
Towards Incremental Adaptive Covering Arrays

Sandro Fouché
Department of Computer Science

University of Maryland
sandro@cs.umd.edu

Myra B. Cohen
Department of Computer Science

and Engineering
University of Nebraska-Lincoln

myra@cse.unl.edu

Adam Porter
Department of Computer Science

University of Maryland
aporter@cs.umd.edu

ABSTRACT
The increasing complexity of configurable software systems
creates a need for more intelligent sampling mechanisms
to detect and locate failure-inducing dependencies between
configurations. Prior work shows that test schedules based
on a mathematical object, called a covering array, can be
used to detect and locate failures in combination with a clas-
sification tree analysis. This paper addresses limitations of
the earlier approach. First, the previous work requires devel-
opers to choose the covering array’s strength, even though
there is no scientific or historical basis for doing so. Second,
if a single covering array is insufficient to classify specific
failures, the entire process must be rerun from scratch. To
address these issues, our new approach incrementally and
adaptively builds covering array schedules. It begins with
a low strength, and continually increases this as resources
allow, or poor classification results require. At each stage,
previous tests are reused. This allows failures due to only
one or two configurations settings to be found and classified
as early as possible, and also limits duplication of work when
multiple covering arrays must be used.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Verification

Keywords
Fault Localization, Covering Arrays

1. INTRODUCTION
As software systems grow in complexity, so too grows

the difficulty of testing them. Systems are no longer de-
ployed as a single program, but as entire ecosystems of inter-
dependent software entities. Each of these entities brings

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’07, September 3–7, 2007, Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM 978-1-59593-811-4/07/0009 ...$5.00.

with it individual features, flaws, performance profiles and
configuration parameters, all of which together impact the
overall system behavior. Understanding this web of inter-
dependencies relies, in part, on effective software testing
since these dependencies are often uncovered through the
discovery of subtle interaction faults—faults triggered by
specific combinations of configuration parameters.

One proposed approach for interaction testing involves us-
ing a sampling strategy derived from computing mathemat-
ical objects called covering arrays [1, 4, 6]. This approach
generates a test schedule that satisfies specific coverage met-
rics, that of testing all t-way combinations of the configura-
tion options. In previous work, Yilmaz et al. [11] integrated
this approach into the Skoll system [8], which is a distributed
continuous quality assurance (DCQA) environment that al-
lows for highly parallel execution of QA processes. Cover-
ing arrays were first used to generate test schedules. Those
schedules were then executed in parallel across a grid of
computers, the results were then returned to central servers
where uncovered faults were automatically classified to help
developers find their underlying causes. The results sug-
gested that the covering array test schedules produced better
classification models than equivalently-sized random sam-
ples and that the process scaled well to large configuration
spaces.

The approach, however, has several limitations. First, it
depends on developer insight to select the key sampling pa-
rameters. In order to reliably classify faults that are caused
by t configuration options, samples must be built that test
all t-way combinations of these options. This means the
tester must know a priori what strength—value of t—to use.
If they set t too large, resources will be wasted, while se-
lecting t too small may result in poor classification. Since
systems often have multiple failures with different causes,
either (or even both) of these situations is virtually guaran-
teed. Second, because it is not generally possible to use a
portion of a t-way covering array to reliably classify faults
caused by fewer than t options, developers must run the
covering array as a unit, waiting until all tests have been
run before classification can start. In this situation, there
is no way to ensure that faults are found and classified as
early as possible. Third, as testing continues, each covering
array schedule is generated independently from all others.
There is no mechanism to exploit the fact that some config-
urations have already been tested. Basically, this approach
often runs more tests than necessary, incorrectly correlates
failures with configuration parameters, duplicates work, and
suffers delays in reporting classification information.

To addresses the limitations we propose and evaluate an
extension to the underlying covering array technique. The
proposed approach is both incremental and adaptive. It be-
gins with light sampling (i.e. sets t to be small) and classifies
faults incrementally—providing early results for developers.
It then adapts and uses heavier sampling as results and re-
sources indicate. A central theme of this approach is that it
lowers the cost of adapting by carefully reusing results from
earlier test runs. It thereby efficiently selects and reuses test
workloads to isolate and disambiguate failures by increasing
the strength of testing when classifications at lower strengths
fail. We call the new approach: incremental adaptive cover-
ing array fault characterization.

In the next sections we first provide a motivating example
as context for our new process and then describe the revised
covering array incremental adaptation strategy; Next we an-
alyze the approach; After that we compare our approach to
to other scheduling policies; and, finally, we present conclud-
ing remarks and possible directions for future work.

