Supplementary material for Appelt AL, et al. Towards individualized dose constraints: Adjusting the QUANTEC radiation pneumonitis model for clinical risk factors. Acta Oncol 2014;53:605–12.

Reference	# patients	RP grade cutoff	Pulm co-morbidity	Tumor position	Smoking history	Mean age (range)	Chemotherapy timing
Yorke et al	78	$\begin{array}{c} \text{RTOG} \geq \text{grade} \\ 3 \end{array}$	_	Inferior: 15% Superior: 85%	_	70 (39–84)	Sequential: 13% None: 87%
Hernando et al	201	"CTCAE v2.0" ¹ ≥grade 1	_	_	Current: 34% Not current: 66%	56.9 (27-87)	Sequential: 54% ² Concomitant: 6% None: 40%
Kong et al	109	$SWOG \ge grade$	-	_	_	65 (40-84)	Sequential: 19% None: 81%
Wang et al	223	CTCAE v3.0≥grade 3	20% ³	Inferior: 23% Middle: 15% Superior: 61%	Current: 24% Former: 68% None: 8% ³	124>60 / 99<60	Concomitant: 49% None: 51%
Seppenwoolde et al	106	SWOG \geq grade 2	55% ⁴	Inferior: 14% Middle: 18% Superior: 68%	Current: 27% Former: 65% None: 8%	73 (37–88)	Sequential: 6% None: 94%
Hope el al	219	SWOG \geq grade 2	_	Inferior: 33% Middle: 33% Superior: 33%	_5	65.2 (31–94)	Sequential: 37% ⁶ Concomitant: 37% None: 26%
Martel et al	42	$SWOG \ge grade$	-	_	_	-	None: 100%
Oetzel et al	66	$\begin{array}{c} \text{RTOG} \geq \text{grade} \\ 1 \end{array}$	_	-	_	-	Sequential: 23% None: 77%
Rancati et al	55	$SWOG \ge grade$	0%	_	_	66 (33–82) ⁷	Sequental: 58% None: 42% ⁷
Kim et al	76	RTOG \geq grade 3	22% ⁸	-	_	60 (35–79)	Sequential: 17% Concomitant: 58% None: 25%

Appendix A. Summary of patient cohorts included in the QUANTEC analysis of dose-response of radiation pneumonitis.

RP: Radiation pneumonitis; COLD: Chronic obstructive lung disease.

¹The study used an in-house scoring system which was described as "similar to CTCAE version 2.0".

²17 pts recorded as "combination of chemotherapy" have been assigned to the sequential chemotherapy risk group.

³3 patients without data; pre-existing pulmonary disease defined as COLD.

⁴Pre-existing pulmonary disease defined as COLD.

⁵Smoking status noted in "methods and materials" section as having been recorded, but no actual data is found in the paper.

⁶21 pts recorded as having been prescribed both neoadjuvant and concurrent chemotherapy were classified as sequential therapy. ⁷Mean age and chemotherapy timing are based on the total patient set in the study (84 patients); the QUANTEC analysis only included

55 patients without COLD.

⁸Pre-existing pulmonary disease defined as astma (1 patient) or COLD (16 patients)

References

- Yorke ED, Jackson A, Rosenzweig KE, et al. Correlation of dosimetric factors and radiation pneumonitis for non-small-cell lung cancer patients in a recently completed dose escalation study. Int J Radiat Oncol Biol Phys 2005;63(3):672–682.
- [2] Hernando ML, Marks LB, Bentel GC, et al. Radiation-induced pulmonary toxicity: A dose-volume histogram analysis in 201 patients with lung cancer. Int J Radiat Oncol Biol Phys 2001;51(3):650–659.
- [3] Kong FM, Hayman JA, Griffith KA, et al. Final toxicity results of a radiation-dose escalation study in patients with non-small-cell lung cancer (NSCLC): Predictors for radiation pneumonitis and fibrosis. Int J Radiat Oncol Biol Phys 2006;65(4):1075–1086.
- [4] Wang S, Liao Z, Wei X, et al. Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis (TRP) in patients with non-small-cell lung cancer (NSCLC) treated with concurrent chemotherapy and three-dimensional conformal radiotherapy (3D-CRT). Int J Radiat Oncol Biol Phys 2006;66(5):1399–1407.
- [5] Seppenwoolde Y, De Jaeger K, Boersma LJ, et al. Regional differences in lung radiosensitivity after radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2004;60(3):748–758.
- [6] Hope AJ, Lindsay PE, El Naqa I, et al. Modeling radiation pneumonitis risk with clinical, dosimetric, and spatial parameters. Int J Radiat Oncol Biol Phys 2006;65(1); 112–124.

- [7] Martel MK, Ten Haken RK, Hazuka MB, et al. Dose-volume histogram and 3-D treatment planning evaluation of patients with pneumonitis. Int J Radiat Oncol Biol Phys 1994;28(3):575–581.
- [8] Oetzel D, Schraube P, Hensley F, et al. Estimation of pneumonitis risk in three-dimensional treatment planning using dose-volume histogram analysis. Int J Radiat Oncol Biol Phys 1995;33(2);455–460.
- [9] Rancati T, Ceresoli GL, Gagliardi G, et al. Factors predicting radiation pneumonitis in lung cancer patients: A retrospective study. Radiother Oncol 2003;67(3):275–283.
- [10] Kim TH, Cho KH, Pyo HR, et al. Dose-volumetric parameters for predicting severe radiation pneumonitis after three-dimensional conformal radiation therapy for lung cancer. Radiology 2005;235(1):208–215.