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Abstract

In the classical best arm identification (Best-1-Arm) problem, we are given n stochastic bandit

arms, each associated with a reward distribution with an unknown mean. Upon each play of an

arm, we can get a reward sampled i.i.d. from its reward distribution. We would like to identify

the arm with the largest mean with probability at least 1 − δ, using as few samples as possible.

The problem has a long history and understanding its sample complexity has attracted significant

attention since the last decade. However, the optimal sample complexity of the problem is still

unknown.

Recently, Chen and Li (2016) made an interesting conjecture, called gap-entropy conjecture,

concerning the instance optimal sample complexity of Best-1-Arm. Given a Best-1-Arm instance

I (i.e., a set of arms), let µ[i] denote the ith largest mean and ∆[i] = µ[1] − µ[i] denote the cor-

responding gap. H(I) =
∑

n

i=2 ∆
−2
[i] denotes the complexity of the instance. The gap-entropy

conjecture states that for any instance I , Ω
(

H(I) ·
(

ln δ−1 + Ent(I)
))

is an instance lower bound,

where Ent(I) is an entropy-like term determined by the gaps, and there is a δ-correct algorithm for

Best-1-Arm with sample complexity O
(

H(I) ·
(

ln δ−1 + Ent(I)
)

+∆−2
[2] ln ln∆

−1
[2]

)

. We note

that Θ
(

∆−2
[2] ln ln∆

−1
[2]

)

is necessary and sufficient to solve the two-arm instance with the best

and second best arms. If the conjecture is true, we would have a complete understanding of the

instance-wise sample complexity of Best-1-Arm (up to constant factors).

In this paper, we make significant progress towards a complete resolution of the gap-entropy

conjecture. For the upper bound, we provide a highly nontrivial algorithm which requires

O
(

H(I) ·
(

ln δ−1 + Ent(I)
)

+∆−2
[2] ln ln∆

−1
[2] polylog(n, δ

−1)
)

samples in expectation for any instance I . For the lower bound, we show that for any Gaussian

Best-1-Arm instance with gaps of the form 2−k, any δ-correct monotone algorithm requires at least

Ω
(

H(I) ·
(

ln δ−1 + Ent(I)
))

samples in expectation. Here, a monotone algorithm is one which uses no more samples (in ex-

pectation) on I ′ than on I , if I ′ is a sub-instance of I obtained by removing some sub-optimal

arms.
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1. Introduction

The stochastic multi-armed bandit is one of the most popular and well-studied models for cap-

turing the exploration-exploitation tradeoffs in many application domains. There is a huge body

of literature on numerous bandit models from several fields including stochastic control, statis-

tics, operation research, machine learning and theoretical computer science. The basic stochastic

multi-armed bandit model consists of n stochastic arms with unknown distributions. One can adap-

tively take samples from the arms and make decision depending on the objective. Popular objec-

tives include maximizing the cumulative sum of rewards, or minimizing the cumulative regret (see

e.g., Cesa-Bianchi and Lugosi (2006); Bubeck et al. (2012)).

In this paper, we study another classical multi-armed bandit model, called pure exploration

model, where the decision-maker first performs a pure-exploration phase by sampling from the

arms, and then identifies an optimal (or nearly optimal) arm, which serves as the exploitation phase.

The model is motivated by many application domains such as medical trials Robbins (1985); Au-

dibert and Bubeck (2010), communication network Audibert and Bubeck (2010), online advertise-

ment Chen et al. (2014), crowdsourcing Zhou et al. (2014); Cao et al. (2015). The best arm identifi-

cation problem (Best-1-Arm) is the most basic pure exploration problem in stochastic multi-armed

bandits. The problem has a long history (first formulated in Bechhofer (1954)) and has attracted sig-

nificant attention since the last decade Audibert and Bubeck (2010); Even-Dar et al. (2006); Mannor

and Tsitsiklis (2004); Jamieson et al. (2014); Karnin et al. (2013); Chen and Li (2015); Carpentier

and Locatelli (2016); Garivier and Kaufmann (2016). Now, we formally define the problem and set

up some notations.

Definition 1.1 Best-1-Arm: We are given a set of n arms {A1, . . . , An}. Arm Ai has a reward

distribution Di with an unknown mean µi ∈ [0, 1]. We assume that all reward distributions are

Gaussian distributions with unit variance. Upon each play of Ai, we get a reward sampled i.i.d.

from Di. Our goal is to identify the arm with the largest mean using as few samples as possible.

We assume here that the largest mean is strictly larger than the second largest (i.e., µ[1] > µ[2]) to

ensure the uniqueness of the solution, where µ[i] denotes the ith largest mean.

Remark 1.2 Some previous algorithms for Best-1-Arm take a sequence (instead of a set) of n arms

as input. In this case, we may simply assume that the algorithm randomly permutes the sequence at

the beginning. Thus the algorithm will have the same behaviour on two different orderings of the

same set of arms.

Remark 1.3 For the upper bound, everything proved in this paper also holds if the distributions

are 1-sub-Gaussian, which is a standard assumption in the bandit literature. On the lower bound

side, we need to assume that the distributions are from some family parametrized by the means and

satisfy certain properties. See Remark D.4. Otherwise, it is possible to distinguish two distributions

using 1 sample even if their means are very close. We cannot hope for a nontrivial lower bound in

such generality.

The Best-1-Arm problem for Gaussian arms was first formulated in Bechhofer (1954). Most

early works on Best-1-Arm did not analyze the sample complexity of the algorithms (they proved

their algorithms are δ-correct though). The early advances are summarized in the monograph Bech-

hofer et al. (1968).
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For the past two decades, significant research efforts have been devoted to understanding the

optimal sample complexity of the Best-1-Arm problem. On the lower bound side, Mannor and

Tsitsiklis (2004) proved that any δ-correct algorithm for Best-1-Arm takes Ω(
∑n

i=2∆
−2
[i] ln δ−1)

samples in expectation. In fact, their result is an instance-wise lower bound (see Definition 1.6).

Kaufmann et al. (2015) also provided an Ω(
∑n

i=2∆
−2
[i] ln δ−1) lower bound for Best-1-Arm, which

improved the constant factor in Mannor and Tsitsiklis (2004). Garivier and Kaufmann (2016) fo-

cused on the asymptotic sample complexity of Best-1-Arm as the confidence level δ approaches

zero (treating the gaps as fixed), and obtained a complete resolution of this case (even for the lead-

ing constant).1 Chen and Li (2015) showed that for each n there exists a Best-1-Arm instance with

n arms that require Ω
(

∑n
i=2∆

−2
[i] ln lnn

)

samples, which further refines the lower bound.

The algorithms for Best-1-Arm have also been significantly improved in the last two decades Even-

Dar et al. (2002); Gabillon et al. (2012); Kalyanakrishnan et al. (2012); Karnin et al. (2013);

Jamieson et al. (2014); Chen and Li (2015); Garivier and Kaufmann (2016). Karnin et al. (2013)

obtained an upper bound of

O
(

∑n

i=2
∆−2

[i]

(

ln ln∆−1
[i] + ln δ−1

))

.

The same upper bound was obtained by Jamieson et al. (2014) using a UCB-type algorithm called

lil’UCB. Recently, the upper bound was improved to

O
(

∆−2
[2] ln ln∆

−1
[2] +

∑n

i=2
∆−2

[i]

(

ln lnmin(∆−1
[i] , n) + ln δ−1

))

by Chen and Li (2015). There is still a gap between the best known upper and lower bound.

To understand the sample complexity of Best-1-Arm, it is important to study a special case,

which we term as SIGN-ξ. The problem can be viewed as a special case of Best-1-Arm where there

are only two arms, and we know the mean of one arm. SIGN-ξ will play a very important role in

our lower bound proof.

Definition 1.4 SIGN-ξ: ξ is a fixed constant. We are given a single arm with unknown mean µ 6= ξ.

The goal is to decide whether µ > ξ or µ < ξ. Here, the gap of the problem is defined to be

∆ = |µ− ξ|. Again, we assume that the distribution of the arm is a Gaussian distribution with unit

variance.

In this paper, we are interested in algorithms (either for Best-1-Arm or for SIGN-ξ) that can

identify the correct answer with probability at least 1 − δ. This is often called the fixed confidence

setting in the bandit literature.

Definition 1.5 For any δ ∈ (0, 1), we say that an algorithm A for Best-1-Arm (or SIGN-ξ) is δ-

correct, if on any Best-1-Arm (or SIGN-ξ) instance, A returns the correct answer with probability

at least 1− δ.

1.1. Almost Instance-wise Optimality Conjecture

It is easy to see that no function f(n, δ) (only depending on n and δ) can serve as an upper

bound of the sample complexity of Best-1-Arm (with n arms and confidence level 1 − δ). Instead,

1. In contrast, our work focus on the situation that both δ and all gaps are variables that tend to zero. In fact, if we let

the gaps (i.e., ∆[i]’s) tend to 0 while maintaining δ fixed, their lower bound is not tight.
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the sample complexity depends on the gaps. Intuitively, the smaller the gaps are, the harder the

instance is (i.e., more samples are required). Since the gaps completely determine an instance (for

Gaussian arms with unit variance, up to shifting), we use ∆[i]’s as the parameters to measure the

sample complexity.

Now, we formally define the notion of instance-wise lower bounds and instance optimality.For

algorithm A and instance I , we use TA(I) to denote the expected number of samples taken by A on

instance I .

Definition 1.6 (Instance-wise Lower Bound)

For a Best-1-Arm instance I and a confidence level δ, we define the instance-wise lower bound

of I as
L(I, δ) := inf

A:A is δ-correct for Best-1-Arm
TA(I).

We say a Best-1-Arm algorithm A is instance optimal, if it is δ-correct, and for every instance

I , TA(I) = O(L(I, δ)).
Now, we consider the Best-1-Arm problem from the perspective of instance optimality. Unfor-

tunately, even for the two-arm case, no instance optimal algorithm may exist. In fact, Farrell (1964)

showed that for any δ-correct algorithm A for SIGN-ξ, we must have

lim inf
∆→0

TA(I)

∆−2 ln ln∆−1
= Ω(1).

This implies that any δ-correct algorithm requires ∆−2 ln ln∆−1 samples in the worst case. Hence,

the upper bound of ∆−2 ln ln∆−1 for SIGN-ξ is generally not improvable. However, for a particular

SIGN-ξ instance I∆ with gap ∆, there is an δ-correct algorithm that only needs O(∆−2 ln δ−1)
samples for this instance, implying L(I∆, δ) = Θ(∆−2 ln δ−1). See Chen and Li (2015) for details.

Despite the above fact, Chen and Li (2016) conjectured that the two-arm case is the only obstruc-

tion toward an instance optimal algorithm. Moreover, based on some evidence from the previous

work Chen and Li (2015), they provided an explicit formula and conjecture that L(I, δ) can be ex-

pressed by the formula. Interestingly, the formula involves an entropy term (similar entropy terms

also appear in Afshani et al. (2009) for completely different problems). In order to state Chen and

Li’s conjecture formally, we define the entropy term first.

Definition 1.7 Given a Best-1-Arm instance I and k ∈ N, let

Gk = {i ∈ [2, n] | 2−(k+1) < ∆[i] ≤ 2−k}, Hk =
∑

i∈Gk

∆−2
[i] , and pk = Hk/

∑

j
Hj .

We can view {pk} as a discrete probability distribution. We define the following quantity as the gap

entropy of instance I:

Ent(I) =
∑

k∈N:Gk 6=∅
pk ln p

−1
k .2

Remark 1.8 We choose to partition the arms based on the powers of 2. There is nothing special

about the constant 2, and replacing it by any other constant only changes Ent(I) by a constant

factor.

2. Note that it is exactly the Shannon entropy for the distribution defined by {pk}.
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Conjecture 1.9 (Gap-Entropy Conjecture (Chen and Li, 2016)) There is an algorithm for Best-

1-Arm with sample complexity

O
(

L(I, δ) + ∆−2
[2] ln ln∆

−1
[2]

)

,

for any instance I and δ < 0.01. And we say such an algorithm is almost instance-wise optimal for

Best-1-Arm. Moreover,

L(I, δ) = Θ
(

∑n

i=2
∆−2

[i] ·
(

ln δ−1 + Ent(I)
)

)

.

Remark 1.10 As we mentioned before, the term ∆−2 ln ln∆−1 is sufficient and necessary for dis-

tinguishing the best and the second best arm, even though it is not an instance-optimal bound. The

gap entropy conjecture states that modulo this additive term, we can obtain an instance optimal

algorithm. Hence, the resolution of the conjecture would provide a complete understanding of the

sample complexity of Best-1-Arm (up to constant factors). All the previous bounds for Best-1-Arm

agree with Conjecture 1.9, i.e., existing upper (lower) bounds are no smaller (larger) the conjec-

tured bound. See Chen and Li (2016) for details.

1.2. Our Results

In this paper, we make significant progress toward the resolution of the gap-entropy conjecture.

On the upper bound side, we provide an algorithm that almost matches the conjecture.

Theorem 1.11 There is a δ-correct algorithm for Best-1-Arm with expected sample complexity

O
(

∑n

i=2
∆−2

[i] ·
(

ln δ−1 + Ent(I)
)

+∆−2
[2] ln ln∆

−1
[2] · polylog(n, δ

−1)
)

.

Our algorithm matches the main term
∑n

i=2∆
−2
[i] ·

(

ln δ−1 + Ent(I)
)

in Conjecture 1.9. For the

additive term (which is typically small), we lose a polylog(n, δ−1) factor. In particular, for those

instances where the additive term is polylog(n, δ−1) times smaller than the main term, our algorithm

is optimal.

On the lower bound side, despite that we are not able to completely solve the lower bound, we

do obtain a rather strong bound. We need to introduce some notations first. We say an instance is

discrete, if the gaps of all the sub-optimal arms are of the form 2−k for some positive integer k.

We say an instance I ′ is a sub-instance of an instance I , if I ′ can be obtained by deleting some

sub-optimal arms from I . Formally, we have the following theorem.

Theorem 1.12 For any discrete instance I , confidence level δ < 0.01, and any δ-correct algorithm

A for Best-1-Arm, there exists a sub-instance I ′ of I such that

TA(I
′) ≥ c ·

(

∑n

i=2
∆−2

[i] ·
(

ln δ−1 + Ent(I)
)

)

,

where c is a universal constant.

We say an algorithm is monotone, if TA(I
′) ≤ TA(I) for every I ′ and I such that I ′ is a sub-

instance of I . Then we immediately have the following corollary.
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Corollary 1.13 For any discrete instance I , and confidence level δ < 0.01, for any monotone

δ-correct algorithm A for Best-1-Arm, we have that

TA(I) ≥ c ·
(

∑n

i=2
∆−2

[i] ·
(

ln δ−1 + Ent(I)
)

)

,

where c is a universal constant.

We remark that all previous algorithms for Best-1-Arm have monotone sample complexity

bounds. The above corollary also implies that if an algorithm has a monotone sample complex-

ity bound, then the bound must be Ω
(

∑n
i=2∆

−2
[i] ·

(

ln δ−1 + Ent(I)
)

)

on all discrete instances.

2. Related Work

SIGN-ξ and A/B testing. In the A/B testing problem, we are asked to decide which arm between

the two given arms has the larger mean. A/B testing is in fact equivalent to the SIGN-ξ problem. It

is easy to reduce SIGN-ξ to A/B testing by constructing a fictitious arm with mean ξ. For the other

direction, given an instance of A/B testing, we may define an arm as the difference between the

two given arms and the problem reduces to SIGN-ξ where ξ = 0. In particular, our refined lower

bound for SIGN-ξ stated in Lemma 4.1 also holds for A/B testing. Kaufmann et al. (2015); Garivier

and Kaufmann (2016) studied the limiting behavior of the sample complexity of A/B testing as the

confidence level δ approaches to zero. In contrast, we focus on the case that both δ and the gap

∆ tend to zero, so that the complexity term due to not knowing the gap in advance will not be

dominated by the ln δ−1 term.

Best-k-Arm. The Best-k-Arm problem, in which we are required to identify the k arms with the k
largest means, is a natural extension of Best-1-Arm. Best-k-Arm has been extensively studied in the

past few years Kalyanakrishnan and Stone (2010); Gabillon et al. (2011, 2012); Kalyanakrishnan

et al. (2012); Bubeck et al. (2013); Kaufmann and Kalyanakrishnan (2013); Zhou et al. (2014);

Kaufmann et al. (2015); Chen et al. (2017), and most results for Best-k-Arm are generalizations

of those for Best-1-Arm. As in the case of Best-1-Arm, the sample complexity bounds of Best-k-

Arm depend on the gap parameters of the arms, yet the gap of an arm is typically defined as the

distance from its mean to either µ[k+1] or µ[k] (depending on whether the arm is among the best k
arms or not) in the context of Best-k-Arm problem. The Combinatorial Pure Exploration problem,

which further generalizes the cardinality constraint in Best-k-Arm (i.e., to choose exactly k arms) to

general combinatorial constraints, was also studied Chen et al. (2014, 2016); Gabillon et al. (2016).

PAC learning. The sample complexity of Best-1-Arm and Best-k-Arm in the probably approxi-

mately correct (PAC) setting has also been well studied in the past two decades. For Best-1-Arm,

the tight worst-case sample complexity bound was obtained by Even-Dar et al. (2002); Mannor

and Tsitsiklis (2004); Even-Dar et al. (2006). Kalyanakrishnan and Stone (2010); Kalyanakrishnan

et al. (2012); Zhou et al. (2014); Cao et al. (2015) also studied the worst case sample complexity of

Best-k-Arm in the PAC setting.

3. Preliminaries

Throughout the paper, I denotes an instance of Best-1-Arm (i.e., I is a set of arms). The arm

with the largest mean in I is called the optimal arm, while all other arms are sub-optimal. We assume
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TOWARDS INSTANCE OPTIMAL BOUNDS FOR BEST ARM IDENTIFICATION

that every instance has a unique optimal arm. Ai denotes the arm in I with the i-th largest mean,

unless stated otherwise. The mean of an arm A is denoted by µA, and we use µ[i] as a shorthand

notation for µAi
(i.e., the i-th largest mean in an instance). Define ∆A = µ[1] − µA as the gap of

arm A, and let ∆[i] = ∆Ai
denote the gap of arm Ai. We assume that ∆[2] > 0 to ensure the optimal

arm is unique.

We partition the sub-optimal arms into different groups based on their gaps. For each k ∈ N,

group Gk is defined as
{

Ai : ∆[i] ∈
(

2−(k+1), 2−k
]}

. For brevity, let G≥k and G≤k denoted
⋃∞

i=k Gi and
⋃k

i=1Gi respectively. The complexity of arm Ai is defined as ∆−2
[i] , while the com-

plexity of instance I is denoted by H(I) =
∑n

i=2∆
−2
[i] (or simply H , if the instance is clear from

the context). Moreover, Hk =
∑

A∈Gk
∆−2

A denotes the total complexity of the arms in group Gk.

(Hk)
∞
k=1 naturally defines a probability distribution on N, where the probability of k is given by

pk = Hk/H . The gap-entropy of the instance I is then denoted by

Ent(I) =
∑

k

pk ln p
−1
k .

Here and in the following, we adopt the convention that 0 ln 0−1 = 0.

