇2)` Ων,s−2−` (X1, X2;W1,W2) ,

where f
{0}
s,` and f

{1}
s−2,` remain to be fixed by (3.21). Using the equation of motion (3.12)

for Ω, the completeness relation (3.14) and the commutator (A.10), it is straightforward

to see that

f
{0}
s,` =

cs,`

m2
s + d2

4 + ν2 + s− `+ l(d+ 2s− `− 1)
, (3.24)

f
{1}
s−2,` =− s(s− 1)

(d+ 2s− 3)(d+ 2s− 5)

cs−2,`

m2
t + d2

4 + ν2 + s− `− 2 + `(d+ 2s− `− 5)
. (3.25)

3.4 Traceless gauge

We now derive the propagators in a traceless gauge. Since setting the trace of a higher-spin

field to zero is only a partial gauge fixing, in this case we need to further restrict the form

of the traceless ansatz to obtain a unique solution to the propagator equation.

To set the trace of the spin-s Fronsdal field to zero, the gauge parameter εs−1 (x, u)

needs to be chosen such that

(∇ · ∂u) εs−1 (x, u) = − (∂u · ∂u)ϕs. (3.26)
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This equation can be solved for any trace (∂u · ∂u)ϕs, after which (∇ · ∂u) εs−1 is fixed. In

this partial gauge, the field ϕs (x, u) is left with residual gauge symmetry

δϕs(x, u) = (u · ∇)εs−1(x, u), (∇ · ∂u) εs−1 (x, u) = (∂u · ∂u) εs−1 (x, u) = 0. (3.27)

Subject to the condition (∂u · ∂u)ϕs = 0, the Fronsdal tensor then reads

Fs(x, u,∇, ∂u)ϕs(x, u) (3.28)

=
(
�−m2

s

)
ϕs (x, u)− (u · ∇) (∇ · ∂u)ϕs (x, u) +

1

d+ 2s− 3
u2 (∇ · ∂u)2 ϕs (x, u) ,

which is simply its traceless part.

To solve (3.10) for the propagator Πs(x1, u1, x2, u2) in a traceless gauge, one needs to

fully fix the residual gauge symmetry (3.27). We find that this can be done by demanding

that, in addition to the traceless condition, the propagator is symmetric under u1 ↔ u2.22

The equation for the propagator is then(
�1 −m2

s

)
Πs(x1, u1, x2, u2)− (u1 · ∇1) (∇1 · ∂u1) Πs(x1, u1, x2, u2) (3.29)

+
1

d+ 2s− 3
u2

1 (∇1 · ∂u1)2 Πs(x1, u1, x2, u2) = −{(u1 · u2)s} δ(x1, x2),

with

∂u1 · ∂u1Πs(x1, u1, x2, u2) = ∂u2 · ∂u2Πs(x1, u1, x2, u2) = 0, (3.30)

Πs(x1, u1, x2, u2) = Πs(x1, u2, x2, u1). (3.31)

In the ambient formalism, using the null auxiliary vectors W1,2 this is

(
�1 −m2

s

)
Πs −

2

d+ 2s− 3
(W1 · ∇1) (∇1 ·K1) Πs = − (W1 ·W2)s δ (X1, X2) , (3.32)

with Πs (X1, X2;W1,W2) = Πs (X1, X2;W2,W1).

Solving for the propagator. Since the propagator is traceless, we can again expand in

the basis (3.16):

Πs =

s∑
`=0

∫ ∞
−∞

dνfs,` (ν) (W1 · ∇1)` (W2 · ∇2)` Ων,s−` (X1, X2;W1,W2) , (3.33)

with fs,` (ν) arbitrary functions to be determined. As in the de Donder gauge, by simply

employing (3.12), (3.14), (A.10) and also the commutator (A.11), the propagator equa-

tion (3.32) uniquely determines these basis coefficients to be

fs,` (ν) = −cs,` (ν)
d+ 2s− 3

(`− 1) (2s+ d− `− 3)

1

ν2 +
(
s− 2 + d

2

)2 . (3.34)

22Note that (3.10) does not assume this symmetry.
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3.5 Manifest trace gauge

In the previous two subsections, we showed how working in the basis of harmonic func-

tions (3.16) allowed us to straightforwardly determine the massless higher-spin bulk-to-bulk

propagators in de Donder gauge and the traceless gauge. If one is further able to promote

the double-traceless, partially conserved currents Js to their unconstrained, strictly con-

served counterparts Js,23 the extra freedom recovered from the now unconstrained gauge

parameters allows the gauge to be fixed further. Essentially, one is then able to remove

gradient terms in the propagators. As will be shown in section 4.1, for the currents en-

tering the higher-spin exchange between two pairs of scalars, this is indeed the case. In

this section, we show how a particularly useful gauge can be reached as a consequence,

which essentially eliminates the need to confront derivative operations in the exchange

computation.

With the freedom to remove gradients within the propagators (3.23) and (3.33) already

derived, it should be possible to bring them into the form

Πs =

[s/2]∑
k=0

∫ ∞
−∞

dν gs,k (ν)
(
u2

1

)k (
u2

2

)k
Ων,s−2k, (3.35)

by making gauge transformations. This is the goal of this section. We refer to this as the

“manifest trace gauge”, because here the propagator is presented as a sum of terms, each

being essentially a product of a certain number of background metrics and a harmonic

function Ω, which is traceless and transverse.

To reach the form (3.35), naively one might expect that, for example in (3.33), one can

gauge away all the terms except the one for which ` = 0. However, closer inspection reveals

that this is not the case: according to our conventions, contractions with W implicitly make

a projection onto the traceless part, so a generic term in (3.33) is of the form{
(u1 · ∇1)` (u2 · ∇2)` Ων,s−`(u1, x1, u2, x2)

}
. (3.36)

For a general rank-s tensor Ts, the explicit action of the operator that implements the

traceless projection {•}, is

{Ts(x, u)} =

[s/2]∑
j=0

(−1)j

4jj!(d2 + s− 3/2)j
(u2)j(∂u · ∂u)jTs(x, u), (3.37)

which makes various contractions of its argument Ts. It is then clear that for non-zero `

there are terms in (3.36) which cannot be gauged away. For example, terms in which all

∇’s are contracted because then no gradients will be present. In fact, the story is even

more complicated because for other terms in the projection the commutators of derivatives

that appear yield extra lower derivative terms, some of which are also not pure gauge. To

summarise, eliminating pure gradient terms is non-trivial, and our aim in the following

23I.e. with Js(x, u) = {{Js(x, u)}}. It is straightforward to show that the double-traceless part of an

unconstrained, strictly conserved, current satisfies the weaker conservation law (3.7).
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is to compute (3.36) explicitly modulo such gradient terms. We do this by studying the

details of the contractions under (3.37).

It is straightforward to see that when ` is odd, (3.36) can be gauged away since it is a

gradient. Let us then consider examples for when ` is even:

• ` = 2

Using (3.37), the explicit form of the traceless projection for ` = 2 is{
(u1 · ∇1)2 (u2 · ∇2)2 Ων,s−2(u1, u2)

}
(3.38)

=

(
1− u2

1(∂u1 · ∂u1)

2(d+ 2s− 3)

)(
1− u2

2(∂u2 · ∂u2)

2(d+ 2s− 3)

)
(u1 · ∇1)2 (u2 · ∇2)2 Ων,s−2(u1, u2).

Dropping gradient terms, it is straightforward to compute that

(∂u1 · ∂u1)(u1 · ∇1)2Ων,n(u1, u2) ∼ 2 (�1 − n(d+ n− 1)) Ων,n(u1, u2), (3.39)

where we used the traceless and divergence-less properties (3.13) of Ω.24 Therefore

the only terms that are not pure gradient in (3.38) come from the product of the

second terms in each of the brackets:

u2
1(∂u1 · ∂u1)

2(d+ 2s− 3)
(u1 · ∇1)2 u

2
2(∂u2 · ∂u2)

2(d+ 2s− 3)
(u2 · ∇2)2Ων,s−2(u1, u2)

∼ u2
1u

2
2

(
�1 − (s− 2)(d+ s− 3)

d+ 2s− 3

)2

Ων,s−2(u1, u2), (3.40)

Finally, employing the equation of motion (3.12) for Ω we find

{
(u1 · ∇1)2 (u2 · ∇2)2 Ων,s−2(u1, u2)

}
∼ u2

1u
2
2

(
ν2 + (d2 + s− 2)2

d+ 2s− 3

)2

Ων,s−2(u1, u2).

(3.41)

• ` = 4

Explicitly, traceless projection in this case is{
(u1 · ∇1)4 (u2 · ∇2)4 Ων,s−4(u1, u2)

}
=
(

1− u2
1(∂u1 · ∂u1)

2(d+ 2s− 3)
+

u4
1(∂u1 · ∂u1)2

8(d+ 2s− 3)(d+ 2s− 5)

)(
1↔ 2

)
(3.42)

× (u1 · ∇1)4 (u2 · ∇2)4 Ων,s−4(u1, u2).

In order to evaluate the traces in the above, a tedious but straightforward computa-

tion shows that

(∂u1 · ∂u1)(u1 · ∇1)4Ων,n(u1, u2) = 2
(

6(u1 · ∇1)2�1 (3.43)

− 2(3n2 + 3dn+ 4d+ 5n+ 2)(u1 · ∇1)2 + 4u2
1�1 − 4n(d+ n− 1)u2

1

)
Ων,n(u1, u2),

24The dropping of gradient terms is denoted by “ ∼ ”. Note that in appendix D we also use this notation

to instead indicate that equalities hold modulo gradients and traces.
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and

(∂u1 · ∂u1)2(u1 ·∇1)4Ων,n(u1, u2) ∼ 4
(

6�2
1 − 4(d+ 3dn− n− 3n2)�1

+ 2n(d+ n−1)(2d+ n+ 3dn+ n2)
)

Ων,n(u1, u2). (3.44)

Modulo gradient terms, each bracket in (3.42) therefore produces a second order

polynomial in �. Using the equations of motion (3.12), this eventually gives{
(u1 · ∇1)4 (u2 · ∇2)4 Ων,s−4(u1, u2)

}
(3.45)

∼
(
u2

1

)2 (
u2

2

)2
32

(
ν2 + (d2 + s− 2)2

d+ 2s− 3

)2(
ν2 + (d2 + s− 4)2

d+ 2s− 5

)2

Ων,s−4(u1, u2).

• ` = 2k

After studying explicitly cases the ` = 2k with k = 1, 2 above, we conjecture that{
(u1 · ∇1)2k (u2 · ∇2)2k Ων,s−2k(u1, x1, u2, x2)

}
(3.46)

= (N (k, s))2 (u2
1)k(u2

2)k

(
4k

(
d
2 + s− 2k + iν

2

)
k

(
d
2 + s− 2k − iν

2

)
k

)2

+ (u1 · ∇1)(. . . ) + (u2 · ∇2)(. . . ),

where

N(k, s) =
(2k)!

