
Towards improved genome-scale metabolic network reconstructions:

Unification, transcript specificity and beyond

Thomas Pfau1,2,+, Maria Pires Pacheco1,+, and Thomas Sauter1*

1Life Sciences Research Unit, University of Luxembourg
2Institute of Complex Systems and Mathematical Biology, University of Aberdeen

+These authors contributed equally to this work.
*Corresponding author - thomas.sauter@uni.lu

Abstract

Genome scale metabolic network reconstructions provide a basis for the investigation of the metabolic

properties of an organism. There are reconstructions available for multiple organisms, from prokaryotes to

higher organisms and methods for the analysis of a reconstruction. One example is the use of flux balance

analysis to improve the yields of a target chemical, which has been applied successfully. However, comparison of

results between existing reconstructions and models presents a challenge due to the heterogeneity of the available

reconstructions, for example, of standards for presenting gene-protein-reaction associations, nomenclature of

metabolites and reactions or selection of protonation states. The lack of comparability for gene identifiers or

model specific reactions without annotated evidence often leads to the creation of a new model from scratch,

as data cannot be properly matched otherwise. In this contribution, we propose to improve the predictive

power of metabolic models by switching from gene-protein-reaction associations to transcript-isoform-reaction

associations, thus taking advantage of the improvement of precision in gene expression measurements. To

achieve this precision, we discuss available databases that can be used to retrieve this type of information and

point at issues that can arise from their neglect. Further, we stress issues that arise from non-standardized

building pipelines, like inconsistencies in protonation states. In addition, problems arising from the use of

non-specific cofactors, e.g. artificial futile cycles, are discussed, and finally efforts of the metabolic modelling

community to unify model reconstructions are highlighted.
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1 Introduction

Over the last two decades, the increasing availability of genomic, proteomic and metabolomic information has led to

the generation of a multitude of metabolic network reconstructions [1]. These reconstructions aim to represent our

collective knowledge about the metabolism of the reconstructed organisms. They serve as a source of information

on their target organism, and models derived from the reconstructions can be used to investigate its metabolic

capabilities. The available reconstructions cover multiple types of organisms, ranging from microorganisms, like

Escherichia coli [2, 3, 4] and Saccharomyces cerevisiae [5, 6], to complex multicellular organisms, like Arabidopsis

thaliana [7, 8, 9] or Homo sapiens [10, 11, 12].

Despite the availability of high quality protocols for the reconstruction of a genome-wide network [13], efforts

are far from consistent between different groups. The most common differences are multiple naming schemes for

reactions, metabolites, and genes, along with different formats for reconstruction exchange. Some of the issues

arising from these differences have been discussed in Monk et al. [14]. The main challenge is to compare networks

generated by different reconstruction tools, or using different naming schemes [15]. Furthermore, the lack of precise

annotations leads to information being overlooked that could improve the models resulting from reconstruction
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Model Style Description Advantages // Disadvantages Examples

SBML/COBRA SBML with additional in-
formation in the notes sec-
tions of entries [22]

Models are usable in any SBML capable tool but the
additional information needs explicit parsers. Tool
independent. // There is no clear definition of used
fields in the SBML format and different groups use
multiple different data fields.

BiGG models [23],
MetaCyc SBMLs [24],
iJO1366 [3]

SBML/Mod SBML using Modifier-

Species to define GPRs
Models are usable in any SBML capable tool. Genes
can be linked to multiple sources. Proteins can be
encoded and linked explicitly. Tool independent. //
Needs parsers that make use of these properties. Lacks
a defined standard how ModifierSpecies have to be
defined.

HMR [25],
yeast consensus [6]

SBML/FBC SBML with FBC extension
for flux balance analysis
specific information [26]

Uses SBML defined fields (from the FBC extension)
to provide FBA specific information. Proteins can be
encoded (and identified) explicitly. Tool independent.
// FBC extension not yet processed by many tools.

BiGG2 Database [27]

Toolbox specific
formats

Formats specific to one
modelling tool e.g. CO-
BRA MATLAB files [22] or
ScrumPy .spy files [28]

Files can directly be used in the respective toolbox
and can contain additional information. // Not easily
loaded into other tools.

Recon2 [12],
iMM1415 [29]
Poolman et al. [7]

Spread sheets Commonly multiple sheets
or files with compounds,
reactions and genes

Easily accessible for non computational users. Tool
independent. // Difficult to parse for further analysis,
due to the lack of a standard format.

