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ABSTRACT 
Background: This paper describes an analysisthat was conducted 
on newly collected repository with 92 versions of 38 proprietary, 
open-source and academic projects. A preliminary study 
perfomed before showed the need for a further in-depth analysis 
in order to identify project clusters. 
Aims: The goal of this research is to perform clustering on 
software projects in order to identify groups of software projects 
with similar characteristic from the defect prediction point of 
view. One defect prediction model should work well for all 
projects that belong to such group. The existence of those groups 
was investigated with statistical tests and by comparing the mean 
value of prediction efficiency. 
Method: Hierarchical and k-means clustering, as well as 
Kohonen’s neural network was used to find groups of similar 
projects. The obtained clusters were investigated with the 
discriminant analysis. For each of the identified group a statistical 
analysis has been conducted in order to distinguish whether this 
group really exists. Two defect prediction models were created for 
each of the identified groups. The first one was based on the 
projects that belong to a given group, and the second one - on all 
the projects. Then, both models were applied to all versions of 
projects from the investigated group. If the predictions from the 
model based on projects that belong to the identified group are 
significantly better than the all-projects model (the mean values 
were compared and statistical tests were used), we conclude that 
the group really exists.  
Results: Six different clusters were identified and the existence of 
two of them was statistically proven: 1) cluster proprietary B – 
T=19, p=0.035, r=0.40; 2) cluster proprietary/open – t(17)=3.18, 
p=0.05, r=0.59. The obtained effect sizes (r) represent large 
effects according to Cohen’s benchmark, which is a substantial 
finding. 
Conclusions: The two identified clusters were described and 
compared with results obtained by other researchers. The results 
of this work makes next step towards defining formal methods of 
reuse defect prediction models by identifying groups of projects 
within which the same defect prediction model may be used. 
Furthermore, a method of clustering was suggested and applied. 

 

 

 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics – complexity measures, 
product metrics, software science.  

General Terms 
Measurement 
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INTRODUCTION 
Testing of software systems is an activity that consumes time and 
resources. Applying the same testing effort to all modules of a 
system is not the optimal approach, because the distribution of 
defects among individual parts of a software system is not 
uniform. Therefore, testers should be able to identify fault-prone 
classes. With such knowledge they would be able to prioritize the 
tests, and therefore, work more efficiently. Accorindg to Weyuker 
et al. [24,25] typically 20% of modules contain upwards of 80% 
of defects. Testers with good defect predicator may be able to 
spare a lot of test effort by testing only 20% of system modules 
and still finding up to 80% of the software defects. Defect 
prediction studies usually use historical data of previous versions 
of software to build the defect prediction models. Such approach 
can be applied neither in the first release of a software system, nor 
by companies that do not collect historical data. Therefore, it is 
vital to identify methods of constructing models that do not 
require historical data is vital. 

Considerable research has been performed on the defect 
prediction methods; see the surveys by Purao and Vaishnavi [19], 
or by Wahyudin et al. and [23], but the methods of reusing of 
defect prediction model have not been discovered yet. There are 
only works where the same model has been used in similar 
projects (Watanabe et al. [22], Bell, Ostrand and Weyuker 
[2,18,24] or Nagappan et al. [16]), but without identifying the 
borders of  similarity. According to the authors' knowledge there 
are only two studies where cross project validation of defect 
prediction models were performed [21, 26]; both are described in 
the next section. The goal of this research is to fulfill that gap by 
identifying clusters of software projects. Defect prediction in all 
projects that belong to one cluster should be possible to make by 
using only one defect prediction model. A preliminary study was 
already conducted [11], where existence of three clusters was 
investigated: proprietary projects, open-source projects and 



academic projects. Only the defect prediction model created for 
the open-source cluster was statistically better. Therefore, only 
one cluster was proved to exist whereasit is extremely unlikely 
that the other clusters do not exist. Further studies could reveal 
other clusters, and it is also possible that the identified cluster 
may be successfully split into several smaller clusters.  

The paper is organized as follows: in Section 2 related works are 
described. Section 3 presents the suite of OO metrics that were 
used, the investigated projects, definition of the study and 
discusses threats to validity of the study. The obtained results are 
shown in Section 4. Conclusions are given in Section 6 and the 
prospects for future research in Section 7.  

RELATED WORKS 
Typical approach in studies connected with defect prediction 
models is to build a model according to data from an old version 
of a project and then validate or use this model on a new version 
of the same project. Such approach was used [2,8,17,18,24 ,25] as 
well as advocated [5,23] by many researchers. Some experiments 
were also reported where the cross-project reusability of a defect 
prediction models was investigated.  

Koru and Liu [12] came to interesting conclusions: “Normally, 
defect prediction models will change from one development 
environment to another according to specific defect patterns.” But 
in their opinion, it does not mean that building generalizable 
defect prediction model is not possible. In fact, such models may 
be extremely useful and may serve as a starting point in 
development environments that have no historical data.   

