
153

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2009, Vol.38, No.2

TOWARDS IMPLEMENTING A FRAMEWORK FOR MODELING
SOFTWARE REQUIREMENTS IN MAGICDRAW UML*

Darius Šilingas
Faculty of Informatics, Vytautas Magnus University

e-mail: Darius.Silingas@bpi.lt

Rimantas Butleris
Department of Information Systems, Kaunas University of Technology

Studentų St. 50, LT−51368 Kaunas, Lithuania
e-mail: Rimantas.Butleris@ktu.lt

Abstract. UML is considered to be de facto standard for software modeling. However, in software requirements
analysis it is quite common to apply only use case and activity diagrams and focus on the textual requirements
specification with some non-standard graphical illustrations. In this paper we present a framework for modeling
software requirements consistently using multiple UML diagrams. We illustrate the application of this framework with
the examples of different requirements artifacts based on a case study system MagicTest. We discuss how such a
framework could be implemented in one of the most popular UML tools, MagicDraw UML, by using its powerful
features for customizing the modeling environment, defining methodology wizards, specifying validation rules,
analyzing model element relationships, and generating documentation based on user-defined templates. We recognize
that our approach provides the foundation, which could and should be refined and extended for special cases of
requirements analysis. Our work should be considered as a starting point for practitioners trying to adopt UML for
requirements analysis and for scientists working on creating more detailed requirements analysis methods based on
UML.

1. State of the Art in Requirements Analysis

Practitioners agree that requirements analysis is*
one of the most problematic and risky activities in
software development. The output of requirements
analysis is requirements specification, which should
be reviewed and confirmed by all the stakeholders.
Currently, most of the requirements specification ap-
proaches are based on textual documents including
some cases for graphical illustrations. Since textual
documents are difficult to understand and maintain,
practitioners try to express the information in graphi-
cal illustrations. The basic problem with these graphi-
cal illustrations is that they are typically provided in
different notations and have no concise interrelation-
ships. This makes it problematic to turn the graphical
models into the core of the requirements specification
with textual descriptions being just additional expla-
natory elements, i.e. reversing the current state-of-the-

* The work is supported by Lithuanian State Science and

Studies Foundation according to High Technology
Development Program Project "VeTIS" (Reg.No. B-
07042)

art situation. Deploying successful requirements pro-
cess in a concrete organization is an important issue
[1, 2]. While companies continue to use text-based
documents as major means for specifying and ana-
lyzing requirements, the graphical requirements mo-
deling is getting increasingly more attention in in-
dustry. This trend increased after Object Management
Group (OMG) standardized Unified Modeling Lan-
guage (UML) [3], which has become de facto
standard in industry. However, it is obvious that the
potential of UML is not fully exploited in require-
ments analysis. The most popular requirements text-
books still introduce multiple requirement artifacts
such as system context diagram and entity relationship
diagram in outdated notations and do not emphasize
how these artifacts could fit in UML-based modeling
[4, 5]. This is understandable because UML has grown
into a rather complex language – the recent version
2.2 defines 248 interrelated metaclasses (modeling
concepts). Some papers present interesting discussions
whether UML is becoming universal language instead
of its primary purpose to be the unified language [6].
The complexity of UML allows many powerful appli-
cations, but also makes it difficult to learn the lan-