4kk!(d2 + s− k − 1/2)k
(3.47)

and (a)r = Γ (a+ r) /Γ (a) is the rising Pochhammer symbol.

Let us note that in spite of the fact that equation (3.46) is a conjecture, the pre-factor

N(k, s) is determined exactly. We explain how in the following. The combinatorial factor

N(k, s) can be derived by studying only the contractions that produce the maximal power

of �. The issue of non-commutativity of covariant derivatives for this computation is

irrelevant. Indeed, let us consider an analogous computation in the flat space. Then

in (3.39) one has only a �-term so that instead of (3.40) we find{
(u1 · ∇1)2 (u2 · ∇2)2 Ων,s−2(u1, u2)

} ∣∣∣
flat
∼ u2

1u
2
2

(
�

d+ 2s− 3

)2

Ων,s−2(u1, u2). (3.48)

Analogously, for the ` = 4 flat case one finds{
(u1 · ∇1)4 (u2 · ∇2)4 Ων,s−4(u1, u2)

} ∣∣∣
flat

∼
(
u2

1

)2 (
u2

2

)2
32

(
�2

(d+ 2s− 3)(d+ 2s− 5)

)2

Ων,s−4(u1, u2). (3.49)

This computation can be easily generalised to the case of any ` = 2k, and the result is{
(u1 · ∇1)2k (u2 · ∇2)2k Ων,s−2k(u1, u2)

} ∣∣∣
flat
∼
(
u2

1

)k (
u2

2

)k
N(k, s) �2kΩν,s−2k(u1, u2),

(3.50)

with N(k, s) given in (3.47). In fact, this justifies its explicit form.
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On the other hand, in AdS the �2k-term will receive lower derivative corrections,

which originate from the non-commutativity of the covariant derivatives. By generalising

the k = 1, 2 cases, what we conjecture is that these lower derivative terms are such that

after evaluating � on Ων,s−2k one finds((
ν2 +

(
d

2
+ s− 2

)2
)(

ν2 +

(
d

2
+ s− 4

)2
)
. . .

(
ν2 +

(
d

2
+ s− 2k

)2
))2

.

Combining this with the pre-factor found previously, one obtains (3.46).

Given (3.46), by using the freedom from using unconstrained conserved currents to

drop gradients we can rewrite the de Donder (3.23) and traceless (3.33) propagators in a

gauge with manifest trace structure. The two results coincide, and the coefficients gs,k (ν)

in (3.35) are

gs,0 =
1

(d2 + s− 2)2 + ν2
,

gs,k = −
(1/2)k−1

22k+3 · k!

(s− 2k + 1)2k

(d2 + s− 2k)k(
d
2 + s− k − 3/2)k

(3.51)

×
(
(d2 + s− 2k + iν)/2

)
k−1

(
(d2 + s− 2k − iν)/2

)
k−1(

(d2 + s− 2k + 1 + iν)/2
)
k

(
(d2 + s− 2k + 1− iν)/2

)
k

, k 6= 0.

The fact that using the conjectured formula (3.46) gives agreement between two propaga-

tors computed independently in different gauges serves as an additional argument in favour

of (3.46).

3.6 Bulk-to-boundary propagators

For the external legs of the Witten diagrams, we need the form of the bulk-to-boundary

propagators for scalars [3]. In light of the exchange amplitude factorisation (see for example

figure 2), we will also need bulk-to-boundary propagators for higher-spin fields [84]. In

the ambient formalism, the bulk-to-boundary propagator for a symmetric spin-s field of

dimension ∆ is the traceless and transverse

Π∆,s (X,P ;W,Z) = C∆,s
(2 (Z ·X) (P ·W ) + (W · Z) (−2P ·X))s

(−2X · P )∆+s
(3.52)

where the normalisation constant

C∆,s =
(s+ ∆− 1) Γ (∆)

2πd/2 (∆− 1) Γ
(
∆ + 1− d

2

) , (3.53)

is fixed by consistency with the corresponding bulk-to-bulk propagator.

A useful observation which we employ for the evaluation of the bulk amplitudes, is

that bulk-to-boundary propagators of non-zero spin can be obtained with the knowledge

of the scalar propagator with the same dimension. Indeed,

Π∆,s (X,P ;U,Z) =
C∆,s

(∆)s
(DP )s

1

(−2X · P )∆
(3.54)

=
(s+ ∆− 1)

(∆− 1) (∆)s
(DP )s Π∆,0 (X,P ) ,
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where the differential operator DP is given by [97]

DP = (Z ·W )

(
Z · ∂

∂Z
− P · ∂

∂P

)
+ (P ·W )

(
Z · ∂

∂P

)
. (3.55)

Let us also stress that despite the fact that the bulk-to-bulk propagator cannot si-

multaneously be made traceless and transverse, the associated bulk-to-boundary propaga-

tor (3.52) is both traceless and transverse at the same time. This can be seen by observing

that the extra terms spoiling tracelessness and transversally of the bulk-to-bulk propaga-

tor turn out to be subleading in the limit where one of the points goes to the boundary.

This means, in turn, that the corresponding operators in the dual CFT are traceless and

conserved primary operators.

3.7 Split representation of bulk-to-bulk propagators

In this subsection we introduce the split representation of bulk-to-bulk propagators, in

which they are expressed as a product of bulk-to-boundary propagators (3.52) integrated

over a common boundary point. As will become clear, this representation plays a crucial

role in the computation of the four-point exchange. Although this can be motivated group-

theoretically [77, 78, 98], it can be viewed as a consequence of a similar re-writing of the

harmonic functions Ων,` in which the propagators are expanded:25

Ων,` (X1, X2;W1,W2) (3.56)

=
ν2

π`!
(
d
2 − 1

)
`

∫
∂AdS

dP Πd/2+iν,` (X1, P ;W1, DZ) Πd/2−iν,` (X2, P ;W2, Z)

which is an integral of a product of spin-` bulk-to-boundary propagators (3.52) of complex

dimensions d
2±iν. When this form of the harmonic functions is inserted into the expressions

for the bulk-to-bulk propagators, we refer to this as their split representation. For the

traceless gauge, this is

Πs =
s∑
`=0

∫ ∞
−∞

dνfs,` (ν)
ν2

π (s− `)!
(
d
2 − 1

)
s−`

(3.57)

×
∫
∂AdS

dP (W1 ·∇1)` Πd/2+iν,s−` (X1, P ;W1, DZ) (W2 ·∇2)` Πd/2−iν,s−` (X2, P ;W2, Z) ,

and for the manifest trace gauge

Πs =

[s/2]∑
k=0

(
U2

1

)k (
U2

2

)k ∫ ∞
−∞

dν gs,k (ν)
ν2

π (s− 2k)!
(
d
2 − 1

)
s−2k

(3.58)

×
∫
∂AdS

dP
{

Πd/2+iν,s−2k (X1, P ;U1, DZ)
}{

Πd/2−iν,s−2k (X2, P ;U2, Z)
}
,

where the bulk-to-boundary propagators above are traceless, as indicated by the braces

for the bulk indices. It is in these two gauges that we compute the four-point exchange in

section 4.

This representation is depicted schematically in figure 4.

25For a similar application of harmonic functions, see for example [61] and also references within [96].
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Figure 4. Split representation of AdS harmonic function Ων,` as a product of two spin-` bulk-to-

boundary propagators with dimensions d
2 ± iν. The boundary point P is integrated over.

Factorisation of exchange amplitudes. The significance of the split representation of

the bulk-to-bulk propagators introduced above becomes clear once one studies its impact

on the form of the four-point exchange diagram. The general form of the spin-s exchange is

As,φ (P1, P2;P3, P4) (3.59)

= (gφφs)
2
∫

AdS
dX1

∫
AdS

dX2 Πs (X1, ∂U1 ;X2, ∂U2)Js (X1, U1;P1, P2)Js (X2, U2;P3, P4) ,

where Js is an unconstrained spin-s conserved current bilinear in the real scalar φ, the

precise form of which we introduce in section 4.1. Being a sum of integral products of

two bulk-to-boundary propagators, it is therefore clear that the use of the split represen-

tations (3.57) and (3.58) for the bulk-to-bulk propagator leads to the decomposition of the

exchange into products of two three-point amplitudes involving the scalar interacting with

a field of spin — for which methods to compute are already known. This is illustrated

schematically in figure 2. The decomposition of the four-point exchange in this manner

is directly analogous to the conformal partial wave expansion of correlation functions in

conformal field theory, in which four-point correlation functions decompose in the same

way into products of three-point functions. This therefore lays the ground for an eventual

comparison with the corresponding CFT result, once all contributing bulk diagrams are

included (figure 1). In view of bringing the bulk computations directly into this form,

in this section we briefly recall existing results for these three-point Witten diagrams in

the ambient formalism, and review the conformal partial wave expansion in conformal

field theory.

Three-point Witten diagrams. It is enough to review the three-point Witten diagrams

of two real scalars and a higher-spin field interacting with an elementary cubic vertex,

gφ1φ2` `!

∫
AdS

√
g dd+1x ϕ` (x, ∂u)φ1 (x) (u · ∇)` φ2 (x) . (3.60)

The three-point bulk integrals encountered in the decomposition under the split repre-

sentation can be expressed in combinations of these building blocks. Moreover, since the

higher-spin field appearing in the vertex will be traceless, it is sufficient to recall the trace-

less contribution to these amplitudes. I.e. we take u → w. Precisely this contribution
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to such three-point Witten diagrams was recently computed in the ambient formalism

in [61].26 For an elementary interaction (3.60) between two scalars φ1,2 (x) and a traceless

spin-` field ϕ` (x) with dimensions ∆1,2 and ∆` respectively, these are27

gφ1φ2`√
C∆1C∆2C∆`,`

∫
AdS

dX Π∆,` (X,P3;K,Z) Π∆1,0 (X,P1) (W · ∇)` Π∆2,0 (X,P2) (3.62)

=
gφ1φ2`√
C∆1C∆2C∆`,`

b (∆1,∆2,∆`, `)
((Z · P1)P23 − (Z · P2)P13)`

P
∆1+∆2−∆`+`

2
12 P

∆1−∆2+∆`+`

2
13 P

∆2−∆1+∆`+`

2
23

,

where

b (∆1,∆2,∆`, `) (3.63)

= C∆1C∆2C∆`,`

πd/2Γ
(

∆1+∆2+∆`−d+`
2

)
Γ
(

∆1+∆2−∆`+`
2

)
Γ
(

∆1+∆`−∆2+`
2

)
Γ
(

∆2+∆`−∆1+`
2

)
21−`Γ(∆1) Γ(∆2) Γ (∆` + `)

,

and we introduced the shorthand Pij = −2Pi · Pj .
For a given triplet of interacting fields in AdS, regardless of the form of the bulk

cubic interaction vertex, the tensorial structure of the corresponding tree-level three-point

Witten diagram is uniquely fixed by the boundary conformal symmetry. The task is then to

determine the overall coefficient, which is vertex-dependent. The cubic interactions used in

this paper for the four-point exchange are more complicated than (3.60) used in the above.