4. A Sketch of the Lower Bound

4.1. A Comparison with Previous Lower Bound Techniques

We briefly discuss the novelty of our new lower bound technique, and argue why the previous

techniques are not sufficient to obtain our result. To obtain a lower bound on the sample com-

plexity of Best-1-Arm, all the previous work Mannor and Tsitsiklis (2004); Chen et al. (2014);

Kaufmann et al. (2015); Garivier and Kaufmann (2016) are based on creating two similar instances

with different answers, and then applying the change of distribution method (originally developed

in Kaufmann et al. (2015)) to argue that a certain number of samples are necessary to distinguish

such two instances. The idea was further refined by Garivier and Kaufmann (2016). They for-

mulated a max-min game between the algorithm and some instances (with different answers than

the given instance) created by an adversary. The value of the game at equilibrium would be a lower

bound of the samples one requires to distinguish the current instance and several worst adversary in-

stances. However, we notice that even in the two-arm case, one cannot prove the Ω(∆−2 ln ln∆−1)
lower bound by considering only one max-min game to distinguish the current instance from other

instance. Roughly speaking, the ln ln∆−1 factor is due to not knowing the actual gap ∆, and any

lower bound that can bring out the ln ln∆−1 factor should reflect the union bound paid for the un-

certainty of the instance. In fact, for the Best-1-Arm problem with n arms, the gap entropy Ent(I)
term exists for a similar reason (not knowing the gaps). Hence, any lower bound proof for Best-

1-Arm that can bring out the Ent(I) term necessarily has to consider the uncertainty of current

instance as well (in fact, the random permutation of all arms is the kind of uncertainty we need for

the new lower bound). In our actual lower bound proof, we first obtain a very tight understanding

of the SIGN-ξ problem (Lemma 4.1).3 Then, we provide an elegant reduction from SIGN-ξ to

Best-1-Arm, by embedding the SIGN-ξ problem to a collection of Best-1-Arm instances.

3. Farrell’s lower bound Farrell (1964) is not sufficient for our purpose.
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4.2. Proof of Theorem 1.12

Following the approach in Chen and Li (2015), we establish the lower bound by a reduction from

SIGN-ξ to discrete Best-1-Arm instances, together with a more refined lower bound for SIGN-ξ
stated in the following lemma.

Lemma 4.1 Suppose δ ∈ (0, 0.04), m ∈ N and A is a δ-correct algorithm for SIGN-ξ. P is

a probability distribution on {2−1, 2−2, . . . , 2−m} defined by P (2−k) = pk. Ent(P ) denotes the

Shannon entropy of distribution P . Let TA(µ) denote the expected number of samples taken by A

when it runs on an arm with distribution N (µ, 1) and ξ = 0. Define αk = TA(2
−k)/4k. Then,

m
∑

k=1

pkαk = Ω(Ent(P ) + ln δ−1).

It is well known that to distinguish the normal distributionN (2−k, 1) fromN (−2−k, 1), Ω(4k)
samples are required. Thus, αk = TA(2

−k)/4k denotes the ratio between the expected number

of samples taken by A and the corresponding lower bound, which measures the “loss” due to not

knowing the gap in advance. Then Lemma 4.1 can be interpreted as follows: when the gap is drawn

from a distribution P , the expected loss is lower bounded by the sum of the entropy of P and ln δ−1.

We defer the proof of Lemma 4.1 to Appendix D.

Now we prove Theorem 1.12 by applying Lemma 4.1 and an elegant reduction from SIGN-ξ to

Best-1-Arm.

Proof [Proof of Theorem 1.12] Let c0 be the hidden constant in the big-Ω in Lemma 4.1, i.e.,

m
∑

k=1

pkαk ≥ c0 · (Ent(P ) + ln δ−1).

We claim that Theorem 1.12 holds for constant c = 0.25c0.

Suppose towards a contradiction that A is a δ-correct (for some δ < 0.01) algorithm for Best-1-

Arm and I = {A1, A2, . . . , An} is a discrete instance, while for all sub-instance I ′ of I ,

TA(I
′) < c ·H(I)(Ent(I) + ln δ−1).

Recall that H(I) and Ent(I) denote the complexity and entropy of instance I , respectively.

Construct a distribution of SIGN-ξ instances. Let nk be the number of arms in I with gap 2−k,

and m be the greatest integer such that nm > 0. Since I is discrete, the complexity of instance I is

given by

H(I) =
m
∑

k=1

4knk.

Let pk = 4knk/H(I). Then (pk)
m
k=1 defines a distribution P on {2−1, 2−2, . . . , 2−m}. Moreover,

the Shannon entropy of distribution P is exactly the entropy of instance I , i.e., Ent(P ) = Ent(I).
Our goal is to construct an algorithm for SIGN-ξ that violates Lemma 4.1 on distribution P .
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A family of sub-instances of I . Let U = {k ∈ [m] : nk > 0} be the set of “types” of arms that

are present in I . We consider the following family of instances obtained from I . For S ⊆ U , define

IS as the instance obtained from I by removing exactly one arm of gap 2−k for each k ∈ S. Note

that IS is a sub-instance of I .

Let S denote U \S, the complement of set S relative to U . For S ⊆ U and k ∈ S, let τSk denote

the expected number of samples taken on all the nk arms with gap 2−k when A runs on IS . Define

αS
k = 4−kτSk /nk. We note that 4kαS

k is the expected number of samples taken on every arm with

gap 2−k in instance IS .4

We have the following inequality:

∑

S⊆U

∑

k∈S

4knkα
S
k =

∑

S⊆U

∑

k∈S

τSk ≤
∑

S⊆U

TA(IS) < c · 2|U |H(I)(Ent(I) + ln δ−1). (1)

The second step holds because the lefthand side only counts part of the samples taken by A. The

last step follows from our assumption and the fact that IS is a sub-instance of I .

Construct algorithm A
new from A. Now we define an algorithm A

new for SIGN-ξ with ξ = 0.

Given an arm A, we first choose a set S ⊆ U uniformly at random from all subsets of U . Recall that

µ[1] denotes the mean of the optimal arm in I . Anew runs the following four algorithms A1 through

A4 in parallel:

1. Algorithm A1 simulates A on IS ∪ {µ[1] +A}.

2. Algorithm A2 simulates A on IS ∪ {µ[1] +A}.

3. Algorithm A3 simulates A on IS ∪ {µ[1] −A}.

4. Algorithm A4 simulates A on IS ∪ {µ[1] −A}.

More precisely, when one of the four algorithms requires a new sample from µ[1]+A (or µ[1]−A),

we draw a sample x from arm A, feed µ[1] + x to A1 and A2, and then feed µ[1] − x to A3 and A4.

Note that the samples taken by the four algorithms are the same up to negation and shifting.

A
new terminates as soon as one of the four algorithms terminates. If one of A1 and A2 identifies

µ[1]+A as the optimal arm, or one of A3 and A4 identifies an arm other than µ[1]−A as the optimal

arm, Anew outputs “µA > 0”; otherwise it outputs “µA < 0”.

Clearly, Anew is correct if all of A1 through A4 are correct, which happens with probability at

least 1− 4δ. Note that since 4δ < 0.04, the condition of Lemma 4.1 is satisfied.

Upper bound the sample complexity of Anew. The crucial observation is that when µA = −2−k

and k ∈ S, A1 effectively simulates the execution of A on IS\{k}. In fact, since all arms are

Gaussian distributions with unit variance, the arm µ[1] + A is the same as an arm with gap 2−k in

the original Best-1-Arm instance. Recall that the number of samples taken on each of the arms with

gap 2−k in instance IS\{k} is 4kα
S\{k}
k . Therefore, the expected number of samples taken on A

is upper bounded by 4kα
S\{k}
k .5 Likewise, when µA = −2−k and k ∈ S, A2 is equivalent to the

4. Recall that a Best-1-Arm algorithm is defined on a set of arms, so the arms with identical means in the instance

cannot be distinguished by A. See Remark 1.2 for details.

5. Recall that if A1 terminates after taking T samples from µ[1] +A, the number of samples taken by A
new on A is also

T (rather than 4T ).
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execution of A on IS\{k}, and thus the expected number of samples on A is less than or equal to

4kα
S\{k}
k . Analogous claims hold for the case µA = +2−k and algorithms A3 and A4 as well.

It remains to compute the expected loss of Anew on distribution P and derive a contradiction to

Lemma 4.1. It follows from a simple calculation that

m
∑

k=1

pkαk ≤
∑

k∈U

pk ·
1

2|U |





∑

S⊆U :k∈S

α
S\{k}
k +

∑

S⊆U :k∈S

α
S\{k}
k





=
1

2|U |−1

∑

k∈U

∑

S⊆U :k∈S

pkα
S\{k}
k

=
1

2|U |−1

∑

S⊆U

∑

k∈S

4knk

H(I)
· αS

k

≤
2|U |

2|U |−1
· c · (Ent(I) + ln δ−1) < c0(Ent(P ) + ln(4δ)−1).

The first step follows from our discussion on algorithm A
new. The third step renames the variables

and rearranges the summation. The last line applies (1). This leads to a contradiction to Lemma 4.1

and thus finishes the proof.

5. Warmup: Best-1-Arm with Known Complexity

To illustrate the idea of our algorithm for Best-1-Arm, we consider the following simplified

yet still non-trivial version of Best-1-Arm: the complexity of the instance, H(I) =
∑n

i=2∆
−2
[i] , is

given, yet the means of the arms are still unknown.

5.1. Building Blocks

We introduce some subroutines that are used throughout our algorithm.

Uniform sampling. The first building block is a uniform sampling procedure, Unif-Sampl(S, ε, δ),
which takes 2ε−2 ln(2/δ) samples from each arm in set S. Let µ̂A be the empirical mean of arm A
(i.e., the average of all sampled values from A). It obtains an ε-approximation of the mean of each

arm with probability 1− δ. The following fact directly follows by the Chernoff bound.

Fact 5.1 Unif-Sampl(S, ε, δ) takes O(|S|ε−2 ln δ−1) samples. For each arm A ∈ S, we have

Pr [|µ̂A − µA| ≤ ε] ≥ 1− δ.

We say that a call to procedure Unif-Sampl(S, ε, δ) returns correctly, if |µ̂A − µA| ≤ ε holds

for every arm A ∈ S. Fact 5.1 implies that when |S| = 1, the probability of returning correctly is at

least 1− δ.

10
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Median elimination. Even-Dar et al. (2002) introduced the Median Elimination algorithm for the

PAC version of Best-1-Arm. Med-Elim(S, ε, δ) returns an arm in S with mean at most ε away

from the largest mean. Let µ[1](S) denote the largest mean among all arms in S. The performance

guarantees of Med-Elim is formally stated in the next fact.

Fact 5.2 Med-Elim(S, ε, δ) takes O(|S|ε−2 ln δ−1) samples. Let A be the arm returned by Med-Elim.

Then

Pr[µA ≥ µ[1](S)− ε] ≥ 1− δ.

We say that Med-Elim(S, ε, δ) returns correctly, if it holds that µA ≥ µ[1](S)− ε.

Fraction test. Procedure Frac-Test(S, clow, chigh, θlow, θhigh, δ) decides whether a sufficiently

large fraction (compared to thresholds θlow and θhigh) of arms in S have small means (compared to

thresholds clow and chigh). The procedure randomly samples a certain number of arms from S and

estimates their means using Unif-Sampl. Then it compares the fraction of arms with small means

to the thresholds and returns an answer accordingly. The detailed implementation of Frac-Test is

relegated to Appendix A, where we also prove the following fact.

Fact 5.3 Frac-Test(S, clow, chigh, θlow, θhigh, δ) takes O
(

(ε−2 ln δ−1) · (∆−2 ln∆−1)
)

samples,

where ε = chigh− clow and ∆ = θhigh− θlow. With probability 1− δ, the following two claims hold

simultaneously:

• If Frac-Test returns True, |{A ∈ S : µA < chigh}| > θlow|S|.

• If Frac-Test returns False, |{A ∈ S : µA < clow}| < θhigh|S|.

We say that a call to procedure Frac-Test returns correctly, if both the two claims above hold;

otherwise the call fails.

Elimination. Finally, procedure Elimination(S, dlow, dhigh, δ) eliminates the arms with means

smaller than threshold dlow from S. More precisely, the procedure guarantees that at most a 0.1
fraction of arms in the result have means smaller than dlow. On the other hand, for each arm with

mean greater than dhigh, with high probability it is not eliminated. We postpone the pseudocode of

procedure Elimination and the proof of the following fact to Appendix A.

Fact 5.4 Elimination(S, dlow, dhigh, δ) takes O(|S|ε−2 ln δ−1) samples in expectation, where ε =
dhigh− dlow. Let S′ denote the set returned by Elimination(S, dlow, dhigh, δ). Then with probability

at least 1− δ/2,

|{A ∈ S′ : µA < dlow}| ≤ 0.1|S′|.

Moreover, for each arm A ∈ S with µA ≥ dhigh, we have

Pr
[

A ∈ S′
]

≥ 1− δ/2.

We say that a call to Elimination returns correctly if both |{A ∈ S′ : µA < dlow}| ≤ 0.1|S′|
and A1(S) ∈ S′ hold; otherwise the call fails. Here A1(S) denotes the arm with the largest mean

in set S. Fact 5.4 directly implies that procedure Elimination returns correctly with probability at

least 1− δ.
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5.2. Algorithm

Now we present our algorithm for the special case that the complexity of the instance is known

in advance. The Known-Complexity algorithm takes as its input a Best-1-Arm instance I , the

complexity H of the instance, as well as a confidence level δ. The algorithm proceeds in rounds,

and maintains a sequence {Sr} of arm sets, each of which denotes the set of arms that are still

considered as candidate answers at the beginning of round r.

Roughly speaking, the algorithm eliminates the arms with Ω(εr) gaps at the r-th round, if they

constitute a large fraction of the remaining arms. Here εr = 2−r is the accuracy parameter that we

use in round r. To this end, Known-Complexity first calls procedures Med-Elim and Unif-Sampl

to obtain µ̂ar , which is an estimation of the largest mean among all arms in Sr up to an O(εr) error.

After that, Frac-Test is called to determine whether a large proportion of arms in Sr have Ω(εr)
gaps. If so, Frac-Test returns True, and then Known-Complexity calls the Elimination procedure

with carefully chosen parameters to remove suboptimal arms from Sr.

Algorithm 1: Known-Complexity(I,H, δ)

Input: Instance I with complexity H and risk δ.

Output: The best arm.

S1 ← I; Ĥ ← 4096H;

for r = 1 to∞ do

if |Sr| = 1 then return the only arm in Sr; ;

εr ← 2−r; δr ← δ/(10r2);
ar ← Med-Elim(Sr, 0.125εr, 0.01);
µ̂ar ← Unif-Sampl({ar}, 0.125εr, δr);
if Frac-Test(Sr, µ̂ar − 1.75εr, µ̂ar − 1.125εr, 0.3, 0.5, δr) then

δ′r ←
(

|Sr|ε
−2
r /Ĥ

)

δ;

Sr+1 ← Elimination(Sr, µ̂ar − 0.75εr, µ̂ar − 0.625εr, δ
′
r);

else
Sr+1 ← Sr;

end

The following two lemmas imply that there is a δ-correct algorithm for Best-1-Arm that matches

the instance-wise lower bound up to an O
(

∆−2
[2] ln ln∆

−1
[2]

)

additive term.6

Lemma 5.5 For any Best-1-Arm instance I and δ ∈ (0, 0.01), Known-Complexity(I,H(I), δ)
returns the optimal arm in I with probability at least 1− δ.

Lemma 5.6 For any Best-1-Arm instance I and δ ∈ (0, 0.01), conditioning on an event that

happens with probability 1− δ, Known-Complexity(I,H(I), δ) takes

O
(

H(I) · (ln δ−1 + Ent(I)) + ∆−2
[2] ln ln∆

−1
[2]

)

samples in expectation.

6. Lemma 5.6 only bounds the number of samples conditioning on an event that happens with probability 1 − δ, so

the algorithm may take arbitrarily many samples when the event does not occur. However, Known-Complexity can

be transformed to a δ-correct algorithm with the same (unconditional) sample complexity bound, using the “parallel

simulation” technique in the proof of Theorem 1.11 in Appendix C.
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5.3. Observations

We state a few key observations on Known-Complexity, which will be used throughout the

analysis. The proofs are exactly identical to those of Observations A.3 through A.5 in Appendix A.

The following observation bounds the value of µ̂ar at round r, assuming the correctness of Unif-Sampl

and Med-Elim.

Observation 5.7 If Unif-Sampl returns correctly at round r, µ̂ar ≤ µ[1](Sr) + 0.125εr. Here

µ[1](Sr) denotes the largest mean of arms in Sr. If both Unif-Sampl and Med-Elim return correctly,

µ̂ar ≥ µ[1](Sr)− 0.25εr.

The following two observations bound the thresholds used in Frac-Test and Elimination by apply-

ing Observation 5.7.

Observation 5.8 At round r, let clowr = µ̂ar − 1.75εr and chighr = µ̂ar − 1.125εr denote the

two thresholds used in Frac-Test. If Unif-Sampl returns correctly, chighr ≤ µ[1](Sr) − εr. If both

Med-Elim and Unif-Sampl return correctly, clowr ≥ µ[1](Sr)− 2εr.

Observation 5.9 Let dlowr = µ̂ar − 0.75εr and dhighr = µ̂ar − 0.625εr denote the two thresholds

used in Elimination. If Unif-Sampl returns correctly, dhighr ≤ µ[1](Sr)− 0.5εr. If both Med-Elim

and Unif-Sampl return correctly, dlowr ≥ µ[1](Sr)− εr.

5.4. Correctness

We define E as the event that all calls to procedures Unif-Sampl, Frac-Test, and Elimination

return correctly. We will prove in the following that Known-Complexity returns the correct answer

with probability 1 conditioning on E , and Pr [E ] ≥ 1 − δ. Note that Lemma 5.5 directly follows

from these two claims.

Event E implies correctness. It suffices to show that conditioning on E , Known-Complexity

never removes the best arm, and the algorithm eventually terminates. Suppose that A1 ∈ Sr.

Observation 5.9 guarantees that at round r, the upper threshold used by Elimination is smaller than

or equal to µ[1](Sr) − 0.5εr < µ[1]. By Fact 5.4, the correctness of Elimination guarantees that

A1 ∈ Sr+1.

It remains to prove that Known-Complexity terminates conditioning on E . Define rmax :=
maxGr 6=∅ r. Suppose r∗ is the smallest integer greater than rmax such that Med-Elim returns cor-

rectly at round r∗.7 By Observation 5.9, the lower threshold in Elimination is greater than or equal

to µ[1] − εr∗ . The correctness of Elimination implies that

|Sr∗+1|−1 = |Sr∗+1∩G≤rmax | ≤ |Sr∗+1∩G<r∗ | = |{A ∈ Sr∗+1 : µA < µ[1]−εr∗}| < 0.1|Sr∗+1|.

It follows that |Sr∗+1| = 1. Therefore, the algorithm terminates either before or at round r∗ + 1.

7. Med-Elim returns correctly with probability at least 0.99 in each round, so r∗ is well-defined with probability 1.
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E happens with high probability. We first note that at round r, the probability that either Unif-Sampl

or Frac-Test fails (i.e., returns incorrectly) is at most 2δr. By a union bound, the probability that at

least one call to Unif-Sampl or Frac-Test returns incorrectly is upper bounded by

∞
∑

r=1

2δr =

∞
∑

r=1

δ

5r2
< δ/2.