D. Šilingas, R. Butleris

154

guage and use it properly in practice. A typical
modeler should use only a small subset of UML,
which is relevant to his work. However, this subset is
different depending on the application domain and
modeler’s role in software development process. It is
also important to understand how to evolve UML mo-
dels and relate the requirements artifacts properly.
Since UML doesn’t define modeling method, the prac-
titioners lack guidance on how to apply it efficiently,
and apply it only fragmentally loosing many benefits
that UML provides. Practitioners and researchers pro-
pose different approaches for eliciting and analyzing
software requirements. The most popular method used
in modern requirements analysis is use cases. It was
invented in Ericsson, popularized by Ivar Jacobson [7]
and widely adopted in the industry. UML provides
Use Case diagram for visualizing use case analysis
artifacts. However, requirements analysis is not limi-
ted to use cases that capture only the end user level
functional requirements. In order to specify precise
requirements one needs to have a good understanding
of the business domain. For this purpose, analysts
create domain vocabularies, model business processes,
business concept relationships, business rules and
events, business object lifecycles. For modeling busi-
ness processes, one can apply UML Activity diagram
or Business Process Modeling Notation (BPMN),
which is a new standard from OMG [8]. However,
many practitioners still use the outdated IDEF nota-
tion [9] or non-standard modeling using vendor-
specific symbols provided by tools like Microsoft
Visio. For conceptual modeling analysts continue to
apply the outdated Entity Relationship (ER) notation,
which has been popular in database design since 70s
[10]. This notation is pretty straightforward to map to
UML Class diagram with a limited level of visible
details. A lot of attention is paid to the business goals
[11], business rules [12, 13], business object life-
cycles, business roles and tasks in organization, which
also can be done using simple extensions of UML
[14]. The real-time and embedded system developers
have defined a flavor of UML – System Modeling
Language (SysML) [15], which defines Requirements
diagram, enables capturing various non-functional and
detailed functional requirements and defining specific
links between requirements and other model elements
through some simple extensions of UML. These ideas
are also valid for enabling requirements traceability in
typical software development projects. Some of the
other requirements artifacts that might be expressed in
UML are system context diagram, data flows, user
interface navigation schemas and prototypes [16].
Some articles have already discussed the suitability of
UML for modeling requirements [17, 18]. The possi-
bility of having all this information in a single concise
UML model inside a state-of-the-art modeling tool
reveals a huge potential for more concise requirements
analysis and management, which could be achieved by
validating model for correctness and completeness,
tracing requirements artifacts to design and implemen-

tation elements, analyzing model metrics, and gene-
rating documentation reports. Although UML provides
means for expressing different requirements artifacts,
practitioners also need some methodology guidance
how to start and evolve requirement models. In
academic community, researchers propose various de-
tailed and focused requirements development methods
[19-21]. However, most of the methods resulting from
academic research are too complex for practical appli-
cations and solve just specific issues. A simple, adapt-
able, and easy-to-implement framework for require-
ments modeling with samples on a realistic case study
gives much more value for practitioners. In [22], one
of the authors of this paper discussed the framework
for creating UML models for Model-Driven Develop-
ment (MDD). In [23], this framework was revised by
shifting focus on the details of the specific parts of this
framework related to requirements analysis. It also
presented the mapping of the most common require-
ments artifacts to UML. In this paper we would like to
refine the framework for modeling software require-
ments and discuss how it could be implemented in one
of the most popular modeling tools – MagicDraw
UML. We believe that the aspect of supporting this
framework in an industrial tool is a very important
issue, which needs thorough research and presentation
in order to make this framework valuable for both
practitioners willing to use it in practical projects and
researchers willing to refine it by adding more details
or modifying it for a domain-specific usage.

2. A 10-Step Framework for Modeling
Software Requirements

While in [23] we have discussed which of the
MDD framework elements are relevant artifacts re-
sulting from the requirements analysis, here we would
like to refine this framework by leaving only the
requirements analysis tasks, decomposing some of
them into more fine-grained tasks, and emphasizing
which of these tasks are performed in an iterative
manner. This refined framework is represented in Fi-
gure 1. It includes 10 tasks, each of which produces
different type of requirements artifact in UML model.
For simplicity reasons, the activity diagram defines
these tasks as sequential, but in practice it is quite
common to do some of them in parallel. The first four
steps should be considered as domain modeling activi-
ties that define the context for building software sys-
tems, the next four steps should be considered as
requirements modeling activities, and the last two are
design activities in theory, but in practice it is pretty
common to assign them to requirements analysts.

We recommend starting domain analysis by iden-
tifying the domain concepts and relationships between
them. For this activity, we propose to use a simplified
UML class diagram, which should be limited to clas-
ses hiding their attribute and operation compartments
and using only simple associations with names and
role multiplicities. An example of such an artifact is

Towards Implementing a Framework for Modeling Software Requirements in MagicDraw UML

155

given in Figure 2. A concepts map is sometimes called
a visual vocabulary of business concepts. Modelers
should add some textual description about each of the
concepts in the model. A modeling tool should have
functionality for running a report producing a docu-

ment of a desired format (XML, HTML, RTF) includ-
ing the diagrams and model element descriptions in a
desired style, which is typically passed to the tool as a
user-defined template.

