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Abstract. An important issue in tracking is how to incorporate an ap-
propriate degree of adaptivity into the observation model. Without any
adaptivity, tracking fails when object properties change, for example
when illumination changes affect surface colour. Conversely, if an ob-
servation model adapts too readily then, during some transient failure of
tracking, it is liable to adapt erroneously to some part of the background.
The approach proposed here is to adapt selectively, allowing adaptation
only during periods when two particular conditions are met: that the
object should be both present and in motion. The proposed mechanism
for adaptivity is tested here with a foreground colour and motion model.
The experimental setting itself is novel in that it uses combined colour
and motion observations from a fixed filter bank, with motion used also
for initialisation via a Monte Carlo proposal distribution. Adaptation is
performed using a stochastic EM algorithm, during periods that meet
the conditions above. Tests verify the value of such adaptivity, in that
immunity to distraction from clutter of similar colour to the object is
considerably enhanced.

1 Introduction

Visual tracking of objects in video sequences is becoming an increasingly im-
portant technology in a wide range of computer vision applications, including
video teleconferencing, security and surveillance, video segmentation and edit-
ing. Numerous visual tracking algorithms have been developed based on e.g. the
Kalman Filter [2], and Extended Kalman Filter [6], the mean-shift technique [3],
exemplars [12] and particle filters [7].

One important issue that remains to be resolved concerns the adaptation and
individualisation of object observation models. Adaptation is important because
of its contribution in distinguishing between different objects, and in making
tracking more robust to appearance variations due to changing illumination and
pose. The importance of adaptation for tracking has been acknowledged by the
tracking community, and some recent progress in the application of adaptive
luminance and colour models has been reported [9,13,14].

Whilst adaptation of observation models is necessary, over-eager adaptation
is a hazard. This is because transitory failures of tracking are compounded if,
while attending to a piece of clutter, the adaptation algorithm learns clutter
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characteristics and “forgets” the characteristics of the object. A solution to this
problem, proposed here, is to allow adaption only selectively when two particular
conditions are met. The first condition is that there is an object present, being
tracked properly, as flagged by a binary indicator variable appended to the object
state vector. The second condition is that the object should be moving, as a
further protection against inadvertently adapting to a (stationary) background
region. For this purpose, raw motion is observed via frame-difference signals in
certain filter channels.

The setting for experiments is a somewhat complete tracking system. Infor-
mation from the complementary modalities of motion and colour, are fused to
enhance tracking accuracy and robustness. A novel aspect of the system is that
observations are made entirely via a fixed bank of regularly spaced filters [8,11],
some of which are colour sensitive while others are motion sensitive. When the
object is moving strong localisation cues are provided by the motion measure-
ments, whereas the colour measurements can undergo substantial fluctuations
due to changes in the object pose and illumination. Conversely, when the object
is stationary or near-stationary the motion information disappears, and colour
information dominates to provides a reliable localisation cue. A Bayesian ap-
proach allows the balance between motion and colour to be captured automat-
ically, using likelihood models for image measurements, both under the object
hypothesis (foreground) and for the background.

The tracking engine itself is a particle filter [5,7], implementing Bayesian
inference. The object of interest here is the face of a person in a video sequence,
and its outline is modelled as an ellipse that is allowed to translate and scale
subject to a Langevin dynamical model. Automatic object detection and particle
filter initialisation are based on a segmentation of the motion measurements,
and incorporated in a novel proposal distribution. Finally, adaptation of the
object colour likelihood model is performed using a stochastic version of the EM
algorithm during periods of motion.

The remainder of the paper is organised as follows. Section 2 formulates the
tracking objectives in more detail and describes the object configuration and
state-space, the measurement process, and the likelihood models for the motion
and colour modalities. Section 3 outlines the particle filter tracking algorithm.
The details of the particle proposal distribution and automatic initialisation
strategy are presented in Section 4. Section 5 discusses the Monte Carlo EM
algorithm to adapt the parameters of the object colour likelihood model. The
performance of the proposed tracking algorithm is evaluated in Section 6. Finally,
some conclusions are reached in Section 7.