It remains to bound the probability that Elimination fails at some round, yet procedures Unif-Sampl

and Frac-Test are always correct. Define P (r, Sr) as the probability that, given the value of Sr at

the beginning of round r, at least one call to Elimination returns incorrectly in round r or later,

yet Unif-Sampl and Frac-Test always return correctly. We prove by induction that for any Sr that

contains the optimal arm A1,

P (r, Sr) ≤
δ

Ĥ

(

128C(r, Sr) + 16M(r, Sr)ε
−2
r

)

, (2)

where M(r, Sr) := |Sr ∩G≤r−2| and

C(r, Sr) :=

∞
∑

i=r−1

|Sr ∩Gi|
i+1
∑

j=r

ε−2
j +

rmax+1
∑

i=r

ε−2
i .

The details of the induction are postponed to Appendix E.

Observe that M(1, I) = 0 and

C(1, I) =

∞
∑

i=0

|Sr ∩Gi|
i+1
∑

j=1

4j +

rmax+1
∑

i=1

4i

≤
16

3

(

∞
∑

i=0

|Sr ∩Gi|4
i + 4rmax

)

≤
16

3





∞
∑

i=0

∑

A∈Sr∩Gi

∆−2
A +∆−2

[2]



 ≤
32

3
H(I).

Therefore we conclude that

Pr [E ] ≥ 1− P (1, S1)−
δ

2

≥ 1−
δ

Ĥ

(

128C(1, I) + 16M(1, I)ε−2
1

)

−
δ

2

≥ 1− 128 ·
δ

4096H
·
32H

3
−

δ

2
≥ 1− δ,

which completes the proof of correctness. Here the first step applies a union bound. The second

step follows from inequality (2), and the third step plugs in C(1, I) ≤ 32H(I)/3 and Ĥ = 4096H .
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5.5. Sample Complexity

As in the proof of Lemma 5.5, we define E as the event that all calls to procedures Unif-Sampl,

Frac-Test, and Elimination return correctly. We prove that Known-Complexity takes

O
(

H(I)(ln δ−1 + Ent(I)) + ∆−2
[2] ln ln∆

−1
[2]

)

samples in expectation conditioning on E .

Samples taken by Unif-Sampl and Frac-Test. By Facts 5.1 and 5.3, procedures Unif-Sampl

and Frac-Test take O
(

ε−2
r ln δ−1

r

)

= O
(

ε−2
r (ln δ−1 + ln r)

)

samples in total at round r.

In the proof of correctness, we showed that conditioning on E , the algorithm does not terminate

before or at round k (for k ≥ rmax + 1) implies that Med-Elim fails between round rmax + 1 and

round k − 1, which happens with probability at most 0.01k−rmax−1. Thus for k ≥ rmax + 1, the

expected number of samples taken by Unif-Sampl and Frac-Test at round k is upper bounded by

O
(

0.01k−rmax−1 · ε−2
k (ln δ−1 + ln k)

)

.

Summing over all k = 1, 2, . . . yields the following upper bound:

rmax
∑

k=1

ε−2
k (ln δ−1 + ln k) +

∞
∑

k=rmax+1

0.01k−rmax−1 · ε−2
k (ln δ−1 + ln k)

=O
(

4rmax(ln δ−1 + ln rmax)
)

= O
(

∆−2
[2]

(

ln δ−1 + ln ln∆−1
[2]

))

.

Here the first step holds since the first summation is dominated by the last term (k = rmax), while

the second one is dominated by the first term (k = rmax + 1). The second step follows from the

observation that rmax = maxGr 6=∅ r =
⌊

log2∆
−1
[2]

⌋

.

Samples taken by Med-Elim and Elimination. By Facts 5.2 and 5.4, Med-Elim and Elimination

(if called) take

O(|Sr|ε
−2
r ) +O(|Sr|ε

−2
r ln(1/δ′r)) = O

(

|Sr|ε
−2
r

(

ln δ−1 + ln
H

|Sr|ε
−2
r

))

samples in total at round r.

We upper bound the number of samples by a charging argument. For each round i, define ri as

the largest integer r such that |G≥r| ≥ 0.5|Si|.
8 Then we define

Ti,j =











0, j < ri,

ε−2
i

(

ln δ−1 + ln
H

|Gj |ε
−2
i

)

, j ≥ ri

as the number of samples that each arm in Gj is charged at round i.

8. Note that |G≥0| = n− 1 ≥ 0.5|Si| and |G≥r| = 0 < 0.5|Si| for sufficiently large r, so ri is well-defined.
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We prove in Appendix E that for any i,
∑

j |Gj |Ti,j is an upper bound on the number of samples

taken by Med-Elim and Elimination at the i-th round. Moreover, the expected number of samples

that each arm in group Gj is charged is upper bounded by

∑

i

E[Ti,j ] = O

(

ε−2
j

(

ln δ−1 + ln
H

|Gj |ε
−2
j

))

.

Note that Hk =
∑

A∈Gk
∆−2

A = Θ(|Gk|ε
−2
k ). Therefore, Med-Elim and Elimination take

O





∑

i,j

|Gj |E[Ti,j ]



 = O





∑

j

|Gj |ε
−2
j

(

ln δ−1 + ln
H

|Gj |ε
−2
j

)





= O





∑

j

Hj

(

ln δ−1 + ln
H

Hj

)





= O
(

H(I)
(

ln δ−1 + Ent(I)
))

samples in expectation conditioning on E .

In total, algorithm Known-Complexity takes

O
(

∆−2
[2]

(

ln δ−1 + ln ln∆−1
[2]

))

+O
(

H(I)
(

ln δ−1 + Ent(I)
))

=O
(

H(I)
(

ln δ−1 + Ent(I)
)

+∆−2
[2] ln ln∆

−1
[2]

)

samples in expectation conditioning on E . This proves Lemma 5.6.

5.6. Discussion

In the Known-Complexity algorithm, knowing the complexity H in advance is crucial to the

efficient allocation of confidence levels (δ′r’s) to different calls of Elimination. When H is unknown,

our approach is to run an elimination procedure similar to Known-Complexity with a guess of H .

The major difficulty is that when our guess is much smaller than the actual complexity, the total

confidence that we allocate will eventually exceed the total confidence δ. Thus, we cannot assume

in our analysis that all calls to the Elimination procedure are correct. We present our Complexity-

Guessing algorithm for the Best-1-Arm problem in Appendix A.
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Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university

press, 2006.

Lijie Chen and Jian Li. On the optimal sample complexity for best arm identification. arXiv preprint

arXiv:1511.03774, 2015.

Lijie Chen and Jian Li. Open problem: Best arm identification: Almost instance-wise optimality and

the gap entropy conjecture. In 29th Annual Conference on Learning Theory, pages 1643–1646,

2016.

Lijie Chen, Anupam Gupta, and Jian Li. Pure exploration of multi-armed bandit under matroid

constraints. In 29th Annual Conference on Learning Theory, pages 647–669, 2016.

Lijie Chen, Jian Li, and Mingda Qiao. Nearly instance optimal sample complexity bounds for top-k

arm selection. In Artificial Intelligence and Statistics, pages 101–110, 2017.

Shouyuan Chen, Tian Lin, Irwin King, Michael R Lyu, and Wei Chen. Combinatorial pure explo-

ration of multi-armed bandits. In Advances in Neural Information Processing Systems, pages

379–387, 2014.

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Pac bounds for multi-armed bandit and markov

decision processes. In International Conference on Computational Learning Theory, pages 255–

270. Springer, 2002.

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Action elimination and stopping conditions

for the multi-armed bandit and reinforcement learning problems. Journal of machine learning

research, 7(Jun):1079–1105, 2006.

RH Farrell. Asymptotic behavior of expected sample size in certain one sided tests. The Annals of

Mathematical Statistics, pages 36–72, 1964.

Victor Gabillon, Mohammad Ghavamzadeh, Alessandro Lazaric, and Sébastien Bubeck. Multi-
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Organization of the Appendix

The appendix contains the proofs of our main results. In Section A, we present our algorithm

for Best-1-Arm along with a few useful observations. In Section B and Section C, we prove the

correctness and the sample complexity of our algorithm, thus proving Theorem 1.11. We present

the complete proof of Theorem 1.12 in Section D. Finally, Section E contains the complete proofs

of Lemma 5.5 and Lemma 5.6.

Appendix A. Upper Bound

A.1. Building Blocks

We start by presenting the missing implementation and performance guarantees of our subrou-

tines Frac-Test and Elimination.

Fraction test. Recall that on input (S, clow, chigh, θlow, θhigh, δ), procedure Frac-Test decides

whether a sufficiently large fraction (with respect to θlow and θhigh) of arms in S have means smaller

than the thresholds clow and chigh. The pseudocode of Frac-Test is shown below.

Algorithm 2: Frac-Test(S, clow, chigh, θlow, θhigh, δ)

Input: An arm set S, thresholds clow, chigh, θlow, θhigh, and confidence level δ.

ε← chigh − clow; ∆← θhigh − θlow;

m← (∆/6)−2 ln(2/δ); cnt← 0;

for i = 1 to m do
Pick A ∈ S uniformly at random;

µ̂A ← Unif-Sampl({A}, ε/2,∆/6);
if µ̂A < (clow + chigh)/2 then

cnt← cnt + 1;
end

if cnt/m > (θlow + θhigh)/2 then
return True;

else
return False;

Now we prove Fact 5.3.

Fact 5.3 (restated) Frac-Test(S, clow, chigh, θlow, θhigh, δ) takes O((ε−2 ln δ−1) · (∆−2 ln∆−1))
samples, where ε = chigh − clow and ∆ = θhigh − θlow. With probability 1 − δ, the following

two claims hold simultaneously:

• If Frac-Test returns True, |{A ∈ S : µA < chigh}| > θlow|S|.

• If Frac-Test returns False, |{A ∈ S : µA < clow}| < θhigh|S|.

Proof The first claim directly follows from Fact 5.1 and

m ·O(ε−2 ln∆−1) = O((ε−2 ln δ−1) · (∆−2 ln∆−1)).

It remains to prove the contrapositive of the second claim: |{A ∈ S : µA < clow}| ≥ θhigh|S|
implies Frac-Test returns True, and |{A ∈ S : µA < chigh}| ≤ θlow|S| implies Frac-Test returns

False.
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Suppose |{A ∈ S : µA < clow}| ≥ θhigh|S|. Then in each iteration of the for-loop, it holds that

µA < clow with probability at least θhigh. Conditioning on µA < clow, by Fact 5.1 we have

µ̂A ≤ µA + ε/2 < clow + ε/2 = (clow + chigh)/2

with probability at least 1−∆/6. Thus, the expected increment of counter cnt is lower bounded by

θhigh(1−∆/6) ≥ θhigh −∆/6.

Thus, cnt/m is the mean of m i.i.d. Bernoulli random variables with means greater than or

equal to θhigh −∆/6. By the Chernoff bound, it holds with probability 1− δ/2 that

cnt/m ≥ θhigh −∆/6−∆/6 > (θlow + θhigh)/2.

An analogous argument proves cnt/m < (θlow + θhigh)/2 with probability 1 − δ/2, given

|{A ∈ S : µA < chigh}| ≤ θlow|S|. This completes the proof.

Elimination. We implement procedure Elimination by repeatedly calling Frac-Test to deter-

mine whether a large fraction of the remaining arms have means smaller than the thresholds. If so,

we uniformly sample the arms, and eliminate those with low empirical means.

Algorithm 3: Elimination(S, dlow, dhigh, δ)

Input: An arm set S, thresholds dlow, dhigh, and confidence level δ.

Output: Arm set after the elimination.

S1 ← S;

dmid ← (dlow + dhigh)/2;

for r = 1 to +∞ do
δr ← δ/(10 · 2r);
if Frac-Test(Sr, d

low, dmid, 0.05, 0.1, δr) then

µ̂← Unif-Sampl(Sr, (d
high − dmid)/2, δr);

Sr+1 ←
{

A ∈ Sr : µ̂A > (dmid + dhigh)/2
}

;

else
return Sr;

end

We prove Fact 5.4 in the following.

Fact 5.4 (restated) Elimination(S, dlow, dhigh, δ) takes O(|S|ε−2 ln δ−1) samples in expectation,

where ε = dhigh − dlow. Let S′ be the set returned by Elimination(S, dlow, dhigh, δ). Then we have

Pr[|{A ∈ S′ : µA < dlow}| ≤ 0.1|S′|] ≥ 1− δ/2.

Moreover, for each arm A ∈ S with µA ≥ dhigh, we have

Pr[A ∈ S′] ≥ 1− δ/2.
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Proof Let ε = dhigh − dlow. To bound the number of samples taken by Elimination, we note

that the number of samples taken in the r-th iteration is dominated by that taken by Unif-Sampl,

O(|Sr|ε
−2 ln δ−1

r ). It suffices to show that |Sr| decays exponentially (in expectation); a direct

summation over all r proves the sample complexity bound.

We fix a particular round r. Suppose Frac-Test returns correctly (which happens with proba-

bility at least 1 − δr) and the algorithm does not terminate at round r. Then by Fact 5.3, it holds

that

|{A ∈ Sr : µA < dmid}| > 0.05|Sr|.

For each A ∈ Sr with µA < dmid, it holds with probability 1− δr that

µ̂A < µA + (dhigh − dmid)/2 < dmid + (dhigh − dmid)/2 = (dmid + dhigh)/2.

Note that δr = δ/(10 · 2r) ≤ 0.1. Thus, at most a 0.1 fraction of arms in {A ∈ Sr : µA < dmid}
would remain in Sr+1 in expectation. It follows that conditioning on the correctness of Frac-Test

at round r, the expectation of |Sr+1| is upper bounded by

0.05|Sr| · δr + 0.95|Sr| ≤ 0.05|Sr|/10 + 0.95|Sr| = 0.955|Sr|.

Moreover, even if Frac-Test returns incorrectly, which happens with probability at most 0.1, we

still have |Sr+1| ≤ |Sr|. Therefore,

E[|Sr+1|] ≤ 0.9 · 0.955E[|Sr|] + 0.1E[|Sr|] < 0.96E[|Sr|].

A simple induction yields E[|Sr|] ≤ 0.96r−1|S|. Then the sample complexity of Elimination is

upper bounded by

∞
∑

r=1

E[|Sr|]ε
−2 ln δ−1

r = O

(

|S|ε−2
∞
∑

r=1

0.96r−1(ln δ−1 + r)

)

= O
(

|S|ε−2 ln δ−1
)

.

Then we proceed to the proof of the second claim. Let E denote the event that all calls to

procedure Frac-Test returns correctly. By Fact 5.3 and a union bound,

Pr [EA] ≥ 1−
∞
∑

r=1

δr ≥ 1− δ/2.

Conditioning on event E , if the algorithm terminates and returns Sr at round r, Fact 5.3 implies that

|{A ∈ Sr : µA < dlow}| < 0.1|Sr|.

This proves the second claim.

Finally, fix an arm A ∈ S with µA > dhigh. Define EA as the event that every call to Frac-Test

returns correctly in the algorithm, and |µ̂A − µA| < (dhigh − dmid)/2 in every round. By Facts

5.1 and 5.3,

Pr [EA] ≥ 1−
∞
∑

r=1

2δr ≥ 1− δ/2.

Then in each round r, it holds conditioning on EA that

µ̂A ≥ µA − (dhigh − dmid)/2 > dhigh − (dhigh − dmid)/2 = (dmid + dhigh)/2.

Thus, with probability 1− δ/2, A is never removed from Sr.
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A.2. Overview

As shown in Section 5, we can solve Best-1-Arm using

O
(

H · (Ent+ ln δ−1) + ∆−2
[2] ln ln∆

−1
[2]

)

samples, if we know in advance the complexity of the instance, i.e., H =
∑n

i=2∆
−2
[i] .

The value of H is essential for allocating appropriate confidence levels to different calls of

Elimination and achieving the near-optimal sample complexity. When H is unknown, our strategy

is to guess its value. The major difficulty with our approach is that when our guess, Ĥ , is much

smaller than the actual complexity H , the total confidence that we allocate will exceed the total con-

fidence δ. To prevent this from happening, we maintain the total confidence that we have allocated

so far, and terminate the algorithm as soon as the sum exceeds δ.9 After that, we try a guess that is

a hundred times larger. As we will see later, the most challenging part of the analysis is to ensure

that our algorithm does not return an incorrect answer when Ĥ is too small.

We also keep track of the number of samples that have been taken so far. Roughly speaking,

when the number exceeds 100Ĥ , we also terminate the algorithm and try the next guess of Ĥ .

This simplifies the analysis by ensuring that the number of samples we take for each guess grows

exponentially, and thus it suffices to bound the number of samples taken on the last guess.

A.3. Algorithm

Algorithm Entropy-Elimination takes an instance of Best-1-Arm, a confidence δ and a guess

of complexity Ĥt = 100t. It either returns an optimal arm (i.e., “accept” Ĥt) or reports an error

indicating that the given Ĥt is much smaller than the actual complexity (i.e., “reject” Ĥt).

Throughout the algorithm, we maintain Sr, Hr and Tr for each round r. Sr denotes the collec-

tion of arms that are still under consideration at the beginning of round r. We say that an arm is

removed (or eliminated) at round r, if it is in Sr \ Sr+1. Roughly speaking, Hr is an estimate of

the total complexity of arms in group G1, G2, . . . , Gr. When this quantity exceeds our guess Ĥt,

Entropy-Elimination directly rejects (i.e., returns an error). Tr is an upper bound on the number of

samples taken by Med-Elim and Elimination10 before round r. As mentioned before, we also ter-

minate the algorithm when Tr exceeds 100Ĥt. Intuitively, this prevents Entropy-Elimination from

taking too many samples on small guesses of H , which gives rise to an inferior sample complexity.

In each round of Entropy-Elimination, we first call Med-Elim to obtain a near-optimal arm ar.

Then we use Unif-Sampl to estimate the mean of ar, denoted by µ̂ar . After that, we call Frac-Test

with appropriate parameters to find out whether a considerable fraction of arms in Sr have gaps

larger than εr. If so, we call procedure Elimination and update the value of Hr+1 accordingly.

Note that we set the thresholds {θr} of Frac-Test such that the intervals [θr−1, θr] are disjoint. In

particular, this property is essential for proving Lemma B.6 in the analysis of the correctness of the

algorithm.

Our algorithm for Best-1-Arm guesses the complexity of the instance and invokes Entropy-

Elimination to check whether the guess is reasonable. If Entropy-Elimination reports an error,

9. For ease of analysis, we actually use δ2 instead of δ in the algorithm.

10. As we will see later, the analysis of the sample complexity of Med-Elim and Elimination are different from the other

two procedures.
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Algorithm 4: Entropy-Elimination(I, δ, Ĥt)

Input: Instance I , confidence δ and a guess of complexity Ĥt = 100t.
Output: The best arm, or an error indicating the guess is wrong.

S1 ← I; H1 ← 0; T1 ← 0;

θ0 ← 0.3; c← log4 100;

for r = 1 to∞ do

if |Sr| = 1 then
return the only arm in Sr;

εr ← 2−r; δr ← δ/(50r2t2);
δ′r ← (4|Sr|ε

−2
r /Ĥ)δ2;

Tr+1 ← Tr + |Sr|ε
−2
r ln

(

|Sr|ε
−2
r δ/Ĥt

)−1
;

if (Hr + 4|Sr|ε
−2
r ≥ Ĥt) or (Tr+1 ≥ 100Ĥt) then

return error;

ar ← Med-Elim(Sr, 0.125εr, 0.01);
µ̂ar ← Unif-Sampl({ar}, 0.125εr, δr);
θr ← θr−1 + (ct− r)−2/10;

if Frac-Test(Sr, µ̂ar − 1.75εr, µ̂ar − 1.125εr, δr, θr−1, θr) then

Hr+1 ← Hr + 4|Sr|ε
−2
r ;

Sr+1 ← Elimination(Sr, µ̂ar − 0.75εr, µ̂ar − 0.625εr, δ
′
r);

else
Sr+1 ← Sr;

Hr+1 ← Hr;

end

23



CHEN LI QIAO

we try a guess that is a hundred times larger. Otherwise, we return the arm chosen by Entropy-

Elimination.