Model Business Object
Lifecyle

Identify Business Roles
and Processes

Model Workflow

Identify Domain
Concepts and Relations

Define IT System
Context

Identify Use Cases

Process Map

GUI Navigation Map
(State Machine)

Model User Interface
Navigability Map

Business Process
(BPMN)

Use Case Behavior
(Activity)

Define Information
Structure

Model User Interface
Prototype

Concepts Map
(Class)

Model Use Case
Scenarios

GUI Prototype
(Composite Structure)

Information Structure
(Class)

Object Lifecycle
(State Machine)

Use Case Model
(Use Case)

System Context
(Information Flows)

 [no more human actors]

 [no more dynamic objects]

 [no more complex use cases]

 [no more complex screens]

 [no more complex business processes]

 [next dynamic business object]

 [next complex use case]

 [next human actor]

 [next complex business process]

 [next complex screen]

Figure 1. UML activity diagram visualizing the revised framework for modeling software requirements defined as a sequence

of 10 tasks, each of which produces a specific type of requirements artifact in UML model

Some of the business concepts (modeled by clas-
ses) represent dynamic business objects that have
complex lifecycles. For each of such concepts, one
should define a State Machine, which should be as-
signed as a Behavior for the Class expressing the busi-
ness concept. A modeler should create a separate state
machine diagram for every dynamic business concept.
In Figure 2, the dynamic business concepts are shown
in black color. In Figure 3, a lifecycle of Test concept
is represented in a state machine diagram. It is
important to emphasize that the state names are also a

part of terminology and should be used consistently in
the other model elements, e.g. names of tasks in busi-
ness processes. A modeler should define triggers on all
the transitions between the states. In business model-
ing, it is common to use Signal that in most cases
corresponds to an action of some business role. Also,
Timer and Property Change triggers are used to ex-
press states changes according to time- or data-based
business rules. It is also possible to define inner trig-
gers that happen inside one state and do not initiate
transitions to the other states.

D. Šilingas, R. Butleris

156

Test Assessment

Answer

Course

Teacher

Class

StudentTest

Question

assigned to

0..*

1..*
runs

0..*

1

supervises

0..*

1

takes

0..*

1..*

gives

0..*

1

manages

0..*

1

instance of

0..*1

answers to

1 0..*

creates

0..*1

instance of

1 0..*

runs

0..* 1

contains

1

0..*

contains

0..*

1..*

applicable to

1..*

0..*

Figure 2. Concepts Map: UML class diagram visualizing business concepts and relationships

Complete

Active
notify studentsentry /

calculate statisticsexit /

Expired

Draft

Cancel [no test assessments]

Edit Confirm

at (active period start)

at (active period end)

after (10 years)

Create

Figure 3. UML state machine diagram visualizing Test business object lifecycle

<<businessArea>>
Class Management

<<businessProcess>>
Run Class

<<businessProcess>>
Register Students to Class

<<businessProcess>>
Schedule Class

<<businessProcess>>
Cancel Class

<<businessProcess>>
Evaluate Class

<<businessProcess>>
Run Lecture

<<businessProcess>>
Run Lab

<<businessProcess>>
Run Student Assessment

Figure 4. Process map: business areas, processes, and their relationships

Business analysts consider business processes as
their major analysis artifacts. The goal of the BPMN
initiative was to standardize modeling workflows, but
the authors of BPMN decided to not cover the aspects
of business areas, business roles, and the structural
relations of the business processes. For covering these
aspects, we suggest to use a couple of specialized

diagrams: an extension of use case diagram for
modeling business roles and their participation in
business process, and an extension of class diagram
for modeling business areas and business process
structure, see Figure 4.

Towards Implementing a Framework for Modeling Software Requirements in MagicDraw UML

157

Once business roles and processes are identified, a
modeler can specify the workflow of the selected
complex business processes. We recommend using
BPMN for this purpose. At the moment of writing this
paper, BPMN does not have a formal metamodel and
is typically implemented as a UML profile providing
extensions to the activity diagram. This also makes it
possible to relate business process workflow elements
to the non-BPMN artifacts expressed in UML such as
those created in the previous steps. The business

processes are usually modeled in two forms: “as is”,
representing the current situation, and “to be”, repre-
senting the target situation that should be reached after
automating or refactoring some activities in the pro-
cess. In the context of software development, it is
typical to denote the places in the business process
that are planned for automation by IT systems. An
example of such business process workflow is given
in Figure 5.