HepatoNet [30],
Oh et al. [31],
iNJ661 [32]

Table 1: Different formats for the exchange of metabolic models. Annotation of the SBML is either achieved
by COBRA notes fields (e.g. for Database links), or using bio qualifiers (BQ) and the annotation class of
SBML. Both types have been used in combination with SBML/Mod and SBML/COBRA, even though commonly
SBML/COBRA models do not include BQ annotations, as they rely on the COBRA annotations.

efforts. With automation of model generation [16, 17], in particular towards tissue specific submodels [18, 19], it

becomes ever more important that reconstructions are curated in a consistent way.

There have been attempts to establish databases that can help in generating consistent networks by providing

links to multiple databases, like MetRxn or MetaNetX [15, 20]. These studies also highlighted the issues arising

from the multitude of naming schemes used. While we know that there are multiple pathways which are shared

between a multitude of organisms (like glycolysis or the Krebs cycle) finding these similarities in reconstructions is

challenging. The authors of MetRxn report that by using simple string matching techniques only three reactions

could be directly inferred as being identical in a set of over 30 models [15]. Thus unification is paramount to

determine the novelty of new reconstructions.

Unified representation, however, is not the only issue with current reconstructions. Most reconstructions rely

purely on genetic information for functional annotation, however recent advances in both microarray and RNA-seq

technologies provide information about mRNA on a transcript level. Inclusion of this kind of information could

potentially increase the accuracy of models. Another issue that can influence predictions is cofactor specificity,

which has been shown to be influential in metabolic modelling [21]. In this paper we will highlight potential

approaches to unify metabolic network representations, and highlight the importance of transcript specificity to

metabolic networks. We will further elaborate on the issues arising from cofactor specificity in metabolic network

analysis (e.g. sets of reactions using either NADPH or NADH, which can form futile cycles indicating those

reactions as active while in truth they are disconnected from the network). Finally, we will provide an overview

of projects aiming at improving the current lack of unification, by coordinating multiple reconstruction efforts for

the same organism, or creating databases with compatible networks.

2 Steps towards a unification of model representation

Metabolites and reactions linking them form the core of a metabolic network. Additional information is often

provided in the form of genes which are coding for enzymes catalysing a specific reaction. These can be simply lists

of genes associated with a reaction, or they can form gene-protein-reaction association (GPR) rules representing

protein complex formation. To provide this information multiple different types of formats have been used (see

Table 1). Some, like the Systems Biology Markup Language (SBML, [33]) or spreadsheets are platform-independent

2



while others, like MATLAB structs, depend on a specific software. The advantage of SBML over other formats is

its versatility, and general usability by almost all current software tools specific to metabolic modelling (for recent

reviews on these tools see Lakshmanan et al. [34] or Dandekar et al. [35]). Nowadays, most models are indeed

published in the SBML format[36, 25, 37, 38]. In addition, many software tools, even if they have an alternative

internal storage format, like ScrumPy[28], COBRA [22], RAVEN [17], or Pathway Tools [39], provide some type

of import and export functionality to read and generate SBML files that can be used as input into other tools.

However, there are still models like the latest versions of the popular metabolic network reconstruction of Homo

sapiens, Recon2, which are only available as a MATLAB export specific to the COBRA toolbox environment [22].

Beyond the common general file format models tend to diverge substantially.

2.1 Flux balance specific information

Gene-protein-reaction (GPR) association rules, which are commonly used to link gene expression or proteomics

data to metabolic networks [40, 41, 42, 43], are inconsistently represented in different models. While some recon-

structions provide those GPRs in supplemental spreadsheets [30], the COBRA toolbox defines additional fields in

the SBML Notes section of a reaction, that contain the GPR rules [22]. Recently some reconstructions, like the

yeast consensus model [6] or the Human Metabolic Reconstruction (HMR) [25], provide ModifierSpecies which are

annotated as being encoded by specific genes using bio-qualifiers [44]. The COBRA toolbox also added further

information into the Notes section, including metabolite formula and charge information, or information on path-

ways that include a given reaction. While this information is useful for network analysis, it lacks a clear definition

of which fields can be used or should be present. Thus, multiple different fields have been used across models,

with some fields remaining undefined in some models. However, this information could also be provided within the

