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IRIS Gebäude, Zum Grossen Windkanal 6, 12489 Berlin, Germany

Alessandro.Sfondrini@physik.hu-berlin.de

Abstract

We review the recent progress towards applying worldsheet integrability techniques to
the AdS3/CFT2 correspondence to find its all-loop S matrix and Bethe-Yang equations.
We study in full detail the massive sector of AdS3 × S3 × T4 superstrings supported by
pure Ramond-Ramond (RR) fluxes. The extension of this machinery to accommodate
massless modes, to the AdS3 × S3 × S3 × S1 pure-RR background and to backgrounds
supported by mixed background fluxes is also reviewed. While the results discussed here
were found elsewhere, our exposition is original.
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1 Introduction

The holographic conjecture [1] is a major advance in theoretical Physics. Its study, which is
mainly performed in the framework of string theory [2–5], has generated an incredible number
of results. Our focus here is on a particular instance of holography, that is the duality between
gravity (superstring) theories on backgrounds involving three-dimensional anti-de Sitter space
(AdS3) and supersymmetric two-dimensional conformal field theories (CFT2). The interest of
this case is evident, due to the special properties of AdS3 gravity and CFTs in two dimensions.

This particular duality has been considered since the early days of holography and of
AdS/CFT, and has been investigated by several techniques in the past fifteen years. It is
however a recent realisation that AdS3/CFT2 may be amenable to the integrability approach
that proved very successful especially in the case of AdS5/CFT4. More specifically, in ref. [6]
Babichenko, Stefański and Zarembo have shown that the non-linear σ model (NLSM) action
that describes the dynamics of free strings on maximally supersymmetric AdS3 backgrounds
supported by Ramond-Ramond (RR) fluxes yields an integrable classical field theory. This
prompted a rapid progress in adapting the S-matrix integrability techniques that worked so
well for AdS5/CFT4 to this lower-dimensional and less supersymmetric case. Our main aim
here is to review this progress in a self-contained and accessible way.

Before starting with our review, we will first briefly overview some well-established facts
about the AdS3/CFT2 duality. We will then sketch the general aspects of the spectral problem
in AdS/CFT, as well as briefly present the historical development of the S-matrix integrability
approach in this context. The reader who is familiar with these topics may want to skip this
introductory discussion, and jump to the end of this chapter where we present the plan of the
review.

1.1 AdS3 gravity and holography

Gravity on AdS3 should be dual to a conformal field theory on a two-dimensional cylinder,
that is the boundary of AdS3 in global coordinates. The continuous isometries of AdS3 form
the special orthogonal group SO(2, 2), while the CFT2 has an infinite-dimensional symmetry
algebra, given by two copies of the Virasoro algebra. The relation between these two sets of
symmetries was elucidated by Brown and Henneaux in ref. [7]. The group SO(2, 2) is the one
generated by the Virasoro elements that can be defined globally. The remaining symmetry
generators are only asymptotic symmetries of AdS3, and acting with them does not leave the
gravity vacuum invariant, as it modifies the stress-energy tensor.

An interesting feature of three-dimensional gravity is that, despite being much simpler
than its higher-dimensional counterparts, it admits black-hole solutions, that exist precisely
in the case of negative curvature. Such black holes, first found by Bañados, Teitelboim and
Zanelli (BTZ) [8, 9], are essentially given by a discrete quotient of AdS3 and as such are
locally isometric to the maximally symmetric background. Therefore, they have no curvature
singularity. However, they do have (inner and outer) horizons and an ergosphere, see ref. [10]
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2 Chapter 1. Introduction

for a review. Such solutions exist also in supersymmetric extensions of the gravity theory
(supergravities), and preserve supersymmetry as long as they have vanishing temperature [11–
13].

Indeed supersymmetry comes naturally into the picture if we want to obtain AdS3 (and, as
we will see, the dual CFT2) from string theory, in the context of the celebrated D1-D5 system
of branes that played a pivotal role in the investigation of black-hole microstates [14,15]. The
AdS/CFT setup for the D1-D5 system was first detailed in the seminal paper by Maldacena [3],
see also ref. [16] for a review of that setup and ref. [17] for a more detailed review of the D1-
D5 system and an extensive list of references concerning early investigations thereof. Let us
briefly overview some features of the D1-D5 system in AdS/CFT [18–22].