Run Mid-term TestRun Mid-term Test

Evaluate StudentsEvaluate Students

Run LabRun Lab

Run Exam TestRun Exam Test

Run LectureRun Lecture

Lecture time

Exam time

Lab time

Mid-term

Should be automated
by MagicTest

Figure 5. The workflow of the process Run Class in BPMN

MagicTest MagicUniversity

Teacher

Student

Test,
Question

Teacher,
Course,
Student,
Class

Test Assessment,
Answer

Test Assessment

Question,
Test

Figure 6. UML information flows diagram representing system context

In many data-centric applications, it is very impor-
tant to model information flow diagrams showing data
flows between different classifiers. A particular kind
of such a diagram, which indicates the information
flows between the target system and the outside enti-
ties (human actors and integrated systems), is called a
system context diagram. It might be considered as the
first artifact that an analyst can do for defining the
scope of the system from the data point of view. An
example of a system context diagram is given in Fi-
gure 6.

Once we have identified the places in the business
process(es) that should be automated (and possibly a
system context diagram as well), we can identify the
actors (categories of system users) and define the use
cases – the pieces of the system functionality that
brings value for the actors. If the system contains a
large number of use cases, it is common to group them
into packages and analyze the details of each package
in a separate diagram. An example of a use case dia-
gram for a separate package is given in Figure 7. It is
important to understand that the use case diagram

D. Šilingas, R. Butleris

158

captures only the functionality that the end-user needs
from the system. The non-functional requirements or
detailed functional requirements are not captured in
the standard UML diagrams. The simplest way to
capture those requirements is to describe them in text
documents and include references to the use cases,

their scenarios, etc. Another approach is to create spe-
cific UML extensions for requirements modeling, i.e.
introduce stereotypes for each important requirements
type with tag definitions for the custom properties and
define the types of links for tracing the requirements,
e.g. derive, satisfy, support.

Test

Calculate Test Statistics

Modify Test

Create Test

Modify Question

Copy Test

Create Question

Remove Test

Take Test

Activate Test

Remove Question

Send Annoucement

Instructor

Student

Time

<<include>>

Figure 7. UML use case diagram focusing on the use cases of the Test package

Start Test Assessment

Select Test

Answer the Question

Take a Break

Resume
Test Assessment

End Test Assessment

Give Instructions

Show Question

Show Evaluation
Results

Register the Answer

MagicTestStudent

 [no break]

 [break]

 [more questions] [time left]

 [timeout] [last question]

Figure 8. UML activity diagram representing behavior scenarios for the use case Run Test Assessment

Having an overall view of the use cases, an analyst
can identify the use cases that contain important busi-
ness or operational rules causing workflow branching.
For such complex use cases, the analysts should
model their scenarios applying UML activity diagram.
However, it is important to avoid a common mistake
of trying to make an activity diagram for every use
case – they should be done only for the complex use
cases. An example of such a use case workflow
diagram is given in Figure 8.

Another aspect on which system analysts work in
some projects is a definition of the data structure. It
can be done using conventional UML class diagrams.
If necessary, UML object diagrams can also be used
for defining samples for explanation or testing of the
data structure defined in UML class diagrams. Since
the focus here is on the data structure, class operations
compartment can be hidden in the diagram. Compa-
ring to the conceptual analysis, more elements are
used here: attributes and association end specifica-

Towards Implementing a Framework for Modeling Software Requirements in MagicDraw UML

159

tions, enumerations, and generalization. Although
such a model is considered to be a part of the design,
in practice it is quite often created and maintained by a
requirements analyst. A sample a data structure dia-
gram is shown in Figure 9.

The last two requirements artifacts for which sys-
tem analyst might be responsible are user interface
navigation schemas and prototypes. The prototype it-
self can be mapped to UML composite structure
diagram. However, when focusing on separate screen
prototypes, developers sometimes loose the big pic-
ture – which screens can be used by an actor and what

are the possibilities to navigate from each screen to the
others. For capturing this information, a modeler can
create GUI navigation map (a separate one for each
actor) using UML state diagram, where each state re-
presents a screen, in which an actor is at the moment,
and the transition triggers represent GUI events such
as mouse double-click or pressing some button. Again,
this is considered to be a part of design, but in practice
it quite often falls on the shoulders of a requirements
analyst. An example of a GUI navigation schema is
given in Figure 10, and an example of GUI prototype
is given in Figure 11.