Algorithm 5: Complexity-Guessing

Input: Instance I and confidence δ.

Output: The best arm.

for t = 1 to∞ do

Ĥt ← 100t;
Call Entropy-Elimination(I, δ, Ĥt);
if Entropy-Elimination does not return an error then

return the arm returned by Entropy-Elimination;

end

A.4. Observations

We start with a few simple observations on Entropy-Elimination that will be used throughout

the analysis.

We first note that Entropy-Elimination lasts O(t) rounds on guess Ĥt, and our definition of θr
ensures that all θr are in [0.3, 0.5].

Observation A.1 The for-loop in Entropy-Elimination(I, δ, Ĥt) is executed at most ct times,

where c = log4 100.

Proof When r ≥ ct− 1,

Hr + 4|Sr|ε
−2
r ≥ 4 · 4ct−1 = Ĥt.

Thus Entropy-Elimination rejects at the if-statement.

Observation A.2 For all t ≥ 1 and 1 ≤ r ≤ ct− 1, 0.3 ≤ θr−1 ≤ θr ≤ 0.5.

Proof Clearly θr ≥ θ0 = 0.3. Moreover,

θr = θ0 +

r
∑

k=1

(ct− k)−2/10 ≤ 0.3 +
1

10

∞
∑

k=1

k−2 ≤ 0.5.

The following observation bounds the value of µ̂ar at round r, conditioning on the correctness

of Unif-Sampl and Med-Elim.

Observation A.3 If Unif-Sampl returns correctly at round r, µ̂ar ≤ µ[1](Sr) + 0.125εr. Here

µ[1](Sr) denotes the largest mean of arms in Sr. If both Unif-Sampl and Med-Elim return correctly,

µ̂ar ≥ µ[1](Sr)− 0.25εr.
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Proof By definition, µar ≤ µ[1](Sr). When Unif-Sampl({ar}, 0.125εr, δr) returns correctly, it

holds that

µ̂ar ≤ µar + 0.125εr ≤ µ[1] + 0.125εr.

When both Med-Elim and Unif-Sampl are correct, µar ≥ µ[1](Sr)− 0.125εr, and thus

µ̂ar ≥ µar − 0.125εr ≥ µ[1](Sr)− 0.25εr.

The following two observations bound the thresholds used in Frac-Test and Elimination by

applying Observation A.3.

Observation A.4 At round r, let clowr = µ̂ar − 1.75εr and chighr = µ̂ar − 1.125εr denote the

two thresholds used in Frac-Test. If Unif-Sampl returns correctly, chighr ≤ µ[1](Sr) − εr. If both

Med-Elim and Unif-Sampl return correctly, clowr ≥ µ[1](Sr)− 2εr.

Proof Observation A.3 implies that when Unif-Sampl is correct,

chighr ≤ µ[1](Sr) + 0.125εr − 1.125εr = µ[1](Sr)− εr

and when both Med-Elim and Unif-Sampl return correctly,

clowr ≥ µ[1](Sr)− 0.25εr − 1.75εr = µ[1](Sr)− 2εr.

Observation A.5 Let dlowr = µ̂ar − 0.75εr and dhighr = µ̂ar − 0.625εr denote the two thresholds

used in Elimination. If Unif-Sampl returns correctly, dhighr ≤ µ[1](Sr)− 0.5εr. If both Med-Elim

and Unif-Sampl return correctly, dlowr ≥ µ[1](Sr)− εr.

Proof By the same argument, we have

dhighr ≤ µ[1](Sr) + 0.125εr − 0.625εr = µ[1](Sr)− 0.5εr

when Unif-Sampl returns correctly, and

dlowr ≥ µ[1](Sr)− 0.25εr − 0.75εr = µ[1](Sr)− εr

when both Med-Elim and Unif-Sampl are correct.

25



CHEN LI QIAO

Appendix B. Analysis of Correctness

B.1. Overview

We start with a high-level overview of the proof of our algorithm’s correctness. We first define a

good event on which we condition in the rest of the analysis. Let E1 be the event that in a particular

run of Complexity-Guessing, all calls of procedure Unif-Sampl and Frac-Test return correctly.

Recall that δr, the confidence of Unif-Sampl and Frac-Test, is set to be δ/(50r2t2) in the r-th

round of iteration t. By a union bound,

Pr[E1] ≥ 1− 2

∞
∑

t=1

∞
∑

r=1

δ/(50t2r2) = 1− 2δ(π2/6)2/50 ≥ 1− δ/3.

The δ-correctness of our algorithm is guaranteed by the following two lemmas. The first lemma

states that Entropy-Elimination accepts a guess Ĥt and returns correctly with high probability when

Ĥt is sufficiently large. The second lemma guarantees that Entropy-Elimination rejects a guess Ĥt

when Ĥt is significantly smaller than H , the actual complexity. More precisely, we define the

following two thresholds:

tmax = ⌊log100H⌋ − 2

and

t′max =
⌈

log100
[

H(Ent+ ln δ−1)δ−1
]⌉

+ 2.

The precise statements of the two lemmas are shown below.

Lemma B.1 With probability 1− δ/3 conditioning on event E1, Complexity-Guessing halts be-

fore or at iteration t′max and it never returns a sub-optimal arm between iteration tmax + 1 and

t′max.

Lemma B.2 With probability 1 − δ/3 conditioning on event E1, Complexity-Guessing never

returns a sub-optimal arm in the first tmax iterations.

Lemma B.1 and Lemma B.2 directly imply the following theorem.

Theorem B.3 Complexity-Guessing is a δ-correct algorithm for Best-1-Arm.

Proof Recall that Pr[E1] ≥ 1 − δ/3. It follows directly from Lemma B.1 and Lemma B.2 that

with probability 1− δ, Entropy-Elimination accepts at least one of Ĥ1, Ĥ2, . . . , Ĥt′max
. Moreover,

when Entropy-Elimination accepts, it returns the optimal arm. Therefore, Complexity-Guessing

is δ-correct.

B.2. Useful Lemmas

To analyze our algorithm, it is essential to bound the probability that a specific guess Ĥt gets

rejected by Entropy-Elimination. We hope that this probability is high when Ĥt is small (compared

to the true complexity H), while it is reasonably low when Ĥt is large enough.

It turns out to be useful to consider the following procedure P obtained from Entropy-Elimination

by removing the if-statement that checks whether Hr+4|Sr|ε
−2
r ≥ Ĥt and Tr+1 ≥ 100Ĥt. In other
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words, the modified procedure P never rejects, regardless the value of Ĥt. Note that r, the number

of rounds, may exceed ct in P, which leads to invalid values of θr. In this case, we simply assume

that the thresholds used in Frac-Test are 0.3 and 0.5 respectively, and the following analysis still

works. Define random variable H∞ and T∞ to be the final estimation of the complexity and the

number of samples at the end of P. More precisely, if P terminates at round r∗, then H∞ and T∞

are defined as Hr∗ and Tr∗ , respectively.

Note that there is a natural mapping from an execution of P to an execution of Entropy-

Elimination. In particular, if both H∞ < Ĥt and T∞ < 100Ĥt hold in an execution of procedure

P, then Entropy-Elimination accepts in the corresponding run. Therefore, we may upper bound the

probability of rejection by establishing upper bounds of H∞ and T∞. The following two lemmas

bound the expectation of H∞ and T∞ conditioning on the event that Elimination always returns

correctly.

Lemma B.4 E[H∞|all Elimination return correctly] ≤ 256H .

Lemma B.5 Suppose Ĥt ≥ H . E[T∞|all Elimination return correctly] ≤ 16(H(Ent + ln δ−1 +
ln(Ĥt/H))).

Note that it is crucial for the two lemmas above that all Elimination are correct. The following

lemma gives an upper bound on the probability that some call of Elimination returns incorrectly.

Lemmas B.4 through B.6 together can be used to upper bound the probability of rejecting a guess

Ĥ . In the statement of Lemma B.6, we abuse the notation a little bit by assuming A1 ∈ G∞ and

∆−2
[1] = +∞.

Lemma B.6 Suppose that s ∈ {2, 3, . . . , n} and r∗ ∈ N ∪ {∞} satisfy As−1 ∈ Gr∗ . When

Entropy-Elimination runs on parameter Ĥt < ∆−2
[s−1], the probability that there exists a call of

procedure Elimination that returns incorrectly before round r∗ is upper bounded by

3000s

(

n
∑

i=s

∆−2
[i]

)

δ2/Ĥt.

The proofs of the three lemmas above are shown below.

Proof [Proof of Lemma B.4] In the following analysis, we always implicitly condition on the event

that all Elimination return correctly. Define H(r, S) as the expectation of H∞−Hr at the beginning

of the r-th round of Entropy-Elimination, when the current set of arms is Sr = S. Let rmax denote
⌊

log2∆
−1
[2]

⌋

. Define

C(r, S) =

∞
∑

i=r−1

|S ∩Gi|
i+1
∑

j=r

ε−2
j +

rmax+1
∑

i=r

ε−2
i

and M(r, S) = |S ∩G≤r−2|. We prove by induction on r that

H(r, S) ≤ 128C(r, S) + 16M(r, S)ε−2
r . (3)

We start with the base case at round rmax + 2. Recall that clowr and dlowr denote the lower

threshold of Frac-Test and Elimination in round r respectively. For all r ≥ rmax +2, if Med-Elim
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returns correctly at round r (which happens with probability 0.99), according to Observation A.4

and Observation A.5, we have

dlowr ≥ clowr ≥ µ[1] − 2εr ≥ µ[1] − 2−(rmax+1) ≥ µ[2].

Since Frac-Test returns correctly (contioning on E1) and

|{A ∈ Sr : µA ≤ clowr }| ≥ |{A ∈ Sr : µA ≤ µ[2]}| = |Sr| − 1 ≥ 0.5|Sr| ≥ θr|Sr|

(the last step applies Observation A.2), Frac-Test must return True and Elimination will be called.

Since we assume that all calls of Elimination return correctly, we have

|Sr+1| − 1 = |{A ∈ Sr+1 : µA ≤ µ[2]}| ≤ |{A ∈ Sr+1 : µA ≤ dlowr }| ≤ 0.1|Sr+1|,

which guarantees that Sr+1 only contains the optimal arm and the algorithm will return correctly in

the next round. Let r0 denote the first round after round rmax + 2 (inclusive) in which Med-Elim

returns correctly. Then according to the discussion above, we have Pr[r0 = r] ≤ 0.01r−rmax−2 for

all r ≥ rmax + 2. Thus it follows from a direct summation on possible values of r0 that

H(rmax + 2, S) ≤
∞
∑

r=rmax+2

Pr[r0 = r] · 4|S|ε−2
r

≤
∞
∑

r=rmax+2

4|S|ε−2
r 0.01r−rmax−2

≤ 8|S|ε−2
rmax+2 ≤ 16M(rmax + 2, S)ε−2

rmax+2,

which proves the base case.

Before proving the induction step, we note the following fact: for r = 1, 2, . . . , rmax + 1,

C(r, S)− C(r + 1, S) =

∞
∑

i=r−1

|S ∩Gi|
i+1
∑

j=r

ε−2
j −

∞
∑

i=r

|S ∩Gi|
i+1
∑

j=r+1

ε−2
j + ε−2

r

=
∞
∑

i=r−1

|S ∩Gi|ε
−2
r + ε−2

r

= (|S ∩G≥r−1|+ 1)ε−2
r .

(4)

Suppose inequality (3) holds for r + 1. Consider the following three cases of the execution of

Entropy-Elimination in round r. Let Ncur = |S ∩ Gr−1| and Nbig = |S ∩ G≥r|. For brevity, let

Nsma denote M(r, S) in the following. We have Nsma +Ncur +Nbig = |S| − 1. Note that Sr+1 is

the set of arms that survive round r.

Case 1: Med-Elim returns correctly and Frac-Test returns True.
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According to the induction hypothesis, the expectation of H∞−Hr in this case can be bounded

by:

H(r + 1, Sr+1) + 4|S|ε−2
r

≤128C(r + 1, Sr+1) + 16M(r + 1, Sr+1)ε
−2
r+1 + 4|S|ε−2

r

≤128C(r + 1, S) + 16[(Nsma +Ncur)/10] · (4ε
−2
r ) + 4|S|ε−2

r

=128[C(r, S)− (Ncur +Nbig + 1)ε−2
r ] + (6.4Nsma + 6.4Ncur + 4|S|)ε−2

r

=128C(r, S) + (10.4Nsma − 117.6Ncur − 124Nbig − 124)ε−2
r

≤128C(r, S) + 10.4Nsmaε
−2
r .

Here the third line follows from the fact that Sr+1 ⊆ S and C(r+1, S) is monotone in S. Moreover,

the correctness of the Elimination procedure implies that M(r + 1, Sr+1) ≤ (Nsma + Ncur)/10.

The fourth line applies identity (4).

Case 2: Med-Elim returns correctly and Frac-Test returns False.

Since Frac-Test is always correct (conditioning on E1) and it returns False, Fact 5.3, Observa-

tion A.2 and Observation A.4 together imply Nsma ≤ θr|S| ≤ |S|/2. Thus Nsma ≤ |S| −Nsma =
Ncur + Nbig + 1. As Elimination is not called in this round, the expectation of H∞ − Hr in this

case can be bounded by

H(r + 1, S) ≤128C(r + 1, S) + 16M(r + 1, S)ε−2
r+1

≤128[C(r, S)− (Ncur +Nbig + 1)ε−2
r ] + 64(Nsma +Ncur)ε

−2
r

=128C(r, S) + (64Nsma − 64Ncur − 128Nbig − 128)ε−2
r ≤ 128C(r, S).

Here the last step follows from 64Nsma−64Ncur−128Nbig−128 ≤ 64(Nsma−Ncur−Nbig−1) ≤ 0.

Case 3: Med-Elim returns incorrectly.

In this case, the worst scenario happens when we add 4|S|ε−2
r to the complexity Hr, but no

arms are eliminated. Then the expectation of H∞ −Hr in this case can be bounded by

H(r + 1, S) + 4|S|ε−2
r

≤128C(r + 1, S) + 16M(r + 1, S)ε−2
r+1 + 4|S|ε−2

r

≤128[C(r, S)− (Ncur +Nbig + 1)ε−2
r ] + [64(Nsma +Ncur) + 4|S|]ε−2

r

=128C(r, S) + (68Nsma − 60Ncur − 124Nbig − 124)ε−2
r ≤ 128C(r, S) + 68Nsmaε

−2
r .

Recall that Case 3 happens with probability at most 0.01. Thus we have:

H(r, S) ≤ 0.01
[

128C(r, S) + 68M(r, S)ε−2
r

]

+ 0.99
[

128C(r, S) + 10.4M(r, S)ε−2
r

]

≤ 128C(r, S) + 16M(r, S)ε−2
r .
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The induction is completed. Note that (3) directly implies our bound:

E [H∞|all Elimination return correctly]

=H(1, S) ≤ 128C(1, S) + 16M(1, S)

=128

∞
∑

i=0

|S ∩Gi| ·





i+1
∑

j=0

4j





≤256
∞
∑

i=0

4i+1|S ∩Gi|

≤256
∞
∑

i=0

∑

A∈S∩Gi

∆−2
A = 256H .

Then we prove Lemma B.5, which is restated below.

Lemma B.5. (restated) Suppose Ĥt ≥ H . E[T∞|all Elimination return correctly] ≤ 16(H(Ent +
ln δ−1 + ln(Ĥt/H))).

Proof [Proof of Lemma B.5] Recall that T∞ is the sum of

|Sr|ε
−2
r ln

(

|Sr|ε
−2
r

Ĥt

δ

)−1

= |Sr|ε
−2
r

(

ln
H

|Sr|ε
−2
r

+ ln δ−1 + ln
Ĥt

H

)

(5)

for all round r. T∞ serves as an upper bound on the expected number of samples taken by Med-Elim

and Elimination (up to a constant factor). Before the technical proof, we discuss the intuition of our

analysis.

In order to bound T∞, we attribute each term in (5) to a specific subset of arms. For simplicity,

we assume for now that this term is just |Sr|ε
−2
r = 4r|Sr|. Roughly speaking, we “charge” a cost of

ε−2
r = 4r to each arm in group G≥r. We expect that |G≥r| is at least a constant times |Sr|, so that

the number of samples (i.e., 4r|Sr|) can be covered by the total charges. Then the analysis reduces

to calculating the total cost that each arm is charged. Fix an arm A ∈ Gr′ for some r′. As described

above, A is charged 4r in round r (1 ≤ r ≤ r′), and thus the total charge is bounded by 4r
′

, which

is the actual complexity of A.

Now we start the formal proof. Consider the execution of procedure P on Ĥt. We define a

collection of random variables {Ti,j : i, j ≥ 1}, where Ti,j corresponds to the cost we charge each

arm in Gj at round i. For each i, let ri denote the largest integer such that |G≥ri | ≥ 0.5|Si|. Note

that such an ri always exists, as |G≥1| = |S1| ≥ 0.5|Si| and |G≥r| = 0 for sufficiently large r. We

define Ti,j as

Ti,j =







0, j < ri,

ε−2
i

(

ln H
|Gj |ε

−2
i

+ ln δ−1 + ln Ĥt

H

)

, j ≥ ri.

Note that this slightly differs from the proof idea described above: Ti,j might be positive when

i > j (i.e., we may not always charge G≥i in round i). In fact, the charging argument described
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in the proof idea works only if, ideally, all calls of Med-Elim are correct. Since actually some

Med-Elim may return incorrectly, we have to slightly modify the charging method. Nevertheless,

we will show that this difference only incurs a reasonably small cost in expectation.

We first claim that

T∞ ≤ 2
∑

i,j

|Gj | · Ti,j . (6)

In other words, the total cost we charge is indeed an upper bound on T∞. Note that the contribution

of round i to T∞ is |Si|ε
−2
i

[

ln(H/(|Sr|ε
−2
r )) + ln δ−1 + ln(Ĥt/H)

]

, while its contribution to the

right-hand side of (6) is

2
∑

j

|Gj | · Ti,j = 2
∑

j

|Gj | · ε
−2
i

(

ln(H/(|Gj |ε
−2
i )) + ln δ−1 + ln(Ĥt/H)

)

≥ 2|G≥ri | · ε
−2
i

[

ln(H/(|Sr|ε
−2
r )) + ln δ−1 + ln(Ĥt/H)

]

≥ |Si|ε
−2
i

[

ln(H/(|Sr|ε
−2
r )) + ln δ−1 + ln(Ĥt/H)

]

.

Then identity (6) directly follows from a summation on i.
Then we bound the expectation of each Ti,j . When i ≤ j, we have the trivial bound

E[Ti,j ] ≤ ε−2
i

(

ln
H

|Gj |ε
−2
i

+ ln δ−1 + ln
Ĥt

H

)

.