2 Problem Formulation

The objective is to detect and track the face of a single person in a video sequence
taken from a stationary camera. This section describes the necessary ingredients
to achieve this within a particle filtering framework.
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2.1 Object Description

For simplicity the face is modelled as an ellipse with a 1.25 aspect ratio, i.e.
(x/a)2 +(y/b)2 = 1, with b = 1.25a. The object state is given by x = (x, y, s, r),
where (x, y) is the location of the ellipse centre in the image, s is its scale, and
r is a binary indicator signifying whether the object is present in the image
(r = 1) or not (r = 0). The position and scale components are assumed to follow
independent Langevin dynamical priors [1] when the object is present, whereas
the priors for these components are undefined if the object is absent. The prior
for the object indicator is taken to be a two state Markov process with initial
state and state transition probabilities given by P0 = 0.5 and P01 = P10 = 10−3,
respectively. More specifically, the prior model can be expressed as

p(xt|xt−1) = p(xt|xt−1, rt, rt−1)p(yt|yt−1, rt, rt−1)p(st|st−1, rt, rt−1)p(rt|rt−1),

where the first three factors are similarly defined, with the one for x given by

p(xt|xt−1, rt, rt−1) =


undefined if rt = 0
pL(xt|xt−1) if rt = 1 and rt−1 = 1
URx

(xt) if rt = 1 and rt−1 = 0,

where pL denotes the Langevin dynamical model, UR denotes the uniform distri-
bution over the set R, and Rx is the valid range for the x location. In the above,
the first case corresponds to objects being absent from the scene, whereas the
second case corresponds to a valid object persisting in the scene. The third case
corresponds to a new object entering the scene, in which case the prior for the
state component is taken to be uniform over the valid range of the component.

2.2 Image Measurements

The raw image stream contains all the information necessary to detect and track
objects. However, working with the raw images directly is difficult, and a cer-
tain amount of preprocessing is required to emphasise the salient features of
the objects of interest. Two important modalities for visual tracking are motion
and colour. These modalities complement each other in the sense that when the
object is moving the colour information may become unreliable due to changes
in the object pose and illumination, whereas strong localisation cues may be ob-
tained from the motion information. Conversely, when the object is stationary
or near-stationary the motion information disappears, whereas the colour infor-
mation becomes more reliable. Here the hue and saturation parameterisation is
used to capture the colour information to minimise the sensitivity to changes
in illumination. The motion information is captured by computing the absolute
value of the luminance frame-difference.

In the spirit of [8,11], the final image measurements are obtained by pro-
cessing each of the channels (hue, saturation and frame-difference) on a regular



648 J. Vermaak et al.

filter grid. At each of the G gridpoints an isotropic Gaussian filter is applied
to each channel independently, so that the measurement for the i-th gridpoint
becomes yi = (Hi, Si, Di), with Hi, Si and Di = |∆Ii| the outputs of the filters
on the hue, saturation and absolute frame-difference channels, respectively. The
standard deviation for the Gaussian filters is set to a quarter of the gridpoint sep-
aration to ensure some degree of independence between the image measurements.
The set of measurements over the entire image is denoted by y = (y1 · · ·yG).

2.3 Likelihood Models

Within a statistical framework a likelihood function facilitates the evaluation of
the goodness of a hypothesis x in the light of a given set of measurements y.
Assuming all the gridpoints to be independent, the likelihood here is of the form

L(y|x) =
G∏

i=1

Li(yi|x) =
∏

i∈F (x)

LF (yi)×
∏

i∈B(x)

LB
i (yi),

where F (x) is the set of foreground gridpoints covered by the object parame-
terised by x, and B(x) is the set of remaining gridpoints in the background.
Note that each gridpoint i is associated with a unique background likelihood
model LB

i , whereas there is a single likelihood model LF for all the gridpoints in
the foreground. The expression above can be divided by the product of all the
background likelihoods, which is a constant for any valid hypothesis, yielding

L(y|x) ∝
∏

i∈F (x)

LF (yi)/LB
i (yi).