This is because they are current interactions (3.6), and to ensure current conservation

their explicit form is more involved. However, as mentioned above, for the three-point

decomposition of the exchange it is possible to express the coefficient of these amplitudes

in terms of those for the elementary vertices.

Conformal partial wave expansion. In conformal field theory, the conformal partial

wave expansion (CPWE) of a four-point function of scalar primary operators O∆i (P ) of

conformal dimensions ∆i is the decomposition [91]

〈O∆1 (P1)O∆2 (P2)O∆3 (P3)O∆4 (P4)〉 =
∞∑
`=0

∫ ∞
−∞

dν b` (ν) Fν,` (u, v) , (3.64)

where Fν,` (u, v) is a conformal partial wave. This can be written as a product of two

three-point functions integrated over a common boundary point

Fν,` (u, v) (3.65)

=

∫
∂AdS

dP5

〈O∆1 (P1)O∆2 (P2)Od/2+iν,` (P5, DZ)〉〈Od/2−iν,` (P5, Z)O∆3 (P3)O∆4 (P4)〉
βν,∆i,``!

(
d
2 − 1

)
`

.

26Note that in [61] and similar works, the shorthand d = 2h is often employed.
27Here, the CFT operators are normalised such that they have unit two-point function

〈O∆,` (P1, Z1)O∆,` (P2, Z2)〉 =
((−2P1 · P2) (Z2 · Z1) + 2 (Z2 · P1) (Z1 · P2))`

(−2P1 · P2)∆+`
. (3.61)
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Figure 5. Four-point exchange in the “s-channel” of a spin-s gauge boson between two pairs of

real scalars φ, which have dual CFT operator O∆.

and is a function of the cross ratios

u =
P12P34

P13P24
, v =

P14P23

P13P24
. (3.66)

In this definition of the CPWE we adopt the conventions of [61], where it is also presented

in the ambient formalism. In particular, we take on their normalisation βν,∆i,`,
28 of the

conformal partial wave (3.65), for which the three point functions have unit coefficient

〈O∆1 (P1)O∆2 (P2)Od/2±iν,` (P5, Z)〉 =
((Z · P1)P25 − (Z · P2)P15)`

P
∆1+∆2+d/2∓iν+`

2
12 P

∆1−∆2+d/2±iν+`
2

15 P
∆2−∆1+d/2±iν+`

2
25

.

(3.67)

It is our goal in the computation of the four-point exchange to bring the decomposition

of the exchange amplitude under the split representation precisely into this form of the

CPWE. Since the three-point functions in (3.64) are normalised with unit coefficient, it is

essentially the task of finding the overall coefficients of the three-point amplitudes appearing

in the decomposition, which are subsequently absorbed into b` (ν). This is facilitated by

expressing the amplitudes in terms of those for the elementary vertices introduced in the

previous section.

4 Four-point exchange

In this section we combine the results for the propagators in the previous to compute the

exchange of a single spin-s gauge boson between pairs of real scalars φ (X) in AdSd+1,

illustrated in figure 5 for the “s-channel”. As emphasised in section 3.7, we use the split

representation for the spin-s bulk-to-bulk propagator, which allows to express the resultant

amplitude in the form of a conformal partial wave expansion (3.64) on the boundary.

Before we proceed, the precise form of current appearing in the cubic interaction (3.6) of

the exchange must be established. This is carried out in the next section. In the subsequent

sections, we compute the exchange amplitude in the traceless gauge (section 4.2) and the

manifest trace gauge (section 4.3). In section 4.4, we verify for explicit examples that these

two gauges give the same results. In section 4.5, we comment on the effect of improvements

to the currents on the exchange amplitude.

28The explicit form of which is given in the appendix, equation (B.16).
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4.1 Currents

Before computing the four-point higher-spin exchange, the cubic vertex between the pair of

scalars and the spin-s gauge field has to be specified. This is the current interaction (3.6),

and in this section we recall how the explicit form of the currents can be obtained: we

briefly review the construction of [85], where it was shown how the unconstrained covari-

antly conserved currents Js in AdSd+1 can be built. This construction strongly relies on

ambient approach to AdSd+1 and demonstrates its power: the currents are obtained by pro-

jecting the well-known Berends, Burgers and van Dam conserved currents in flat space [99]

onto Hd+1,29 which completely avoids any difficulties related to the non-commutativity of

derivatives in curved space. Then the double-traceless part of these currents, Js = {{Js}},
provides the current that satisfies (3.7).

Scalar fields in AdS. Since the relevant currents are bilinears in the bulk scalar, we

first recall the representation of scalar fields in AdS and their ambient formulation.

The lowest weight unitary irreducible scalar representations of so(d, 2)

�φ(x)−m2φ(x) = 0, m2 ≡ ∆(∆− d) (4.1)

can be realised as the evaluation φ(x) on AdSd+1 of ambient homogeneous harmonic func-

tions Φ(X)

(∂X · ∂X)Φ(X) = 0, Φ(X) =
(
X2
)−∆

2 φ(x). (4.2)

For later purpose, let us denote

Φ†(X) =
(
X2
)−∆−

2 φ(x), (4.3)

where ∆− = d−∆ and we assume ∆ ≥ ∆−. Throughout, ∆ will often be referred to as ∆+.

The currents. It is then straightforward to check that for any ambient massive scalar

fields Φ1(X) and Φ2(X) of the same mass M

(∂X · ∂X −M2)Φ1(X) = 0 = (∂X · ∂X −M2)Φ2(X)

the currents, given by the generating function [106]

I(X,U) = Φ1(X + U)Φ2(X − U) (4.4)

are conserved with respect to flat ambient space derivative

(∂X · ∂U )I(X,U) = 0. (4.5)

Explicitly, the rank-s current generating function is given by

Is(X,U) =
s∑

k=0

(−1)k

k!(s− k)!
(U · ∂X)s−kΦ1(X)(U · ∂X)kΦ2(X), (4.6)

which is obtained by extracting from (4.4) the O (U s) coefficient.30

29Various explicit sets of (conformal) conserved currents were provided in [100–104].
30Note that this is zero for odd spins. Therefore, the corresponding current interaction on the AdS

manifold would vanish for the extra fields appearing in the non-minimal higher spin theory compared to

the minimal theory.
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However, a conserved current in the flat ambient space does not necessarily define a

conserved current in the theory on AdS. In other words, the pull-back of (4.4) onto the

AdS manifold is not in general conserved with respect to the AdS covariant derivative —

it must satisfy some additional constraints, which we specify in the following.

We require (4.4) to be conserved with respect to the ambient representative (2.13) of

the AdS covariant derivative, ∇ = P ◦ ∂ ◦ P. First, the ambient current projection is of

the form

P I(X,U) = I(X,U) + (X · U)L(X,U) (4.7)

for some L(X,U). Further, the commutation relation

[(∂X · ∂U ), X · U ] = X · ∂X + U · ∂U + d+ 2

implies that

(∂X · ∂U )P I(X,U) = (X · U) (∂X · ∂U )L(X,U) + (X · ∂X+U · ∂U + d+ 2)L(X,U). (4.8)

The first term in (4.8) is transversal to Hd+1, so it drops out upon the second projection

in the covariant derivative (2.13). We then demand that I (X,U) is conserved in AdS,

(∇ · ∂U ) I (X,U) = 0, (4.9)

which yields the condition:

(X · ∂X + U · ∂U + d+ 2)L(X,U) = 0.

This can be satisfied by imposing the following homogeneity condition on the current

(X · ∂X + U · ∂U + d) I(X,U) = 0. (4.10)

We have just shown that the current (4.4) is covariantly conserved if it obeys (4.10). In

particular for Φ1 = Φ, and Φ2 = Φ† as introduced in (4.3), the current

J (X,U) = Φ(X + U)Φ†(X − U) (4.11)

is covariantly conserved. This can also be rewritten in intrinsic AdS terms [85], which

requires the expression of ambient partial derivatives in terms of covariant derivatives of

AdS and the metric. For the following computations of the exchange, it is enough to know

that it is of the form

Js(x, u) =
s∑

k=0

(−1)k

k!(s− k)!
(u · ∇)s−kφ(x)(u · ∇)kφ(x) + u2 (. . . ) . (4.12)

For the manifest trace gauge (section 4.3), an important observation is that multiple

traces of the currents (4.11) can be expressed in terms of currents themselves:

(∂u · ∂u)k Js(x, u) = τs,k (ν)Js−2k(x, u) + (u · ∇)(. . . ) + u2 · (. . . ), (4.13)
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where

τs,k (ν) =

k∑
m=0

22k · k!

m!(k −m)!
(∆− d

2
− k +m+ 1/2)k−m

×

(
d
2 + s− 2m+ 1 + iν

2

)
m

(
d
2 + s− 2m+ 1− iν

2

)
m

, (4.14)

and (a)r = Γ (a+ r) /Γ (a) is the rising Pochhammer symbol. We do not specify the

gradient and trace terms

(u · ∇)(. . . ) and u2 · (. . . ), (4.15)

as they will not play a role in the exchange. We derive (4.13) in appendices C and D.

Let us finally comment on the effect produced by the replacement of the elementary

vertex (3.60) with a current vertex (3.6). At the level of three-point Witten diagrams,

only bulk-to-boundary propagators (3.52) are employed, which are traceless. For this

reason pure trace terms in (4.12) do not contribute, while the remaining terms can be

reduced to the elementary vertex via integration by parts and taking into account that

the bulk-to-boundary propagator is also transverse. This eventually results in the extra

prefactor of 2s compared to (3.62). At the level of four-point exchange Witten diagrams,

however, one should use the bulk-to-bulk propagator, which is not simultaneously traceless

and transverse. This means that extra terms introduced by the current vertex into the

exchange diagram cannot be treated so easily, and produce a more complicated effect.

This is discussed in the following.

4.2 Traceless gauge

Now that all relevant ingredients for the computation of the exchange amplitude have been

established, we compute the exchange in the traceless gauge. In the next section this will

also be carried out in the manifest trace gauge.