2. MOTIVATING EXAMPLE
This work is motivated by our efforts to create an auto-

mated continuous build, integration and test (CBIT) process
for the MySQL database server project [9]. We intended to
test a (partial) configuration space with 110k configurations.
In addition, since the update frequency for specific MySQL
versions can vary (sometimes multiple times a day, some-
times every few days), testing results have short, but vary-
ing, useful lifetimes. Finally, our discussions with MySQL
developers suggested that fault patterns (i.e., number of in-
teracting options causing a failure) are poorly understood,
but clearly vary over time. Given these constraints we de-
cided to explore using incremental adaptive covering arrays
to sample this large configuration space. We note that the
challenges we faced on this project are similar to those found
in a wide variety of production development environments.

3. APPROACH
Two major limitations of traditional covering arrays are

(1) the lack of guidance for selecting an initial interaction
strength and (2) the need to redo work if the wrong inter-
action strength is chosen. Schedules using our incremental
adaptive approach addresses both of these issues. We be-
gin by testing at the lowest strength (i.e. t=2), and then
successively move to higher strengths. At each stage, we
reuse already tested configurations, only testing configura-
tions needed to complete coverage at the current strength.
This allows classification as early as possible, improving
overall testing efficiency. This also allows us to generate
test schedules in environments that have unknown time con-
straints and hardware resources.

Our technique iteratively seeds lower strength arrays to
create higher strength arrays. Seeding has previously been
used in construction of covering arrays to provide a method
for testers to include a default set of configurations [1]. It has
also been used as a construction technique, for the purpose,
of generating minimally sized covering arrays [3]. Seeding
means that we fix a set of configurations at the start, and
construct the new covering array by filling in the required t-
way interactions not already contained in the seed. Suppose
we can build a 3-way covering array of normal size using an
already tested 2-way covering array. This would mean that

we can classify all 2-way faults after the configurations re-
quired for 2-way results are run. Furthermore, we only have
to run approximately the same number of configurations as
before to get all 3-way interactions; i.e. we lose none of the
benefits of the 3-way array, but gain the advantage of early
classification of the 2-way faults. From a practical point of
view, this would mean that we only need to run a portion
of the higher strength covering array at any point to get
complete t-way coverage.

If successful, this approach would provide two big ad-
vantages: (1) building higher strength covering arrays from
lower strength ones means that we can reuse already tested
configurations as we move up in strength, thus it is less
critical to choose the right strength a priori; and (2) this
approach allows us to classify lower order faults with as few
configurations as possible, allowing developers to start de-
bugging and repair earlier in the test process.
Incremental Adaptive Strategy. The incremental adap-
tive strategy has several steps. First we select a desired
degree of replication. This is the minimum number of cov-
ering arrays to run at a given strength. Running more than
one covering array helps disambiguate non-deterministic or
higher order faults. Next, we build a base t-way covering ar-
ray. We then use this as a seed for building a new t + 1-way
covering array. We then reuse some configurations in this
t + 1-way array as seeds for additional t-way arrays. The
idea here is that, by construction, the union of the config-
urations in the t-way arrays comprises a large portion of a
t+1-way array. That is, should we decide to run a t+1-way
array after running some or all of the t-ways, then much of
that work is already done. Unlike when just starting with a
t+1-way array, t-way faults can be classified and developers
can begin to fix them as soon as the much smaller t-way
arrays have been run. If developers do wish to continue,
they can increment t by 1 and repeat the process. Now, a
new t+1-way array will be constructed using the first t-way
array as a seed. Part of that t + 1-way array is combined
with the configurations for the t− 1-way arrays and used as
seeds to generate the rest of the t-way arrays.

Run 2-way CAs

A. 2-way

CA

B.

C.

3-way CA

D.

A. B. C.

E. F.

3-way

CA

4-way CA

E.

F.

G.

Run 3-way CAs

Build 5 way array and run 4 way arrays

A.

B.

C.

D.

**

**

** configurations already tested

I.

G.

A.

B.

C.

D.

**

**

**
J.

H.

Figure 1: Constructing Iterative CAs
Figure 1 shows this scenario. Here we are running three

covering arrays at each strength. An initial 2-way (t) cov-
ering array is used as a seed for a 3-way (t + 1) array. The
unseeded part of the 3-way array is split in two (B&C) and
(D). The first half is distributed as seeds for the remain-

config. option values

default character set binary, ascii, cp1250
cp1257, cp866,gbk
greek,hebrew, latin1
latin7, ujis, utf8

max. indexes 16, 64, 128
debug level none, debug, full
extra character sets none, all
pthreads true, false
big tables true, false
innodb true, false
archive storage engine true, false
csv storage engine true, false
blackhole storage engine true, false
NDB cluster true, false
federated storage engine true, false
yassl true, false

Table 1: MySQL configuration parameters

ing 2-way arrays. The remainder (D) will be run when the
developer moves to testing at t = 3. For each consecutive
strength, we use a portion of the seeded t+1 (G) array as
well as all of the configurations from the t-1 arrays (E&F)
that have not been run. At each step, we always reuse all
of the already tested configurations, and run portions of the
next strength array. Figure 2 shows the outcome of this
method on our study program, MySQL. At each stage, the
highlighted portions of the figure show the already run con-
figurations from the previous stage.