When i > j, we bound the probability that Ti,j > 0. By definition, Ti,j > 0 if and only if ri ≤ j,

where ri is the largest integer that satisfies |G≥ri | ≥ 0.5|Si|. It follows that Ti,j > 0 only if

|G≥j+1| < 0.5|Si|.
Observe that in order to have |G≥j+1| < 0.5|Si|, Med-Elim must return incorrectly between

round j + 1 and round i − 1. In fact, suppose towards a contradiction that Med-Elim is correct in

round k ∈ [j + 1, i− 1]. Then we have

|G≥j+1| ≥ |G≥k| ≥ |Sk+1 ∩G≥k| > 0.5|Sk+1| ≥ 0.5|Si|,

a contradiction. Here the third step is due to the fact that when Elimination returns correctly at

round k, the fraction of arms in Sk+1 with gap greater than 2−k is less than 0.1.

Note that for each specific round, the probability that Med-Elim returns incorrectly is at most

0.01. Thus, the probability that Ti,j > 0 for i > j is upper bounded by 0.01i−j−1. Therefore,

E[Ti,j ] ≤ 0.01i−j−1ε−2
i

(

ln
H

|Gj |ε
−2
i

+ ln δ−1 + ln
Ĥt

H

)

.

It remains to sum up the upper bounds of E[Ti,j ] to yield our bound of E[T∞].

E[T∞] ≤ 2
∑

i,j

|Gj | · E[Ti,j ] = 2
∑

i≤j

|Gj | · E[Ti,j ] + 2
∑

i>j

|Gj | · E[Ti,j ].
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Here the first part can be bounded by

2
∑

i≤j

|Gj | · E[Ti,j ] ≤ 2
∑

j

j
∑

i=1

|Gj | · 4
i

(

ln
H

|Gj |4i
+ ln δ−1 + ln

Ĥt

H

)

≤ 4
∑

j

|Gj | · 4
j

(

ln
H

|Gj |4j
+ ln δ−1 + ln

Ĥt

H

)

≤ 4
∑

j

(

Hj ln
H

Hj/4
+Hj ln δ

−1 +Hj ln
Ĥt

H

)

≤ 8H

(

Ent+ ln δ−1 + ln
Ĥt

H

)

.

The second part can be bounded similarly.

2
∑

i>j

|Gj | · E[Ti,j ] ≤ 2
∑

j

∞
∑

i=j+1

0.01i−j−1|Gj | · 4
i

(

ln
H

|Gj |4i
+ ln δ−1 + ln

Ĥt

H

)

≤ 4
∑

j

|Gj | · 4
j

(

ln
H

|Gj |4j
+ ln δ−1 + ln

Ĥt

H

)

≤ 4
∑

j

(

Hj ln
H

Hj/4
+Hj ln δ

−1 +Hj ln
Ĥt

H

)

≤ 8H

(

Ent+ ln δ−1 + ln
Ĥt

H

)

.

In fact, the crucial observation for both the two inequalities above is that the summation decreases

exponentially as i becomes farther away from j. The lemma directly follows.

Finally, we prove Lemma B.6, which is restated below. Recall that we abuse the notation a little

bit by assuming A1 ∈ G∞ and ∆−2
[1] = +∞.

Lemma B.6. (restated) Suppose that s ∈ {2, 3, . . . , n} and r∗ ∈ N ∪ {∞} satisfy As−1 ∈ Gr∗ .

When Entropy-Elimination runs on parameter Ĥt < ∆−2
[s−1], the probability that there exists a call

of procedure Elimination that returns incorrectly before round r∗ is upper bounded by

3000s

(

n
∑

i=s

∆−2
[i]

)

δ2/Ĥt.

Proof [Proof of Lemma B.6] Recall that As−1 ∈ Gr∗ . Suppose As ∈ Gr′ . Suppose that we are at

the beginning of round r of Entropy-Elimination and the subset of arms that have not been removed

is Sr = S. Moreover, we assume that the optimal arm, A1, is still in Sr. Let P (r, S) denote the

probability that some call of procedure Elimination returns incorrectly in round r, r+1, . . . , r∗−1.
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As in the proof of Lemma B.4, we bound P (r, S) by induction using the potential function

method. Define

C(r, S) =
r′
∑

i=r−1

|S ∩Gi|
i+1
∑

j=r

ε−2
j + (s− 1)

r′+2
∑

j=r

ε−2
j

and M(r, S) = |S ∩G≤r−2|. Then it holds that for 1 ≤ r ≤ r′ + 1,

C(r, S)− C(r + 1, S) =

r′
∑

i=r−1

|S ∩Gi|ε
−2
r + (s− 1)ε−2

r ≥ (|S ∩G≥r−1|+ 1)ε−2
r .

We prove by induction that

P (r, S) ≤
(

128C(r, S) + 16M(r, S)ε−2
r

)

δ2/Ĥ . (7)

We first prove the base case at round r′+2. If r′+2 ≥ r∗, the bound holds trivially. Otherwise,

we consider the ratio

α = |Sr′+2 ∩ {As, As+1, . . . , An}|/|Sr′+2|,

which is the fraction of arms at round r′ + 2 that are strictly worse than As−1. Let r0 be the first

round after r′ + 2 (inclusive) in which Med-Elim returns correctly. If Frac-Test returns False in

round r0, according to Fact 5.3 and the correctness of Frac-Test conditioning on event E1, we have

α ≤ θr0 . Consequently, in each of the following rounds (say, round r > r0), Frac-Test always

returns False since α ≤ θr0 ≤ θr−1, and Elimination will never be called before round r∗. Note

that it is crucial that the threshold interval of Frac-Test in diffrent rounds are disjoint. For the

other case, suppose Frac-Test returns True and we call Elimination in round r0. Then after that,

assuming Elimination returns correctly, the fraction of arms worse than As−1 will be smaller than

0.1. It also follows that Elimination will never be called after round r0. Therefore, Elimination is

called at most once between round r′+2 and r∗−1, and it can only be called at round r0. Note that

for r ≥ r′ + 2, Pr[r0 = r] ≤ 0.01r−r′−2. A direct summation on all possible values of r0 yields

P (r′ + 2, S) ≤
r∗−1
∑

r=r′+2

Pr[r0 = r] · δ′r

=
r∗−1
∑

r=r′+2

0.01r−r′−2 · 4|S|ε−2
r δ2/Ĥ

≤
(

4|S|ε−2
r′+2δ

2/Ĥ
)

∞
∑

k=0

0.01k4k

≤ 5|S|ε−2
r′+2δ

2/Ĥ .

Note that C(r′+2, S) = (s−1)ε−2
r′+2, M(r′+2, S) = |S∩G≤r′ | and |S| ≤ |S∩G≤r′ |+(s−1).

Thus

P (r′ + 2, S) ≤ 5(|S ∩G≤r′ |+ s− 1)ε−2
r′+2δ

2/Ĥ

≤
(

128C(r′ + 2, S) + 16M(r′ + 2, S)ε−2
r′+2

)

δ2/Ĥ ,

which proves the base case.
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Then we proceed to the induction step. Again, we consider whether Med-Elim returns correctly

and whether Frac-Test returns True. Let Ncur = |S ∩ Gr−1| and Nbig = |S ∩ G≥r|. Again, we

denote M(r, S) by Nsma for brevity. Note that Sr+1 is the set of arms that survive round r.

Case 1: Med-Elim returns correctly and Frac-Test returns True.

In this case, Elimination is called with confidence level δ′r. Then the conditional probability

that some Elimination returns incorrectly in this case is bounded by

P (r + 1, Sr+1) + δ′r

≤
[

128C(r + 1, Sr+1) + 16M(r + 1, Sr+1)ε
−2
r+1 + 4|S|ε−2

r

]

δ2/Ĥ

≤
[

128C(r + 1, S) + 64(Nsma +Ncur)ε
−2
r /10 + 4|S|ε−2

r

]

δ2/Ĥ

=
[

128C(r, S)− 128(Ncur +Nbig + s− 1)ε−2
r + (6.4Nsma + 6.4Ncur + 4|S|)ε−2

r

]

δ2/Ĥ

≤[128C(r, S) + 10.4M(r, S)ε−2
r ]δ2/Ĥ .

Case 2: Med-Elim returns correctly and Frac-Test returns False.

Since Frac-Test returns False, according to Fact 5.3 and Observation A.4, we have Nsma ≤
|S| −Nsma = Ncur +Nbig + 1. Then the conditional probability in this case is bounded by

P (r + 1, S) ≤ [128C(r + 1, S) + 16M(r + 1, S)ε−2
r+1]δ

2/Ĥ

≤ [128C(r, S)− 128(Ncur +Nbig + s− 1)ε−2
r + 64(Nsma +Ncur)ε

−2
r ]δ2/Ĥ

≤ [128C(r, S) + (64Nsma − 64Ncur − 128Nbig − 128(s− 1))ε−2
r ]δ2/Ĥ

≤ 128C(r, S)ε−2
r δ2/Ĥ .

Here the last step follows from 64Nsma − 64Ncur − 128Nbig − 128(s − 1) ≤ 64(Nsma − Ncur −
Nbig − 1) ≤ 0.

Case 3: Med-Elim returns incorrectly.

In this case, the worst scenario is that we call Elimination with confidence δ′r ≤ 4|S|ε−2
r δ2/Ĥ ,

yet no arms are removed. So the conditional probability in this case is bounded by

P (r + 1, S) + 4|S|ε−2
r δ2/Ĥ

≤
[

128C(r + 1, S) + 16M(r + 1, S)ε−2
r+1 + 4|S|ε−2

r

]

δ2/Ĥ

≤[128C(r, S)− 128(Ncur +Nbig + s− 1)ε−2
r + 64(Nsma +Ncur)ε

−2
r + 4(Nsma +Ncur +Nbig + 1)ε−2

r ]δ2/Ĥ

≤[128C(r, S) + (68Nsma − 60Ncur − 124Nbig − 124)ε−2
r ]δ2/Ĥ

≤
[

128C(r, S) + 68M(r, S)ε−2
r

]

δ2/Ĥ .

Recall that Case 3 happens with probability at most 0.01. Thus we have:

P (r, S) ≤ 0.01
[

128C(r, S) + 68M(r, S)ε−2
r

]

δ2/Ĥ + 0.99
[

128C(r, S) + 10.4M(r, S)ε−2
r

]

δ2/Ĥ

≤
[

128C(r, S) + 16M(r, S)ε−2
r

]

δ2/Ĥ .
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The induction is completed. It follows from (7) that

P (1, S) ≤ 128





r′
∑

i=0

|Gi|
i+1
∑

j=1

ε−2
j + (s− 1)

r′+2
∑

j=1

ε−2
j



 δ2/Ĥ

≤ 128

[

(4/3)

r′
∑

i=0

|Gi|4
i+1 + (4/3)(s− 1)4r

′+2

]

δ2/Ĥ

≤ 128

[

(16/3)
n
∑

i=s

∆−2
[i] + (64/3)(s− 1)4r

′

]

δ2/Ĥ

≤ 3000s

(

n
∑

i=s

∆−2
[i]

)

δ2/Ĥ .

B.3. Proof of Lemma B.1

Recall that tmax = ⌊log100H⌋ − 2 and t′max = ⌈log100[H(Ent+ ln δ−1)δ−1]⌉+ 2. We restate

and prove Lemma B.1 in the following.

Lemma B.1. (restated) With probability 1− δ/3 conditioning on event E1, Complexity-Guessing

halts before or at iteration t′max and it never returns a sub-optimal arm between iteration tmax + 1
and t′max.

The high-level idea of the proof is to construct three other “good events” E2, E3 and E4. We show

that each event happens with high probability conditioning on E1. Moreover, events E1 through E4
together imply the desired event.

Proof Recall that tmax = ⌊log100H⌋ − 2 and t′max = ⌈log100[H(Ent + ln δ−1)δ−1]⌉ + 2. Let E2
denote the following event: for all t such that t ≥ tmax+1 and Ĥt < 1003H , Entropy-Elimination

either rejects or outputs the optimal arm. Since Ĥtmax+1 = 100tmax+1 ≥ H/10000, there are at

most log100[100
3H/(H/10000)] + 1 = 6 different values of such Ĥt. For each Ĥt, the probability

of returning a sub-optimal arm is bounded by the probability that the optimal arm is deleted, which

is in turn upper bounded by δ2 as a corollary of Lemma B.9 proved in the following section.

Thus, by a union bound,

Pr[E2|E1] ≥ 1− 6δ2.

Let E3 be the event that for all Ĥt such that t ≤ t′max and Ĥt ≥ 1003H (or equivalently,

⌈log100H⌉ + 3 ≤ t ≤ t′max), Entropy-Elimination never returns an incorrect answer. In fact, in

order for Entropy-Elimination to return incorrectly, some call of Elimination must be wrong. Thus

we may apply Lemma B.6 to bound the probability of E3. Specifically, we apply Lemma B.6 with
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s = 2. Then we have

Pr[E3|E1] ≥ 1−

t′max
∑

t=⌈log100 H⌉+3

3000s
(

∑n
i=s∆

−2
[i]

)

δ2

Ĥt

≥ 1−
∞
∑

t=⌈log100 H⌉+3

6000H

100t
δ2

≥ 1−
∞
∑

k=3

6000

100k
δ2 ≥ 1− δ2/100.

Here the third step is due to the simple fact that 100⌈log100 H⌉ ≥ H .

Finally, let E4 denote the event that when Entropy-Elimination runs on Ĥt′max
, no Elimination

is wrong and the algorithm finally accepts. In order to bound the probability of the last event, we

simply apply Markov inequality based on Lemma B.4 and Lemma B.5. Let E0 be the event that no

Elimination is wrong when Entropy-Elimination runs on Ĥt′max
. Then we have

Pr[E4|E1] ≥ Pr[E0|E1]−
E[H∞|E0]

Ĥt′max

−
E[T∞|E0]

100Ĥt′max

≥ 1− δ2 −
256H

1002H(Ent+ ln δ−1)δ−2
−

16H
[

Ent+ ln δ−1 + ln(Ĥt′max
/H)

]

1003H(Ent+ ln δ−1)δ−2

≥ 1− δ2 −
256

1002
δ2 −

16
[

Ent+ 3 ln δ−1 + ln(1002(Ent+ ln δ−1))
]

1003(Ent+ ln δ−1)
δ2

≥ 1− 2δ2.

Note that conditioning on events E1 through E4, Entropy-Elimination never outputs an incorrect

answer between iteration tmax + 1 and t′max. Moreover, our algorithm terminates before or at

iteration t′max. The lemma directly follows from a union bound and the observation that for all

δ ∈ (0, 0.01),
6δ2 + δ2/100 + 2δ2 ≤ δ/3.

Remark B.7 The last part of the proof implies a more general fact: for fixed Ĥt, Entropy-

Elimination accepts with probability at least

1− δ2 −
256H

Ĥt

−
16H(Ent+ ln δ−1 + ln(Ĥt/H))

100Ĥt

.

B.4. Mis-deletion of Arms

We prove Lemma B.2 in the following. Again, our analysis in this subsection conditions on

event E1, which guarantees that all calls of Frac-Test and Unif-Sampl in Entropy-Elimination are

correct. The high-level idea of the proof is to show that a large proportion of arms will not be

accidentally removed before they have contributed a considerable amount to the total complexity.

Formally, we define the mis-deletion of arms as follows.
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Definition B.8 An arm A ∈ Gr is mis-deleted in a particular run of Entropy-Elimination, if A is

deleted before or at round r − 1. In particular, the optimal arm is mis-deleted if it is deleted in any

round.

The following lemma bounds the probability that a certain collection of arms are all mis-deleted.

Lemma B.9 For a fixed collection of k arms, the probability that all of them are mis-deleted is at

most δ2k.

Proof Let S = {A1, A2, . . . , Ak} be a fixed set of k arms. (Here we temporarily drop the con-

vention that Ai denotes the arm with the i-th largest mean.) For each Ai, let Ebadi denote the event

that Ai is mis-deleted, and let ri denote the group that contains Ai (i.e., Ai ∈ Gri). By definition,

µAi
≥ µ[1] − εri .
We start by proving the following fact: suppose Elimination is called with confidence level δ′r

in round r. Then the probability that all arms in S are mis-deleted in round r simultaneously is

bounded by δ′kr .

We assume that r < ri for all i = 1, 2, . . . , k. Otherwise, if r ≥ ri for some i, then Ai cannot

be mis-deleted in round r, since the definition of mis-deletion requires that r < ri. To analyze the

behaviour of Elimination, we recall that each run of Elimination consists of several stages. (Here

we use the term “stage” for an iteration of Elimination, while the term for Entropy-Elimination is

“round”.) In each stage, procedure Unif-Sampl is called at line 6 to estimate the means of the arms

that have not been eliminated. Let rbadi denote the stage in which Ai gets deleted.

Recall that dhighr is the upper threshold used in Elimination in round r. According to Observa-

tion A.5,

dhighr ≤ µ[1](Sr)− 0.5εr = µ[1](Sr)− 2−(r+1) ≤ µ[1] − εri ≤ µAi
.

Here the third step follows from our assumption that r < ri. In order for Elimination to eliminate

an arm Ai with mean greater than dhigh in stage rbadi , the Unif-Sampl subroutine must return an

incorrect estimation for Ai (i.e., |µ̂Ai
− µAi

| > (dhigh − dmid)/2), which happens with probability

at most δ′r/
(

10 · 2r
bad
i

)

. Since the samples taken on different arms are independent, the events that

Unif-Sampl returns incorrect estimates for different arms are also independent, and it follows that

the probability that each arm Ai is removed at stage rbadi is bounded by
∏k

i=1

(

δ′r/
(

10 · 2r
bad
i

))

.

Therefore, the probability that all the k arms in S are mis-deleted in Elimination is upper

bounded by

∞
∑

rbad1 =1

∞
∑

rbad2 =1

· · ·
∞
∑

rbad
k

=1

k
∏

i=1

(

δ′r/(10 · 2
rbadi )

)

=
k
∏

i=1





∞
∑

rbadi =1

(

δ′r/
(

10 · 2r
bad
i

))





≤
k
∏

i=1

δ′r = δ′
k
r .

Then we start with the proof of the lemma. Suppose that we are at the beginning of round r. m
arms among S are still in Sr, while the sum of confidence levels allocated in the previous rounds
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is δ′ (i.e., δ′ =
∑r−1

i=1 δ
′
i). Let P (r, δ′,m) denote the probability that all the m remaining arms are

mis-deleted in the future. We prove by induction that

P (r, δ′,m) ≤ (δ2 − δ′)m. (8)

Recall that the number of rounds that Entropy-Elimination lasts is bounded by ct according to

Observation A.1. Thus when r = ⌈ct⌉+1, we have P (r, δ′,m) = 0. Observe that δ′ never exceeds

δ2 according to the behaviour of Entropy-Elimination. Therefore (8) holds for the base case. Now

we proceed to the induction step. If Elimination is not called in round r, by induction hypothesis

we have

P (r, δ′,m) ≤ P (r + 1, δ′,m) ≤ (δ2 − δ′)m,

which proves inequality (8). If, on the other hand, Elimination is called with confidence δ′r. We

observe that by the claim we proved above, the probability that exactly j arms among the m arms

are mis-deleted is at most

(

m

j

)

δ′jr. Thus by a simple summation,

P (r, δ′,m) ≤
m
∑

j=0

(

m

j

)

δ′
j
r ·P (r+1, δ′+δ′r,m−j) ≤

m
∑

j=0

(

m

j

)

δ′
j
r(δ

2−δ′−δ′r)
m−j = (δ2−δ′)m,

which completes the induction step.

Finally, the lemma directly follows from (8) by plugging in r = 1, δ′ = 0 and m = k.