Course

title : String
code : String
description : String

Test

title : String
status : TestStatus
active : Period
timeLimit : int
breaks : int [0..*]
instructions : String

Class

active : Period
agenda : String

User

registeredAt : date
active : boolean

Instructor Student

Evaluation

grade : int
comment : String

Answer

TestAssessment

start : date
end : date
takenBreaks : int [0..*]
/timeElapsed : int

Question

text : String
image : byte [0..*]

0..*

instructor
1

0..*

1
tutor

0..*

participants1..*

0..*

assignedClasses

1..*

0..*

author
1

0..* author
1

0..*
1
test

classInfo
1

0..*

0..*author
1

question
1 0..*

1

assessment0..1

applicableTo 1..*

0..*

1

answers 0..*

0..*

questions 1..*

Figure 9. UML class diagram representing data structure

TestAssessmentWindow

StudentProfile UserDetails

TestResultsWindow

Authorized

LoginDialog

submit login infoexit /

OK

GetTestResults

EditData

OK

Finish

at (timeout)

TakeTest

all [session expired]

 [password expired] / show change password fields

 [login incorrect] / show error msg

 [password not expired]

Login

Quit

Start

 [login correct]

Figure 10. UML state machine diagram showing a user interface navigation map for Student actor

D. Šilingas, R. Butleris

160

TestAssessmentWindow

remainingTime : TimeInfoPanel

testInfo : InfoPanel

controlButtons : ControlButtonPanel

pause : PauseOptionPanel [0..1]

text : QuestionTextPanel picture : QuestionPicturePanel [0..1]

testProvider

timer

Figure 11. UML composite structure diagram showing a prototype of the Test Assessment Window GUI dialog

Finally, we want to emphasize that the require-
ments analysis work should be iterative and incremen-
tal. Also, the ordering of the modeling tasks might be
different based on the taken approach, or some steps
might be omitted if not relevant to a particular soft-
ware development project.

3. The Principles of Implementing the
Framework in MagicDraw UML

In order to support the framework for modeling
software requirements in a particular UML modeling
tool, we face the following problems:
1. UML modeling environment is too complicated for

the software requirements analyst, who is willing
to use only a subset of UML. There should be a
way to hide the not used UML modeling functio-
nality. Also there should be a way to introduce
simple extensions to UML that are necessary for
requirements analysis.

2. An analyst needs some guidance how to start and
continue modeling according to the framework.

3. It would be very helpful to have some possibilities
to check if the requirements model or a particular
part of it is consistent, i.e. doesn’t break some mo-
deling rules or conventions, and if the model or a
particular part of it is complete, i.e. it contains all
the necessary information.

4. It is necessary to have easy tools for creating,
maintaining, and analyzing the requirements arti-
facts traceability information.

5. It is necessary to be able to add additional textual
documentation and output the graphical and tex-
tual information in a document, which format is
widely acceptable. This is necessary since the re-
viewers of the requirements specification will not
have the modeling tool and the possibility to
explore the model in its native UML format.

Although the number of UML tools available in
the market is very large, the mentioned problems can
be solved only in a few of them. We believe that the
most elegant solutions for implementing the frame-
work are enabled in MagicDraw UML, which is wide-
ly regarded as the most UML-compliant tool and has
very powerful features for configuring and extending
its modeling environment. In the next subsections we
will discuss the principles of how to implement the
requirements framework in MagicDraw and provide
the solutions for the identified problems.

3.1. Customizing UML Modeling Environment for
Requirements Analyst

MagicDraw UML provides the following capabi-
lities for customizing the modeling environment
according to the needs of the modeler:
• User perspectives – setups of what functionality is

visible and what is hidden in menus, contextual
menus, diagram toolbars, smart manipulators, etc.
A custom user perspective for requirements analyst
would be a perfect way to limit the environment to
only those features that he needs to use in his
work.

• Custom diagrams – a modeler may define his own
diagram, which is using a subset of elements from
a standard UML diagram or a set of specific exten-
sions of UML. For example, in order to support the
requirements framework, one may define two
different versions of simplified class diagram –
Concepts Map and Data Structure, and a specia-
lized diagram Process Map.

• Environment and project options – tool configu-
ration according to the user preferences (e.g. use
diagram grid or not) or project conventions (e.g.
what fill color should be default one for a class).