annotation field of a metabolite or reaction using biomodel qualifiers (BQ) [44], e.g. a reaction isPartOf a specific

pathway, without the necessity of additional field definition. Another specification made by the COBRA toolbox

was to use the kineticLaw field to define flux constraints, thus using a structure that is not designed to hold this

information but is supposed to be used for real kinetic information. Since SBML is a general systems biology

representation, this could lead to confusion if the structure of a stoichiometric model is imported into a kinetic

tool. These inconsistencies in the use of SBML, in addition to the increasing amount of available reconstructions,

have prompted the development of the ’FBC’ extension [45] to SBML, which covers many aspects specific to flux

balance analysis (FBA). While initially only providing support for flux bounds and providing additional SBML

fields for charge and formula within the Species class, the latest version (Version2, Release 1 [26]) also provides

facilities to handle GPRs, including the option to add gene products (thus directly adding protein identifiers to the

model along with gene/transcript identifiers). FBC further allows the inclusion of specific settings for simulations

in FluxObjectives. The clear definition of the FBC extension along with its direct link to the SBML specification

makes it an ideal choice for data provision.

2.2 Naming conventions and comparability

While the ’FBC’ extension handles many of the aspects specific to flux balance models, there is still wide diversity

in naming schemes used for metabolite or reaction identification and the choice of gene representation. Until

now, there are no generally accepted naming conventions for metabolites or reactions, and thus the choice of

identifiers strongly depends on the database used as a basis for the reconstruction, or how the researchers choose

to define their system. Naming schemes have included custom abbreviations [46, 47], consecutive numberings [30],

or extracted identifiers from databases [7].

Newer reconstructions tend to make extensive use of the SBML annotation field, Systems Biology Ontology

(SBO) identifiers (see http://www.ebi.ac.uk/sbo/) and biomodel qualifiers. Usage of these qualifiers in addi-

tion to adherence to standards defined as the “Minimum Information Required In the Annotation of Models”

(MIRIAM) [48] will make it possible to create universally applicable interpreters and tools. However, even when

trying to adhere to the MIRIAM standards, it is important to select a proper set of resources to annotate the

model components. There are multiple databases for compounds (e.g. CHEBI [49], PubChem [50], KEGG [51],
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MetaCyc [24]), reactions (KEGG, MetaCyc, BRENDA [52], GO [53]), proteins (BRENDA, UniProt [54], PDB [55],

ENZYME [56]) and genes (NCBI - Gene [57], UniProt, GeneDB [58], GeneCards [59]) with some (like KEGG and

MetaCyc) catering primarily to metabolism, while others are more comprehensive.

As new models are commonly accompanied by novel functionalities or entities, databases that allow the depo-

sition of new entries would be preferable. While the most popular metabolic databases (MetaCyc and KEGG) do

contain entry types on the most relevant entities, they do not allow a direct deposition of new entries. They are

therefore unsuitable for deposition of newly developed models, as this would lead to new identifiers that cannot

be directly used by others. Using multiple databases to solve this issue can introduce new sources of errors. For

metabolites, one database might consider all compounds to be present at a certain pH (like MetaCyc), while other

databases represent the same compound as fully protonated (like BRENDA). Thus, when trying to determine

charge balance or hydrogen balance, issues arise if inconsistent sources are used, and one source might not provide

the required protonation state for all compounds in the reconstruction. If novel compounds, proteins, or genes

are introduced in a reconstruction, we would recommend using CHEBI, UniProt and NCBI - Gene to directly

deposit the novel entries and use them to annotate the entities in the model. For known compounds a selection

of consistent sources (e.g. the same protonation state as in the reconstruction) would, in our opinion, be more

suitable than a large selection of databases, with different definitions, to avoid confusion.

3 Transcripts - the information lost in reconstructions

As mentioned above, GPRs are informationally important in metabolic reconstructions, in particular when trying

to integrate omics data into metabolic networks, e.g. to extract context-specific models from a generic genome-

wide reconstruction. The GPRs annotated in metabolic reconstructions mostly consider only genes, completely

neglecting the fact that one locus can be translated in different variants through alternative splicing.