Thus, the likelihood only needs to be evaluated over the gridpoints in the fore-
ground, resulting in significant computational savings. At each gridpoint the
channel measurements are assumed to be conditionally independent given the
state, so that the foreground and background likelihoods can be further decom-
posed as

LF (yi) = LFH(Hi)LFS(Si)LFM (Di)

LB
i (yi) = LBH

i (Hi)LBS
i (Si)LBM (Di).

Note that each gridpoint is associated with unique background likelihood models
for the colour components, whereas the background motion likelihood model is
shared by all the gridpoints. For both the foreground and background colour
likelihoods a histogram model with B bins is adopted. For a given scalar colour
measurement c this model is defined as L(c) = γ[c], where [c] is the index of the
bin corresponding to the measurement, and

∑B
i=1 γi = 1. The background colour

models are trained by collecting measurements at the gridpoints over a training
sequence without any objects. The foreground colour models are initialised to
skin-colour distributions by training on a set of labelled face images. To prevent
numerical problems associated with empty bins each of the colour models is
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supplied with a uniform component for which the mixture weight is typically set
to 10−3.

As is shown by the empirical evidence in Figure 1, the background frame-
difference are gamma distributed, i.e.

LBM (Di) ∝ Da∆−1
i exp(−b∆Di), (1)

with typical values for the parameters given by a∆ = 2.62 and b∆ = 326.90. This
distribution accounts for small camera motions due to vibration and electronic
noise in the image acquisition process.
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Fig. 1. Distribution of background frame-difference measurements. The ab-
solute frame-difference measurements are gamma distributed if there is no motion in
the scene.

Foreground frame-difference measurements depend on the magnitude of the
motion, and the number and orientation of the foreground edges relative to the
motion. Constructing a likelihood model to capture all these effects would be
difficult. However, if the object is indeed moving, the foreground frame-difference
measurements are generally substantially larger than the mean of the gamma
background distribution, given by µ∆ = a∆/b∆. For this reason a simple two
component histogram model is adopted for the foreground frame-difference mea-
surements, i.e.

LFM (Di) =

{
β if 0 ≤ Di < nµ∆

mβ if nµ∆ ≤ Di ≤ Dmax,
(2)

where Dmax is the maximum value for the absolute frame-difference measure-
ments, and β = (n(1−m)µ∆+mDmax)−1 is computed such that LFM is a proper
distribution. Typical values for the constants in the expressions above are n = 3
and m = 10. If the object is indeed moving the foreground frame-difference like-
lihood will typically be much larger than the background frame-difference like-
lihood, providing a strong localisation cue. However, if the object is present but
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stationary, the background frame-difference likelihood will dominate, in which
case object localisation cues are provided by the colour likelihood.

3 Particle Filter Tracking

For non-linear multi-modal models, as the one introduced here, the particle filter
[5] provides a Monte Carlo solution to the recursive filtering equation p(xt|y1:t) ∝
L(yt|xt)

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 necessary for tracking. Starting with

a weighted particle set {(x(i)
t−1, π

(i)
t−1)}Ni=1 approximately distributed according

to p(xt−1|y1:t−1), the particle filter proceeds by predicting new samples from a
suitably chosen proposal distribution which may depend on the old state and the
new measurements, i.e. x(i)

t ∼ q(xt|x(i)
t−1,yt). To maintain a consistent sample

the new particle weights are set to

π
(i)
t ∝ π

(i)
t−1L(yt|x(i)

t )p(x(i)
t |x(i−1)

t−1 )/q(x(i)
t |x(i)

t−1,yt). (3)

The new particle set {(x(i)
t , π

(i)
t )}Ni=1 is then approximately distributed according

to p(xt|y1:t). The particles are then resampled according to their weights to
avoid degeneracy. Section 4 describes the proposal distribution used here in
more detail.