• Template projects – a sample project used as a star-
ting point for other projects in order to maintain
the same model structure, reference a consistent
set of libraries, and reuse project options.

Towards Implementing a Framework for Modeling Software Requirements in MagicDraw UML

161

• Element customization – a feature, which enables
turning UML stereotype into a virtual first-class
modeling concept and hiding the UML concept
behind it. Although we discourage using this fea-
ture too often (it brings modelers back to speaking
different languages), it is very useful in the cases
when for domain modelers UML is too technical.
We especially recommend using it for creating the
specialized elements and diagrams for the business
process modeling.

3.2. Creating Modeling Guidance Using
Methodology Wizards

For particular steps of the framework for require-
ments modeling the modeler should apply a defined
sequence of discrete actions. In such cases a modeler
may specify and enable the methodology wizards
taking modeler through a number of steps for creating
the model. This is one of the MagicDraw features
allowing model-based extension of the modeling
environment.

We propose to do the use case analysis in the fol-
lowing steps:
1. Specify the name of the system.
2. Identify the actors.
3. Identify the use cases.
4. Relate each actor to its use cases.
5. Structure use cases into packages.
6. Detail the flow of complex use cases with the

activity diagrams.

7. Create the views (diagrams) for visualizing the
most important fragments (e.g. the use cases and
their relationships for a specific package) of the
use case models.
For automating this sequence of actions we could

define a specialized activity diagram, which Magic-
Draw would turn into a wizard, which takes modeler
step-by-step for accomplishing the use cases modeling
activity. An example of such a specialized wizard is
given in Figure 12, and an example of the resulting
methodology wizard is given in Figure 13. For faci-
litating the usage of the framework for software
requirements modeling, we suggest to define multiple
wizards for guiding the modeler through the particular
activities.

3.3. Validating the Requirements Model

MagicDraw UML defines the mechanisms for
creating validation rules and validating the user model
based on these rules. The simple extensions of
MagicDraw validation mechanisms are enabled
through three stereotypes: validationRule, validation-
Suite, and automatedValidationSuite. A validation rule
is specified by a stereotype validationRule, which is
based on the Contstraint metaclass. For specifying a
validation rule, the modeler needs to enter the pro-
perties (name, constrained element, and specification
are standard Constraint properties, while severity, er-
ror message, abbreviation, and implementation are tag
definitions from the validationRule stereotype) that
are described in Table 1.

<<wizard_Relate>>
Structure Use Cases

<<wizard_Capture>>
Capture Actors

<<wizard_Name>>
Enter system name

<<wizard_Text>>
Create views and move to

further steps

<<wizard_Relate>>
Relate Use Cases and Actors

<<wizard_Capture>>
Detail Use cases and

describe flow of events

<<wizard_Capture>>
Capture Use Cases

Figure 12. A specialized activity diagram that is used for creating a methodology wizard

Figure 13. Use Case Model Creation Wizard that was created automatically based on the activity diagram in Figure 12

D. Šilingas, R. Butleris

162

Table 1. Description of validation rule properties

Property Description
Name A title for representing the rule in the model repository and diagrams
Constrained element UML metaclass or a stereotype to which the validation rule applies
Specification OCL-based specification of invariant rule that should be true for valid elements
Severity A level of validation error importance: Debug, Info, Warning, Error, Fatal
Error message The message text that should be displayed for the modeler for explanation why a model

element is invalid
Abbreviation A short name
Implementation Reference to Java class implementing a specific interface for model validation and solving the

validation problems

Validation rules are grouped into validation suites
– packages stereotyped by either validationSuite or
activeValidationSuite. The former is used when there
is a need to validate the model only occasionally
based on modeler’s wish, while the later is used when
there is a need to validate the model actively in the
modeling progress. An example of a validation rule
specification in OCL 2.0 is presented in Figure 14, and
a validation error in modeling environment resulting
from this rule is demonstrated in Figure 15.

Figure 14. OCL 2.0 specification of the validation rule
checking if a use case name starts with a capital letter

Figure 15. A screenshot indicating a validation error resulting from the validation rule specified in Figure 14

For supporting the framework for modeling soft-
ware requirements it would be very useful to define a
number of reusable validation rules and use them in
various simple or active validation suites. Although in
UML a package owns its inner elements, the valida-
tion suite package may use outgoing element import
relationships to include the validation rules from diffe-
rent places in the model.