Alternative splicing (as shown in Figure 1) allows increased diversity and regulatory complexity of an organism

without requiring a massive increase in genome size [60]. It is particularly important in humans, with splicing

variants affecting 95% of the genes [61, 62]. Even if the different variants have mostly similar functions, in some

cases the alternative variants have opposing effects, like the FLICE isoforms that are anti- and pro-apoptotic [63];

provide insufficient activity, as in the instance of the TAZ gene [64]; or inhibit the main isoform. An example

for the latter is isoform i2 of UGT1A that negatively modulates the glucuronosyltransferase activity of isoform

i1 [65, 66].

In general, several splice variants are simultaneously expressed, although usually one variant dominates the

others, accounting for on average 85% of the protein-coding mRNA at a given loci [67]. The dominant variant

is usually highly conserved during evolution, But the expression pattern is constantly changing to meet cell- and

condition-specific requirements [68]. Not only do different celltypes have a different set of variants, but also different

individuals show different splicing. Furthermore, switch-like effects, where variants lose their dominant position

in favour of other variants, were observed for hundreds of genes during differentiation [69, 70], demonstrating the

plasticity of a tightly regulated process. Alterations of the latter are implicated in numerous pathologies, especially

in cancer, and several splice variants are even considered as biomarkers, like PRKC-ζ-PrC for prostate cancer,

Nek2C for breast cancer and CD-44 splice variants for colon cancer [71, 72, 73].

3.1 Current use of transcripts

Most metabolic models do not consider transcript variants as functional information is often only available at the

gene or protein level. Even metabolic reconstructions that introduced transcript identifiers in their gene-protein-

reactions association rules (GPR) based on bibliographic research, like Recon1 [10], do not allow mapping of the

transcripts identifiers of the model to transcript identifiers used by databases. This issue arises from the lack of

direct matching between the reconstruction identifier and available databases’ identifiers. Therefore, in practice,

the information related to splicing variants is simply ignored. GPRs are gene-oriented and, as a consequence,

the intensity levels of the transcripts variants are usually simply summed up or the maximal intensity values are

mapped to the reactions of the model.
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Alternative splicing was shown to be altered in a wide range of diseases [74, 75]. In cancer, usually minor

isoforms get overexpressed and dominate the main splice form. For example, the alternative splice form pyruvate

kinase isoform 2 (PKM2) favours aerobic glycolysis whereas the main form promotes oxydative phosphorylation.

The expression of PKM2, which is the embryonic isoform, is restricted in adults to cancer cells that do not express

PKM1 [76]. A model with gene-oriented GPRs cannot differentiate between the two isoforms and will therefore

consider the same set of target reactions as active for both isoforms .

The existence of tissue- or context-specific alternative exons involved in the same pathways, and regulated by

common mechanisms as e.g. the neural-specific splicing regulator nSR100, was demonstrated in several studies [77,

78, 79, 80, 81]. Although alternative exons were mostly studied for their impact on protein-protein interaction

networks, it is probable that alternative exons have a similar role in metabolic modelling, controlling the activation

of tissue-specific metabolic sub-pathways. In this case, a model with gene-oriented GPRs would fail to capture

tissue-specific activation patterns.

3.2 Sources for transcript specific information

The prevalent barrier to the inclusion of transcript variants in metabolic network reconstruction is the lack of

knowledge about the alternative splice forms in most organisms. Databases collecting information on alternative

splicing are mainly dedicated to humans, mice and other vertebrates, since splicing is most important in eukaryotic

organisms. The largest benefit of this endeavour is therefore expected for human models, where the inclusion of

transcript information could explain pathologies linked to alternative splice forms e.g. in cancer [82, 83], neurodeg-

nerative diseases [84, 85, 86] or autosomal dominant retinitis pigmentosum [87]. The inclusion of information

on alternative splice forms will increase the capacity of cell-specific and context-specific models to capture the

variability in metabolism of different cell types. However, even for the organisms with the highest information

content on alternative splicing, the functional activity of most splice forms remains unknown. To address this

problem, several databases have been dedicated for a decade to collecting transcript information. These include

ASAP II [88], ECGene [89], ASTD [90], HOLLYWOOD [91], H-DBAS [92], FAST DB [93] and FANTOM 3 [94],

which try to supplement generic gene databases (ENSEMBL [95, 96], Pfam [97, 98], Uniprot/Swiss-Prot [99]). A

more intensive review of these databases can be found in Kelemen et al. [100] or Taneri and Gaasterland [101].