We start by compactifying four directions in target space on1 a four-torus T4. Then let us
consider Q1 D1 branes along a non-compact direction and Q5 D5 branes that extend along the
same non-compact direction and wrap the four compact ones. This configuration is invariant
under2 so(1, 1), the algebra of boosts along the string, and under so(4) rotations in the space
orthogonal to the branes. Such a brane configuration preserves eight complex supersymmetry
generators, that can be decomposed chirally with respect to so(1, 1), yielding N = (4, 4)
supersymmetry.3 In the near-horizon limit, this geometry reduces to AdS3 × S3 × T4, where
the curvature radii of the warped spaces are equal,

R2
AdS3

= R2
S3 =

√
Q1Q5 , (1.1)

while the volume of the T4 is Q1/Q5. The picture further simplifies in the ’t Hooft (or
planar) limit of the duality, whereby the strings propagate freely in the fixed AdS3 × S3 × T4

background. It is worth noticing that the superisometries of this background are given—up
to some abelian factors—by

psu(1, 1|2)L ⊕ psu(1, 1|2)R , (1.2)

which is the subalgebra of N = (4, 4) which can be defined globally—in analogy with so(2, 2)
and Virasoro. The two copies of psu(1, 1|2) carry labels “L” (left) and “R” (right) to identify
their respective chiralities with respect to so(1, 1) algebra of boosts along the non-compact
D-brane direction—that is, the chirality in the dual CFT. In total, they amount to sixteen real
supercharges, as expected—this is half of the maximum possible amount of supersymmetry,
which is instead attained in the case of the AdS5 × S5 background.

If we consider the same brane construction but focus on its low-energy excitations, we will
find a supersymmetric Yang-Mills theory (SYM) with su(2)L ⊕ su(2)R R symmetry (coming
from the aforementioned so(4) isometries). This theory contains both vector and hypermulti-
plets, that have different transformation properties under the chiral R symmetry. The presence
of matter in both the fundamental and adjoint representations of the gauge group is notewor-
thy, as make it this gauge theory less special and more realistic than N = 4 SYM. Another
very interesting feature of this AdS/CFT construction is that the gauge theory description
(being two-dimensional) is not conformal, and has a non-trivial flow. This mean that its
low-energy limit is some to-be-determined CFT2.

Luckily, the brane construction offers some guidance in characterising this CFT2. Let us
focus on SYM the D5 branes, and view the D1 branes as SU(Q5) instantons, with instanton
number Q1 [24]. The instanton configurations are parametrised by moduli, and fluctuations
around a given configuration can be understood as fluctuations of the moduli along the time
direction or along the non-compact direction of the D1-D5 branes. Therefore, the low-energy

1More generally, these could be compactified on a K3 manifold, i.e. essentially on a discrete quotient of T4.
2We will denote Lie algebras and superalgebras in Gothic letters.
3For a review on the related supergravity solutions, see ref. [23].



1.1. AdS3 gravity and holography 3

dynamics of this system is the 1+1 dimensional QFT taking values in the space of instanton
moduli space. Such a space is a deformation of the symmetric product of Q1Q5 copies of T4,
i.e. (T4)Q1Q5/SQ1Q5 where SN is the symmetric group on N elements [3, 18, 20–22]. The
symmetric-product orbifold description has been validated by a number of comparison with
the dual string theory, including comparison of moduli spaces and of the sprectrum of protected
operators [25–28], as well as more recently of correlation functions [29–32].