For the spin-s bulk-to-bulk propagators in the traceless gauge (3.33), the exchange

amplitude (3.59) takes the form

As,φ (P1, P2;P3, P4) (4.16)

=

(
gφφs

s!
(
d
2 −

1
2

)
s

)2 s∑
`=0

∫ ∞
−∞
dνfs,` (ν)

∫
AdS

dX1

∫
AdS
dX2 Js (X1,K1;P1, P2)Js (X2,K2;P3, P4)

× (W1 · ∇1)` (W2 · ∇2)` Ων,s−` (X1,W1;X2,W2) ,

where here we make use of the operator K1,2 for the contraction with the symmetric

and traceless propagator, hence the prefactor. Note that only the first term of the cur-

rents (4.12) contributes, since the traceful u2 (. . .) terms drop out upon contraction with

the traceless bulk-to-bulk propagator.
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Employing the split representation (3.57) of the bulk-to-bulk propagator, the amplitude

then reduces to a sum of products of two disjoint bulk integrals

s∑
`=0

∫ ∞
−∞

dνfs,` (ν)
ν2

π (s− `)!
(
d
2 − 1

)
s−`

∫
∂AdS

dP5 (4.17)

×
gφφs

s!
(
d
2 −

1
2

)
s

∫
AdS

dX1 Js (X1,K1;P1, P2) (W1 · ∇1)` Πd/2+iν,s−` (X1, P5;W1, DZ)

×
gφφs

s!
(
d
2 −

1
2

)
s

∫
AdS

dX2 Js (X2,K2;P3, P4) (W2 · ∇2)` Πd/2−iν,s−` (X2, P5;W2, Z) ,

integrated over the common boundary point P5. In light of this decomposition in terms

of three-point bulk integrals, our goal is to express it as a CPWE (3.64) on the bound-

ary. For a given term in the decomposition above, considering only the bulk integrals

it can be seen by symmetry that they will each be proportional to the appropriate

〈O∆ (Pi)O∆ (Pj)Od/2±iν,s−` (P,Z)〉 upon their evaluation, consistent with the CPWE.

What is not immediate is the overall coefficient. We extract it by simply computing the in-

tegrals, which is facilitated by the methods we reviewed in section 3.7, and also operations

with symmetric and traceless tensors (appendix A). Relegating the details to appendix B,

we find that

As,φ (P1, P2;P3, P4) =
s∑
`=0

∫ ∞
−∞

dν bs−` (ν)Fν,s−` (u, v) , (4.18)

Fν,s−` (u, v)

=

∫
∂AdS

dP5

〈O∆ (P1)O∆ (P2)Od/2+iν,s−` (P5, DZ)〉〈Od/2−iν,s−` (P5, Z)O∆ (P3)O∆ (P4)〉
βν,∆,s−` (s− `)!

(
d
2 − 1

)
s−`

,

where

bs−` (ν) =
ν2

π
(gφφs)

2 βν,∆,s−`fs,` (ν)αs−` (ν) b(∆,∆,
d

2
+ iν, s− `)b(∆,∆, d

2
− iν, s− `).

(4.19)

The explicit form of αs−` (ν) is quite complicated, and is given in appendix B together

with the details of its derivation. Comparing with the definition (3.64) of the CPWE, note

that the series for this single four-point exchange is truncated.

We have hence successfully computed the four-point exchange of a spin-s gauge boson

between two pairs of external real bulk scalars (figure 5), expressing the result in the form

of a CPWE on the boundary. This is one of the main results of the paper. In the next

section, we carry out the same computation in the manifest trace gauge.

4.3 Manifest trace gauge

We now turn to the manifest trace gauge, in which we compute the exchange using the

propagator (3.35). As with the traceless gauge in the previous section, we use the split
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representation (3.58), and the exchange (3.59) thus acquires the form

As,φ (P1, P2;P3, P4) = (gφφs)
2
∫ ∞
−∞

dν

[s/2]∑
k=0

gs,k (ν)
ν2

π (s− 2k)!
(
d
2 − 1

)
s−2k

∫
∂AdS

dP5

×
∫

AdS
dX1

{
Πd/2+iν,s−2k (X1, P5; ∂U1 , DZ)

}
(∂U1 · ∂U1)kJs(X1, U1, P1, P2) (4.20)

×
∫

AdS
dX2

{
Πd/2−iν,s−2k (X2, P5; ∂U2 , Z)

}
(∂U2 · ∂U2)kJs(X2, U2, P3, P4).

To proceed, let us first note that the k = 0 term∫
∂AdS

dP5

∫
AdS

dX1

{
Πd/2+iν,s (X1;P5)

}
· Js(X1, P1, P2)

×
∫

AdS
dX2

{
Πd/2−iν,s (X2;P5)

}
· Js(X2, P3, P4), (4.21)

(modulo pre-factors) can be readily brought into the form of the k = 0 term in the CPWE:

due to tracelessness of Ων,s (manifest in the braces around the Πd/2±iν,s) one can drop pure

trace terms in the currents Js, represented as u2(. . . ) in (4.12). Then, using integration

by parts and taking into account that Ων,s is also divergence-free, one can see that the

remaining terms in the currents can be brought into the form φ(X1, P1)(U1 ·∇)sφ(X2, P2),

where the derivatives act only on the scalar field to the right. This gives precisely the

elementary vertex (3.60), which was used to define the basic three-point function (3.62).

The tensorial structure of the latter is readily in the form of the ` = s term in the conformal

partial wave expansion (3.64), and the normalisation functions (3.63) of the elementary

three-point functions therefore contribute to the expression for bs (ν).31

It turns out that one can do the same for the other terms in the sum (4.20) associated

with non-zero k: in the formula (4.13) for the traces of the currents,

(∂u · ∂u)k Js(x, u) = τs,k (ν)Js−2k(x, u) + (u · ∇)(. . . ) + u2 · (. . . ), (4.22)

as argued above, the terms (u · ∇)(. . . ) + u2 · (. . . ) will not contribute in the exchange.

Therefore in using this formula, multiple traces of the currents can be replaced with currents

of lower rank, and one can make the same argument as with (4.21) to place each term

in (4.20) readily in the form as in a CPWE.

For the four-point exchange amplitude (4.20) we thus find,

As,φ (P1, P2;P3, P4) = (gφφs)
2

[s/2]∑
k=0

4s−2k

∫ ∞
−∞

dν
gs,k (ν) τ2

s,k (ν) ν2

π (s− 2k)!
(
d
2 − 1

)
s−2k

∫
∂AdS

dP5 (4.23)

×
∫

AdS
dX1

{
Πd/2+iν,s−2k (X1, ∂U1)

}
φ(X1, P1)(U1 · ∇1)s−2kφ(X1, P2)

×
∫

AdS
dX2

{
Πd/2−iν,s−2k (X2, ∂U2)

}
φ(X2, P3)(U2 · ∇2)s−2kφ(X2, P4).

31Recall that in the definition (3.64) of the CPWE the three-point functions have unit coefficient.
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where each bulk integral in the sum is a three-point Witten diagram of a pair of scalars

interacting with a spin-(s− 2k) field through the elementary vertex (3.60). Therefore

employing (3.62) and comparing with the form (3.64) of the CPWE, we find that the

coefficients bs−2k(ν) are

bs−2k(ν) (4.24)

= (gφφs)
2 ν

2

π
4s−2kgs,k(ν)τ2

s,k(ν)βν,∆,s−2kb(∆,∆,
d

2
+ iν, s− 2k)b(∆,∆,

d

2
− iν, s− 2k),

where gs,k and τs,k are given by (3.51) and (4.14), respectively.

Above we have completed the computation of the exchange in the manifest trace gauge.

Let us stress that in contrast to the calculation in the traceless gauge of the previous section,

very little manipulation was required to express the final form as a CPWE (compare for

example with appendix B). A good check of our results is if the computations in the two

different gauges are consistent with each other. This is verified in the next section.

4.4 Checks

In this section we verify that the expressions obtained for the four-point exchange in both

the traceless gauge (section 4.2) and the manifest trace gauge (section 4.3) are consistent

with each other. Since both calculations express the result for the four-point exchange in

the form (3.64) of a CPWE, only the coefficients (4.19) and (4.24) of the partial waves (3.65)

obtained in the respective gauges need to be compared.

In the manifest trace gauge, the only partial waves which contribute to the four-

point exchange are Fν,s−2k (u, v), with k = 0, 1, . . . , [s/2]. For consistency, the coefficients

bs−` (ν) (4.19) of the partial wave Fν,s−` (u, v) calculated in the traceless gauge must then

vanish for odd `. The involved nature of the explicit result in the traceless gauge (ap-

pendix B) makes this difficult to verify for arbitrary s. However, using Mathematica we

have checked explicitly for s up to 14 that the partial wave coefficient bs−` (ν) is indeed

zero for each odd `.

We now move on to consider non-zero coefficients. For small values of ` and k, it is

still tractable to compare results in the two gauges. In the following, we explicitly show

that both gauges give the same results for b2 (ν) and b0 (ν). That is, we show that (4.19)

and (4.24) agree for ` = 0, k = 0, and for ` = 2, k = 1:

• ` = 0 and k = 0

This check is straightforward, since in both gauges this contribution to the four-

point exchange arises from the contraction of the harmonic function Ων,s (x1, x2)

with the current Js (x) at points x1 and x2 — see (4.16) and (4.20). Agreement thus

depends on whether or not the weighting functions fs,0 (ν) and gs,0 (ν) associated

to Ων,s (x1, x2) in the respective bulk-to-bulk propagators coincide. This is easily

checked to be the case.
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• ` = 2 and k = 1

For the manifest trace gauge, (4.24) gives

bs−2 (ν)

=
(gφφs)

2 ν2βν,∆,s−2

π
gs,1(ν)τ2

s,1(ν)4s−2b(∆,∆,
d

2
+ iν, s− 2)b(∆,∆,

d

2
− iν, s− 2)

= −
(gφφs)

2 ν2βν,∆,s−2

π
b(∆,∆,

d

2
+ iν, s− 2)b(∆,∆,

d

2
− iν, s− 2)

×
4s−2s (s− 1)

(
(2∆− d− 1)(2∆− d+ 1) +

(
ν2 + (d2 + s− 1)2

))2
2 (d+ 2s− 4) (d+ 2s− 5)

(
ν2 +

(
d
2 + s− 1

)2) . (4.25)

While in the traceless gauge,

bs−2 (ν)

=
(gφφs)

2 ν2βν,∆,s−2

π
fs,2 (ν) αs−2 (ν) b(∆,∆,

d

2
+ iν, s− 2)b(∆,∆,

d

2
− iν, s− 2)

=
(gφφs)

2 ν2βν,∆,s−2

π
b(∆,∆,

d

2
+ iν, s− 2)b(∆,∆,

d

2
− iν, s− 2)

× fs,2 (ν) Td/2+iν,s,s−2Td/2−iν,s,s−2. (4.26)

From the explicit expression (B.11) for Td/2±iν,s,s−2, it is possible to show that

Td/2±iν,s,s−2 (4.27)

=
2s−2

((
d
2 + s− 2

)2
+ ν2

) (
(2∆− d− 1)(2∆− d+ 1) +

(
ν2 + (d2 + s− 1)2

))
(d+ 2s− 3)

.