Problems of automated annotation pipelines The increased amount of data on alternative splicing obtained

through deep-sequencing technologies outpaces the capacity of databases to completely annotate the transcripts

manually, and therefore nearly all databases use semi-automated or automated pipelines.Automated annotation

process are more prone to errors than manual curation. The rate of wrong annotation in GenBank [102], NR [103],

TrEMBL [99] and KEGG [104] was assessed by Schnoes et al. [105], who tested 37 enzyme families. They found

misannotation rates ranging from 5% up to 63% for the automated databases, whereas Swissprot, which performs

manual curation, had a misannotation rate close to 0 [105]. A similar misannotation rate due to the automated

pipeline is expected for alternative splice forms. Several strategies can be used in order to identify the function

of a new alternative splice form. The most common compares the sequence of the transcripts or the isoforms to

species already present in the databases using tools like BLAST. The reliability of the annotation depends equally

on the quality of the algorithms uses and the correctness of the annotations of species already present in the

databases. Although algorithms do create errors in the identification of open reading frames, the database entries

themselves might be more problematic, as erronous entries can propagate quickly through automated methods.

For example, one of the most used databases [106], GenBank, only allows the sequence submitter to correct or

update the submitted annotation. This leads to very few corrections and updates thus accumulating errors in a

database that shares its entries with several other databases [106]. In addition, the prediction of function based

on the amino acid sequence, taking advantage of massive high-throughput data, is getting more popular. The

different tools used by the databases have very different accuracy levels and the characteristics of the annotation

tools must be taken into consideration when selecting a reference database.
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Name Species Method of
annotation

Reference Link

GENCODE human and mouse manual and
automated

[107] http://www.gencodegenes.org/

ASPicDB human automated [111] http://srv00.ibbe.cnr.it/ASPicDB/
Vega human, zebrafish,

pig, mouse and rat
manual
annotation

[109] http://vega.sanger.ac.uk/index.html

H-DBAS (human, mouse,
rat, chimpanzee,
macaque and dog

manual [113] http://www.h-invitational.jp/h-dbas/

SASD human prediction [114] http://bioinfo.hsc.unt.edu/sasd/
ASIP plants automated [115] http://www.plantgdb.org/

Table 2: Databases for transcript specific genome annotations of multiple species.

Transcript databases suitable for metabolic model annotation The GENCODE collaboration [107] tries

to annotate genes and splice variants discovered by the ENCODE consortium [108] using a combination of manual

curation, automated annotation pipelines and targeted validation approaches. Within the GENCODE collabora-

tion, the APPRIS database [67] is dedicated to the annotation of principal and alternative splice isoforms. The

aim of APPRIS is to validate manually annotated isoforms with functional data and protein structures. APPRIS

selects the major isoform that is present in most cells and contexts and compares that isoform to all other isoforms.

APPRIS could identify the dominant variants of 85% of the protein coding transcripts of the GENCODE 7 release

for ENSEMBL [95, 96].

Vega [109], a database for vertebrate genomes that contains a section with annotations for alternative splicing

information is another useful source of transcript information. The HAVANA team is actively participating in

these annotation efforts and it was incorporated into the set of ENSEMBL databases [95, 96]. The aim is to

systematically annotate all experimentally validated ESTs or mRNAs from ENCODE [108] and the 1000 Genomes

loss-of-function project [110], without prior filtering based e.g. on the tissue of origin. This unbiased approach

allows the annotation of transcripts that do not yet have an obvious function.

The ASPicDB database [111] considers the human isoforms that result from alternative splicing events. Anno-

tation is then performed by machine-learning approaches that categorize the proteins by function, localization,

transmembrane domains, signal peptides, gpi- and coiled-coil domains, and similarity to known peptide sequences.

The ADPicDB database employs the ASPIC algorithm [112] to perform multi-alignments to the genome. The

alignment that minimizes the splicing events is then retained.

H-DBAS II [113] is the successor of H-DBAS [92], a database that collects information on human alternative splice

forms, with the focus on alternative splicing events altering protein functions. The H-DBAS database was mainly

based on cDNA libraries. H-DBAS II now takes advantage of the RNA-seq technology to improve the annotation

of splicing variants.

The SASD database [114] predicts alternative splice forms expressed in different contexts e.g. during disease,

under drug effects, or in different organs. Data extracted from ENSEMBL [96] and from the Integrated Pathway

Analysis database is used to create artificial transcripts and peptides.