Nagappan et al. [16] extended the state of the art through 
analyzing whether predictors obtained from one project history 
are applicable to other projects. The authors investigated five 
proprietary software projects. The performed analyze showed that 
there is no single set of metrics that fits to all five projects, but the 
defect prediction models may be accurate when obtained form 
similar projects (the similarity were not precisely defined). The 
authors evaluated this problem by building one predictor for each 
project and applying it to the entities of each of the other four 
projects. Then the correlations between the actual and predicted 
rankings were compared. It turned out that the projects histories 
cannot serve as predictors for other projects in most cases. The 
study was extended in [26], where 622 cross-project predictions 
were performed for 12 real world applications. A project was 
considered as a strong predictor for another project, when all 
precision, recall, and accuracy were greater than 0.75. Only 21 
cross-project validations satisfied this criterion – success rate 
3.4%. Subsequently, guidelines that enable assessing the chance 
of the success of a cross-project prediction were given. The 
guidelines were summarized in a decision tree. The authors 
constructed separate trees for assessing prediction precision, 
recall, and accuracy, but only the tree for precision was given in 
the paper. 

Watanabe et al. [22] tried to apply in a C++ project a defect 
prediction model that has been constructed according to the data 
from a Java project. The reusability study in the opposite 
direction was conducted as well. Sakura Editor and JEdit were 
used as the investigated projects. Metrics from only one release 
were collected, so the authors stratified 10-fold cross validation 
model in order to count two metrics of models accuracy: precision 
and recall. In intra project prediction they obtained precision 

0.828 and 0.733 and recall 0.897 and 0.702. In inter project 
prediction they obtained precision 0.872 and 0.622 and recall 
0.596 and 0.402. According to obtained results, authors concluded 
that in the case of a similar domain and a similar size, it is 
possible to reuse the prediction model between languages; despite 
the fact the precision/recall is not very high. The authors admitted 
that their results were based on only two projects, so the 
generality is not clear and in order to increase the generalization 
level they were going to evaluate the reusability with other 
projects whose domain is text editor. 

Relevant to this study are experiments conducted by Ostrand et al. 
[18], where two large industrial systems with separately seventeen 
and nine releases were investigated. A negative binomial 
regression model was used. The predictions were based on the 
source code of current release, and fault and modification history 
from previous release. The study was extended in [24] by 
analyzing the third project (it increased the number of used 
programming languages to ten). Applying the defect prediction 
model to the third project gave good results – 20% of the files that 
would contain the largest number of faults contained, on average, 
83% of the faults. Further findings were presented in [25], where 
the number of the investigated projects was increased to four. 
According to the obtained results, the authors said: “Our 
prediction methodology is designed for large industrial systems 
with a succession of releases over years of development” but later 
it “was successfully adapted to a system without release”. 
However, it must be mentioned that Weyuker et al. used another 
approach as the one that is presented in this paper. They had no 
fixed model structure, the model equation was adjusted according 
to data from the history of the analyzed system. Only the model 
building procedure was fixed. 

A comprehensive study of cross company defect prediction was 
conducted by Turhan et al. [21]. Ten different software projects 
were investigated. Turhan et al. concluded that there is no single 
set of static code features (metrics) that may serve as defect 
predictor for all software projects. The defect prediction models 
effectiveness was measured using probability of detection (pd) 
and probability of false alarm (pf). Cross company defect 
prediction dramatically increased the pd as well as the pf. The 
authors were also able to decrease the pf by applying the nearest 
neighbor filtering. The similarity measure was the Euclidean 
distance between the static code features. The project features that 
may influence the effectiveness of cross company predictions 
were not identified. 

Wahyudin et al. [23] suggested a framework for defect prediction. 
In the context of their framework they discussed the possibility of 
reusing historical data in defect prediction for other projects. They 
concluded that: “A prediction model models the context of a 
particular project. As a consequence, predictors obtained from one 
project are usually not applicable to other projects”. When the 
predictors are applicable or whether there exist such groups of 
projects within which one predicator may be applied to all 
projects was not discussed.  

STUDY DESIGN 
Metrics and Tools 
There is a number of size and complexity metrics that may be 
used in defect prediction models. All metrics that are calculated 



by the Ckjm1 tool were used in thisstudy. The reported in [8] 
version of ckjm was used. This is the version that calculated 19 
metrics that has been reported as good quality indicators. Those 
metrics were selected according to some reported experiments 
[3,17] and own researches [9,10]. The utilized metrics comes 
from several metrics suites. 

The metrics suite suggested by Chidamber and Kemerer [4]: 

• Weighted methods per class (WMC). The value of the WMC is 
equal to the number of methods in the class (assuming unity 
weights for all methods). 

• Depth of Inheritance Tree (DIT). The DIT metric provides for 
each class a measure of the inheritance levels from the object 
hierarchy top. 

• Number of Children (NOC). The NOC metric simply measures 
the number of immediate descendants of the class. 

• Coupling between object classes (CBO). The CBO metric 
represents the number of classes coupled to a given class 
(efferent couplings and afferent couplings). These couplings can 
occur through method calls, field accesses, inheritance, method 
arguments, return types, and exceptions. 