Together with

fs,2 (ν) = − s (s− 1) (d+ s− 3)2

2 (d+ 2s− 4) (d+ 2s− 5)

1(
ν2 +

(
d
2 + s− 2

)2)2

1

ν2 +
(
d
2 + s− 1

)2 ,
(4.28)

one finds agreement with the result (4.25) in the manifest trace gauge.

4.5 On improvements

It is well-known that cubic vertices involving a spin-s gauge field and two scalar fields are

defined uniquely up to terms that vanish on the free shell. When such interactions are

expressed as a gauge field contracted with a conserved current (3.6), these ambiguities

manifest themselves as improvements to the current. These on-shell vanishing vertices can

be removed by field redefinitions, which is why they are usually neglected in the analy-

sis of cubic interactions. However, they play a role when considering exchange diagram

computations, which we demonstrate in this section. In the context of the AdS/CFT cor-

respondence, making a field redefinition of bulk fields corresponds to changing the operator

basis in the dual CFT. Since our ultimate goal will be to compare bulk computations with
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the corresponding CFT correlation functions, once a particular operator basis in the CFT

is chosen, the fields in the bulk are fixed and such bulk field redefinitions are no longer

permitted. Since vertices which vanish on the free shell are generated by field redefinitions,

they must then be treated with care in this holographic context. In the following, we briefly

discuss the effect of these cubic vertices on four-point exchanges.

Given a rank-(s -2) conserved current Js−2, one can show that the quantity

DJs−2 ≡ (u2�− (u · ∇)2 − u2(u · ∂u + 1)(u · ∂u + d))Js−2 (4.29)

is also conserved.32 This means that DJs−2 may be viewed as an improvement term to the

rank-s conserved current Js. More generally, one can consider an improvement of the form

Js → J ′s = Js +

[s/2]∑
n=1

γnDnJs−2n, (4.30)

where γn are arbitrary coefficients. It is well known that any improvement to a conserved

current can be decomposed into an off-shell conserved current and terms which are trivial

on-shell [105]. In the case of higher-spin currents, off-shell improvements in this decomposi-

tion are in general neither symmetric nor conserved with respect to every index. Therefore,

they do not define consistent vertices alone. The same applies to the on-shell trivial part

of this decomposition. However, what is important to us is that the improvements in this

case produce trivial vertices on the spin-s mass shell, which in turn yield contact terms in

the four-point exchange diagram. We demonstrate this explicitly below.

To illustrate the effect of such improvement terms on the four-point exchange, let us

consider the case of the graviton exchange in the manifest trace gauge of section 4.3. Here,

the propagator reads

Π2 =

∫ ∞
−∞

dν

ν2 + d2

4

Ων,2 −
1

d(d− 1)
u2

1u
2
2

∫ ∞
−∞

dν

ν2 + (d2 + 1)2
Ων,0, (4.31)

which couples to a rank-2 conserved current, for which (4.13) gives

(∂u · ∂u)J2 = τ2,1J0, (4.32)

where

τ2,1 = (2∆− d− 1)(2∆− d+ 1) +

(
ν2 +

(
d

2
+ 1

)2
)
. (4.33)

Then the graviton exchange is then

A2,φ (P1, P2;P3, P4) =

∫ ∞
−∞

dν

ν2+ d2

4

Ων,2J2J2 −
1

d(d−1)

∫ ∞
−∞

dν

ν2 +
(
d
2 +1

)2 τ2
2,1(ν)Ων,0J0J0.

(4.34)

32Moreover, the cubic coupling to the massless spin-s field that DJs−2 generates is trivial on-shell, which

follows from the fact that the on-shell cubic vertex s− 0− 0 is unique (up to a divergence).
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Now consider the effect of an improvement (4.30) to the spin-2 current J2,

J ′2 = J2 + γ1DJ0. (4.35)

Since the improvement term is precisely of the form (4.15), it does not contribute to the

traceless and transverse part of the exchange (the first term in equation (4.34)).33 On the

other hand, it does contribute to the trace part of the exchange:

(∂u · ∂u)DJ0 = d(�− d− 1)J0 = −d

(
ν2 +

(
d

2
+ 1

)2
)
J0, (4.36)

where in the second equality we implicitly integrated by parts, applying the equation of

motion (3.12) of the harmonic function present in the bulk-to-bulk propagator. The ex-

pression in brackets is the same as the denominator of the trace part of the propagator

in (4.31). This is a simple consequence of the fact that the vertices generated by improve-

ments of currents that are bilinear in the scalar field are trivial on-free-shell. By choosing

γ1 properly one can eliminate the ν2-dependence in τ2,1 (4.33), so that its improved value is

τ ′2,1 = (2∆− d− 1)(2∆− d+ 1). (4.37)

This vanishes when the scalar field is conformal, which is a manifestation of the fact that

for a conformal scalar the currents can be made traceless.

More generally, a spin-s current has [s/2] independent improvements (4.30). It is not

hard to see that for the k-fold trace of the improved current J ′s, only the improvements

with n ≤ k contribute non-trivially while the remaining improvements produce terms of the

form (4.15). In the same time, the k-fold trace of the original current Js is given by (4.13)

and (4.14). All terms with m ≥ 1 are polynomials in ν2 of the degree up to k, and moreover

they vanish on the free shell. This follows from matching the zeros of terms with m ≥ 1

in (4.14) with the poles of the propagator (3.51). It is therefore tempting to conjecture

that the k improvements that contribute to k-fold trace can be chosen, analogously to the

example of the graviton exchange considered above, to remove the ν2-dependent terms in

τs,k. This would lead to an improved value in (4.13)

τ ′s,k (ν) = 22k

(
∆− d

2
− k +m+ 1/2

)
k

. (4.38)

As expected, this vanishes for conformal scalar.

For any spin-s we have just shown that by properly improving the current we can

completely remove trivial on-free-shell contributions to the k-fold trace part of the exchange

for any given k. However, as one can clearly see from lower-spin examples, the way that

one should improve the same spin-s current to achieve this goal differs for different k.

Therefore, such on-free-shell trivial contributions cannot be removed for every k in the

exchange (4.20) at the same time — unless the scalar field is conformal.

33It should be noted that this does not mean that the effect of improvements is not observed in the

traceless gauge, for there the bulk-to-bulk propagators are not transverse. In this case, one would expect

the second term in (4.29) to contribute.
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Figure 6. The presence of trivial terms in the cubic vertex V3 causes the decomposition of the

exchange amplitude into a exchange governed by the on-shell vertex V̂3, and a quartic scalar contact

interaction.

Now that we have established that the exchange computation is not blind to im-

provement terms, let us now consider the implication of their presence. In the exchange

computation, the cubic vertex in which the spin-s bulk-to-bulk propagator joins with the

scalar bulk-to-boundary propagators is off-shell. This means that in equality (4.36), one

also picks up a Dirac delta function coming from the propagator equation

�Πs (x1, x2) + . . . = δd+1 (x1, x2) , (4.39)

when one integrates by parts. The exchange therefore decomposes into an exchange gov-

erned by the on-shell part of the two cubic vertices, and a contact diagram (see figure 6). In

particular, since the currents are bilinear in the scalar these are quartic scalar contact di-

agrams. This suggests that there is some inter-play between on-shell trivial cubic vertices

and quartic contact interactions. This is therefore an issue that needs to be considered

when trying to extract the form of the quartic scalar contact interaction holographically.

We discuss this point further in the conclusion.

In this section we studied the effect on the four-point exchange produced by cubic

vertices that vanish when on-shell with respect to the free higher-spin equations of motion.

Similarly, there exist vertices that vanish when the scalar satisfies the free equations of

motion. However they do not contribute to exchange diagrams, because unlike for the

bulk-to-bulk propagators (4.39), external bulk-to-boundary propagators (3.52) satisfy ho-

mogeneous wave equations of motion without contact terms on the r.h.s. . Let us also note

that among the improvements (4.30), some may be off-shell conserved symmetric currents.

By contracting them with higher-spin gauge fields one produces off-shell gauge invariant

vertices, which are usually referred to as Born-Infeld type. Being non-trivial in general,

they turn out to also be on-shell trivial in our case due to the special case of interactions

between two scalars and a spin-s gauge field.

5 Conclusion and outlook

The results established in this work constitute the first step towards our larger goal of prob-

ing locality properties of bulk interactions through holography. Within this programme,

a simple case that one can first consider is to resolve the nature of the quartic contact

interaction of the real scalar in higher-spin theory on AdSd+1. The idea of the approach is

quite simple: to compute the four-point function of the scalar singlet bilinear operator of
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the d-dimensional free O (N) vector model holographically in the metric-like formulation,

it is required to know this vertex for the contact diagram, together with results for the

four-point exchange diagrams (figure 1). On the other hand, in its absence one should be

able to deduce its form if in possession of the CFT result and the total contribution from

the exchange computations.

To manoeuvre ourselves towards this position, in the present paper we computed the

four-point exchange of a single spin-s gauge boson between two pairs of real bulk scalars

(figure 5) of arbitrary mass, in arbitrary dimension and in two different gauges. In order to

do so, we first needed to establish the complete massless spin-s bulk-to-bulk propagators

in the metric-like form, to supplement the known results for bulk-to-boundary propagators

and cubic vertices. These were derived in three different gauges: de Donder gauge, a

traceless gauge and a manifest trace gauge. The latter can be derived from either of the

former two by shifting to an unconstrained gauge parameter, which allowed the dropping of

gradient terms. In addition to providing a useful gauge in which to compute the exchange,

it also served as a good consistency check for the propagators.

The spin-s bulk-to-bulk propagators were derived in a basis of AdS harmonic functions,

whose split representation in terms of integral products of bulk-to-boundary propagators

(section 3.7) allowed the resultant exchange amplitudes to be written as a conformal partial

wave decomposition on the boundary, ready to compare with the analogous form of the CFT

result. We carried out this computation of the exchange amplitude in both the traceless

gauge and the manifest trace gauge, verifying for explicit examples that the two gauges

yield the same results. We note the particular simplicity of the manifest trace gauge, which

required comparably little manipulation to be brought into the form of a conformal partial

wave expansion. This was facilitated by combining its manifest trace structure with an

identity we derived for multiple traces of the currents, which expresses them in terms of

currents of lower rank (4.13).