While all databases mentioned above are focussing on different vertebrates, the ASIP database is specialized to

plants [115]. It allows the visualization of alternative splice forms in plants like A. thaliana or Oryza sativa. To

obtain the annotations the ASIP database uses an automated approach based on alignment tools.

Table 2 gives an overview of these databases which, along with further information provided by RNA-seq ex-

periments, represent a valuable source of data that could increase the predictive capabilities of metabolic models.

Besides automated pipelines to map the correct transcripts to known metabolic reactions, data mining approaches

and bibliographic research similar to those performed by the Recon1 project would be required to unravel the func-

tion of the variants. It would, however, be important to use these resources to implement a common nomenclature

that would prevent information loss and create consistency between models.
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Resource Unification Description

BiGG [23] SBML/COBRA Database containing multiple genome scale metabolic networks in
the COBRA format.

BiGG2 [27] SBML/COBRA, SBML/FBC Update to BiGG, currently in a beta version, providing multiple
models annotated using FBC.

MetaCyc [24] SBML/COBRA, biocyc flat files Large collection of metabolic reconstructions. Flat File format con-
tains additional details not included in the provided SBMLs.

SEED [16] SEED IDs,
Partial SBML/COBRA format

System for construction of metabolic reconstructions and analysis.
Export of reconstructions is available in SBML format (with mini-
mal annotations) and Excel sheets.

MetaNetX [20] MNXRef IDs, SBML/COBRA,
bioql information for metabolites

Repository of unified metabolic reconstructions linking to multiple
external databases. Offers tools for network analysis and modifi-
cations. SBML files contain additional yeast-style annotations for
species.

MetRxn [15] MetRxn ID, SBML/COBRA Database matching multiple metabolite and reaction databases
aiming at providing a curated basis for network reconstruction.

Table 3: Databases aiming at providing functional metabolic models that are directly comparable.

4 Non-specific cofactors can cause infeasible loops

Another issue commonly observed when reconstructing metabolic networks is the difficulty of selecting the right

cofactors for reactions, specifically the right redox pairs. The assignment of cofactors to reactions is complicated by

the fact that the cofactor requirement is organism- and cell-specific, explaining at least partially that the cofactors

requirements vary between databases [116]. Furthermore, gene matching algorithms used to reconstruct networks

will often find reactions using all potential cofactors and include them in the reconstruction. The discrepancies

are further accentuated by the fact that in the case of missing electron transfer pair information, NAD+/ NADH

is most often the default transfer cofactor used [117]. The reason for this default choice is that finding organism-

specific information is not trivial and can necessitate extensive literature research even for well studied organisms.

Furthermore, several enzymes have different isoformes that do not exhibit the same cofactors requirements. One

example is aldehyde dehydrogenases, which may use both NADH and NADPH. In the cytoplasm of S. cerevisiae,

the main isoform uses NADP+, whereas stress-induced isoforms prefer NAD+ as cofactor [118]. Unfortunately,

databases tend to either provide inspecific reactions (using NAD(P)+), only one variant, or often both variants

associated with both genes in these instances, which makes it challenging to assign the correct reaction to the

respective isoform. In addition, several enzymes are able to catalyze various reactions and the catalysed reactions

depend on the availability of a specific cofactor. This leads to the incorporation of all potentially catalysed reactions

that vary only by their cofactor requirements [5], which is likely to cause loops or cycles that are thermodynamically

infeasible if one or more of the reactions are reversible. Loops carry a non-zero flux, even in the absence of an

input and output flux, if no thermodynamical constraints are added. These loops violate the loop law, a law

similar to Kirchhoff’s second law for electrical circuits. There have been attempts to eliminate the presence of

thermodynamically infeasible loops from FBA calculations and it has been shown that their presence can diminish

the predictive power of models [23]. However, the use of loopless FBA converts the simple linear problem into a

mixed integer linear problem which can lead to long computational times, particularly if multiple rounds of the

problem have to be solved. Other approaches to solving this issue show similar characteristics with respect to

computational requirements [119] and are therefore often not included in the analysis of metabolic models.

5 Community efforts to improve metabolic models

There have been attempts to create collections of metabolic networks, e.g. Model SEED [16] or BiGG [23], and

unify identifiers like MetRxn [15] or MetaNetX [20] (listed in Table 3).