3.4. Building Model Element Relationships
Matrices

UML defines a number of element relationships –
dependency, abstraction, realization, usage, associa-
tion, generalization and others. A modeler can use
them for relating the elements of his model, but it is
not easy to trace the elements, analyze the traceability
information, and get an overall view about particular
relationships. For this purpose in MagicDraw UML,
one can use either analysis tools for tracing the related
elements or set up and generate a number of depen-
dency matrices. The setup is pretty easy – a modeler
just needs to say from which package(s) in the model
what kind of concepts should be taken and what kind

of relationships should be traced. A fragment of
MagicDraw UML screenshot showing both the setup
and the generated matrix is given in Figure 16. We
suggest building a number of such diagrams for
tracing different aspects, e.g. data usage in business
processes, information usage in user interface ele-
ments, use case realizations in components.

3.5. Generating Requirements Specification
Documents

MagicDraw UML supports creating document
templates in their target formats – simple text, rich
text (RTF), Open Office documents with Velocity-
based scripts for getting data from the model. A frag-
ment of such a template is given in Table 2 and the
output from a documented model based on this temp-
late is given in Table 3.

Obviously, for supporting the framework for soft-
ware requirements modeling, multiple documentation
templates must be developed – business concepts vo-
cabulary, use case specification, business processes,
data structure, user interface model, etc.

Table 2. A document template for retrieving the business vocabulary – business concepts and their textual descriptions

Concept Description
#forrow ($class in $sorter.sort($Class)) $class.name $report.getComment($class) #endrow

Towards Implementing a Framework for Modeling Software Requirements in MagicDraw UML

163

Table 3. The output from MagicDraw documentation engine generated based on the template given in Table 2 for the business
concepts represented in Figure 2 and documented with textual descriptions in the model

Concept Description
Answer Student's input answering to a particular question included in the test.
Class A particular running of a discipline, which is taught by a teacher to a number of students who

have registered for it.
Course A discipline, which could be taught multiple times.
Question A statement asking for the answer in order to assess student's knowledge or skills based on the

course contents. Each question should be applicable to at least one course.
Student A member of university who aims to get a qualification degree by participating in a number of

classes.
Teacher An employee of the university who is responsible for supervising courses and teaching classes. A

teacher can create questions and compose tests that are assigned for one or more of his classes.
 Test A setup of the test that includes the period in which the test is active. i.e. available for

assessments, the classes for which it is assigned, a selection of questions (all of them should be
applicable to the course that is instantiated by the assigned classes), instructions and some other
properties.

Test Assessment A particular trial of the student to take the test including the answers the questions defined in the
test, start and end time, and the evaluation.

Figure 16. A set-up and output of Dependency Matrix visualizing associations between actors and use cases

4. Conclusions

We have presented a short review of modern
requirement analysis issues emphasizing motivation
for more consistent application of UML for require-
ments modeling. We have introduced a framework for
software requirements modeling and demonstrated its
steps with consistent requirements modeling artifacts
for a case study system MagicTest. We have also dis-
cussed the basic principles of how this framework can
be implemented in MagicDraw UML. The presented
framework gives the generic guidelines for the soft-
ware analysts. For a specific requirements modeling in
a particular project or organization, it is necessary to

add more details and implement multiple artifacts
based on the presented principles. The research com-
munity should also consider this work as a starting
point for creating more detailed and more formalized
methods for requirements analysis.

In the future, we plan to work on more detailed
guidance for requirements modeling framework, and
implementation of this framework in MagicDraw
UML – development of validation rules, documenta-
tion templates, and customization of the environment.
We also plan to implement a prototype of MagicTest
system for demonstrating the power of UML and
model-based development approach, part of which is
model-based requirements analysis.

D. Šilingas, R. Butleris

164

References
 [1] J. Aranda, S. Easterbrook, G. Wilson. Requirements

in the wild: How small companies do it. 15th IEEE
International Requirements Engineering Conference
(RE 2007), 2007, 39-48.

 [2] M.C. Panis, B. Pokrzywa. Deploying a System-wide
Requirements Process within a Commercial Enginee-
ring Organization. 15th IEEE International Require-
ments Engineering Conference (RE 2007), 2007, 295-
300.