It is also worth mentioning another closely related but somewhat more involved background
that preserves the same amount of supersymmetry, i.e. sixteen real supercharges. This is given
by AdS3 × S3 × S3 × S1, provided that the curvature radii of the two spheres spaces satisfy

1

R2
S3(1)

=
α

R2
AdS3

,
1

R2
S3(2)

=
1− α
R2

AdS3

, 0 < α < 1 . (1.3)

The parameter α gives the relative size of the two spheres. In the limits α→ 0 or α→ 1 either
sphere becomes flat and, up to compactifying back to a torus, we go back to the AdS3×S3×T4

background. The AdS/CFT correspondence for AdS3×S3×S3×S1 backgrounds has also been
studied [33–38], but it remains difficult to characterise its dual CFT2. It is known that its
symmetry algebra should be the large N = (4, 4) superconformal algebra [39–43], which differs
from the one of AdS3×S3×T4 by the presence of two additional su(2) subalgebras. The rigid
part of such infinite dimensional symmetry is given by the exceptional Lie superalgebra [44]

d(2, 1;α)L ⊕ d(2, 1;α)R . (1.4)

Sending α → 0 or α → 1 amounts to a contraction of the Lie superalgebra, which indeed
yields (1.2) up to abelian factors.4

It is very interesting to note that similar constructions can be realised in terms of NS5
branes and fundamental strings, rather than D branes. In fact, such a setup is S-dual to the
D1-D5 system. The advantage in this case is that the near-horizon limit of the NS-brane
system is supported only by NSNS fluxes. In this case, worldsheet CFT techniques can be
efficiently used to study the propagation of strings there [45–50]. Let us be slightly more
specific. In absence of RR fluxes, the worldsheet theory can be described nicely in the NS-R
formalism. The bosonic theory on AdS3 × S3 amounts to a Wess-Zumino-Witten (WZW)
model with gauge group SL(2) × SU(2). The non-compact SL(2) factor presented a major
obstacle to the CFT approach, that has however been overcome by Maldacena and Ooguri
yielding a solution of that sector of the theory [48–50]. Fermions can also be included in the
picture, which leads to a supersymmetric SL(2)× SU(2) WZW model. Its spectrum can also
be investigated by considering it as a supergroup coset σ model, as it was done in ref. [51]
by taking advantage of the hybrid formalism introduced in [52] in the hope to extend the
approach to backgrounds with RR fluxes.

The super-coset description is the most interesting for our purposes. Super-cosets are
known to be a useful tool for writing down target-space supersymmetric string actions in
flat space [53] as well as in curved AdS backgrounds supported by RR fluxes5, and to study
their classical properties. However, such an approach does not immediately offer a good way
to quantise the theory: quantisation can be done in light-cone gauge, which becomes quickly
very cumbersome. In practice, even when restricting to the ’t Hooft limit, observables can only
be explicitly computed at the first orders of a perturbative expansion in the string tension.

Therefore, it would appear that there are little chances to study the D1-D5 system with-
out resorting to any (non-perturbative and non-planar) S duality. Studying a background

4It should be noted that such a limit, as we will see in chapter 8, requires great care.
5Most notably, the AdS5×S5 background can be described as the super-coset PSU(2, 2|4)/SO(1, 4)×SO(5).

As shown by Metsaev and Tseytlin [54], this can be used to write down the Green-Schwarz string action.
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supported by mixed RR and NSNS fluxes—which can be constructed by considering D- and
NS-branes simultaneously—appears even harder [52, 55, 56]. It is in this context that the
notion of integrability can save the day, and provide an effective tool to study the spectrum
of such theories, at least as long as we are in the ’t Hooft limit. Remarkably, this seem to
be possible for both the AdS3 × S3 × T4 and AdS3 × S3 × S3 × S1 backgrounds, and even
for mixed-flux backgrounds. Before discussing how that happens, let us the introduce the
observables that we are interested in computing in the ’t Hooft limit, i.e. let us present the
the spectral problem of AdS/CFT.

1.2 The spectral problem

From now on, and in all of this review, let us restrict to AdS/CFT in the ’t Hooft limit. We are
dealing with free strings, so that the natural observables are the string energy levels. These
are the eigenvalues {Et.s.

j } of the generator Ht.s. of time-translations in the target space6. For
some string states (such as the vacuum) these are protected by supersymmetry, but in general,
they are a non-trivial function of the dimensionless string length ℓs/R, due to the fact that the
free strings probe the curved AdSn+1×M9−n geometry. In the ’t Hooft limit [57] of the CFT,
the leading observables are the two-point functions, whose form is constrained by conformal
symmetry—schematically

〈Oj(x)Oj(y)〉 =
1

|x− y|2∆j
, (1.5)

where ∆j is the eigenvalue of the generator of dilatations D acting on Oj, and is in general
a non-trivial function of the ’t Hooft coupling λ. The spectrum {∆j} should then be dual to
the string energy spectrum.