4 Particle Proposal

The performance of the particle filter hinges on the quality of the proposal dis-
tribution. In [5] the optimal choice for the proposal distribution has been shown
to be p(xt|xt−1,yt) ∝ L(yt|xt)p(xt|xt−1). However, direct simulation from this
distribution is intractable, calling for the design of a proposal distribution that
best approximates it. Such a proposal should facilitate computationally efficient
simulation and evaluation, and incorporate information about the measurements
to guide the generation of new particles.

In terms of the behaviour of the object the particle filter exhibits three dis-
tinct operational phases, and the proposal must be designed to deal with each
efficiently. The first phase is when an object first enters the scene. The proposal
should be able to detect the object and spawn new particles in the region of
the object. The second phase immediately follows the first and persists for as
long as the object is in the scene. The proposal should allow the algorithm to
successfully track the object, whether it is stationary or moving either slowly
or rapidly. The third phase corresponds to the object leaving the scene. The
proposal should detect this event and kill off the particles associated with the
object. These ideas can be formalised by defining a proposal of the form

q(xt|xt−1,yt, P 1,t−1) = q(rt|rt−1, P 1,t−1)q(zt|zt−1, rt, rt−1,yt), (4)

with
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P 1,t =
N∑

i=1

π
(i)
t r

(i)
t (5)

q(rt = 1|rt−1 = 0, P t−1) = q10 =

{
Pbirth if P 1,t−1 = 0
0 otherwise

q(rt = 0|rt−1 = 1) = q01 = Pdeath

q(zt|zt−1, rt, rt−1,yt) =


undefined if rt = 0
pL(zt|zt−1) if rt = 1 and rt−1 = 1

N
(
zt; µ̂t, Σ̂t

)
if rt = 1 and rt−1 = 0,

where z = (x, y, s) denotes the continuous components of the state-space, and
N (·;µ,Σ) is the Gaussian distribution with mean µ and covariance Σ. Note that
the proposal above also depends on the quantity P 1,t−1, which is computed from
the empirical particle distribution at the previous time step. Recent theoretical
results [4] show that dependence on the empirical particle distribution in the
proposal still leads to a particle filter that converges to the correct distribution.

From the proposal above it is evident that the birth of a new object is only
allowed if there is not already an object alive in the scene, i.e. P 1,t−1 = 0.
On the other hand, particles that are associated with an object that is alive in
the scene are subjected to a fixed death probability. It is up to the reweight-
ing and resampling stages to determine whether the decision to kill a particle
should be enforced. Typical values for the birth and death probabilities are
Pbirth = Pdeath = 0.1. Note that these values are substantially larger than those
for the corresponding parameters in the dynamical model. This is to ensure that
a large enough proportion of the particles undergoes a birth/death process, en-
abling the instantaneous detection of objects entering/leaving the scene. If an
object particle is dead (rt = 0), the proposal for the object location and scale is
undefined. If it is alive and persisting, the proposal for its location and scale is
set to the object dynamics for these components. This is sufficient to maintain
track under the assumptions that the particles are already locked on to the ob-
ject, and the chosen dynamical model is broad enough to capture any expected
object motion. For a new object entering the scene values for the object location
and scale are simulated from a Gaussian birth proposal. The parameters of this
proposal are computed using the motion measurements, as described below.

Object Detection

When an object enters the scene it is moving, and the motion measurements can
be used to determine a rectangular region within which the object is likely to lie.
This section proposes an efficient algorithm based on searching the horizontal
and vertical projections of the frame-difference measurements to locate such a
region. The size and location of this region can then be used to set the parameters
of the birth proposal.
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The image processing filters are arranged on a regular grid. LetGx andGy de-
note the number of filters in each row and column, respectively, with G = GxGy,
and yi,j the vector of measurements at the i-th row and j-th column of the grid.
Since objects (faces) are assumed to be horizontally separated in most video
sequences of interest, the object region boundaries in the x direction can be effi-
ciently obtained by searching over the column projections of the frame-difference
measurements. The object boundaries in the y direction can then be found by
searching over the row projections of the frame-difference measurements within
the region boundaries in the x direction. This two-step procedure is graphically
illustrated in Figure 2.