• Response for a Class (RFC). The RFC metric measures the 
number of different methods that can be executed when an object 
of that class receives a message. Ideally, we would want to find, 
for each method of the class, the methods that class will call, and 
repeat this for each called method, calculating what is called the 
transitive closure of the method call graph. This process can 
however be both expensive and quite inaccurate. Ckjm calculates 
a rough approximation to the response set by simply inspecting 
method calls within the class method bodies. The value of RFC is 
the sum of number of methods called within the class method 
bodies and the number of class methods. This simplification was 
also used in the original description of the metric. 

• Lack of cohesion in methods (LCOM). The LCOM metric 
counts the sets of methods in a class that are not related through 
the sharing of some of the class fields. The original definition of 
this metric (which is the one used in Ckjm) considers all pairs of 
class methods. In some of these pairs both methods access at least 
one common field of the class, while in other pairs the two 
methods do not share any common field accesses. The lack of 
cohesion in methods is then calculated by subtracting from the 
number of method pairs that do not share a field access the 
number of method pairs that do. 

One metric suggested by Henderson-Sellers [6]: 

• Lack of cohesion in methods (LCOM3). 
m - number of methods in a class;             
a - number of attributes in a class;        
μ(A) - number of methods that access 
the attribute A. 

The metrics suite suggested by Bansiy and Davis [1]: 

• Number of Public Methods (NPM). The NPM metric simply 
counts all the methods in a class that are declared as public. The 
metric is known also as Class Interface Size (CIS) 
                                                                 
1  http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm  

• Data Access Metric (DAM). This metric is the ratio of the 
number of private (protected) attributes to the total number of 
attributes declared in the class. 

• Measure of Aggregation (MOA). The metric measures the 
extent of the part-whole relationship, realized by using attributes. 
The metric is a count of the number of class fields whose types 
are user defined classes. 

• Measure of Functional Abstraction (MFA). This metric is the 
ratio of the number of methods inherited by a class to the total 
number of methods accessible by the member methods of the 
class. The constructors and the java.lang.Object (as parent) are 
ignored. 

• Cohesion Among Methods of Class (CAM). This metric 
computes the relatedness among methods of a class based upon 
the parameter list of the methods. The metric is computed using 
the summation of number of different types of method 
parameters in every method divided by a multiplication of 
number of different method parameter types in whole class and 
number of methods. 

The quality oriented extension to Chidamber & Kemerer metrics 
suite suggested by Tang et al. [20]: 

• Inheritance Coupling (IC). This metric provides the number of 
parent classes to which a given class is coupled. A class is 
coupled to its parent class if one of its inherited methods is 
functionally dependent on the new or redefined methods in the 
class. A class is coupled to its parent class if one of the following 
conditions is satisfied: 
- One of its inherited methods uses an attribute that is defined in 
a new/redefined method. 
- One of its inherited methods calls a redefined method. 
- One of its inherited methods is called by a redefined method 
and uses a parameter that is defined in the redefined method. 

• Coupling Between Methods (CBM). The metric measures the 
total number of new/redefined methods to which all the inherited 
methods are coupled. There is a coupling when at least one of the 
conditions given in the IC metric is held. 

• Average Method Complexity (AMC). This metric measures the 
average method size for each class. The size of a method is equal 
to the number of Java binary codes in the method. 

Two metrics suggested by Martin [15]: 

• Afferent couplings (Ca). The Ca metric represents the number 
of classes that depend upon the measured class. 

• Efferent couplings (Ce). The Ca metric represents the number 
of classes that the measured class is depended upon. 

One McCabe's metric [14]: 

• McCabe's cyclomatic complexity (CC). CC is equal to the 
number of different paths in a method (function) plus one. The 
cyclomatic complexity is defined as: CC = E–N+P; where E - the 
number of edges of the graph, N - the number of nodes of the 
graph, P - the number of connected components. CC is the only 
method size metric. The constructed models make the class size 
predictions. Therefore, the metric had to be converted to a class 
size metric. Two metrics has been derived: 
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- Max(CC) - the greatest value of CC among methods of the 
investigated class. 
- Avg(CC) - the arithmetic mean of the CC value in the 
investigated class. 

Those metrics were complemented with one more, very popular 
metric: 

• Lines of Code (LOC). The LOC metric calculates the number 
of lines of code in the Java binary code of the class under 
investigation.  

The information about defects occurrence was collected with a 
tool called BugInfo. BugInfo analyses the logs from source code 
repository (SVN or CVS) and according to the log content decides 
whether a commit is a bugfix. A commit is interpreted as a bugfix 
when it solves an issue reported in the bug tracking system. Each 
of the projects had been investigated in order to identify bugfixes 
commenting guidelines that were used in the source code 
repository. The guidelines were formalized in regular expressions. 
Buginfo compares the regular expressions with comments of the 
commits. When a comment matches the regular expression, 
BugInfo increments the defect count for all classes that have been 
modified in the commit. The BugInfo tool has had no official 
release yet, but we are going to implement some improvements, 
especially in the user interface, and then make an official release. 
Its current version is available at: 
http://kenai.com/projects/buginfo. There is no formal evaluation 
regarding the efficiency of this tool in mapping defects yet, but 
comprehensive functional tests were conducted and many of the 
tests are available as JUnit tests in the source code package. All 
collected data is available online at: 
http://purl.org/MarianJureczko/MetricsRepo.  