 [3] Object Management Group. Unified Modeling Lan-
guage: Superstructure. Formal Specification, version
2.2, 2009.

 [4] K.E. Wiegers. Software Requirements. 2nd edition,
Microsoft Press, 2005.

 [5] E. Gottesdiener. The Software Requirements Memo-
ry Jogger: A Pocket Guide to Help Software and Busi-
ness Teams Develop and Manage Requirements.
GOAL/QPC, 2005.

 [6] G. Engels, R. Heckel, S. Sauer. UML – A Universal
Modeling Language? In M. Nielsen, D. Simpson
(Eds.): Application and Theory of Petri Nets 2000,
21st International Conference, (ICATPN 2000),
Aarhus, Denmark, June 26-30, 2000, Proceedings,
Lecture Notes in Computer Science, 2000, Vol.1825,
24-38.

 [7] I. Jacobson. Object-Oriented Software Engineering.
Addison Wesley Professional, 1992.

 [8] Object Management Group. Business Process Mo-
deling Notation Specification. Final Adopted Specifi-
cation, version 1.0, 2006.

 [9] O. Noran. UML vs. IDEF: An Ontology-oriented
Comparative Study in View of Business Modelling.
Proceedings of the 6th International Conference on
Enterprise Information Systems (ICEIS 2004), Porto,
2004, Vol.3, 674-682.

[10] P.P.-S. Chen. The entity-relationship model – toward
a unified view of data. ACM Transactions on Data-
base Systems (TODS), Vol.1 (1), 1976, 9-36.

[11] A. van Lamsweerde. Goal-Oriented Requirements
Engineering: A Guided Tour. 5th IEEE International
Symposium on Requirements Engineering, Toronto,
August, 2001, 249-263.

[12] K. Kapocius, R. Butleris. Repository for Business
Rules Based IS requirements. Informatica, Vol.17,
No.4, 2006, 503-518.

[13] E. Pakalnickiene, L. Nemuraite. Checking of con-
ceptual models with integrity constraints. Information
technology and control, Vol.36, No.3, 2007, 285-294.

[14] M. Penker, H.-E. Eriksson. Business Modeling With
UML: Business Patterns at Work. Wiley, 2000.

[15] Object Management Group. Systems Modeling Lan-
guage. Formal Specification, version 1.0, 2007.

[16] T. Danikauskas, R. Butleris, S. Drąsutis. Graphical
user interface development on the basis of data flows
specification. Computer and Information Sciences –
ISCIS 2005, 20th International Symposium, Istambul,
Turkey, October 26-28, 2005, Lecture Notes in Com-
puter Sciences, Vol. 3733, 2005, 904-914.

 [17] M. Glinz. Problems and Deficiencies of UML as a
Requirements Specification Language. Proceedings of
the 10th International Workshop on Software Specifi-
cation and Design, 2000, 11 – 22.

[18] S. Konrad, H. Goldsby, K. Lopez, B.H.C. Cheng.
Visualizing Requirements in UML Models. Procee-
dings of the International Workshop on Requirements
Engineering Visualization (REV 2006), 2006.

[19] R. Butkiene. Method for Specification of Functional
Requirements for Information System. Doctoral Dis-
sertation, Kaunas University of Technology, 2002.

[20] J. Castro, M. Kolp, J. Mylopoulos. Towards Re-
quirements-Driven Information Systems Engineering:
The Tropos Project. Information Systems, Elsevier,
Vol.27, Issue 6, 2002, 365-389.

[21] H. Behrens. Requirements Analysis and Prototyping
using Scenarios and Statecharts. Proceedings of ICSE
2002 Workshop: Scenarios and State Machines: Mo-
dels, Algorithms, and Tools, 2002.

[22] D. Silingas, R. Vitiutinas. Towards UML-Intensive
Framework for Model-Driven Development. B. Mey-
er, J.R. Nawrocki, and B. Walter (Eds.): Second IFIP
TC 2 Central and East European Conference on Soft-
ware Engineering Techniques (CEE-SET 2007), Poz-
nan, Poland, Lecture Notes in Computer Science, Vol.
5082, 2008, 116-128.

[23] D. Silingas, R. Butleris. UML-Intensive Framework
for Modeling Software Requirements. Proceedings of
International Conference on Information Technologies
(IT 2008), Kaunas, 2008, 334-342.

Received February 2009.