Remark B.10 Let Ebadi denote the event that Ai is mis-deleted. Note that although the events

{Ebadi } are not independent, we can still obtain an exponential bound (i.e., δ2k) on the probability

that k such events happen simultaneously. We call such events quasi-independent to reflect this

property. Formally, a collection of n events {Ei}
n
i=1 are δ-quasi-independent, if for all 1 ≤ k ≤ n

and 1 ≤ a1 < a2 < · · · < ak ≤ n, we have

Pr[Ea1 ∩ Ea2 ∩ · · · ∩ Eak ] ≤ δk.

Then the collection of events {Ebadi } are δ2-quasi-independent.

The following lemma proves a generalized Chernoff bound for quasi-independent events.

Lemma B.11 Suppose v1, v2, . . . , vn > 0. {Yi}
n
i=1 is a collection of random variables, where

the support of Yi is {0, vi}. Moreover, the collection of events {Yi = vi} are δ-quasi-independent.

Let (S1, S2, . . . , Sm) be a partition of {1, 2, . . . , n} such that
∑

j∈Si
vj ≤ 1 for all i. Define

Xi =
∑

j∈Si
Yj . Let X = 1

m

∑m
i=1Xi and p = δ

m

∑n
i=1 vi. Then for all q ∈ (p, 1),

Pr[X ≥ q] ≤ e−mD(q||p),

where

D(x||y) = x ln(x/y) + (1− x) ln[(1− x)/(1− y)]

is the relative entropy function.
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Proof Let pi = δ
∑

j∈Si
vj . Then p = 1

m

∑m
i=1 pi. For t > 0, we have

Pr[X ≥ q] = Pr[etmX ≥ etmq] ≤
E[etmX ]

etmq
.

To bound E[etmX ], we consider a collection of independent random variables Ỹ1, Ỹ2, . . . , Ỹn
defined by Pr[Ỹi = vi] = δ and Pr[Ỹi = 0] = 1 − δ. Define X̃i =

∑

j∈Si
Ỹj for i = 1, 2, . . . ,m,

and X̃ = 1
m

∑m
i=1 X̃i. Note that each term in the Taylor expansion of etmX can be written as

α
∏l

i=1 Ynl
, where l ≥ 0, (n1, n2, . . . , nl) ∈ {1, 2, . . . , n}

l, and α = tl/(l!) > 0. The correspond-

ing term in etmX̃ is then α
∏l

i=1 Ỹnl
. Let U = |{ni : i ∈ {1, 2, . . . , l}}| denote the set of distinct

numbers among n1, n2, . . . , nl. We have

E

[

l
∏

i=1

Ynl

]

= Pr[Yi = vi for all i ∈ U ] ·
l
∏

i=1

vnl
≤ δ|U |

l
∏

i=1

vnl
= E

[

l
∏

i=1

Ỹnl

]

.

Summing over all terms in the expansion yields

E
[

etmX
]

≤ E
[

etmX̃
]

=
m
∏

i=1

E
[

etX̃i

]

.

Here the last step holds since {X̃i} are independent. Note that since X̃i ∈ [0, 1], it follows from

Jensen’s inequality that

E
[

etX̃i

]

≤ E
[

etX̃i + 1− X̃i

]

= pie
t + 1− pi.

Then

E
[

etmX
]

≤
m
∏

i=1

(pie
t + 1− pi) ≤ (pet + 1− p)m.

Recall that p = 1
m

∑m
i=1 pi. Here the last step follows from Jensen’s inequality and the concavity

of ln(etx+ 1− x) for t > 0.

By setting t = ln q(1−p)
p(1−q) , we have

Pr[X ≥ q] ≤
E[etmX ]

etmq
≤

[

pet + 1− p

etq

]m

= e−mD(q||p).

The following lemma states that if a collection of arms with a considerable amount of total

complexity are not mis-deleted, Entropy-Elimination rejects Ĥ .

Lemma B.12 S is a set of sub-optimal arms with complexity H(S) > Ĥ . Let r∗ = maxA∈S

⌊

log2∆
−1
A

⌋

.

If in a particular run of Entropy-Elimination, no arm in S is mis-deleted and there exists an arm

A∗ outside S with µA∗ ≥ maxA∈S µA such that A∗ is not deleted in the first r∗ − 1 rounds, then Ĥ
is rejected in that run.
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Proof Suppose S = {A1, A2, . . . , Ak} and Ai ∈ Gri . Without loss of generality, µA1 ≤ µA2 ≤
· · · ≤ µAk

. By definition of r∗, we have r∗ = max1≤i≤k ri = rk. According to our assumption,

both Ak and A∗ are not deleted in the first r∗ − 1 rounds. Thus Entropy-Elimination does not

accept in the first r∗ rounds.

Suppose for contradiction that Ĥ is not rejected by Entropy-Elimination in a particular run.

Define R = {r ∈ [1, r∗ − 1] : Elimination is called in round r}. Let N1 = {i ∈ [k] : ∃r ∈
R, r ≥ ri} and N2 = [k] \ N1. For each i ∈ N1, since Ai is not mis-deleted, Ai ∈ Sri . Define

r′i = min{r ∈ R : r ≥ ri} as the first round after ri (inclusive) in which Elimination is called.

It follows that Ai ∈ Sr′i
. At round r′i of Entropy-Elimination, Hr′i+1 is set to Hr′i

+ 4|Sr′i
|ε−2

r′i
.

Therefore we can “charge” Ai a cost of 4ε−2
r′i

= ε−2
r′i+1

. It follows that Hr∗ is at least the total cost

that arms in N1 are charged,
∑

i∈N1
ε−2
r′i+1

.

For each i ∈ N2, we have Ai ∈ Sri and Sri = Sr∗ . Thus it holds that |Sr∗ | ≥ |N2|. When the

if-statement in Entropy-Elimination is checked in round r∗, we have

Hr∗ + 4|Sr∗ |ε
−2
r∗ ≥

∑

i∈N1

ε−2
r′i+1

+N2ε
−2
r∗+1 ≥

k
∑

i=1

ε−2
ri+1 ≥

k
∑

i=1

∆−2
Ai

= H(S) > Ĥ .

Here the second step follows from r′i ≥ ri and r∗ ≥ ri, while the third step follows from ∆Ai
≥

2−(ri+1). Therefore Entropy-Elimination rejects in round r∗, a contradiction.

B.5. Proof of Lemma B.2

Lemma B.2 is restated below. Recall that tmax = ⌊log100H⌋ − 2.

Lemma B.2. (restated) With probability 1− δ/3 conditioning on event E1, Complexity-Guessing

never returns a sub-optimal arm in the first tmax iterations.

The high-level idea of the proof is simple. For each Ĥt, we identify a collection of near-optimal

“crucial arms”. By Lemma B.9, the probability that all “crucial arms” are mis-deleted is small, thus

we may assume that at least one crucial arm survives. This crucial arm serves as A∗ in Lemma B.12.

Then according to Lemma B.12, in order for Entropy-Elimination to accept Ĥt, it must mis-delete

a collection of “non-crucial” arms with a significant fraction of complexity. The probability of this

event can also be bounded by using the generalized Chernoff bound proved in Lemma B.11.

The major technical difficulty is the choice of “crucial arms”. We deal the following three cases

separately: (1) Ĥt is greater than ∆−2
[2] , the complexity of the arm with the second largest mean; (2)

Ĥt is between ∆−2
[s] and ∆−2

[s−1] for some 3 ≤ s ≤ n; and (3) Ĥt is smaller than ∆−2
[n] . We bound the

probability that the lemma is violated in each case, and sum them up using a union bound.

Proof [Proof of Lemma B.2]

Case 1: ∆−2
[2] ≤ Ĥt ≤ Ĥtmax .

We first deal with the case that Ĥt is relatively large. We partition the sequence of sub-optimal

arms A2, A3, . . . , An into contiguous blocks B1, B2, . . . , Bm such that the total complexity in each

block Bi, denoted by H(Bi) =
∑

A∈Bi
∆−2

A , is between ∆−2
[2] and 3∆−2

[2] . To construct such a

partition, we append arms to the current block one by one from A2 to An. When the complexity
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of the current block exceeds ∆−2
[2] , we start with another block. Clearly, the complexity of each

resulting block is upper bounded by 2∆−2
[2] . Note that the last block may have a complexity less than

∆−2
[2] . In that case, we simply merge it into the second last block. As a result, the total complexity

of every block is in
[

∆−2
[2] , 3∆

−2
[2]

]

. It follows that H ∈
[

m∆−2
[2] , 3m∆−2

[2]

]

.

For brevity, let B≤i denote B1∪B2∪· · ·∪Bi and B<i = B≤i−1. Since H(B1) = ∆−2
[2] ≤ Ĥt <

H = H(B≤m), there exists a unique integer k ∈ [2,m] that satisfies H(B<k) ≤ Ĥt < H(B≤k).

Then we have Ĥt ∈
[

(k − 1)∆−2
[2] , 3k∆

−2
[2]

]

. Since B≤k contains at least k arms, it follows from

Lemma B.9 that with probability 1− δ2k, at least one arm in B≤k is not mis-deleted. Recall that by

Lemma B.12, Entropy-Elimination accepts Ĥt only if either of the following two events happens:

(a) no arm in B≤k survives, which happens with probability δ2k; (b) a collection of arms among

B>k with total complexity of at least H(B>k)− Ĥ are mis-deleted.

For i = 2, 3, . . . , n, define vi = ∆−2
[i] /(3∆

−2
[2] ) and Yi = vi · I[Ai is mis-deleted]. For i =

1, 2, . . . ,m, Xi is defined as

Xi =
∑

Aj∈Bi

Yj =
∑

A∈Bi

∆−2
A

3∆−2
[2]

· I[A is mis-deleted].

In other words, Xi is the total complexity of the arms in block Bi that are mis-deleted, divided by a

constant 3∆−2
[2] . Recall that H(Bi) ≤ 3∆−2

[2] , so Xi is between 0 and 1. Let

X =
1

m

m
∑

i=1

Xi =
1

3m∆−2
[2]

n
∑

i=2

∆−2
[i] · I[Ai is mis-deleted]

denote the mean of these random variables. Since the events of mis-deletion of arms are δ2-quasi-

independent, we may apply Lemma B.11. Note that

p =
δ2

m

n
∑

i=2

vi =
δ2

m

n
∑

i=2

∆−2
[i]

3∆−2
[2]

=
Hδ2

3m∆−2
[2]

≤ δ2.

Here the last step applies H ≤ 3m∆−2
[2] . On the other hand, conditioning on event (b) (i.e., a

collection of arms with total complexity H(B>k)− Ĥ are mis-deleted), we have

X =
1

3m∆−2
[2]

n
∑

i=2

∆−2
[i] · I[Ai is mis-deleted]

≥
H(B>k)− Ĥ

3m∆−2
[2]

≥
(m− k)∆−2

[2] − 3k∆−2
[2]

3m∆−2
[2]

≥
m− 4k

3m
≥

m− 12m/10000

3m
≥

1

6
.

Here the third step follows from H(B>k) ≥ (m − k)∆−2
[2] and Ĥ ≤ 3k∆−2

[2] . The last line holds

since

k∆−2
[2] ≤ Ĥ ≤ Ĥtmax ≤ H/10000 ≤ 3m∆−2

[2] /10000,
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which implies k ≤ 3m/10000.

According to Lemma B.11, we have

Pr[X ≥ 1/6] ≤ exp
(

−mD
(

1/6||δ2
))

= exp

(

−
m

6
ln

1

6δ2
−

5m

6
ln

5

6(1− δ2)

)

≤ (6δ2)m/6 · (6/5)5m/6 ≤ δm/6.

Recall that D(x||y) stands for the relative entropy function. The last step follows from 6δ ·(6/5)5 ≤
1.

Therefore,

Pr
[

Entropy-Elimination accepts Ĥt

]

≤ δ2k + δm/6. (9)

It remains to apply a union bound to (9) for all values of Ĥt in
[

∆−2
[2] , Ĥtmax

]

. Recall that k ≥ 2,

and the ratio between different guesses Ĥt is at least 100. It follows that the values of k are distinct

for different values of Ĥt, and thus the sum of the first term, δ2k, can be bounded by

∞
∑

k=2

δ2k =
δ4

1− δ2
≤ 2δ4.

For the second term, we note that the number of guesses Ĥt between ∆−2
[2] and Ĥtmax is at most

tmax−
⌈

log100∆
−2
[2]

⌉

+1 ≤ log100H − 2− log100∆
−2
[2] +1 = log100

H

∆−2
[2]

− 1 ≤ log100(3m)− 1.

In particular, if m < 1002/3, no Ĥt will fall into [∆−2
[2] , tmax]. Thus we focus on the nontrivial case

m ≥ 1002/3. Then the sum of the second term δm/6 can be bounded by

δm/6 · (log100(3m)− 1) ≤ δ100
2/18,

since δm/6 · (log100(3m)− 1) decreases on [1002/3,+∞) for δ ∈ (0, 0.01). Finally, we have

Pr
[

Entropy-Elimination accepts Ĥt for some Ĥt ∈ [∆−2
[2] , Htmax ]

]

≤ 2δ4 + δ100
2/18 ≤ 3δ4.

Case 2: ∆−2
[s] ≤ Ĥ < ∆−2

[s−1] for some 3 ≤ s ≤ n.

In this case, Ĥ is between the complexity of As−1 and As. Our goal is to prove an upper bound

of δΩ(s) on the probability of returning a sub-optimal arm for each specific s. Summing over all s
yields a bound on the total probability. Our analysis depends on the ratio between Ĥ and

∑n
i=s∆

−2
[i] ,

the complexity of arms that are worse than As. Intuitively, when Ĥ is greater than the sum (Case

2-1), the contribution of the arms worse than As to the complexity is negligible. Thus we have to

rely on the fact that the s − 1 arms with the largest means will not be mis-deleted simultaneously

with high probability. On the other hand, when Ĥ is significantly smaller than the sum (Case 2-2),

we may apply the same analysis as in Case 1. Finally, if the value of Ĥ is between the two cases

(Case 2-3), it suffices to prove a relatively loose bound, since the number of possible values is small.
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Case 2-1: Ĥ > 300000s
∑n

i=s∆
−2
[i] .

In this case, our guess Ĥ is significantly larger than the total complexity of As, As+1, . . . , An,

yet Ĥ is smaller than the complexity of any one among the remaining arms. Thus intuitively,

in order to reject Ĥ , Entropy-Elimination should not mis-delete all the first s − 1 arms. More

formally, we have the following fact: in order for Entropy-Elimination to return a sub-optimal arm,

it must delete A1 along with at least s−3 arms among A2, A3, . . . , As−1 before round r∗, where r∗

is the group that contains As−1. In fact, since 4ε−2
r∗ = 4r

∗+1 ≥ ∆−2
[s−1] ≥ Ĥt, Entropy-Elimination

terminates before or at round r∗. If A1 is not deleted before round r∗, Entropy-Elimination can

only return A1 as the optimal arm, which is correct. If less than s−3 arms among A2, A3, . . . , As−1

are deleted before round r∗, for example Ai and Aj are not deleted (2 ≤ i < j ≤ s− 1), then both

of them are contained in Sr∗ . It follows that Entropy-Elimination does not return before round r∗.

We first bound the probability that A1 is deleted before round r∗. In order for this to happen,

some Elimination must return incorrectly. By Lemma B.6, the probability of this event is upper

bounded by

3000s

(

n
∑

i=s

∆−2
[i]

)

δ2/Ĥt.

In fact, we have a more general fact: the probability that a fixed set of k arms among {A2, A3, . . . , As−1}
together with A1 are deleted before round r∗ is bounded by

3000s

(

n
∑

i=s

∆−2
[i]

)

δ2/Ĥt · δ
2k = 3000s

(

n
∑

i=s

∆−2
[i]

)

δ2(k+1)/Ĥt.

The proof follows from combining the two inductions in the proof of Lemma B.6 and Lemma B.9,

and we omit it here. Since {A2, A3, . . . , As−1} contains s− 2 subsets of size s− 3, the probability

that Entropy-Elimination returns an incorrect answer on a particular guess Ĥt is at most

(s− 2) · 3000s

(

n
∑

i=s

∆−2
[i]

)

δ2(s−2)/Ĥt.

It remains to apply a union bound on all Ĥt that fall into this case. Recall that Ĥt > 300000s
∑n

i=s∆
−2
[i]

and Ĥt grows exponentially in t at a rate of 100. Thus the total probability is upper bounded by

∞
∑

k=0

3000s
(

∑n
i=s∆

−2
[i]

)

δ2(s−2)(s− 2)

100k · 300000s
∑n

i=s∆
−2
[i]

=
∞
∑

k=0

δ2(s−2)(s− 2)

100k+1
=

1

99
δ2(s−2)(s− 2).

Case 2-2: Ĥ <
∑n

i=s∆
−2
[i] /(78s).

In this case, we apply the technique in the proof of Case 1. We partition the sequence As, As+1, . . . , An

into m consecutive blocks B1, B2, . . . , Bm such that H(Bi) ∈
[

∆−2
[s] , 3∆

−2
[s]

]

. Let B≤i denote

B1 ∪ B2 ∪ · · · ∪ Bi. Since H(B1) = ∆−2
[s] ≤ Ĥ <

∑n
i=s∆

−2
[i] /(78s) < H(B≤m), there

exists a unique integer k ∈ [2,m] such that H(B<k) ≤ Ĥ < H(B≤k). It follows that Ĥ ∈
[

(k − 1)∆−2
[s] , 3k∆

−2
[s]

]

.

By Lemma B.12, in order for Entropy-Elimination to accept Ĥ , one of the following two events

happens: (a) Entropy-Elimination mis-deletes all arms in B≤k ∪ {A1, A2, . . . , As−1}; (b) the total
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complexity of mis-deleted arms among B>k is greater than H(B>k) − Ĥ . Since B≤k contains at

least k arms, by Lemma B.9, the probability of event (a) is bounded by δ2(s+k−1).

Again, we bound the probability of event (b) using the generalized Chernoff bound in Lemma B.11.

For each i = s, s + 1, . . . , n, define vi = ∆−2
[i] /(3∆

−2
[s] ) and Yi = vi · I[Ai is mis-deleted]. Define

random variables {Xi : i ∈ {1, 2, . . . ,m}} as

Xi =
∑

Aj∈Bi

Yj =
1

3∆−2
[s]

∑

A∈Bi

∆−2
A · I[A is mis-deleted].

Since H(Bi) ≤ 3∆−2
[s] , Xi is between 0 and 1. Let

X =
1

m

m
∑

i=1

Xi =
1

3m∆−2
[s]

n
∑

i=s

∆−2
[i] · I[Ai is mis-deleted]

denote the mean of these random variables. Since the events {Yi = vi} are δ2-quasi-independent,

we may apply Lemma B.11. We have

p =
δ2

m

n
∑

i=s

vi =
H(B≤m)δ2

3m∆−2
[s]

≤ δ2.

Here the last step applies H(B≤m) ≤ 3m∆−2
[s] . On the other hand, conditioning on event (b) (i.e., a

collection of arms in B>k with total complexity H(B>k)− Ĥ are mis-deleted), we have

X =
1

3m∆−2
[s]

n
∑

i=s

∆−2
[i] · I[Ai is mis-deleted]

≥
H(B>k)− Ĥ

3m∆−2
[s]

≥
(m− k)∆−2

[s] − 3k∆−2
[s]

3m∆−2
[s]

≥
m− 4k

3m
≥

m− 4m/(26s)

3m
≥

1

6
.