Investigated projects 
48 releases of 15 open source projects were investigated: Apache 
Ant (1.3 – 1.7), Apache Camel (1.0 – 1.6), Ckjm (1.8), Apache 
Forrest (0.6 – 0.8), Apache Ivy (1.1 – 2.0), JEdit (3.2.1 – 4.3), 
Apache Log4j (1.0 – 1.2), Apache Lucene (2.0 – 2.2), PBeans (1.0 
and 2.0), Apache POI (1.5 – 3.0), Apache Synapse (1.0 – 1.2), 
Apache Tomcat (6.0), Apache Velocity (1.4 – 1.6.1), Apache 
Xalan-Java (2.4.0 – 2.7.0), Apache Xerces (1.1.0 – 1.4.4). A more 
comprehensive discussion of most of those projects was given in 
[8]. 

27 releases of 6 proprietary software projects were investigated. 
Five of them are custom build solutions that had been already 
successfully installed in the customer environment. Those five 
projects belong to the same domain: insurances. The 6th 
proprietary project is a standard tool that supports quality 
assurances in software development. All six projects were 
developed by the same company. 

Moreover, 17 academic software projects were investigated. Each 
of them had exactly one release. Those projects were 
implemented by 8th or 9th semester computer science students. 
The students worked in groups of 3 to 6 persons during one year. 
A highly iterative software development process was used. A 
UML documentation was prepared and high level of test code 
coverage were obtained for each of those projects. JUnit and 
FitNesse were used as test tools. Some of those projects had been 
already investigated in [9,10]. 

All of the investigated projects were written in Java. 

Analysis method employed 
It had been assumed that character of a defect predictor strongly 
depends on the correlation between metrics and number of defects 
in a class. A correlation vector was calculated for each of the 
investigated releases of projects. The correlation between each of 
metric (the metrics are given in 3.1) and the number of defects 
were calculated. The vectors were than extended by adding the 
ratio of defects per class. 

In order to uncover the project clusters, hierarchical clustering 
procedure and then k-means clustering were used. The complete 
linkage clustering indicated a two-group solution. Additionally 
Kohonen's neural network was used. The results returned by the 
Kohonen's neural network differ between separate runs of the 
network. Therefore, the network was executed several times and 
those releases of projects that were predominantly classified into 
the same neuron (cluster) were later investigated in order to 
distinguish whether it is a cluster from the defect prediction point 
of view. The obtained results were investigated with the 
discriminant analysis. Several different configurations of the 
Kohonen’s network with different number of the output neurons 
were used, but no more than 4 clusters were obtained, even when 
the number of output neurons was increased up to 16.  

For each of the identified cluster a defect prediction model was 
created. In order to create the model, all metrics were used and 
the stepwise linear regression was applied. Due to the stepwise 
regression, a typical model used five to ten metrics (not all of 
them). Subsequently, the models were evaluated by being applied 
to all releases of projects that belonged to the investigated cluster. 
In order to evaluate the efficiency of predicting defects in a 
release of project of a model, all classes that belong to the given 
release were sorted according to the model output. Descending 
predicted number of defects was used as sorting order. Next, the 
number of classes that must be visited in order to find 80% of 
defects were calculated and used as the model efficiency in 
predicting defects in a given release of the project. A general 
defect prediction model was build too. The general model used 
data from all the releases of all the projects as training set. In 
order to distinguish whether a cluster exists from the defect 
prediction point of view the efficiency of a model created for the 
cluster was compared with the efficiency of the general model. 
Those two models were applied only to those releases of software 
projects that belonged to the investigated cluster. When the 
efficiency of the model created for the cluster is significantly 
better than the efficiency of the general model one may assume 
that the cluster exists. In order to investigate whether the 
difference was significant, statistical test were used. 

To render that in a more formally way, it is necessary to assume 
that R is a set of all releases of all projects and r is a single release 
of a project. C is a set of all r that were selected in a cluster. C is a 
subset of R (C⊂R). There are two defect prediction models MR 
and MC. MR is the general model that was trained with all r∈R.  
MC  is a cluster model that was trained with all r∈C. E(M,r) is the 
evaluation of efficiency of model M in predicting defects in 
release r. Let c1, c2, …, cn be the classes from release r in 
descending order of predicted defects according to the model MX, 
and d1, d2, …, dn be the number of defects in each class. Di is 
sum(d1, …, di), i.e., the total defects in the first i classes. Let k be 



the smallest index such that Dk > 0.8*Dn, then E(MX,r)= Dk. 
E(MR,r) and E(MC,r) were calculated for all r∈C. In order to 
decide whether the cluster exists from the defect prediction point 
of view a hypothesis must be defined: 

H0 – There is no difference in the efficiency of defect prediction 
between the general model and the cluster model:  
E(MR,r)=E(MC,r): r∈C. 

H1 – There is a difference in the efficiency of defect prediction 
between the general model and the cluster model:  
E(MR,r)>E(MC,r): r∈C. 