Perturbative calculations in the string worldsheet theory will give Et.s.
j at ℓs/R≪ 1, while

in the CFT we would find ∆j at λ≪ 1, i.e. in the opposite regime. The aim of integrability
is to give a description valid at any intermediate coupling. This can usually be set-up by
considering either side of the AdS/CFT duality,7 but in our case it will be more convenient to
focus more on the string side of it.

String theory in light-cone gauge

Let us consider a theory of closed (super)strings only. In absence of string interactions, the
worldsheet of the string is a cylinder of circumference ℓ, and the classical string theory is
defined by an action of the form

Sbos = −
h

2

∫
dτ

∫ ℓ/2

−ℓ/2

dσ
√
|γ| γαβ∂αXµ∂βX

ν Gµν(X) , (1.6)

for the bosons, which should be supplemented by fermionic terms—here we avoid doing so to
keep the discussion simple. Here h ≈ R2/ℓ2s is a coupling constant, γαβ is the metric on the
worldsheet, Xµ can be thought of as coordinates in the target space, whose metric is Gµν . For
more complicated backgrounds, an antisymmetric Bµν(X) field can also appear, but we will
not include it here.

6More precisely, this is true when using global coordinates for AdS.
7While the description arising on the CFT side played a very important role in the development of inte-

grability for AdS/CFT, it should be noted that it is only from the worldsheet theory point of view that the
so-called wrapping effects can be accounted for.
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The action (1.6) is invariant under reparametrisations of the worldsheet and Weyl rescal-
ings, and should be gauge fixed. To briefly illustrate the strategy, let us assume for the moment
that the target space is flat, Gµν = ηµν .

8 Then, if we introduce light-cone coordinates

X± = X0 ±X9 , (1.7)

we can both eliminate the world-sheet metric γαβ and set

X+(σ, τ) = τ , (1.8)

where we ignore the winding terms. In this way, one can use the Virasoro constraints

δ S

δ γαβ
= 0 , (1.9)

to solve for X− in terms of the remaining fields. This still leaves one non-linear constraint,
the so-called level-matching condition, which enforces periodicity of the strings along σ and
amounts to the vanishing of the worldsheet momentum P.

This gauge-fixed theory of free strings (or rather, a suitable supersymmetric version on
certain curved backgrounds) is what we want to quantise. In the bosonic sector we are left
with eight physical fields Xj defined on a cylinder. The physical Hilbert space will consist of
the excitation of these eight fields subject to the level-matching condition, which is realised
as a projection on the Hilbert space

P |{M1}, . . . , {M8}〉phys. = 0 , (1.10)

where {Mj} are label the excitations of each field. A preferred basis is the one of eigenstates
of the worldsheet Hamiltonian H, that is the operator generating time evolution on the world-
sheet in the sense of Stone’s theorem. The spectrum we eventually want to compute is the
one corresponding to time evolution in the target space. However, by light-cone gauge fixing
we have related the worldsheet time τ to X+ and hence to X0, that is the target-space time.
From this it follows that the eigenvalues of Ht.s. are simply related to the ones of H, and it
will be enough to compute the latter.

It is worth recalling that the spectrum of physical states will organise itself into multiplets
of the symmetry algebra of the theory. Even if we did not construct the string Hamiltonian,
it is immediate to realise that in the flat case the physical fields Xj, j = 1, . . . , 8 will appear
in (1.6) in SO(8)-invariant combinations. This is the manifest symmetry of the theory in light-
cone gauge. However, as there are massive string excitations, whose little group is SO(9),
we expect that the theory should enjoy a larger symmetry, and that the so(8) Lie algebra
multiplets should arrange themselves into irreducible representations of so(9). This illustrates
how in general the manifest symmetries of the light-cone gauge-fixed theory form a subalgebra
of the whole symmetry algebra, which in fact for flat space should be the full so(1, 9) when
we also take boosts into account.