Here the third step follows from H(B>k) ≥ (m − k)∆−2
[s] and Ĥ ≤ 3k∆−2

[s] . The last line holds

since

k∆−2
[s] ≤ Ĥ ≤ H(B≤m)/(78s) ≤ m∆−2

[s] /(26s),

which implies k ≤ m/(26s). By Lemma B.11, we have

Pr[X ≥ 1/6] ≤ δm/6,

and thus the probability that Entropy-Elimination return an incorrect answer on Ĥt is bounded by

δ2(s+k−1) + δm/6.

It remains to apply a union bound on all valus of Ĥt that fall into this case. Since k ≥ 2 and the

values of k are distinct, the sum of the first term is bounded by

∞
∑

k=2

δ2(s+k−1) =
δ2s+2

1− δ2
≤ 2δ2s+2.
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For the second term, note that the number of different values of Ĥt between ∆−2
[s] and

∑n
i=s∆

−2
[i] /(78s) =

H(B≤m)/(78s) is bounded by

log100

[

H(B≤m)/(78s)/∆−2
[s]

]

+ 1 ≤ log100[m/(26s)] + 1.

In particular, if m < 26s, no Ĥt will fall into this case. So in the following we focus on the

nontrivial case that m ≥ 26s. Since The sum of the second term is at most

δm/6(log100[m/(26s)] + 1) ≤ δ13s/3 ≤ δ2s+2.

Here the first step follows from the fact that δm/6(log100[m/(26s)] + 1) decreases on [26s,+∞)
for all δ ∈ (0, 0.01) and s ≥ 3. The second step follows from s ≤ 3.

Therefore, the total probability that Entropy-Elimination returns incorrectly in this sub-case is

bounded by

2δ2s+2 + δ2s+2 ≤ 3δ2s+2.

Case 2-3: Ĥ ∈ [
∑n

i=s∆
−2
[i] /(78s), 300000s

∑n
i=s∆

−2
[i] ].

In this case, we simply bound the probability of returning an incorrect answer by the probability

that at least s − 2 arms in {A1, A2, . . . , As−1} are mis-deleted, which is in turn bounded by (s −
1)δ2(s−2) according to Lemma B.9. As in the argument of Case 2-1, suppose that two arms Ai and

Aj (1 ≤ i < j ≤ s − 1) are not mis-deleted. Let r∗ be the group that contain As−1. Then both Ai

and Aj are contained in Sr∗ . However, as 4ε−2
r∗ = 4r

∗+1 ≥ ∆−2
[s−1] ≥ Ĥt, Entropy-Elimination will

reject in round r∗, which implies that Entropy-Elimination will never return a sub-optimal arm.

Note that at most

log100
300000s

1/(78s)
+ 1 ≤ 2 log100 s+ 5 = log10 s+ 5

different values of Ĥ fall into this case. Therefore, the total probability is bounded by

δ2(s−2)(log10 s+ 5)(s− 1).

Combining Case 2-1 through Case 2-3 yields the following bound: the probability that Entropy-

Elimination outputs an incorrect answer for some 3 ≤ s ≤ n and Ĥ ∈ [∆−2
[s] ,∆

−2
[s−1]) is at most

n
∑

s=3

[

1

99
δ2(s−2)(s− 2) + 3δ2s+2 + δ2(s−2)(log10 s+ 5)(s− 1)

]

=

n
∑

s=3

δ2(s−2)

[

s− 2

99
+ 3δ6 + (log10 s+ 5)(s− 1)

]

≤
∞
∑

s=3

δ2(s−2)(log10 s+ 6)(s− 1)

≤δ2
∞
∑

s=3

0.012(s−3)(log10 s+ 6)(s− 1) ≤ 20δ2.

Case 3: Ĥt < ∆−2
[n] .
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Finally, we turn to the case that Ĥ is smaller than ∆−2
[n] . In this case, Complexity-Guessing

always rejects. Suppose An ∈ Gr∗ . Then in the first r∗ − 1 rounds of Entropy-Elimination,

Frac-Test always returns False. Thus no elimination is done before round r∗. Since Ĥt < ∆−2
[n] ≤

4ε−2
r∗ , Entropy-Elimination directly rejects when checking the if-statement at round r∗.

Case 1 through Case 3 together directly imply the lemma, as 3δ4 + 20δ2 < δ/3 for all δ ∈
(0, 0.01).

Appendix C. Analysis of Sample Complexity

Recall that E1 is the event that all calls of Frac-Test and Unif-Sampl in Entropy-Elimination

return correctly. We bound the sample complexity of our algorithm using the following two lemmas.

Lemma C.1 Conditioning on E1, the expected number of samples taken by Med-Elim and Elimination

in Complexity-Guessing is

O(H(Ent+ ln δ−1)).

Lemma C.2 Conditioning on E1, the expected number of samples taken by Unif-Sampl and

Frac-Test in Complexity-Guessing is

O(∆−2
[2] ln ln∆

−1
[2] polylog(n, δ

−1)).

The two lemmas above directly imply the following theorem.

Theorem C.3 Conditioning on E1, the expected sample complexity of Complexity-Guessing is

O
(

H(ln δ−1 + Ent) + ∆−2
[2] ln ln∆

−1
[2] polylog(n, δ

−1)
)

.

Theorems B.3 and C.3 together imply that Complexity-Guessing is a δ-correct algorithm for

Best-1-Arm, and its expected sample complexity is

O
(

H(ln δ−1 + Ent) + ∆−2
[2] ln ln∆

−1
[2] polylog(n, δ

−1)
)

conditioning on an event which happens with probability at least 1 − δ. However, to prove The-

orem 1.11, we need a δ-correct algorithm with the desired sample complexity in expectation (not

conditioning on another event). In the following, we prove Theorem 1.11 using a parallel simulation

trick developed in Chen and Li (2015).

Proof [Proof of Theorem 1.11] Given an instance I of Best-1-Arm and a confidence level δ, we

define a collection of algorithms {Ak : k ∈ N}, where Ak simulates Complexity-Guessing on

instance I and confidence level δk = δ/2k. Then we construct the following algorithm A:

• A runs in iterations. In iteration t, for each k such that 2k−1 divides t, A simulates Ak until Ak

requires a sample from some arm A. A draws a sample from A, feeds it to Ak, and continue

simulating Ak until it requires another sample. After that, A temporarily suspends Ak.

• When some algorithm Ak terminates, A also terminates and returns the same answer.
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We first note that if all algorithms in {Ak} are correct, A eventually returns the correct answer.

Recall that Ak is a δ/2k-correct algorithm for Best-1-Arm. Thus by a simple union bound, A is

correct with probability 1−
∑∞

k=1 δ/2
k = 1− δ, thus proving that A is δ-correct.

It remains to bound the sample complexity of A. According to Theorem C.3, there exist con-

stants C and m, along with a collection of events {Ek}, such that for each k, Pr[Ek] ≥ 1− δk, and

the expected number of samples taken by Ak conditioning on Ek is at most

C
[

H · (ln δ−1
k + Ent) + ∆−2

[2] ln ln∆
−1
[2] (ln

m n+ lnm δ−1
k )
]

≤C
[

H · (k ln δ + Ent) + ∆−2
[2] ln ln∆

−1
[2] (ln

m n+ (k ln δ−1)m)
]

≤km · T (I).

Here T (I) denotes C
[

H · (ln δ−1 + Ent) + ∆−2
[2] ln ln∆

−1
[2] (ln

m n+ lnm δ−1)
]

, the desired sam-

ple complexity. The first step follows from the fact that ln δ−1
k = ln δ−1 + k ≤ k ln δ−1 for

δ < 0.01.

Since different algorithms in {Ak} take independent samples, the events {Ek} are independent.

Define random variable σ as the minimum number such that event Eσ happens. Then it follows that

Pr[σ = k] ≤ Pr[E1 ∩ E2 ∩ · · · ∩ Ek−1] ≤
k−1
∏

i=1

δi ≤ 0.01k−1.

Let Tk denote the number of samples taken by Ak if it is allowed to run indefinitely (i.e., A does not

terminate). Conditioning on σ = k, we have E[Tk] ≤ km · T (I). Moreover, A terminates before or

at iteration 2k−1km · T (I). It follows that the number of samples taken by A is bounded by

∞
∑

i=1

⌊2k−1km · T (I)/2i−1⌋ ≤ 2k−1km · T (I)
∞
∑

i=1

2−(i−1) ≤ 2kkm · T (I).

Thus the expected sample complexity of A is bounded by

∞
∑

k=1

Pr[σ = k] · 2kkm · T (I)

≤
∞
∑

k=1

0.01k−1 · 2kkm · T (I)

≤100T (I)
∞
∑

k=1

0.02kkm = O(T (I)).

Therefore, A is a δ-correct algorithm for Best-1-Arm with expected sample complexity of

O(H · (ln δ−1 + Ent) + ∆−2
[2] ln ln∆

−1
[2] polylog(n, δ

−1)).

We conclude the section with the proofs of Lemmas C.1 and C.2.
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Proof [Proof of Lemma C.1] Suppose that Complexity-Guessing terminates after iteration t0.

According to Entropy-Elimination, for each 1 ≤ t ≤ t0, the algorithm takes O(Ĥt) = O(100t)
samples in Med-Elim and Elimination when it runs on Ĥt. As 100t grows exponentially in t, it

suffices to bound the expectation of the last term, namely 100t0 .

Let t∗ = ⌈log100H(Ent+ ln δ−1) + 3⌉. We first show that when t ≥ t∗, Entropy-Elimination

accepts Ĥt with constant probability. According to Remark B.7, the probability that Entropy-

Elimination rejects Ĥt is upper bounded by

256H

Ĥt

+
H(Ent+ ln δ−1 + ln(Ĥt/H))

100Ĥt

≤
256H

1003H
+

Ĥt/20

100Ĥt

≤ 1/200.

The first step follows from the following two observations. First, as Ĥt ≥ Ĥt∗ ≥ 1003H(Ent +
ln δ−1), we have H(Ent + ln δ−1) ≤ 100−3Ĥt. Second, since Ĥt/H ≥ 1003 and x ≥ 100 lnx

holds for all x ≥ 106, we have H ln(Ĥt/H) ≤ H ·
1

100
(Ĥt/H) = Ĥt/100.

Therefore, the probability that t0 equals t∗ + k is bounded by 200−k for all k ≥ 1. It follows

from a simple summation on all possible t0 that

E
[

100t0
]

=
∞
∑

t=1

100t Pr[t0 = t]

≤
t∗
∑

t=1

100t · 1 +
∞
∑

k=1

100t
∗+k · 200−k

= O
(

100t
∗
)

= O
(

H(Ent+ ln δ−1)
)

.

Proof [Proof of Lemma C.2] When Entropy-Elimination runs on guess Ĥt, Unif-Sampl takes

O(ε−2
r ln δ−1

r ) samples in the r-th round, while the number of samples taken by Frac-Test is

O
(

ε−2
r ln δ−1

r (θr − θr−1)
−2 ln(θr − θr−1)

−1
)

= O
(

ε−2
r ln δ−1

r (θr − θr−1)
−3
)

.

As the second term dominates the first, we focus on the complexity of Frac-Test in the following

analysis.

Recall that εr = 2−r, δr = δ/(50r2t2) ≥ δ2/(r2t2) and θr − θr−1 = (ct− r)−2/10. For each

t, suppose r ranges from 1 to rmax, then the complexity at iteration t is bounded by

rmax
∑

r=1

ε−2
r ln δ−1

r (θr − θr−1)
−3

≤2
rmax
∑

r=1

4r(ln δ−1 + ln r + ln t)[(ct− r)−2/10]−3

≤2000
rmax
∑

r=1

4r(ln δ−1 + ln r + ln t)(ct− r)6

=O(4rmax(ln δ−1 + ln t)(ct− rmax)
6)
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The last step follows from the observation that the last term dominates the summation, and the fact

ln rmax = O(ln t) due to Observation A.1.

Let random variable t0 denote the last t in the execution of Complexity-Guessing. As in the

proof of Lemma C.1, we define t∗ = ⌈log100H(Ent + ln δ−1) + 3⌉. We have also shown that

Pr[t ≥ t0 + k] ≤ 200−k for all k ≥ 1. Thus, the expected complexity incurred after iteration t∗ can

be bounded by the complexity at iteration t∗.

When t < log100∆
−2
[2] , it follows from rmax ≤ ct− 1 that the complexity is

O(4ct(ln δ−1 + ln t)) = O(100t(ln δ−1 + ln t)).

Summing over t = 1, 2, . . . , log100∆
−2
[2] yields

log100 ∆
−2
[2]

∑

t=1

100t(ln δ−1 + ln t) = O(∆−2
[2] (ln δ

−1 + ln ln∆−1
[2] )).

Clearly this term is bounded by the desired complexity.

When log100∆
−2
[2] ≤ t ≤ t∗, we choose rmax = log2∆

−1
[2] = log4∆

−2
[2] . Note that in fact the

algorithm may not always terminate before or at round rmax. However, since the probability that

the algorithm lasts rmax + k rounds is bounded by O(100−k), the contribution of those rounds to

total complexity is also dominated. Thus we have

t0
∑

t=log100 ∆
−2
[2]

O(4rmax(ln δ−1 + ln t)(ct− rmax)
6)

=

t0
∑

t=log100 ∆
−2
[2]

O(∆−2
[2] (ln δ

−1 + ln t)(ct− log4∆
−2
[2] )

6)

=O
(

t∗ − log100∆
−2
[2]

)

·O
(

∆−2
[2] (ln δ

−1 + ln t∗)(ct∗ − log4∆
−2
[2] )

6
)

=O
(

∆−2
[2] (ln δ

−1 + ln t∗)(ct∗ − log4∆
−2
[2] )

7
)

=O
(

∆−2
[2] (ln δ

−1 + ln lnH)(ln(H/∆−2
[2] ) + lnEnt+ ln δ−1)7

)

=O
(

∆−2
[2] ln ln∆

−1
[2] (ln δ

−1 + ln lnn)(lnn+ ln δ−1)7
)

=O
(

∆−2
[2] ln ln∆

−1
[2] polylog(n, δ

−1)
)

.

The fourth step follows from

O(ln t∗) = O(ln ln(H(Ent+ ln δ−1))) = O(ln lnH + ln lnEnt+ ln ln ln δ−1),

while the last two terms are dominated by ln δ−1 + ln lnH . The fifth step follows from the simple

observation that H/∆−2
[2] ≤ n and Ent = O(ln lnn).
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Appendix D. Lower Bound

In this section, we prove Lemma 4.1. We restate it here for convenience.

Lemma 4.1. (restated) Suppose δ ∈ (0, 0.04), m ∈ N and A is a δ-correct algorithm for SIGN-ξ.

P is a probability distribution on {2−1, 2−2, . . . , 2−m} defined by P (2−k) = pk. Ent(P ) denotes

the Shannon entropy of distribution P . Let TA(µ) denote the expected number of samples taken by

A when it runs on an arm with distribution N (µ, 1) and ξ = 0. Define αk = TA(2
−k)/4k. Then,

m
∑

k=1

pkαk = Ω(Ent(P ) + ln δ−1).

D.1. Change of Distribution

We introduce a lemma that is essential for proving the lower bound for SIGN-ξ in Lemma 4.1,

which is a special case of (Kaufmann et al., 2015, Lemma 1). In the following, KL stands for the

Kullback-Leibler divergence, while D(x||y) = x ln(x/y)+(1−x) ln[(1−x)/(1−y)] is the relative

entropy function.

Lemma D.1 (Change of Distribution) Let A be an algorithm for SIGN-ξ. Let A and A′ be two

instances of SIGN-ξ (i.e., two arms). PrA and PrA′ (EA and EA′) denote the probability law

(expectation) when A runs on instance A and A′ respectively. Random variable τ denotes the

number of samples taken by the algorithm. For all event E in Fσ, where σ is a stopping time with

respect to the filtration {Ft}, we have

EA[τ ]KL(A,A′) ≥ D

(

Pr
A
[E ]
∣

∣

∣

∣

∣

∣Pr
A′
[E ]

)

.

D.2. Proof of Lemma 4.1

We start with an overview of our proof of Lemma 4.1. For each k, we consider the number of

samples taken by Algorithm A when it runs on an arm with mean 2−k. We first show that with high

probability, this number is between Ω(4k) and O(4kαk). Then we apply Lemma D.1 to show that

the same event happens with probability at least e−αk when the input is an arm with mean zero.

Since the probability of an event is at most 1, we would like to bound the sum of e−αk by 1, yet

the problem is that the events for different k may not be disjoint. To avoid this difficulty, we carefully

select a collection of disjoint events denoted by S. We bound
∑m

k=1 e
−dαk (for appropriate constant

d) by
∑

k∈S e−αk based on the way we construct S. After that, we use the “change of distribution”

argument (Lemma D.1) to bound
∑

k∈S e−αk by 1. As a result, we have the following inequality

for appropriate constant M , which is reminiscent of Kraft’s inequality in coding theory.

m
∑

k=1

e−dαk ≤M . (10)

Once we obtain (10), the desired bound directly follows from a simple calculation.

Proof [Proof of Lemma 4.1] Fix m ∈ N. Recall that all arms are normal distributions with a

standard deviation of 1 and ξ is always equal to zero. 4kαk is the expected number of samples taken
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by A on an arm A with distributionN (2−k, 1). It is well-known that to distinguishN (2−k, 1) from

N (−2−k, 1) with confidence level δ, Ω(4k ln δ−1) samples are required in expectation. Therefore,

we have αk = Ω(ln δ−1) for all k. It follows that
∑m

k=1 pkαk = Ω(ln δ−1).
It remains to prove that

∑m
k=1 pkαk = Ω(Ent(P )) for all 0.04-correct algorithms. For each

µ ∈ R, let Prµ and Eµ denote the probability and expectation when A runs on an arm with mean µ
(i.e.,N (µ, 1)). Define random variable τA as the number of samples taken by A. Let c = 1/64. Let

Ek denote the event that A outputs “µ > 0” and τA ∈ [4kc, 16 · 4kαk]. The following lemma gives

a lower bound of Pr0[Ek].

Lemma D.2

Pr
0
[Ek] ≥

1

4
e−αk .

Our second step is to choose a collection of disjoint events from {Ek : 1 ≤ k ≤ m}. We have

the following lemma.

Lemma D.3 There exists a set S ⊆ {1, 2, . . . ,m} such that:

• {Ek : k ∈ S} is a collection of disjoint events.

•
∑m

k=1 e
−dαk ≤M

∑

k∈S e−αk for universal constants d and M independent of m and A.

It follows that
m
∑

k=1

e−dαk ≤M
∑

k∈S

e−αk ≤ 4M
∑

k∈S

Pr
0
[Ek] = 4M .

Here the first two steps follow from Lemma D.3 and Lemma D.2, respectively. The last step follows

from the fact that {Ek : k ∈ S} is a disjoint collection of events.

Finally, for a distribution P on {2−1, 2−2, . . . , 2−m} defined by P (2−k) = pk, we consider the

following optimization problem with variables α1, α2, . . . , αm:

minimize

m
∑

k=1

pkαk

subject to

m
∑

k=1

e−dαk ≤ 4M

The method of Lagrange multipliers yields that the minimum value is obtained when
∑m

k=1 e
−dαk =

4M and e−dαk is proportional to pk. It follows that αk = −
1

d
ln(4Mpk) and consequently

m
∑

k=1

pkαk ≥
1

d

m
∑

k=1

pk(ln(4M)−1 + ln p−1
k ) =

1

d
(Ent(P )− ln(4M)) .

Note that d and M are constants independent of m, distribution P and algorithm A. This completes

the proof.
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D.3. Proofs of Lemma D.2 and Lemma D.3

Finally, we prove the two technical lemmas.