The hypotheses are evaluated by the parametric t-test for 
dependent samples. Following general assumptions should be 
checked in order to use a parametric test: level of measurement 
(the variables must be measured at the interval or ratio level 
scale), independence of observations, homogeneity of variance 
and the normal distribution of the sample. The homogeneity of 
variance is checked by Levene's test, while the assumption that 
the sample came from a normally distributed population is tested 
by the Shapiro-Wilk test [13]. When some of the assumptions are 
violated, the Wilcoxon matched pairs test is used. 

There is an overlap between training and testing sets. In order to 
avoid this overlap, a separate model must be created for each of 
the releases from the investigated model: MC-r. In such case we 
would get n different models (where n is the number of cluster 
members) and each of the models would be using different set of 
the releases as the training set. As a result, the definition of the 
cluster would be fuzzy. On the other hand, excluding one release 
from the training set affects the model very slightly. Therefore, 
we decided to use the overlaping approach. 

Threats to validity  
A number of limitations that may compromise to some extent the 
quality of the results of this study are listed below. 

It is possible that there are mistakes in the defect identification. 
The comments in the source code version control system are not 
always well written and, therefore, it was sometimes very hard to 
decide whether a change is connected with a defect or not. In 
some cases the comment could be confronted with a bug tracking 
system, but unfortunately it was not possible in all projects.  

The defects are assigned to classes according to the bugfix date. It 
could be probably better to assign the defect to the version, where 
the defect has been found, but unfortunately, the source code 
version control system does not contain such information. 

We were not able to track operations like changing class name or 
moving class between packages. Therefore, after such a change, 
the class is interpreted as a new class. Similar difficulties were 
created by anonymous classes. Hence, the anonymous classes 
were ignored in the analysis. 

The defects are identified according to the comments in the 
source code version control system. The guidelines of 
commenting bugfixes may vary among different projects. 
Therefore, it is possible that interpretation of the term defect is 
not unique among the investigated projects. 

RESULTS 
The results of two different approaches to clustering, using 
hierarchical and k-means clustering as well as Kohonen's neural 
network, are presented below. 

Study 1 – two clusters 
In the first study all the releases of all the projects were divided 
into two clusters, since the complete linkage hierarchical 
clustering has suggested the possibility of a “natural” partition 
into two sets of projects. Hence, the k-means two group solution 
is analyzed and the results are presented in Tables 1-3. 

Table 1. Descriptive statistics – cluster 1st of 2 

 Num. of cases Mean Std deviation 

E(MR,r): r∈C 61 49.73 19.64 

E(MC,r): r∈C 61 49.67 18.37 
 

Table 2. Hypothesis tests – cluster 1st of 2 

  E(MR,r): r∈C E(MC,r): r∈C 

Shapiro
- W

ilk 
test 

W 0.987 0.991 

p 0.782 0.931 

L
evene's 
test 

df 118 

F(1,df) 0.434 

P 0.511 

T
-test 

T 0.057 

df 60 

P 0.954 

According to Tables 1-2, the cluster 1st of 2 does not exist from 
the defect prediction point of view. 

Table 3. Descriptive statistics – cluster 2nd of 2 

 Num. of cases Mean Std deviation 

E(MR,r): r∈C 31 47.18 17.80 

E(MC,r): r∈C 31 47.41 17.29 
 

According to Table 3, on average 47.18% of classes must be 
tested in order to find 80% of defects when the general model is 
used and 47.41% of classes when the 2nd cluster model is used. 
Therefore, the mean efficiency of the 2nd cluster model was worse 
than the mean efficiency of the general model. In consequence, 
there is no point in testing the hypothesis. 

The conducted analysis showed that none of the two investigated 
clusters exists in the defect prediction point of view. 

Study 2 – Kohonen's neural network 
In the second approach Kohonen's neural network was used. Four 
clusters were identified according to the network's output. There 
are releases that were classified into none of those clusters. 



According to Table 4, the mean efficiency of the proprietary A 
cluster model was worse than the mean efficiency of the general 
model. Therefore, there is no point in testing the hypothesis. 

Table 4. Descriptive statistics – cluster proprietary A 

 Num. of cases Mean Std deviation 

E(MR,r): r∈C 11 54.16 9.54

E(MC,r): r∈C 11 58.18 7.73 

According to Tables 5-6, there exists a cluster called proprietary 
B. 

Table 5. Descriptive statistics – cluster proprietary B 

 Num. of cases Mean Std deviation 

E(MR,r): r∈C 14 56.35 16.59 

E(MC,r): r∈C 14 45.05 7.81 

 
Table 6. Hypothesis tests – cluster proprietary B 

  E(MR,r): r∈C E(MC,r): r∈C 

Shapiro
- W

ilk 
test 

W 0.923 0.985 

p 0.243 0.995 

L
evene's 
test 

df 26 

F(1,df) 12.778 

p 0,001 

W
ilcoxon 

m
atched 

pairs test 

Z 2.103 

T 19 

p 0.035 

According to Tables 7-8, there exists a cluster called proprietary / 
open. 