Fig. 2. Motion-based object detection. The object x region is located first by
searching over the column projections of the frame-difference measurements (shown
below the image). The object y region is then located by searching over the row pro-
jections of the frame-difference measurements within the object x region (shown to the
left of the image). The size of the y region is constrained to yield within ±10% a 1.25
aspect ratio rectangular region.

The object search proceeds similarly in both directions, and only the first case
is described in detail below. LetD

x
= (D

x

1 · · ·D
x

Gx
), with D

x

i = 1/Gy

∑Gy

j=1 Di,j ,
denote the vector of column projections of the frame-difference measurements,
and denote by (dx,Wx) the midpoint and halfwidth of the hypothesised object
x region. Assuming the components of D

x
to be independent and following an

argument similar to that in Section 2.3, the likelihood for the hypothesised object
x region can be written as1

1 The foreground and background likelihood models used here are identical to those
defined in (2) and (1), respectively. Even though the statistics for the frame-difference
projections (sums) are expected to differ from those for the single frame-difference
measurements, the models were found to predict the projections equally well for the
summation ranges in the application considered here.
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L(D
x|dx,Wx) ∝

∏
i∈Ix

LFM (D
x

i )/L
BM (D

x

i ),

with Ix = {1 · · ·Gx} ∩ [dx −Wx, dx + Wx]. An estimate of the object x region
can then be obtained by maximising this likelihood, i.e.

(d̂x, Ŵx) = argmax
(dx,Wx)

L(D
x|dx,Wx),

under the constraint that L(D
x|d̂x, Ŵx) > 1. This maximisation is performed

by a computationally efficient coarse-to-fine hierarchical search over (dx,Wx).
An estimate of the object y region (d̂y, Ŵy) can be found in a similar way by
maximising the likelihood over the vector of row projections within the object x
boundaries. The size of the y region is constrained to yield within ±10% a 1.25
aspect ratio rectangular region.

Once the object region is determined the parameters of the birth proposal
are set to (omitting the time subscript for brevity)

µ̂ = (d̂x, d̂y, 0.5(Ŵx/a+ Ŵy/b)), Σ̂ = diag(0.1(Ŵx, Ŵy, 1))2.

Thus, the location and scale parameters are proposed independently. The pro-
posal is centred on the object region, with its uncertainty proportional to the
size of the region. The chosen values were found to give good performance in
practice.

5 Colour Model Adaptation

Recall from Section 2.3 that the parameters of the foreground colour likelihood
are initialised using a set of labelled face images. As such the model may be too
broad to facilitate accurate localisation for a specific individual. Furthermore,
it may be particularly sensitive to changes in the object pose and illumination.
Thus, there is a large potential benefit to be gained by devising a strategy to
individualise the colour model to a particular object and to adapt to colour
changes due to changes in object pose and illumination.

The largest variations in the object appearance occur when it is moving.
In this case the colour likelihood becomes less reliable, but strong localisation
cues are provided by the complementary frame-difference likelihood. These cues
anchor the particles tightly around the moving object. The colour information
within the particle extents can then be used to update the colour likelihood
parameters. The degree to which each particle contributes to this adaptation
should be proportional to the strength of its frame-difference likelihood. Within
a probabilistic setting this can be achieved by a stochastic version of the EM
algorithm [10]. It should be emphasised that adaptation is only allowed if an
object is present in the scene and moving. An object is said to be present if P 1 in
(5) is bigger than some threshold Tobj , which is typically set to Tobj = 0.9. Object
motion is detected by monitoring when the average output of the frame-difference
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filters covered by the particles encoding the object configuration, denoted by D̃,
exceeds some threshold T∆, which is typically set to T∆ = 3µ∆, where µ∆ is
the mean of the background frame-difference likelihood. The remainder of this
section presents the details of the adaptation algorithm.