However, before these results can be applied to extract the quartic scalar vertex, some

issues remain that we did not address in the present paper. First, one must take into ac-

count the exchange contributions from the remaining exchange channels, and also for each

spin s = 0, 2, 4, . . ..34 Second, as discussed in the introduction, at the cubic level there is

a degree of arbitrariness in the interactions, which manifest themselves in current interac-

tions as “improvements” to genuine Noether currents. Such vertices are often neglected in

the literature (with the important exception of [87] where the role of the “Born-Infeld tail”

in Vasiliev’s theory was also discussed), however in section 4.5 we studied improvements

to the currents entering the cubic vertices of the exchange, and demonstrated that despite

such terms vanishing on the free-shell, they do play a role in exchange computations. In

particular, we observed that these trivial contributions to the cubic vertices generate con-

tact terms, such that the exchange amplitude decomposes into an exchange governed by

the on-shell cubic vertices and a contact diagram (figure 6). These contributions there-

fore need to be carefully considered when trying to reconstruct the quartic scalar vertex

34Moreover, the series should be summed in a manageable form. The corresponding summations of

current exchanges can be performed in flat spacetime and the final result takes a very compact form [106],

suggesting that the (A)dS case should be tractable as well.
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holographically: Potentially, parts of the quartic contact vertex can be absorbed off-shell

in the current exchange by trivial vertices, and vice-versa. More speculatively, perhaps

a would-be non-local quartic vertex could be tamed by absorbing parts of the vertex in

trivial vertices of the current exchange, conceivably to the extent that the quartic vertex

becomes local. We will address such questions in future research.
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A Operations with ambient tensors

To arrive at the results in this paper, we mainly rely on an operator formalism where

index contractions and symmetrisation of indices (including tracelessness) are realised in

terms of auxiliary vectors. Tensor operations are then translated into an operator calculus,

which simplifies manipulations. We present the essentials for the ambient formalism in this

appendix.

Contractions. Here, the contraction of two rank-r symmetric tensors T (X,U) and

S (X,U) is simply

TA1...Ar (X)SA1...Ar (X) =
1

r!
T (X, ∂U )S (X,U)

∣∣∣
U=0

=
1

r!
S (X, ∂U )T (X,U)

∣∣∣
U=0

. (A.1)

Note that throughout this paper we drop the explicit setting of the auxiliary vector to

zero when expressing tensor contractions through generating functions. This applies for all

auxiliary vectors u, w, U , W and Z.
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Analogous to the above, the symmetric and traceless contraction of T (X,U) and

S (X,U) is

T{A1...Ar} (X)S{A1...Ar} (X) =
1

r!
(
d
2 −

1
2

)
r

T (X,K)S (X,W )

=
1

r!
(
d
2 −

1
2

)
r

S (X,K)T (X,W ) , (A.2)

by virtue of (2.20).

KA is given explicitly by

KA =
d− 1

2

(
∂

∂WA
+XA

(
X · ∂

∂W

))
+

(
W · ∂

∂W

)
∂

∂WA
(A.3)

+XA

(
W · ∂

∂W

)(
X · ∂

∂W

)
− 1

2
WA

(
∂2

∂W · ∂W
+

(
X · ∂

∂W

)(
X · ∂

∂W

))
.

If the contracted tensors are already traceless and transverse to the AdS manifold, then

KA reduces to

KA =

(
d

2
− 1

2
+W · ∂

∂W

)
∂

∂WA
. (A.4)

For the symmetric and traceless contraction of r vectors TA and SA, the result can be

expressed in terms of a Gegenbauer polynomial C
d/2− 1

2
r (t):

(K · S)r (W · T )r

r!
(
d
2 −

1
2

)
r

= B{A1 . . . BAr}D{A1
. . . DAr} =

r!
(
B2D2

) r
2

2r
(
d
2 −

1
2

)
r

C
d/2− 1

2
r (t) , (A.5)

where

BA = SA + (X ·S)XA, DA = TA + (X ·T )XA, t =
B ·D + (B ·X) (D ·X)√(

(B ·X)2+B2
)(

(D ·X)2+D2
) .

(A.6)

This can be extended to r contractions of more than two vectors, for example the symmetric

and traceless contraction of r vectors TA, with n vectors SA1 and r − n vectors SA2 can be

computed via

(K · S1)n (K · S2)r−n (W · T )r

r!
(
d
2 −

1
2

)
r

=
1

(r − n+ 1)n

(
S1 ·

∂

∂S2

)n (K · S2)r (W · T )r

r!
(
d
2 −

1
2

)
r

. (A.7)

We make use of (A.7) in the computation of the four-point exchange in the traceless gauge,

with details given in appendix B.

Differential operators. Recall from (2.21) that the symmetric and traceless divergence

can be represented by the operator ∇·K, which together with the gradient W ·∇, Laplacian
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∇2 andDW = W ·∂W (which returns the spin of the tensor acted on) obeys the commutation

relations

[∇ ·K,W · ∇] =

(
d

2
− 1

2
+DW

)
∇2 −

(
D2
W + 3

(
d

2
− 1

2

)
DW +

(
d

2
− 1

2

)2
)
DW , (A.8)

[
∇2,W · ∇

]
= −2

(
d

2
− 1 +DW

)
W · ∇. (A.9)

One can then further show that [61][
∇2, (W · ∇)n

]
= −n (d− 1 + 2DW − n) (W · ∇)n , (A.10)

and

[∇ ·K, (W · ∇)n] (A.11)

=
n

2
(W · ∇)n−1 (d+ n+ 2DW − 2)

(
1− n− (n+DW − 1) (d+ n+DW − 2) +∇2

)
.

These commutation relations are particularly useful in deriving the explicit form for the

bulk-to-bulk propagators in de Donder and the traceless gauge, in sections 3.3 and 3.4

respectively.

B Exchange computation in traceless gauge

Much of the computation in this gauge follows [61], in particular section 6 of the paper

where a partial contribution to the four-point exchange of massive bosonic higher-spin

fields between scalars, coming from the traceless part of the higher-spin propagator was

computed. Here we are however concerned with the complete exchange of massless higher-

spin fields, which couple to two scalar fields instead in a current interaction and whose

bulk-to-bulk propagators were previously unknown in the metric-like formalism.

The expression obtained for the exchange in this gauge is very involved, as will become

clear in the following. However, it should be noted that we are able to check that it is in

agreement with the result in section 4.3 for the manifest trace gauge. We carry out this

verification in section 4.4.

Repeating ourselves here for convenience, our goal is to bring the split form of the

massless spin-s exchange in the traceless gauge,

As,φ (P1, P2;P3, P4) =
s∑
`=0

∫ ∞
−∞

dνfs,` (ν)
ν2

π (s− `)!
(
d
2 − 1

)
s−`

∫
∂AdS

dP5 (B.1)

×
gφφs

s!
(
d
2 −

1
2

)
s

∫
AdS

dX1 Js (X1,K1;P1, P2) (W1 · ∇1)` Πd/2+iν,s−` (X1, P5;W1, Z)

×
gφφs

s!
(
d
2 −

1
2

)
s

∫
AdS

dX2 Js (X2,K2;P3, P4) (W2 · ∇2)` Πd/2−iν,s−` (X2, P5;W2, DZ) ,

into the form (3.64) of a conformal partial wave expansion. Namely, the bulk integrals need

to be expressed in terms of boundary three-point functions 〈O∆O∆Od/2±iν,s−`〉 with unit
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normalisation as in (3.67). Unlike in the manifest trace gauge, as written above the bulk

integrals are not manifestly in the desired form. One way to proceed is to simply evaluate

the bulk integrals for the boundary expression, since conformal invariance guarantees that

the tensorial structure is the required form — all that remains is to extract the overall

coefficient. This is the route we take in the following.

Let us focus on the single bulk integral over X1 on the second line of (B.1), since the

same applies to X2. This has the explicit form

Â1 (P1, P2) =
gφφs

s!
(
d
2 −

1
2

)
s

s∑
a=0

(−1)a s!

a! (s− a)!

∫
AdS

dX1 (B.2)

× (K1 · ∇1)` Πd/2+iν,s−` (X1, P5;K1, Z) (W1 · ∇1)a φ (X1, P1) (W1 · ∇1)s−a φ (X1, P2) .

The integral can be evaluated by noting that

(K · ∇)`Πd/2±iν,s−` (X,P ;K,Z) =
Cd/2±iν,s−` (d/2± iν + s− `)`

(−2P ·X)d/2±iν+s
(2P ·K)`

(
X̄ ·K

)s−`
,

where we introduced

X̄A = ZA (2P ·X)− 2PA (Z ·X) , (B.3)

and also

(W · ∇)a φ (X,P ) = C∆ (∆)a (−2P ·X)−(a+∆) (2W · P )a . (B.4)

Then employing the identity (A.7) for the symmetric and traceless contraction between

the conserved current and (W · ∇)` Πd/2±iν,s−`, and expressing the resultant Gegenbauer

polynomial in terms of the hypergeometric function 2F1, we find

Â1 (P1, P2) = (B.5)

gφφs

(1)∑ (P15)
m−b

(P25)
b−e+s−`

∫
AdS

dX1

(C∆)
2 Cd/2+iν,s−`

(
−X̄1 · P1

)b (−X̄1 · P2

)s−`−b
(−2P1 ·X1)

∆+m
(−2P2 ·X1)

∆+e
(−2P5 ·X1)

d/2+iν+m+e

+ gφφs

(2)∑ (P15)
m−b

(P12)
g

(P25)
b−e+s−`

∫
AdS

dX1

(C∆)
2 Cd/2+iν,s−`

(
−X̄1 · P1

)b (−X̄1 ·P2

)s−`−b
(−2P1 ·X1)

∆+m+g
(−2P2 ·X1)

∆+e+g
(−2P5 ·X1)

d/2+iν+m+e
,

where we introduced
(1)∑

= (d/2 + iν + s− `)`
`! (−1)

s
2

2ss!
(
d
2 −

1
2

)
s

s∑
a=0

s−∑̀
b=0

s/2∑
c=0

a∑
m=0

2c−a∑
e=0

(−1)a+c+m+e 22c+m+e (B.6)

×

(
s
a

)(
s−`
b

)(
a
m

)(
2c−a
e

)
m!e! (s− a)! (∆)a (∆)s−a

(
d
2 −

1
2

)
s
2

+c

(m− b)! (b+ e+ `− s)!
(
s
2 − c

)
! (2c− a)!

,

and
(2)∑

= (d/2 + iν + s− `)`
`! (−1)

s
2

2ss!
(
d
2 −

1
2

)
s

s∑
a=0

s−∑̀
b=0

s/2∑
c=0

a−1∑
n=0

n∑
m=0

2c−n∑
e=0

a−n∑
f=1

2k+n−a∑
g=0

(−1)
a+c+m+e+g

×2−a+2c+m+e+g+2f+n

(
s
a

)(
s−`
b

)(
n
m

)(
2c−n
e

)(
2f+n−a

g

)(
a
n

)
m!e! (s−a)! (a−n)! (∆)a (∆)s−a

(
d
2 −

1
2

)
s
2 +c

(m− b)! (b+ e+ `− s)!
(
s
2 − c− f

)
! (2c− n)! (2f+n−a)! (a−n−f)!