Model SEED is aimed at providing a platform for model reconstruction based on automated genome annotation

using RAST [120]. While this is sufficient for the analysis tools provided on the website, the exportable model

formats lack unification information. They do adhere to the COBRA toolbox standard, but as mentioned earlier,

that definition itself lacks a lot of information. BiGG was introduced to allow comparison between different

networks, but relied on all deposited networks adhering to the same nomenclature, and is restricted by the limited
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number of deposited reconstructions. The database is currently being updated however and a beta version of

BiGG2, comprising lots of additional models and providing well annotated models, has recently been made available

online.

In contrast to this approach, MetRxn and MetaNetX aim at identifying common reactions by combining

multiple pieces of information. Bernard et al. [121] give a good overview of the issues arising when trying to match

metabolites, and how different databases try to address them. The biggest issues arise from stereoisomers and

difference in protonation states. While most often protonation states can be ignored (as long as they are consistent

within a model), there might be issues when different compartments exhibit different pH. This could become

particularly important for energetic considerations if different protonation states are assumed for mitochondria

and cytosol. The same problems can potentially arise from considering equality of stereoisomers, with different

stereoisomers being processed at different efficiencies [122]. Both MetRxn and MetaNetX can be a great help

to overcome most of these issues, with MetaNetX being the more comprehensive approach. Using an extensive

set of external databases it tries to match similar external compounds to its namespace. To address issues of

stereoisomers and protonation states, it provides a distinction between identical structures, structures with the

same tautomeric form at pH 7.3, and inferred similarities. Even though this information is not directly visible on

the website, it can be retrieved from the data export files. However useful these tools become, it is even more

important that they are actually used, and that the community works in concert to improve models, avoiding the

creation of multiple distinct reconstructions for the same organism. While the exchange of models in a common

language would be an important step, as it would make the combination of models easier, we also want to highlight

two recent collaborative efforts that lead to the development of more comprehensive reconstructions.

The first example of a successful community effort for organism specific reconstruction is the creation of the

consensus model of S. cerevisiae. Several models of yeast had been published [123, 124, 125] until, in 2007, a

combined effort was undertaken to merge these models and bring them into a more standardized format [126].

This early combined effort now led the seventh iteration of the model [6], which inspired the formulation of GPRs

as suggested above.

Another example of community efforts to merge models is the human metabolic reconstruction Recon 2 [12].

The first human genome scale metabolic reconstruction, HumanCyc, was published in 2005 [127]. Soon after, two

refined genome-scale reconstructions were published; Recon 1 by Duarte et al. [10], and the Edinburgh Human

Metabolic Network (EHMN) by Ma et al. [11]. These competing models along, with HepatoNet [30] and further

information from the literature, were combined into Recon 2 [12] in an effort to unify the different sources. While

the attempt led to a more complete knowledge source, it reinforced the problems of incompatibility between

different networks. For example, Recon 1 used Entrez gene identifiers with transcript specific details as gene

IDs, while HepatoNet used gene symbols leading to mixed identifiers in Recon 2, which makes simulations more

challenging. In addition, the transcript-specific information from Recon 1 got mostly lost since it, unfortunately,

was not traceable to databasesSection 3), and neither EHMN nor HepatoNet contained similar information. This

again highlights the importance of linking information to databases since otherwise great efforts can be lost or

have to be repeated. Still, Recon 2 is an important step in the development of human metabolic reconstructions

and only in its second iteration, and there remains competing reconstructions or knowledgebases like the HMR,

which will hopefully be merged in the future.
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Key points

• The increasing amount of metabolic reconstructions necessitates a more unified way of representation to

make models comparable.
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• Available unification sources could provide a basis for this process.

• Associations to genetic information in metabolic reconstructions needs a clearer and more structured asso-

ciation.

• Transcript-specific association rules would improve the specificity of network activities.

• Cofactor specificity needs to be addressed more carefully during reconstruction.
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[43] Yizhak K., Gaude E., Le Dévédec S. et al., Phenotype-based cell-specific metabolic modeling reveals

metabolic liabilities of cancer. eLife, 2014, 3, e03641.

[44] Li C., Courtot M., Le Novère N. et al., BioModels.net Web Services, a free and integrated toolkit for

computational modelling software. Brief. Bioinform., 2010, 11, 270–277.

[45] Olivier B. G. and Bergmann. F. T., Flux Balance Constraints, Version 1 Release 1. 2013.