Table 7. Descriptive statistics – cluster proprietary / open 

 Num. of cases Mean Std deviation 

E(MR,r): r∈C 18 55.81 22.97 

E(MC,r): r∈C 18 50.74 20.01 

 
Table 8. Hypothesis tests – cluster proprietary / open 

  E(MR,r): r∈C E(MC,r): r∈C 

Shapiro
- W

ilk 
test 

W 0.971 0.954 

p 0.824 0.499 

L
evene's 
test 

df 34 

F(1,df) 0.155 

p 0.696 

T
-test 

t 3.180 

df 17 

p 0.005 

The mean efficiency of the open-source cluster model was worse 
than the mean efficiency of the general model. Therefore, there is 
no point in testing the hypothesis. 

Table 9. Descriptive statistics – cluster open-source 

 Num. of cases Mean Std deviation 

E(MR,r): r∈C 15 44.09 14.08

E(MC,r): r∈C 15 45.9 13.25 

The existence of two clusters was proven: proprietary B and 
open-source / proprietary. The proprietary B cluster consists of 
custom build solutions that had been already successfully 
installed in the customer environment. The  open-source / 
proprietary cluster consist of: Apache Forrest versions 0.7 and 
0.8; Apache POI versions 2.5.1 and 3.0; Apache Xalan versions 
2.4.0, 2.5.0, 2.6.0 and 2.7.0; Apache Xerces versions 1.1.0, 1.2.0, 
1.3.0 and 1.4.4; jEdit versions 3.2.1, 4.1, 4.2 and 4.3; two versions 
of the proprietary standard tool that supports quality assurances in 
software development. 

Discriminant Analysis 
All of the identified clusters come from the Kohonen’s network. 

We now turn to use Fisher’s linear discriminant function to derive 
a classification rule for assigning projects to one of the predefined 
groups (clusters) on the basis of the correlation vectors mentioned 
in Section 3.3. Means and SDs for each type of projects and 
overall are given in Table 10.  

Table 10. Group statistics 

Cluster 
  

Mean 
 

Std. 
Dev. 

Cluster 
 

Mean 
 

Std. 
Dev. 

2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

wmc .19 .089 4
  

Wmc .13 .092 
dit -.04 .067 Dit -.05 .048 
noc .01 .023 Noc .00 .022 
cbo .32 .073 Cbo .26 .098 
rfc .34 .062 Rfc .20 .065 
lcom .13 .106 Lcom .07 .092 
ca .18 .087 Ca .22 .159 
ce .31 .079 Ce .16 .147 
npm .13 .090 Npm .10 .101 
lcom3 -.05 .046 lcom3 -.04 .074 
loc .32 .070 Loc .22 .068 
dam .02 .059 Dam .06 .069 
moa .04 .054 Moa .04 .025 
mfa -.07 .054 Mfa -.04 .073 
cam -.15 .053 Cam -.10 .063 
ic -.02 .052 Ic .02 .127 
cbm -.01 .035 cbm .02 .085 
amc .18 .056 amc .14 .132 
max_cc .18 .048 max_cc .15 .089 
avg_cc .13 .050 avg_cc .09 .095 
bugs/classes .24 .202 bugs/classes .18 .157 
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wmc .35 .152 5 wmc .45 .221 
dit -.01 .082 dit .01 .067 
noc .01 .065 noc .06 .096 
cbo .30 .176 cbo .29 .177 
rfc .46 .193 rfc .50 .218 
lcom .33 .184 lcom .40 .262 
ca .13 .227 ca .16 .142 
ce .37 .181 ce .41 .164 
npm .32 .215 npm .40 .211 
lcom3 -.08 .078 lcom3 -.06 .054 
loc .34 .125 loc .44 .208 
dam .12 .072 dam .11 .073 
moa .30 .156 moa .29 .134 
mfa -.02 .075 mfa -.02 .070 
cam -.20 .096 cam -.25 .097 
ic .07 .114 ic .08 .102 
cbm .12 .134 cbm .09 .098 
amc .09 .104 amc .11 .091 
max_cc .18 .161 max_cc .20 .144 
avg_cc .10 .125 avg_cc .11 .090 
bugs/classes .73 .669 bugs/classes .71 .697 

 

Box’s test for equality of covariance cannot be performed due to 
fewer than two nonsingular group covariance matrices. However, 
even if Box's test suggests a departure for the equality hypothesis, 
the linear discriminant may still be preferable over a quadratic 
function. Here we will assume normality for our data relying on 
the robustness of Fisher's approach to deal with any minor 
departure from the assumption [7].  

The eigenvalues (here 4.66, 3.13 and .76 presented in Table 11) 
represent the ratios of the between-group sums of squares to the 
within-group sum of squares of the discriminant scores. The 
canonical (Pearson) correlations are correlations between the 
discriminant function scores and group membership coded as 2 
(cluster proprietary B), 3 (cluster proprietary / open), 4 (cluster 
proprietary A) and 5 (cluster open source). The canonical 
correlation values (0.907, 0.871 and 0.656) are presented in Table 
11. First 3 canonical discriminant functions were used in the 
analysis. 