Proof [Proof of Lemma D.2] Recall that our goal is to lower bound Pr0[Ek]. We first show that

Pr2−k [Ek] ≥ 1/2 and then prove the desired lower bound by applying change of distribution. Recall

that Ek = (A outputs µ > 0) ∧ (τA ∈ [4kc, 16 · 4kαk]). We have

Pr
2−k

[Ek] ≥ Pr
2−k

[A outputs µ > 0]− Pr
2−k

[

τA > 16 · 4kαk

]

− Pr
2−k

[

τA < 4kc
]

≥ 1− 0.04− 1/16− Pr
2−k

[

τA < 4kc
]

≥ 0.8− Pr
2−k

[

τA < 4kc
]

.

Here the second step follows from Markov’s inequality and the fact that E2−k [τA] = 4kαk.

It remains to show that Pr2−k

[

τA < 4kc
]

≤ 0.3. Suppose towards a contradiction this does not

hold. Then we consider the algorithm A
′ that simulates A in the following way: if A terminates

within 4kc samples, A′ outputs the same answer; otherwise A
′ outputs nothing. Let PrA′,µ denote

the probability when A
′ runs on an arm of mean µ. Moreover, let Ebadk denote the event that the

output is “µ > 0”. Then we have

Pr
A′,2−k

[Ebadk ] = Pr
2−k

[

Ebadk ∧ τA < 4kc
]

≥ Pr
2−k

[

τA < 4kc
]

− 0.04 > 0.26.

On the other hand, when we run A
′ on an arm with mean −2−k, we have

Pr
A′,−2−k

[

Ebadk

]

≤ Pr
−2−k

[

Ebadk

]

≤ 0.04.

Since A
′ never takes more than 4kc samples, it follows from Lemma D.1 that

2c = 4kc ·KL(N (2−k, 1),N (−2−k, 1))

≥ EA′,2−k [τA′ ] ·KL(N (2−k, 1),N (−2−k, 1))

≥ D

(

Pr
A′,2−k

[Ebadk ]
∣

∣

∣

∣

∣

∣ Pr
A′,−2−k

[Ebadk ]

)

≥ D(0.26||0.04) ≥ 0.2,

which leads to a contradiction as c = 1/64.

In the following, we lower bound Pr0[Ek] using change of distribution. Note that

D

(

Pr
2−k

[Ek]
∣

∣

∣

∣

∣

∣Pr
0
[Ek]

)

≤ 4kαk ·KL(N (2−k, 1),N (0, 1))

≤ 4kαk ·
1

2

(

2−k
)2

= αk/2.

Let θk = e−αk/4. We have

D(1/2||θk) =
1

2
ln

1

4θk(1− θk)
≥

1

2
ln

1

4θk
= αk/2.
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Since we have shown Pr2−k [Ek] ≥ 1/2, the two inequalities above imply

Pr
0
[Ek] ≥ θk =

1

4
e−αk .

Proof [Proof of Lemma D.3] We map each event Ek to an interval

Ik = [log4(4
kc) + 3, log4(16 · 4

kαk) + 3] = [k, k + log4 αk + 5].

By construction, two events Ei and Ej are disjoint if and only if their corresponding intervals, Ii and

Ij , are disjoint.

We construct a subset of {1, 2, . . . ,m} using the following greedy algorithm:

• Sort (1, 2, . . . ,m) into a list (l1, l2, . . . , lm) such that αl1 ≤ αl2 ≤ · · · ≤ αlm .

• While the list is not empty, we add the first element x in the list into set S. Let Sx = {y :
y is in the current list, and Ix ∩ Iy 6= ∅}. We remove all elements in Sx from the list.

Note that the way we construct S ensures that {Ek : k ∈ S} is indeed a disjoint collection

of events, which proves the first part of the lemma. Moreover, {Sk : k ∈ S} is a partition of

{1, 2, . . . ,m}. Thus we have
m
∑

k=1

e−dαk =
∑

k∈S

∑

j∈Sk

e−dαj . (11)

It suffices to bound
∑

j∈Sk
e−dαj by Me−αk for appropriate constants d and M . Summing over all

k yields the desired bound
m
∑

k=1

e−dαk ≤
∑

k∈S

e−αk .

According to our construction of S, for all j ∈ Sk we have αj ≥ αk. For each integer l ≥
⌊log4 αk⌋, we consider the values of j such that log4 αj ∈ [l, l + 1). Recall that the interval

corresponding to event Ek is Ik = [k, k + log4 αk + 5]. In order for Ij to intersect Ik, we must

have j ∈ [k − log4 αj − 5, k + log4 αk + 5]. Since log4 αj < l + 1, j must be contained in

[k − l − 6, k + log4 αk + 5], and thus there are at most (log4 αk + l + 12) such values of j.

Recall that since Ik = [k, k + log4 αk + 5] is nonempty, we have αk ≥ 4−5. In the following

calculation, we assume for simplicity that αk ≥ 1 for all k, since it can be easily verified that the

contribution of the terms with αk < 1 (i.e., l = −5,−4, . . . ,−1) is a constant, and thus can be
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covered by a sufficiently large constant M in the end. Then we have

∑

j∈Sk

e−dαj ≤
∞
∑

l=⌊log4 αk⌋

∑

j∈Sk

exp(−dαj)I[log4 αj ∈ [l, l + 1)]

≤
∞
∑

l=⌊log4 αk⌋

exp(−d4l)(log4 αk + l + 12)

= (log4 αk + 12)

∞
∑

l=⌊log4 αk⌋

exp
(

−d4l
)

+

∞
∑

l=⌊log4 αk⌋

l exp
(

−d4l
)

= (log4 αk + 12) ·O(exp(−dαk)) +O(exp(−dαk) · log4 αk)

≤M(log4 αk + 12) exp(−dαk)

= M exp(−dαk + ln log4 αk + ln 12) ≤Me−αk .

(12)

The first step rearranges the summation based on the value of l. The second step follows from the

observation that Sk contains at most log4 αk+ l+12 values of j corresponding to each l. The fourth

step holds since both summations decrease double-exponentially, and thus can be bounded by their

respective first terms. Then we find a sufficiently large constant M (which depends on d) to cover

the hidden constant in the big-O notation. Finally, the last step holds for sufficiently large d. In fact,

we first choose d according to the last step, and then find the appropriate constant M . Clearly the

choice of M and d is independent of the value of m and the algorithm A.

Remark D.4 Recall that all distributions are assumed to be Gaussian distributions with a fixed

variance of 1. In fact, our proof of Lemma 4.1 only uses the following property: the KL-divergence

between two distributions with mean µ1 and µ2 is Θ((µ1 − µ2)
2). Note that this property is indeed

essential to the “change of distribution” argument in the proof of Lemma D.2.

In general, suppose U is a set of real numbers and D = {Dµ : µ ∈ U} is a family of distribu-

tions with the following two properties: (1) the mean of distribution Dµ is µ; (2) KL(Dµ1 , Dµ2) ≤
C(µ1 − µ2)

2 for fixed constant C > 0. Then Lemma 4.1 also holds for distributions from D.

For instance, supposeD = {B(1, µ) : µ ∈ [1/2−ε, 1/2+ε]}, where ε ∈ (0, 1/2) is a constant

and B(1, µ) denotes the Bernoulli distribution with mean µ. Since

KL(B(1, p), B(1, q)) ≤
(p− q)2

q(1− q)
≤

(p− q)2

1/4− ε2
,

distribution family D satisfies the condition above with C =
4

1− 4ε2
. It follows that Lemma 4.1

also holds for Bernoulli distributions with means sufficiently away from 0 and 1.

Appendix E. Missing Proofs in Section 5

In this section, we present the technical details in the proofs of Lemma 5.5 and Lemma 5.6.

These are essentially identical to the proofs of Lemmas B.4 and B.5, which either use a potential

function or apply a charging argument.
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E.1. Proof of Lemma 5.5

Proof [Proof of Lemma 5.5 (continued)] Recall that P (r, Sr) is defined as the probability that,

given the value of Sr at the beginning of round r, at least one call to Elimination returns incorrectly

at round r or later rounds, while Unif-Sampl and Frac-Test always return correctly. We prove

inequality (2) by induction: for any Sr that contains the optimal arm A1,

P (r, Sr) ≤
δ

Ĥ

(

128C(r, Sr) + 16M(r, Sr)ε
−2
r

)

,

where

C(r, Sr) :=
∞
∑

i=r−1

|Sr ∩Gi|
i+1
∑

j=r

ε−2
j +

rmax+1
∑

i=r

ε−2
i ,

and

M(r, Sr) := |Sr ∩G≤r−2|.

Note that if |Sr| = 1, the algorithm directly terminates at round r, and the inequality clearly holds.

Thus, we assume |Sr| ≥ 2 in the following.

Base case. We prove the base case r = rmax + 2, where rmax = maxGr 6=∅ r. Note that

C(r, S) = 0 and M(r, S) = |S| − 1 for r = rmax + 2 and any S ⊆ I with A1 ∈ S.

Let random variable r∗ be the smallest integer greater than or equal to r, such that Med-Elim

is correct at round r∗. Note that for k ≥ r, Pr [r∗ = k] ≤ 0.01k−r. We claim that conditioning

on r∗ = k, if Elimination is correct between round r and round k, the algorithm will terminate

at round k + 1. Consequently, the probability that Elimination fails in some round is bounded by

the probability that it fails between round r and k. This allows us to upper bound the conditional

probability by
∑k

i=r δ
′
i.

Now we prove the claim. By Observation 5.8, the lower threshold used in Frac-Test at round

k, denoted by clowk , is greater than or equal to µ[1] − εk. Since k ≥ r = rmax + 2,

|{A ∈ S : µA < clowk }| ≥ |{A ∈ S : µA < µ[1]−εk}| = |S∩G≤k−1| ≥ |S∩G≤rmax+1| = |S|−1 ≥ 0.5|S|.

Thus by Fact 5.3, Frac-Test is guaranteed to return True in round k, and the algorithm calls

Elimination. Then, by Observation 5.9, it holds that dlowk ≥ µ[1]−0.5εk. Assuming that Elimination

returns correctly at round k, the set returned by Elimination, denoted by Sk+1, satisfies |{A ∈
Sk+1 : µA < dlowk }| < 0.1|Sk+1|, which implies

|Sk+1| − 1 ≤ |Sk+1 ∩G≤k| = |{A ∈ Sk+1 : µA < µ[1] − 0.5εk}| < 0.1|Sk+1|.

Thus we have |Sk+1| = 1, which proves the claim.

Summing over all possible k yields that the probability that Elimination returns incorrectly is

upper bounded by

∞
∑

k=r

Pr [r∗ = k]

k
∑

j=r

δ′j ≤
∞
∑

k=r

0.01k−r
k
∑

j=r

|Sj |ε
−2
j

Ĥ
δ

≤
4

3
·
|Sr|ε

−2
r δ

Ĥ

∞
∑

k=r

0.01k−r · 4k−r

≤
2|Sr|ε

−2
r δ

Ĥ
≤

δ

Ĥ

(

128C(r, Sr) + 16M(r, Sr)ε
−2
r

)

.
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Inductive step. Assuming that the inequality holds for r + 1 and all Sr+1 that contains A1,

we bound the probability P (r, Sr). We first note that both C and M are monotone in the following

sense: C(r, S) ≤ C(r, S′) and M(r, S) ≤M(r, S′) for S ⊆ S′. Moreover, we have

C(r, Sr)− C(r + 1, Sr) =
∞
∑

i=r−1

|Sr ∩Gi|ε
−2
r + ε−2

r = ε−2
r (|Sr ∩G≥r−1|+ 1). (13)

We consider the following three cases separately:

• Case 1. Med-Elim is correct and Frac-Test returns True.

• Case 2. Med-Elim is correct and Frac-Test returns False.

• Case 3. Med-Elim is incorrect.

Let P1 through P3 denote the conditional probability of the event that Elimination fails at some

round while Unif-Sampl and Frac-Test are correct in Case 1 through Case 3.

Upper bound P1. Assuming that Frac-Test returns True, procedure Elimination will be called

at round r. By a union bound, we have P1 ≤ P (r + 1, Sr+1) + δ′r, where Sr+1 is the set of arms

returned by Elimination. According to the inductive hypothesis, the monotonicity of C, and identity

(13),

P (r + 1, Sr+1) ≤
δ

Ĥ

(

128C(r + 1, Sr+1) + 16M(r + 1, Sr+1)ε
−2
r+1

)

≤
δ

Ĥ

(

128C(r + 1, Sr) + 64M(r + 1, Sr+1)ε
−2
r

)

=
δ

Ĥ

[

128C(r, Sr) + ε−2
r (64M(r + 1, Sr+1)− 128|Sr ∩G≥r−1| − 128)

]

.

(14)

By Observation 5.9, dlowr ≤ µ[1] − εr. If Elimination returns correctly at round r, we have

M(r+1, Sr+1) = |{A ∈ Sr+1 : µA < µ[1]−εr}| ≤ |{A ∈ Sr+1 : µA < dlowr }| < 0.1|Sr+1| ≤ 0.1|Sr|.

For brevity, let Nsma, Ncur and Nbig denote |Sr ∩G≤r−2|, |Sr ∩Gr−1| and |Sr ∩G≥r|, respectively.

Note that |Sr| = Nsma +Ncur +Nsma + 1. Then we have

P1 ≤ P (r + 1, Sr+1) + δ′r

≤
δ

Ĥ

[

128C(r, Sr) + ε−2
r (|Sr|+ 64M(r + 1, Sr+1)− 128|Sr ∩G≥r−1| − 128)

]

≤
δ

Ĥ

[

128C(r, Sr) + ε−2
r (7.4(Nsma +Ncur +Nbig + 1)− 128(Ncur +Nbig + 1))

]

≤
δ

Ĥ

[

128C(r, Sr) + 7.4ε−2
r Nsma

]

.
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Upper bound P2. Since Frac-Test returns True, procedure Elimination is not called. Then

P2 ≤ P (r + 1, Sr+1) = P (r + 1, Sr). By inequality (14),

P2 ≤
δ

Ĥ

[

128C(r, Sr) + ε−2
r (64M(r + 1, Sr)− 128|Sr ∩G≥r−1| − 128)

]

≤
δ

Ĥ

[

128C(r, Sr) + ε−2
r (64(Nsma +Ncur)− 128(Ncur +Nbig + 1))

]

≤
δ

Ĥ

[

128C(r, Sr) + 64ε−2
r (Nsma −Ncur −Nbig − 1)

]

≤
δ

Ĥ
· 128C(r, Sr).

Here the last step holds since by Observation 5.8, clowr ≥ µ[1] − 2εr, and thus Frac-Test returns

False implies that

Nsma = |Sr ∩G≤r−2| = |{A ∈ Sr : µA < εr−1}| < 0.5|Sr| = (Nsma +Ncur +Nbig + 1)/2.

Upper bound P3. By (14) and M(r + 1, Sr+1) ≤M(r + 1, Sr), we have

P3 ≤ P (r + 1, Sr+1) + δ′r

≤
δ

Ĥ

[

128C(r, Sr) + ε−2
r (64M(r + 1, Sr)− 128|Sr ∩G≥r−1| − 128 + |Sr|)

]

=
δ

Ĥ

[

128C(r, Sr) + ε−2
r (64(Nsma +Ncur)− 128(Ncur +Nbig)− 128 + (Nsma +Ncur +Nbig + 1))

]

≤
δ

Ĥ

[

128C(r, Sr) + 65ε−2
r Nsma

]

.

Recall that Case 3 happens with probability at most 0.01, and Nsma = |Sr∩G≤r−2| = M(r, Sr).
Therefore, we obtain the following bound on P (r, Sr), which finishes the proof.

P (r, Sr) ≤ 0.01 ·
δ

Ĥ

[

128C(r, Sr) + 65ε−2
r Nsma

]

+ 0.99 ·
δ

Ĥ

[

128C(r, Sr) + 7.4ε−2
r Nsma

]

≤
δ

Ĥ

(

128C(r, Sr) + 16ε−2
r Nsma

)

≤
δ

Ĥ

(

128C(r, Sr) + 16M(r, Sr)ε
−2
r

)

.

E.2. Proof of Lemma 5.6

Proof [Proof of Lemma 5.6 (continued)] Recall that for each round i, ri is defined as the largest

integer r such that |G≥r| ≥ 0.5|Si|, and

Ti,j =











0, j < ri,

ε−2
i

(

ln δ−1 + ln
H

|Gj |ε
−2
i

)

, j ≥ ri

is the number of samples that each arm in Gj is charged at round i.
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We first show that
∑

j |Gj |Ti,j is an upper bound on |Si|ε
−2
i

(

ln δ−1 + ln
H

|Si|ε
−2
i

)

, the num-

ber of samples taken by Med-Elim and Elimination at round i. Recall that |G≥ri | ≥ 0.5|Si|. By

definition of Ti,j ,

∑

j

|Gj |Ti,j =
∑

j≥ri

|Gj |ε
−2
i

(

ln δ−1 + ln
H

|Gj |ε
−2
i

)

≥ |G≥ri |ε
−2
i

(

ln δ−1 + ln
H

|Si|ε
−2
i

)

≥
1

2
|Si|ε

−2
i

(

ln δ−1 + ln
H

|Si|ε
−2
i

)

.

Then we prove the upper bound on
∑

i E[Ti,j ], the expected number of samples that each arm

in Gj is charged. For i ≤ j + 1, we have the straightforward bound

E[Ti,j ] ≤ ε−2
i

(

ln δ−1 + ln
H

|Gj |ε
−2
i

)

. (15)

For i ≥ j + 2, we note that Ti,j is non-zero only if j ≥ ri, which implies that |G≥j+1| < 0.5|Si|.
We claim that this happens only if Med-Elim fails between round j + 2 and round i − 1, which

happens with probability at most 0.01i−j−1. In fact, suppose Med-Elim is correct at some round k,

where j + 2 ≤ k ≤ i − 1. By Observations 5.8 and 5.9, clowk ≥ µ[1] − 2εk and dlowk ≥ µ[1] − εk,

where clow and dlow are the two lower thresholds used in Frac-Test and Elimination. If Frac-Test

returns False, by Fact 5.3, we have

|Sk ∩G<k−1| = {A ∈ Sk : µA < µ[1] − 2εk} ≤ {A ∈ Sk : µA < clowk } < 0.5|Sk|.

Since Sk+1 = Sk in this case, it follows that |Sk+1 ∩ G<k−1| < 0.5|Sk+1|. If Frac-Test returns

True and the algorithm calls Elimination, by Fact 5.4,

|Sk+1 ∩G<k| = |{A ∈ Sk+1 : µA < µ[1] − εk}| ≤ |{A ∈ Sk+1 : µA < dlowk }| < 0.1|Sk+1|.

In either case, we have |Sk+1 ∩G≥k−1| > 0.5|Sk+1|, and thus,

|G≥j+1| ≥ |G≥k−1| ≥ |Sk+1 ∩G≥k−1| > 0.5|Sk+1| ≥ 0.5|Si|,

which contradicts |G≥j+1| < 0.5|Si|. Therefore, for i ≥ j + 2, we have

E[Ti,j ] = Pr [Ti,j > 0] · ε−2
i

(

ln δ−1 + ln
H

|Gj |ε
−2
i

)

≤ 0.01i−j−1 · ε−2
i

(

ln δ−1 + ln
H

|Gj |ε
−2
i

)

.

(16)

By (15) and (16), a direct summation gives

∑

i

E[Ti,j ] = O

(

ε−2
j

(

ln δ−1 + ln
H

|Gj |ε
−2
j

))

.
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