.

(B.7)
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The bulk integral can now be easily evaluated with the help of the boundary differential

operator (3.55), DP . To wit,

(P15)
m−b

(P12)
g

(P25)
b−e+s−`

∫
AdS

dX1

(C∆)
2 Cd/2+iν,s−`

(
−X̄1 · P1

)b (−X̄1 · P2

)s−`−b
(−2P1 ·X1)

∆+m+g
(−2P2 ·X1)

∆+e+g
(−2P5 ·X1)

d/2+iν+m+e

=
(P2 · ∂WDP5

)
s−`−b

(P1 · ∂WDP5
)
b

(d/2 + iν +m+ e+ `− s)s−`

∫
AdS

dX1

(P15)
m−b

(P25)
e−b+`−s

(P12)
g

(C∆)
2 Cd/2+iν,s−`

(−2P1 ·X1)
∆1 (−2P2 ·X1)

∆2 (−2P5 ·X1)
∆5

= (−1)
b (δ15)s−`−b (δ25)b b (∆1,∆2,∆5, 0)

(d/2 + iν +m+ e+ `− s)s−`

(C∆)
2 Cd/2+iν,s−`

C∆1
C∆2
C∆5

× (P25 (Z · P1)− P15 (Z · P2))
s−`

(P12)
1
2 (2∆+s−`−d/2−iν)

(P25)
1
2 (d/2+iν+s−`)

(P15)
1
2 (d/2+iν+s−`)

= (−1)
b

2`−s
(

2∆−d/2+iν+s−`
2

)
m+e+g+`−s

(
2∆−d/2−iν+s−`

2

)
g

(
d/2+iν+s−`

2

)
b+e+`−s

(
d/2+iν+s−`

2

)
m−b

(∆)m+g (∆)e+g (d/2 + iν + s− `)m+e+2`−2s (d/2 + iν +m+ e+ `− s)s−`

× b(∆,∆, d
2

+ iν, s− `)〈O∆ (P1)O∆ (P2)Od/2+iν,s−` (P5, Z)〉, (B.8)

with

∆1 = ∆ +m+ g, ∆2 = ∆ + e+ g, ∆5 =
d

2
+ iν +m+ e+ `− s (B.9)

and δij =
1

2
(∆i + ∆j −∆k) .

Where we used (3.62) in the evaluation of the bulk integral. Â1 is thus evaluated as

Â1(P1, P2) = gφφs Td/2+iν,s,s−` b

(
∆,∆,

d

2
+ iν, s−

)̀
〈O∆ (P1)O∆ (P2)Od/2+iν,s−` (P5, Z)〉,

(B.10)

where

Td/2+iν,s,s−` = T (1)
d/2+iν,s,s−` + T (2)

d/2+iν,s,s−`, (B.11)

T (1)
d/2+iν,s,s−`

(d/2 + iν + s− `)`
= (B.12)

`! (−1)s/2

s!
(
d
2 −

1
2

)
s

s∑
a=0

s−∑̀
b=0

s/2∑
c=0

a∑
m=0

2c−a∑
e=0

(−1)a+b+c+m+e

(
d
2 −

1
2

)
s
2

+c

(
a
m

)(
2c−a
e

)(
s−`
b

)(
s
a

)
m!e! (s− a)!(

s
2 − c

)
! (2c− a)! (m− b)! (b+ e+ `− s)!

×2`−2s+2c+m+e
(∆)a(∆)s−a

(
2∆−d/2+iν+s−`

2

)
m+e+`−s

(
d/2+iν+s−`

2

)
b+`−s

(
d/2+iν+s−`

2

)
m−b

(∆)m (∆)e (d/2 + iν +m+ e+ `− s)s−` (d/2 + iν + s− `)m+e+2`−2s

,
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and

T (2)
d/2+iν,s,s−`

(d/2 + iν + s− `)`
=

`! (−1)
s/2

s!
(
d
2 −

1
2

)
s

s∑
a=0

s−∑̀
b=0

s/2∑
c=0

a−1∑
n=0

n∑
m=0

2c−n∑
e=0

a−n∑
f=1

2f+n−a∑
g=0

(−1)
a+b+c+m+e+g

×
2`−2s−a+2c+m+e+g+2f+n

(
d
2 −

1
2

)
s
2 +c

(
n
m

)(
2c−n
e

)(
s−`
b

)(
s
a

)(
2f+n−a

g

)(
a
n

)
m!e! (s− a)! (a− n)!

(s/2− c− f)! (2c− n)! (m− b)! (b+ e+ `− s)! (2f + n− a)! (a− n− f)!

×
(∆)a(∆)s−a

(
2∆−d/2+iν+s−`

2

)
m+e+g+`−s

(
2∆−d/2−iν+s−`

2

)
g

(
d/2+iν+s−`

2

)
b+`−s

(
d/2+iν+s−`

2

)
m−b

(∆)m+g (∆)e+g (d/2 + iν +m+ e+ `− s)s−` (d/2 + iν + s− `)m+e+2`−2s

.

(B.13)

We have thus achieved the following decomposition for the spin-s exchange in the traceless

gauge

As, φ (P1, P2;P3, P4) =

s∑
`=0

∫ ∞
−∞

dν bs−` (ν) (B.14)

×
∫
∂AdS

dP5

〈O∆ (P1)O∆ (P2)Od/2+iν,s−` (P5, DZ)〉〈Od/2−iν,s−` (P5, Z)O∆ (P3)O∆ (P4)〉
βν,∆,s−` (s− `)!

(
d
2 − 1

)
s−`

,

where

bs−` (ν) =
ν2 (gφφs)

2 βν,∆,s−`
π

fs,` (ν)αs−` (ν) b

(
∆,∆,

d

2
+ iν, s− `

)
b

(
∆,∆,

d

2
− iν, s− `

)
=
ν2 (gφφs)

2 βν,∆,s−`
π

fs,` (ν) Td/2+iν,s,s−` Td/2−iν,s,s−`

× b
(

∆,∆,
d

2
+ iν, s− `

)
b

(
∆,∆,

d

2
− iν, s− `

)
, (B.15)

and the explicit form of βν,∆i,` is given by

βν,∆i,` =
23−2`πd/2+1Γ (iν) Γ (−iν)

(
d
2 − iν − 1

)
`

(
d
2 + iν − 1

)
`

Γ
(

∆1+∆2−d/2−iν+`
2

)
Γ
(
d/2+iν+`+∆1−∆2

2

)
Γ
(
d/2+iν+`+∆2−∆1

2

)
Γ
(

∆1+∆2−d/2+iν+`
2

)
× 1

Γ
(

∆3+∆4−d/2−iν+`
2

)
Γ
(
d/2−iν+`+∆3−∆4

2

)
Γ
(
d/2−iν+`+∆4−∆3

2

)
Γ
(

∆3+∆4−d/2+iν+`
2

) .
(B.16)

C Single trace of the currents

In this appendix, we show how a single trace of the unconstrained current (4.11) of a given

rank can be expressed in terms of unconstrained currents of lower ranks. The formula that

we will find generalises

(∂u · ∂u) I(x, u) =
(
−� + 4M2

)
I(x, u), (C.1)

from the flat space to AdS.
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It is easy to obtain

(∂X · ∂X + ∂U · ∂U )J (X,U) = 0,

where it was taken into account that the ambient scalar Φ is massless (4.2). Then the

(A)dS trace gives

(∂u · ∂u)J (X,U) ≡
(
∂U · ∂U + (X · ∂U )2

)
J (X,U)

=
(
−∂X · ∂X + (X · ∂U )2

)
J (X,U). (C.2)

The next step is to rewrite the r.h.s. of (C.2) in terms of intrinsic (A)dS covariant operators:

Laplacian �, rank of the current (U ·∂U ), multiplication by the metric U2 and the covariant

gradient (U ·∇). The first term in (C.2) can be related to the Laplacian, which in ambient

notation reads

� = ∂X · ∂X + (X · ∂X) ((X · ∂X) + d− 1)− (U · ∂U ) + 2(U · ∂X)(X · ∂U )+ U2(X · ∂U )2.

(C.3)

Then we eliminate (X · ∂U ) in favour of (U · ∂X), using that

(X · ∂U ) + (U · ∂X) = X+∂+ −X−∂−.

Hence,

(X · ∂U )J = (∆+ −∆− − (U · ∂X))J . (C.4)

Let us note that the identity above can be used only when (X · ∂U ) acts directly on the

current. So, for example,

(X · ∂U )2J = (X · ∂U )(∆+ −∆− − (U · ∂X))J
= (∆+ −∆− − (U · ∂X))(X · ∂U )J − [(X · ∂U ), (U · ∂X)]J
= (∆+ −∆− − (U · ∂X))2J − (X · ∂X − U · ∂U )J .

(X · ∂X) can be eliminated through (U · ∂U ) (4.10),

(X · ∂X)J = −((U · ∂U ) + d)J . (C.5)

Finally, we express (U · ∂X) in terms of covariant gradients (U · ∇), using

(U · ∇) = U2(X · ∂U ) + (U · ∂X).

Together with (C.4), this yields

(U · ∂X)J =
1

1− U2

(
(U · ∇)− U2(∆+ −∆−)

)
J , (C.6)

where the fraction should be understood as a power series

1

1− U2
= 1 + U2 + U4 + . . . .
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Let us stress again that the formula above can be used only when (U · ∂X) acts directly on

the current. In particular,

(U · ∂X)2J =

(
1

1− U2

(
(U · ∇)− U2(∆+ −∆−)

))2

J − U2

1− U2
(X∂X − U∂U )J .

Therefore, in the end one finds for the trace

(∂u · ∂u)J =

(
−� + (u · ∂u + 1)(u · ∂u + d)

+
1

1− u2

(
(∆+ −∆−)2 − (u · ∇)2

))
J . (C.7)

D Multiple traces of the currents

In this appendix we compute τs,k (ν) in (4.14). To this end, we take repeated traces of (C.7).

This allows to express, say, a k−fold trace of rank-s current Js in terms of lower degree

traces of lower-spin currents

(∂u · ∂u)kJs → (∂u · ∂u)k−1Js−2, (∂u · ∂u)k−2Js−4, . . . , Js−2k (D.1)

and terms of the form

(u · ∇)(. . . ) or u2 · (. . . ). (D.2)

Then (D.1) can be applied to each term on the right hand side of (D.1). Doing this

repeatedly one can eliminate all the traces from the right hand side, thereby expressing

(∂u ·∂u)kJs in terms of Js−2k and terms of the form (D.2). Our main goal is to compute the

exchange, so it is enough to know (∂u ·∂u)kJs modulo terms which vanish upon contraction

against traceless and divergence free Ωs−2k. These are precisely the terms in (D.2). Further

on we will often drop such terms where they are unimportant. Equalities that hold modulo

these terms will be denoted by “∼”.