Table 11. Eigenvalues 

Function Eigenvalue 
% of 

Variance 
Cumulative 

% 
Canonical 
Correlation 

1 4.663a 54.5 54.5 0.907 
2 3.132 a 36.6 91.1 0.871 
3 0.757 a 8.9 100.0 0.656 

As a result, 82.2%, 75.9% and 43% of the variance in the 
discriminant function scores can be explained by group 
differences. The Wilk's Lambda, presented in Table 12, provides 
a test for assessing the null hypotheses that in the population the 
vectors of means of the measurements are the same in groups. 

 
Table 12. Wilks' Lambda  

Test of  
Function(s) 

Wilks' 
Lambda 

Chi-
square df Sig. 

1 through 3 0.024 157.939 63 0.000 
2 through 3 0.138 84.249 40 0.000 
3 0.569 23.955 19 0.198 

 

The lambda coefficient is defined as the proportion of the total 
variance in the discriminant scores not explained by differences 
among groups, here 0.02%, 13.8% and 56.9% respectively. The 
formal test confirms that the sets of measurements (correlations 
between software metrics and faulty classes) differ significantly 
between the clusters with exception of the last one (Chi-square 
(63)=157.939, p=0.000; Chi-square(40)=84.249, p=0.000; Chi-
square(19)=23.955, p=0.198). An important question about a 
discriminant function is: how well does it perform? According to 
the obtained results presented in Table 13, 96.4% of cases can be 
correctly classified as type 2, 3, 4 or 5. However, estimating 
misclassification rates in this way is known to be too optimistic 
and different alternatives for estimating misclassification rates in 
discriminant analysis have been proposed. Leaving one out 
method is one of these alternatives in which the discriminant 
function is first derived from only n - 1 sample members, and then 
used to classify the observation left out. The aforementioned 
procedure is repeated n times, each time omitting a different 
observation. As a result, the classification rate drops to 71.4%. 

 
Table 13. Classification Results 

  

PRACTICAL IMPLICATION 
The conducted analysis revealed two clusters. In order to increase 
the value of those findings, the characteristic of those clusters 
must be given and the obtained results should be compared with 
the other studies. 

Characteristic of revealed clusters 
Cluster proprietary B. This cluster consists of slightly more than 
half of the proprietary custom solutions. All custom build 

Classification Resultsb,c

15 0 0 0 15
1 17 0 0 18
0 0 8 0 8
0 1 0 14 15
5 14 2 15 36

100.0 .0 .0 .0 100.0
5.6 94.4 .0 .0 100.0
.0 .0 100.0 .0 100.0
.0 6.7 .0 93.3 100.0

13.9 38.9 5.6 41.7 100.0
13 0 2 0 15
1 12 2 3 18
3 1 4 0 8
1 3 0 11 15

86.7 .0 13.3 .0 100.0
5.6 66.7 11.1 16.7 100.0

37.5 12.5 50.0 .0 100.0
6.7 20.0 .0 73.3 100.0

clusterJur4
2
3
4
5
Ungrouped cases
2
3
4
5
Ungrouped cases
2
3
4
5
2
3
4
5

Count

%

Count

%

Original

Cross-validateda

2 3 4 5
Predicted Group Membership

Total

Cross validation is done only for those cases in the analysis. In cross validation, each case is classified
by the functions derived from all cases other than that case.

a. 

96.4% of original grouped cases correctly classified.b. 

71.4% of cross-validated grouped cases correctly classified.c. 



solutions (not only those that belongs to the proprietary B cluster) 
were developed in heavy weight, plan-driven development 
process, all of them had already been successfully installed in the 
customer environment (the investigated releases were developed 
after the installation, but the releases consisted not only of 
bugfixes - there were included many new features as well) and all 
of them came from the same domain – insurances. The interviews 
with people involved in the development process of the 
proprietary projects were conducted in order to find the factor that 
might settle whether a project release belongs to the proprietary B 
cluster or not. The interviews revealed that there was a difference 
in the testing process on the level of functional system tests. 
Almost all the releases from cluster proprietary B were tested 
manually, when almost all the releases that were not selected to 
the cluster proprietary B were tested automatically. The testing 
factor explained cluster membership of all except three releases. 
There were three releases that were tested manually, but were not 
selected to the cluster proprietary B. The absence of those three 
releases was easy to explain. Those three releases had much 
smaller defect rate, which was a result of a shorter development 
period. 

Cluster proprietary / open. The cluster consist of: Apache Forrest 
versions 0.7 and 0.8; Apache POI versions 2.5.1 and 3.0; Apache 
Xalan versions 2.4.0, 2.5.0, 2.6.0 and 2.7.0; Apache Xerces 
versions 1.1.0, 1.2.0, 1.3.0 and 1.4.4; jEdit versions 3.2.1, 4.1, 4.2 
and 4.3; two versions of the proprietary standard tool that 
supports quality assurances in software development. This cluster 
consists of several different projects that were developed by 
different companies in different software development processes. 
The domain of those projects is not uniform, but all of them are 
more or less connected with text processing. All members of this 
cluster, except JEdit, use Jira or Bugzilla (or both) as the bug 
tracking system, all (again except JEdit) are developed by 
medium size international team – the greater team consists of 25 
persons, but in most cases it was exactly 11 persons. High level of 
automatization in the testing process (the data about testing 
process were not available for all releases) was applied in most 
cases, and in all of them SVN repositories were used as the source 
code version control system. 