4. AN INITIAL ANALYSIS
This section presents some initial analysis of our approach.

Our goal is to analyze some of the costs and benefits of the
modified approach compared to using the traditional one—
which requires pre-selection of the covering array’s strength,
analysis of the resulting test data after all tests are com-
pleted, and, if necessary, repetition of the process with a
higher strength covering array.
Setup. Our subject program for these studies is the MySQL
database system [9]. For this study we limited the size of
the test configuration space by considering just 13 features
(10 binary, 2 with 3 levels, 1 with 12 levels). Table 1 gives
the details of our configuration model, with default values in
italics. The resulting configuration space contains 110,592
possible configurations. Using the configuration model pre-
viously described, we computed both the traditional and
incremental covering array algorithms. Figure 2 shows the
number of configurations at each array strength, the number
actually executed, and the total number of configurations in
each specific test schedule.
Results. We now examine how the cost of the traditional
approach and the incremental adaptive approach might dif-
fer. To do this, we (arbitrarily) examine the process of de-
tecting one failure that happens to be caused by three in-
teracting options. In the first use case, developers will use
three traditional covering arrays of strength t = 4. In the
second use case, developers will, instead, use the incremen-
tal approach, starting with an initial strength of t = 2 and
work forward until they arrive at a final strength of t = 4.
Using the data generated for the MySQL system, we will
compare the work done and time spent to detect this failure
under each use case.

2-way
36 rows

2-way
36 rows

2-way
36 rows

A
36 rows

B
18 rows

E
20 rows

C
18 rows

F
23 rows

3-way
108 rows

3-way
108 rows

3-way
108 rows

G
36 rows

J
76 rows

4-way
290 rows

A
36 rows

B
18 rows

C
18 rows

D
36 rows

I
74 rows

E
20 rows

F
23 rows

4-way
290 rows

4-way
290 rows

A
36 rows

B
18 rows

C
18 rows

D
36 rows

G
36 rows

H
168 rows

I
74 rows

E
20 rows

F
23 rows

M
198 rows

J
76 rows

K
36 rows

N
207 rows

Covering Arrays Incremental Covering Arrays

3x 2-way (108 rows) 3x 2-way (115 rows)

3x 3-way (324 rows) 3x 3-way (222 rows)

3x 4-way (870 rows) 3x 4-way (609 rows)3x 4-way (609 rows)

1,302 total rows executed 946 total rows executed

Figure 2: Comparison of Covering Array schedules

Under these assumptions, the traditional approach would
have to test 870 configurations. Since each test takes up-
wards of 2 hours, this requires around 1740 CPU hours in
the worst case. The incremental approach would have first
run the 115 configurations found in the 3, 2-way covering
array schedules. Then it would run another 222 new con-
figurations for the 3, 3-way covering array schedules; and
finally another 609 new configurations for the 3 and 4-way
schedules for a total of 946 configurations. This requires
1892 CPU hours in the worst case. Here we see that the
incremental approach cost about 8.7% more than the tradi-
tional approach.

Now we consider the time needed to detect and classify
this failure. With the traditional approach all 3-way option
combinations must be tested before we can reliably classify
the failure. In the worst case, this requires running all 870
configurations in the 4-way schedule. This involves 1740
CPU hours. In contrast, with the incremental approach all
3-way combinations are tested after only 115 + 222 = 337
configurations. Thus, this failure can be reliably classified
in about 38.8% of the time required by the traditional ap-
proach. Even though our overall cost to run the incremental
covering arrays is about 9% higher, we can reliably locate
the 3-way fault much sooner.

If, instead, the traditional approach starts at t = 2, fol-
lowed by t = 3, we must run 432 (or 28 % more) tests than
the incremental approach for reliable classification. In fact,

the only scenario in which a 3-way fault is classified earlier by
the traditional approach than by the incremental approach,
is the one that initially selects the best size for t.

5. RELATED WORK
Other techniques have been used to isolate faults in code

for debugging [7, 12]. The bug isolation project, uses code
instrumentation and statistical sampling [7], while Zeller and
Hildebrandt isolate minimal subsets of fault causing tests
through successive input space elimination [12]. Neither of
these address the configuration space. Covering arrays are
used for fault characterization in [11], but the work assumes
a priori knowledge about the types of faults and assumes
resources are available to run the selected strength arrays.