Denoting by θ = (γFH ,γFS), with γFH = (γFH
1 · · · γFH

B ) and γFS =
(γFS

1 · · · γFS
B ), the parameters of the histograms for the foreground colour like-

lihood, the objective at time t is to find the MAP parameter estimate, i.e.
θ̂t = argmax

θt

p(θt|y1:t, θ̂1:t−1). This estimation can be performed within the EM

[10] framework by defining a Q-function of the form

Q(θt, θ̂t) = E

[
log p(θt|y1:t,x1:t, θ̂1:t−1)

]
∝ E

[
log p(y1:t|x1:t, θ̂1:t−1,θt) + log p(x1:t|θ̂1:t−1,θt) + log p(θt|θ̂1:t−1)

]
,

where θ̂t is now a preliminary MAP estimate of the parameters, and the expec-
tation is relative to the full filtering distribution p(x1:t|y1:t, θ̂1:t). By eliminating
terms independent of θt, this expression reduces to

Q(θt, θ̂t) ∝ E [logL(yt|xt,θt)] + log p(θt|θ̂t−1),

where the expectation is now relative to the marginal filtering distribution
p(xt|y1:t, θ̂1:t). This distribution is not known analytically, but using the parti-
cle set {(x(i)

t , π
(i)
t )}Ni=1 prior to resampling, a Monte Carlo approximation of the

Q-function can be obtained as

Q̂N (θt, θ̂t) ∝
N∑

i=1

π
(i)
t logL(yt|x(i)

t ,θt)δ1(r
(i)
t ) + log p(θt|θ̂t−1),

where δx(·) denotes the Kronecker delta function with mass at x, and π
(i)
t =

π
(i)
t /

∑N
j=1 π

(j)
t δ1(r

(j)
t ). Note that the Monte Carlo approximation has been re-

stricted to particles for which the object is alive in the scene, and the weights
have been renormalised to sum to one over these particles. The M-step of the EM
algorithm then updates the preliminary MAP parameter estimate by maximising
this approximate Q-function, i.e.

θ̂t ← argmax
θt

Q̂N (θt, θ̂t). (6)

Pure Monte Carlo EM, as described above, requires a redraw of the particles
before proceeding with the next EM iteration. However, if the particle proposal
is independent of the unknown parameters (as is the case here), a redraw is not
strictly necessary, and the particle weights can simply be updated according to
(3), using the new value of the parameters in the likelihood term. If the proposal
distribution were to depend on the parameters, then after a few steps of the EM
algorithm the particle approximation may deviate too much from the posterior



Towards Improved Observation Models for Visual Tracking 655

with the current parameter estimate, so that the Monte Carlo approximation of
the Q-function would be poor. In this case a particle redraw is required after
every EM iteration. The algorithm is initialised with the final parameter estimate
at the previous time step.

To complete the model it remains to specify a prior distribution on the model
parameters p(θt|θt−1). It is desirable to choose a prior that facilitates a closed-
form solution for the M-step in (6), and allows a large degree of flexibility in
its specific form. For these reasons conjugate Dirichlet priors are adopted for
the parameters. For both the hue and saturation models these distributions are
specified by (omitting the time subscript for brevity)

Di (γ1 · · · γB ;α1 · · ·αB) ∝
B∏

i=1

γ
(αi−1)
i ,

where α = (α1 · · ·αB) are the parameters of the Dirichlet distribution, with
αi > 0, i = 1 · · ·B. The mean and variance of this distribution are given by
E[γi] = αi/α and V[γi] = αi(α− αi)/(α2 + α3), respectively, with α =

∑B
i=1 αi.

The uniform prior is obtained if αi = 1, i = 1 · · ·B. To maintain temporal
coherence the prior can be centred on the previous parameter estimate, with the
variance set to reflect the confidence in this estimate. This can be achieved by
setting p(γt|γt−1) = Di

(
γt;Cγt−1

)
, with C > 0. The prior mean and variance

then become E[γi,t] = γi,t−1 and V[γi,t] = γi,t−1(1−γi,t−1)/(1+C), respectively.
Thus, as C →∞ the prior variance goes to zero.