Common features of the identified clusters are summarized in 
Table 14. 

Table 14. Common features of the identified clusters 

Cluster Common features 

Cluster 
proprietary B 

custom build solutions; heavy weight, plan-
driven development process; already installed 
in the customer environment; insurance 
domain; manual tests; similar development 
period; use databse; proprietary – the same 
company 

Cluster 
proprietary / open 

text processing domain; SVN and Jira or 
Bugzilla used; medium size international 
team; automatization in the testing process; 
do not use database 

 

Comparison with other studies 
Zimmermann et al. [25] provided a decision tree that helps to 
evaluate the precision of cross projects defect predictions. If our 
results are compatible with the Zimmermann's findings then many 

cluster members should share the features that, according to the 
decision tree, increase the precision and few of them should share 
features that - according to the decision tree - decrease the 
precision.  

According to the decision tree, projects or releases with more or 
the same Number of observations (in our case that is the number 
of classes) should better predict defects in projects with fewer 
Number of observations. This finding does not fit in the concept 
of clusters. All the members of a well identified cluster should be 
transitive and this finding is strongly connected with lack of 
transitivity – in [25] were identified such projects that project A 
was a good defect predictor for project B, but project B was a bad 
defect predictor for the project A. The Number of observations 
finding can be only partly verified. Projects with equal size 
should be good defect predictors for each other. The size of 
releases from cluster proprietary B varies from 2286 to 4057, but 
there are also two outliers: 1694 and 4622. The relative difference 
is not big in the cluster. Number of cases in releases selected to 
cluster proprietary / open vary from 162 to 909 with two outliers: 
29 and 32. 

The second factor that, influences defect prediction precision is 
according to [25], Uses database. When both projects do not use 
the database, the prediction precision should be increased. All 
members of the cluster proprietary B use database. None of the 
members of the cluster proprietary / open uses database. 

The third factor according to [25] is Company. Zimmermann et al. 
listed peculiar companies that have positive or negative influence 
on prediction precision. Only two factors are relevant for us: cross 
prediction within Apache products increases the precision and 
cross company prediction decreases the precision. All members of 
the proprietary B cluster come from the same company – 
Capgemini-sd&m. 12 members of the cluster proprietary / open 
come from Apache, 4 from JEdit community and 2 from 
Capgemini-sd&m. 

The adequacy of clustering 
The discriminant analysis showed that the clusters explain most of 
the variety. Discriminant analysis of clusters obtained from 
Kohonen’s network is given in 4.4. Analysis of other clusters was 
omitted because of the lack of space, but was also conducted and 
the obtained results were, according to the discriminant analysis, 
even more adequate. The clustering was based on correlation 
vectors. One may argue if the correlation vectors are the optimal 
base for clustering because the effectiveness of defect prediction 
models built for most of the clusters was not significantly better 
than the effectiveness of the general model. 

CONCLUSIONS 
Metrics from 92 releases of 38 proprietary, open-source and 
academic projects were collected, stored in a repository 
(http://purl.org/MarianJureczko/MetricsRepo) and analyzed. The 
conducted analysis reveals that there exist clusters from the defect 
prediction point of view and two of those clusters were 
successfully identified. The existence of those two clusters was 
proven with statistical tests. The features of cluster members were 
described and compared with findings of other studies. The 
comparison showed that there are no major inconsistencies with 
the other studies and our findings partly overlap the results 
obtained by other researchers [25]. Reproducing the study in an 



industrial environment is difficult because in order to construct 
the correlation vectors the information about defects (that one is 
going to predict) is necessary. Therefore, we strongly recommend 
using the factors presented in section 5.1 as cluster indicators 
instead of the correlation vectors. 

The obtained results are not astonishing. The existence of only 
two clusters was proven. According to other studies the cross 
project defect prediction is a complicated issue. Zimmermann et 
al. [25] reported success rate 3.4% in cross project predictions. 
Turhan et al. [21] obtained probability of false alarm greater than 
50% in most of the cross project predictions. Therefore the 
presented results may be considered as interesting ones, but hey 
definitely point to the need of further research.   

FUTURE RESEARCH 
The identified clusters are far away from covering all software 
projects. Further research is necessary to identify more clusters. 
The clusters that were identified are very wide and therefore it is 
possible that those clusters may be successfully divided into 
smaller ones. In both cases, it is necessary to collect and analyze 
more data about software projects in order to reach those goals. 

There may be conducted a cross validation for the study. One may 
build one defect prediction model per each release and then use 
the models to predict defects for other releases. If the clusters are 
correctly identified the within cluster prediction will be better 
than the cross cluster predictions. That approach would be similar 
to the one that was used in [22,25]. With such approach, it is 
possible to identify outliers that were classified to a cluster, but do 
not fit to the cluster very well. 
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