Covering arrays have been used frequently to reduce the
number of inputs [1, 4, 5] or configurations [6] when testing
a program, however, other than in [11] their primary pur-
pose has been fault detection, not localization. Construction
techniques to build covering arrays [1, 2, 3, 10] describe seed-
ing of rows of the covering array, but for a different purpose.
Seeding has been used either to allow testers to request a
set of default configurations [1] or as the basis for special-
ized constructions that generate smaller covering arrays [3].
The work of Tai et al. [10] builds covering arrays by expand-
ing the factors (i.e. the columns), but the purpose, is to
allow for new factors to be added, not to change strength.

Our approach is unique in that we use covering arrays
for fault localization, but do not require developer expertise
or a priori knowledge in setting covering array strengths.
Instead we incrementally build and adapt using seeding as
both a construction technique, and as a mechanism to reuse
information from already tested configurations.

6. CONCLUSION AND FUTURE WORK
This paper presents an improved approach for generating

covering array test schedules that reduces costs by carefully
reusing tests from lower strength covering arrays to con-
struct higher strength ones. It also presents a small case
study in which we examine this approach on part of a large,
open source software system. Our approach successfully ad-
dresses several limitations of current techniques; specifically,
developers must currently select a single strength for the cov-
ering array. In practice, if developers choose too low an ini-
tial strength they will need to start the process from scratch
at a higher strength. If they choose too high of a strength,
they waste resources and delay the arrival of lower strength
results. Also, the typical practice of generating a single cov-
ering array at a given strength leads to complications when
non-deterministic or higher order failures appear.

Our approach, incremental adaptive covering arrays, ad-
dresses these limitations by leveraging information gained
in previous test executions to generate future test sched-
ules. This allows developers to choose the lowest practical
value for t, usually 2 and to move to higher strength cov-
ering arrays only if the results warrant. Finally, running
multiple covering arrays at each strength better supports
identification of non-deterministic faults, while simultane-
ously providing data for higher strength arrays.

To evaluate this approach, we compared it to traditional
covering arrays on a configuration space of 110k configu-
rations of MySQL. Based on these results, we tentatively
conclude that for this data, the approach incurred little ex-

tra cost, while allowing faults to be detected much earlier
than with traditional approaches.

Our future work concentrates on validating, as well as
refining and generalizing the incremental adaptive covering
array approach. First, we plan to expand our case study to
a set of controlled experiments that will examine a broader
configuration space of the current subject, as well as to repli-
cate it on additional large configurable software systems.
Second we are working on a method for automatically de-
termining “when” the algorithm should adapt and move to
higher strength. Finally, we are working on an algorithm for
the seed distribution method so that it can be automated to
work across a broad range of parameter values.

7. REFERENCES
[1] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.

Patton. The AETG system: an approach to testing
based on combinatorial design. IEEE Transactions on
Software Engineering, 23(7):437–44, 1997.

[2] M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and
W. B. Mugridge. Constructing test suites for
interaction testing. In Proc. of the Int’l Conference on
Software Engineering, pages 38–44, 2003.

[3] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling.
Augmenting simulated annealing to build interaction
test suites. In 14th IEEE Int’l Symposium on Software
Reliability Engineering, pages 394–405, November
2003.

[4] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton,
C. M. Lott, G. C. Patton, and B. M. Horowitz.
Model-based testing in practice. In Proc. of the Int’l
Conference on Software Engineering, pages 285–294,
1999.

[5] I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L.
Mallows, and A. Iannino. Applying design of
experiments to software testing. In Proc. of the Int’l
Conference on Software Engineering, pages 205–215,
1997.

[6] D. Kuhn, D. R. Wallace, and A. M. Gallo. Software
fault interactions and implications for software testing.
IEEE Transactions on Software Engineering,
30(6):418–421, 2004.

[7] B. Liblit, A. Aiken, Z. Zheng, and M. Jordan. Bug
isolation via remote program sampling. In Conference
on Programming Language Design and
Implementation, pages 141–154. ACM, June 2003.

[8] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. C.
Schmidt, and B. Natarajan. Skoll: Distributed
continuous quality assurance. In Proc. of the Int’l
Conference on Software Engineering, pages 459–468,
2004.

[9] MySQL, 2006. http://www.mysql.com.

[10] K. C. Tai and L. Yu. A test generation strategy for
pairwise testing. IEEE Transactions on Software
Engineering, 28(1):109–111, 2002.

[11] C. Yilmaz, M. B. Cohen, and A. Porter. Covering
arrays for efficient fault characterization in complex
configuration spaces. IEEE Transactions on Software
Engineering, 31(1):20–34, Jan 2006.

[12] A. Zeller and R.Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Transactions on Software
Engineering, 28(2):183–200, 2002.