With the Dirichlet priors and the form of the likelihood in Section 2.3, the
M-step leads to update rules for the parameters of the hue and saturation models
of the form

γi =
ni + αi − 1∑B

j=1(nj + αj)−B
, (7)

where ni =
∑N

j=1 π(j)n
(j)
i δ1(r

(j)
t ) is the weighted average bin counts for the i-

th bin, with the i-th bin count for the j-th particle formally defined as n
(j)
i =

|{k ∈ F (x(j)) : [ck] = i}|, where [ck] denotes the histogram bin corresponding
to a hue/saturation measurement at gridpoint k, and | · | denotes the set size
operator. Note from (7) that in the case of a uniform prior the new parameters
simply become the normalised weighted average bin counts.

The adaptation method described above is not the only one available. One
alternative strategy would be to include the colour model parameters in the par-
ticle state-space. However, the corresponding increase in the state-space dimen-
sionality increases the complexity of the estimation problem to a degree where
many orders of magnitude more particles may be required to achieve the same
performance as the Monte Carlo EM scheme. Furthermore, the colour model
parameters are essentially auxiliary variables, and their posterior distribution is
not of particular interest for tracking.

To conclude this section a summary of the complete tracking and adaptation
algorithm is given below.
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Algorithm 1: Monte Carlo EM Particle Filter

With {(x(i)
t−1, π

(i)
t−1)}Ni=1 and θ̂t−1 the particle set and parameter estimate at the

previous time step, proceed as follows at time t:

• Particle prediction: simulate x̃(i)
t ∼ q(xt|x(i)

t−1,yt, P 1,t−1), i = 1 · · ·N (see (4)).
• Parameter adaptation:
If P 1,t−1 > Tobj and D̃ > T∆:
− Initialisation: set θ(0) = θ̂t−1, αFH = Cγ̂FH

t−1, αFS = Cγ̂FS
t−1.

− MCEM loop: for j = 1 · · ·L:
· Weight update: κ(i)

j ∝ π
(i)
t−1

L(yt|x̃(i)
t ,θ(j−1))p(x̃(i)

t |x(i−1)
t−1 )

q(x̃(i)
t |x(i)

t−1,yt,P 1,t−1)
, i = 1 · · ·N .

· Weight renormalisation: κ(i)
j = κ

(i)
j /

∑N
k=1 κ

(k)
j δ1(r

(k)
t ), i = 1 · · ·N .

· Parameter update (see (7)):

θ(j) = argmax
θ

N∑
i=1

κ
(i)
j logL(yt|x̃(i)

t ,θ)δ1(r
(i)
t ) + log p(θ|θ̂t−1).

− Termination: set θ̂t = θ(L).
Else:
− Set θ̂t = θ̂t−1 and κ

(i)
L ∝ π

(i)
t−1

L(yt|x̃(i)
t ,θ̂t)p(x̃(i)

t |x(i−1)
t−1 )

q(x̃(i)
t |x(i)

t−1,yt,P 1,t−1)
, i = 1 · · ·N .

• Particle reweighting: set π̃
(i)
t = κ

(i)
L , i = 1 · · ·N .

• Resampling: set x(i)
t = x̃j(i)

t , π(i)
t = 1, j(i) ∼ {π̃(k)

t }Nk=1, i = 1 · · ·N .

�

6 Results

This section evaluates the performance of the proposed tracking and adaptation
algorithm. For illustrative purposes the initial discussion will focus on the video
sequence summarised in Figure 32. The setting is a standard office environment
with several objects in the background that can potentially confuse a generic
skin-colour model. The first 50 frames are empty, and these were used to calibrate
the background models. A person then enters the scene from the right and moves
around, resulting in changes in pose. In the final part of the sequence the person
is stationary. The size of the video frames is 160×120 and the video rate during
acquisition was 30fps.