We will need the following useful identities

(∂u · ∂u)i
(
u2
)k Jl =

i∑
n=0

4i−n
i!

n!(i− n)!
(k − i+ n+ 1)i−n

× ((d+ 1)/2 + k + l − i)i−n
(
u2
)k−i+n

(∂u · ∂u)n Jl, (D.3)

and

(∂u · ∂u)m(u · ∇)2Jk = 2m · k − 2m+ 2

k − 2m+ 3
(∂u · ∇)(u · ∇)(∂u · ∂u)m−1Jk

+ 2m � (∂u · ∂u)m−1Jk + (u · ∇)2(∂u · ∂u)mJk. (D.4)

Here and throughout we use that the current is conserved. To commute divergence and

gradient in (D.4), we employ

1

n+ 1
(∂u · ∇)(u · ∇)Jn =

1

n
(u · ∇)(∂u · ∇)Jn − (n+ d)Jn +

1

n
u2(∂u · ∂u)Jn, (D.5)
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which entails

(∂u · ∂u)m(u · ∇)2Jk ∼ 2m (�− (k − 2m− 2)(k − 2m+ d+ 1)) (∂u · ∂u)m−1Jk. (D.6)

With these formulas at hand we are prepared to compute the i-fold trace (∂u · ∂u)i of the

both sides of (C.7). Using (D.3), keeping only terms with k − i+ n = 0, we obtain

(∂u · ∂u)i+1Js+2 ∼ − � (∂u · ∂u)iJs + (s+ 1)(s+ d)(∂u · ∂u)iJs

+

i∑
k=0

i!

(i− k)!
4k ((d+ 1)/2 + s− i− k)k

× (∂u · ∂u)i−k
(
(∆+ −∆−)2Js−2k − (u · ∇)2Js−2k−2

)
.

Employing (D.6) we find

(∂u · ∂u)i+1Js+2 ∼ −�(∂u · ∂u)iJs + (s+ 1)(s+ d)(∂u · ∂u)iJs

+

i∑
k=0

(∂u · ∂u)i−k(∆+ −∆−)2Js−2k
i!

(i− k)!
4k ((d+ 1)/2 + s− i− k)k

−
i−1∑
k=0

(�− (s− 2i)(s− 2i+ d− 1)) (∂u · ∂u)i−k−1Js−2k−2

× i!

(i− k − 1)!
4k+1 ((d+ 1)/2 + s− i− k)k+1 . (D.7)

One notices that applying (D.7) to the right combination of (∂u ·∂u)i+1Js+2 and (∂u ·∂u)iJs,
the tails of terms on the right hand side cancel. To wit,

(∂u · ∂u)i+1Js+2 − 2i(d+ 2s− 2i− 1)(∂u · ∂u)iJs
∼
(
(∆+ −∆−)2 −� + (s+ 1)(s+ d)

)
(∂u · ∂u)iJs

− 2i (�− (s− 2i)(s− 2i+ d− 1)) (∂u · ∂u)i−1Js−2

− 2i(d+ 2s− 2i− 1) (�− (s− 1)(s+ d− 2)) (∂u · ∂u)i−1Js−2. (D.8)

From now we assume that both sides of (D.8) are integrated against the traceless and

divergenceless harmonic function Ωs−2k. Then one can integrate by parts all �’s that

appear on the right hand side of (D.8), thus making them act on Ωs−2k. Using (3.12)

and (4.1) we obtain the following iterative equation

(∂u · ∂u)i+1Js+2 ∼ f(i, s)(∂u · ∂u)iJs + g(i, s)(∂u · ∂u)i−1Js−2, (D.9)

where

f(i, s) = (2∆− d− 1)(2∆− d+ 1)

+

(
ν2 +

(
d

2
+ (s− 2i) + 1

)2
)

+ 8i

(
d

2
+ (s− 2i) + i

)
,

g(i, s) = 4i

(
d

2
+ (s− 2i) + i− 1

)
×

(
−

(
ν2 +

(
d

2
+ (s− 2i) + 1

)2
)
− 4(i− 1)

(
d

2
+ (s− 2i) + i

))
.
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As “boundary conditions” we take (∂u · ∂u)−1Js−2k−2 ≡ 0 and assume that Js−2k is given.

Then the iterative equation (D.9) allows to express (∂u · ∂u)kJs in terms of Js−2k. The

result is

(∂u · ∂u)kJs ∼ τs,k Js−2k,

where

τs,k (ν) =
k∑

m=0

22k · k!

m!(k −m)!

(
∆− d

2
− k +m+ 1/2

)
k−m

×

(
d
2 + s− 2m+ 1 + iν

2

)
m

(
d
2 + s− 2m+ 1− iν

2

)
m

.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J.

Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

[2] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

[3] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [INSPIRE].

[4] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories,

string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

[5] I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field

Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].

[6] A.L. Fitzpatrick, E. Katz, D. Poland and D. Simmons-Duffin, Effective Conformal Theory

and the Flat-Space Limit of AdS, JHEP 07 (2011) 023 [arXiv:1007.2412] [INSPIRE].

[7] S. El-Showk and K. Papadodimas, Emergent Spacetime and Holographic CFTs, JHEP 10

(2012) 106 [arXiv:1101.4163] [INSPIRE].

[8] A.L. Fitzpatrick and J. Kaplan, AdS Field Theory from Conformal Field Theory, JHEP 02

(2013) 054 [arXiv:1208.0337] [INSPIRE].

[9] E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002)

303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].

[10] I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett.

B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

[11] M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in

(3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].

[12] M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in

(3 + 1)-dimensions, Phys. Lett. B 285 (1992) 225 [INSPIRE].

– 47 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802109
http://arxiv.org/abs/hep-th/9802150
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802150
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://arxiv.org/abs/hep-th/9905111
http://inspirehep.net/search?p=find+EPRINT+hep-th/9905111
http://dx.doi.org/10.1088/1126-6708/2009/10/079
http://arxiv.org/abs/0907.0151
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.0151
http://dx.doi.org/10.1007/JHEP07(2011)023
http://arxiv.org/abs/1007.2412
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.2412
http://dx.doi.org/10.1007/JHEP10(2012)106
http://dx.doi.org/10.1007/JHEP10(2012)106
http://arxiv.org/abs/1101.4163
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.4163
http://dx.doi.org/10.1007/JHEP02(2013)054
http://dx.doi.org/10.1007/JHEP02(2013)054
http://arxiv.org/abs/1208.0337
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.0337
http://dx.doi.org/10.1016/S0550-3213(02)00739-3
http://dx.doi.org/10.1016/S0550-3213(02)00739-3
http://arxiv.org/abs/hep-th/0205131
http://inspirehep.net/search?p=find+EPRINT+hep-th/0205131
http://dx.doi.org/10.1016/S0370-2693(02)02980-5
http://dx.doi.org/10.1016/S0370-2693(02)02980-5
http://arxiv.org/abs/hep-th/0210114
http://inspirehep.net/search?p=find+EPRINT+hep-th/0210114
http://dx.doi.org/10.1016/0370-2693(90)91400-6
http://inspirehep.net/search?p=find+J+Phys.Lett.,B243,378
http://dx.doi.org/10.1016/0370-2693(92)91457-K
http://inspirehep.net/search?p=find+J+Phys.Lett.,B285,225


J
H
E
P
0
3
(
2
0
1
5
)
1
7
0

[13] M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dSd,

Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].

[14] J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03

(2011) 025 [arXiv:1011.1485] [INSPIRE].

[15] A.L. Fitzpatrick and J. Kaplan, Analyticity and the Holographic S-matrix, JHEP 10 (2012)

127 [arXiv:1111.6972] [INSPIRE].

[16] A.L. Fitzpatrick and J. Kaplan, Unitarity and the Holographic S-matrix, JHEP 10 (2012)

032 [arXiv:1112.4845] [INSPIRE].

[17] M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP 12 (2012) 091

[arXiv:1209.4355] [INSPIRE].

[18] G. Mack, D-independent representation of Conformal Field Theories in D dimensions via

transformation to auxiliary Dual Resonance Models. Scalar amplitudes, arXiv:0907.2407

[INSPIRE].

[19] A.L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju and B.C. van Rees, A Natural Language

for AdS/CFT Correlators, JHEP 11 (2011) 095 [arXiv:1107.1499] [INSPIRE].

[20] M.F. Paulos, Towards Feynman rules for Mellin amplitudes, JHEP 10 (2011) 074

[arXiv:1107.1504] [INSPIRE].

[21] D. Nandan, A. Volovich and C. Wen, On Feynman Rules for Mellin Amplitudes in

AdS/CFT, JHEP 05 (2012) 129 [arXiv:1112.0305] [INSPIRE].

[22] X. Bekaert, N. Boulanger and P. Sundell, How higher-spin gravity surpasses the spin two

barrier: no-go theorems versus yes-go examples, Rev. Mod. Phys. 84 (2012) 987

[arXiv:1007.0435] [INSPIRE].

[23] X. Bekaert, S. Cnockaert, C. Iazeolla and M.A. Vasiliev, Nonlinear higher spin theories in

various dimensions, hep-th/0503128 [INSPIRE].

[24] V.E. Didenko and E.D. Skvortsov, Elements of Vasiliev theory, arXiv:1401.2975 [INSPIRE].

[25] C. Fronsdal, Massless Fields with Integer Spin, Phys. Rev. D 18 (1978) 3624 [INSPIRE].

[26] C. Fronsdal, Singletons and Massless, Integral Spin Fields on de Sitter Space (Elementary

Particles in a Curved Space. 7, Phys. Rev. D 20 (1979) 848 [INSPIRE].

[27] E. Joung, L. Lopez and M. Taronna, Solving the Noether procedure for cubic interactions of

higher spins in (A)dS, J. Phys. A 46 (2013) 214020 [arXiv:1207.5520] [INSPIRE].

[28] E. Joung, L. Lopez and M. Taronna, Generating functions of (partially-)massless

higher-spin cubic interactions, JHEP 01 (2013) 168 [arXiv:1211.5912] [INSPIRE].

[29] N. Boulanger, D. Ponomarev and E.D. Skvortsov, Non-abelian cubic vertices for higher-spin

fields in anti-de Sitter space, JHEP 05 (2013) 008 [arXiv:1211.6979] [INSPIRE].

[30] D. Sarkar and X. Xiao, Holographic Representation of Higher Spin Gauge Fields,

arXiv:1411.4657 [INSPIRE].

[31] M.A. Vasiliev, Dynamics of Massless Higher Spins in the Second Order in Curvatures,

Phys. Lett. B 238 (1990) 305 [INSPIRE].
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