[46] Feist A. M., Henry C. S., Reed J. L. et al., A genome-scale metabolic reconstruction for Escherichia coli

K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol., 2007, 3,

121.

[47] Flahaut N. A. L., Wiersma A., van de Bunt B. et al., Genome-scale metabolic model for Lactococcus lactis

MG1363 and its application to the analysis of flavor formation. Appl. Microbiol. Biotechnol., Oct 2013, 97,

8729–8739.

[48] Le Novère N., Finney A., Hucka M. et al., Minimum information requested in the annotation of biochemical

models (MIRIAM). Nat. Biotechnol., 2005, 23, 1509–1515.

[49] Hastings J., de Matos P., Dekker A. et al., The ChEBI reference database and ontology for biologically

relevant chemistry: enhancements for 2013. Nucleic Acids Res., 2013, 41, D456–D463.

11



[50] Bolton E. E., Wang Y., Thiessen P. A. et al., PubChem: Integrated Platform of Small Molecules and

Biological Activities, in Annual Reports in Computational Chemistry, ser. Annual Reports in Computational

Chemistry, Wheeler R. A. and Spellmeyer D. C., Eds. Elsevier, 2008, 4, ch. 12, 217 – 241.

[51] Kanehisa M., Goto S., Sato Y. et al., Data, information, knowledge and principle: back to metabolism in

KEGG. Nucleic Acids Res., 2014, 42, D199–D205.

[52] Schomburg I., Chang A., Placzek S. et al., BRENDA in 2013: integrated reactions, kinetic data, enzyme

function data, improved disease classification: new options and contents in BRENDA. Nucleic Acids Res.,

2013, 41, D764–D772.

[53] Ashburner M., Ball C. A., Blake J. A. et al., Gene ontology: tool for the unification of biology. The Gene

Ontology Consortium. Nat. Genet., 2000, 25, 25–29.

[54] The UniProt Consortium, Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res., 2014,

42, D191–D198.

[55] Berman H. M., Westbrook J., Feng Z. et al., The Protein Data Bank, Nucleic Acids Res., 2000, 28,

235–242.

[56] Bairoch A., The ENZYME database in 2000. Nucleic Acids Res., Jan 2000, 28, 304–305.

[57] Maglott D., Ostell J., Pruitt K. D. et al., Entrez Gene: gene-centered information at NCBI. Nucleic Acids

Res., 2005, 33, D54–D58.

[58] Logan-Klumpler F. J., De Silva N., Boehme U. et al., GeneDB–an annotation database for pathogens.

Nucleic Acids Res., 2012, 40, D98–108.

[59] Safran M., Dalah I., Alexander J. et al., GeneCards Version 3: the human gene integrator. Database

(Oxford), 2010, 2010, baq020.

[60] Ladd A. N. and Cooper T. A., Finding signals that regulate alternative splicing in the post-genomic era,

Genome Biol., 2002, 3, 1–16.

[61] Buck K., Vanek M., Groner B. et al., Multiple forms of prolactin receptor messenger ribonucleic acid are

specifically expressed and regulated in murine tissues and the mammary cell line HC11. Endocrinology,

1992, 130, 1108–1114, pMID: 1537278.

[62] Pan Q., Shai O., Lee L. J. et al., Deep surveying of alternative splicing complexity in the human transcriptome

by high-throughput sequencing, Nat. Genet., 2008, 40, 1413–1415.

[63] Djerbi M., Darreh-Shori T., Zhivotovsky B. et al., Characterization of the Human FLICE-Inhibitory

Protein Locus and Comparison of the Anti-Apoptotic Activity of Four Different FLIP Isoforms, Scand. J.

Immunol., 2001, 54, 180–189.

[64] Vaz F. M., Houtkooper R. H., Valianpour F. et al., Only one splice variant of the human TAZ gene encodes

a functional protein with a role in cardiolipin metabolism. J. Biol. Chem., 2003, 278, 43 089–43 094.
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Figure 1: Alternative splice forms are created by removal and addition of exons during the splicing process.
This example shows two the alternate splice forms i1 (depicted in black) and i2 (depicted in red) of a human
glucuronosyltransferase (UGT1A). The main isoform, i1, is implicated in the metabolism and excretion of toxic
compounds e.g. drugs like codeine while isoform i2 inhibits the activity of the main isoform.
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