The algorithm was tested on this sequence with the adaptation first disabled,
and subsequently enabled. In both cases N = 100 particles were used, with all
the particles initialised to have no object alive in the scene. The free parameters
2 Videos for all the results described in this section are available as AVI files at
http://research.microsoft.com/users/jacov/msr work.htm.
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of the system were set according to the strategies described elsewhere in the text,
but the algorithm proved to be robust over sensible ranges for these parameters.
The adaptation algorithm was initialised with the colour model at the previous
time step, and the prior was set to be centred on the initial values, with the vari-
ance constant fixed to C = 100. In all cases the adaptation algorithm was found
to converge rapidly, and hence only a single EM iteration was performed at each
time step. For the given image size and a 22×17 filter grid a non-optimised C++
implementation of the algorithm ran at 15fps on a 736MHz Pentium III with
512MB of RAM. With some care in the implementation real-time performance
can easily be achieved.

The tracking results are summarised in Figure 3. In both cases the object is
successfully detected and tracked during the period of motion when the frame-
difference likelihood dominates. In the adaptive case the colour model is able to
individualise to the specific object and adapt to changes in pose and illumina-
tion. When the object is stationary and the motion cues disappear, the generic
skin-colour model is easily confused by skin-coloured objects in the background
(the carpet in this case), and track is lost. In the adaptive case, however, the
individualised colour model allows the algorithm to maintain lock on the ob-
ject. Further results confirming that adaptivity allows successful tracking under
adverse conditions are summarised in Figure 4.

#58 #106 #131 #275 #362

Fig. 3. Tracking results with adaptation disabled (top), enabled (middle and
bottom) and the frame-difference likelihood disabled (bottom). The object is
successfully detected (#58) and tracked during periods of motion (#106, #131) if the
frame-difference likelihood is enabled (top, middle). With the object stationary (#275,
#362) track is lost in the non-adaptive case (top) due to the skin-coloured carpet in
the background, whereas the individualised model maintains lock (middle). With the
frame-difference likelihood disabled (bottom) lock is soon lost and the colour model
drifts to the background.
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#47 #77 #120 #142 #201

#57 #99 #113 #124 #137

Fig. 4. Adaptivity allows tracking under adverse conditions. In the top se-
quence the head of the person is successfully detected and tracked despite substantial
variations in pose and illumination, and the person momentarily leaving the scene. The
first frame in the bottom sequence shows the face successfully tracked and the colour
model adapted to the conditions. The person then leaves the scene and the particles
are killed. Upon re-entering the tracker is wrongly initialised on the jumper, but the
individualised colour model allows lock to be re-established after only a few frames,
and the subsequent tracking proceeds successfully.

These results are further exemplified by the log-likelihood ratio maps in Fig-
ure 5. When the object is in motion the frame-difference likelihood clearly dom-
inates, providing strong localisation cues. For a stationary object the generic
skin-colour likelihood generates strong false positives in the background. These
false positives are better suppressed if the colour model is allowed to adapt
during periods of motion.

Fig. 5. Log-likelihood ratio maps. When the object is in motion the frame-difference
likelihood dominates (left). With the object stationary the generic skin-colour model
generates strong false positives in the background (middle). The false positives are
better suppressed and the foreground model is stronger in the adaptive case (right).

The need for an anchor likelihood is easily demonstrated by disabling the
frame-difference likelihood, and allowing adaptation at every time step, albeit
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with a stronger prior. In this case the colour model invariably drifts and becomes
fixated on some part of the background, as is illustrated in the bottom of Figure
3.

7 Conclusions

This paper demonstrated how the fusion of motion and colour measurements,
automatic initialisation and colour model adaptation can increase the accuracy
and robustness of a particle filter tracker. The adaptation algorithm, based on a
stochastic version of the EM algorithm, allows the individualisation of the colour
model to a specific object, and accommodates changes in the object pose and
illumination. It relies heavily on the frame-difference likelihood to anchor the
particles and prevent drift to the background.

In the extension to multiple objects the adaptation strategy is of crucial
importance to establish and maintain object identity. The adaptation strategy
can also be applied to the background colour models when it is certain that
the corresponding filters are not occluded by a foreground object. Furthermore,
update rules based on the same principles can also be derived for the parameters
of the Gaussian mixture colour models used in [8]. All these issues are topics of
ongoing and future research.
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