In practice, for curved supersymmetric backgrounds there will be several complications:
the action will involve fermions and non-linear terms. As we mentioned, an useful approach
is to rewrite the action (or part of it) as a coset action of a suitable supergroup [54]. Still,
the gauge fixed Hamiltonian will be highly non-linear, so that only perturbative quantisation
will be possible. A way around this complication—valid as long as we can identify asymptotic
states—is to find a (hopefully unique) S matrix that preserves the symmetries of the theory,
and use that to find the spectrum, as we will detail.

8We will discuss the case of curved AdS backgrounds at length in the next chapter.
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The decompactification limit and the worldsheet S matrix

In the light-cone gauge, the worldsheet is no longer invariant under rescalings. In fact, a
more careful analysis would reveal that the size ℓ of the worldsheet is fixed in terms of the
momentum conjugated to the light-cone coordinate X−. It is interesting to consider the limit
ℓ→∞, whereby the worldsheet cylinder decompactifies to a plane. In this case, we are dealing
with a two-dimensional QFT with well-defined asymptotic states. In particular, the spectrum
can be described in terms of M -particle states on the worldsheet created by raising operators
from a vacuum,

|p1, . . . , pn〉(in,out)α1,...,αM
= a† (in,out)α1

(p1) · · · a† (in,out)αn
(pn) |0〉 , (1.11)

where the in and out raising operators a† (in,out) satisfy canonical commutation relations with
the in and out lowering operators a(in,out). If we want to consider physical states, we will have
to impose the level matching condition,

P |p1, . . . , pn〉(in,out)α1,...,αM
= (p1 + · · ·+ pn) |p1, . . . , pn〉(in,out)α1,...,αM

= 0 . (1.12)

We will call a state satisfying eq. (1.12) “on-shell”, as opposed to a generic (off-shell) state.
In either case, the action of the Hamiltonian is very simple

H(in,out) |p1, . . . , pn〉(in,out)α1,...,αM
= E({αj, pj}) |p1, . . . , pn〉(in,out)α1,...,αM

,

E({αi, pi}) =
M∑

j=1

ωαj
(pj) ,

(1.13)

where ωα(p) is the dispersion relation, and mα accounts for the fact that particles of different
flavor may have different mass. In the case of a relativistic theory we should find

ωα(p) =
√
m2

α + p2 . (1.14)

However, for AdS background it has been found that light-cone gauge fixing breaks the rela-
tivistic invariance on the worldsheet so that the dispersion relation takes a lattice-like form,
i.e. schematically

ωα(p) =

√
m2

α + 4h2 sin2 p

2
, (1.15)

where h is the coupling constant.
Given that the two sets of raising and lowering operators {a† (in), a(in)} and {a† (out), a(out)}

both satisfy canonical commutation relations, by virtue of the Stone-von Neumann theorem
they must be related by an unitary operator S satisfying

S† S = S S† = I , S |0〉 = |0〉 , a† (in) = S a† (out)S† , a(in) = S a(out)S† , (1.16)

from which one immediately finds that S is the familiar S matrix that relates in- and out-states,

|p1, . . . , pn〉(in)α1,...,αM
= S |p̃1, . . . , p̃M̃〉(out)α̃1,...,α̃M̃

. (1.17)

In practice, finding the S matrix is hard—it can be done perturbatively only at one- or
two-loop order for the models of our interest. We will circumvent this problem by dealing
with theories whose S matrix can be determined by the symmetries of the theory—that is,
integrable theories. We will discuss at length what this means further on in this review, see in
particular chapter 3.
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Let us assume that we somehow have found the all-loop complete S matrix and dispersion
relation. Equipped with these, and remembering that we are dealing with a QFT in 1+1
dimensions, we can start looking at some observables. Let us prepare a one-particle state
|p〉(in)α of definite momentum and flavour. In absence of external fields such a stable asymptotic

state will satisfy |p〉(in)α = |p〉(out)α and its energy will be

E = ωα(p) , (1.18)

so that the spectrum is continuous. If, however, we take into account the fact that the
worldsheet is a cylinder of size ℓ, we should also impose the spatial periodicity of the wave-
function, which amounts to the quantisation condition for the momentum

ei p ℓ = 1 , (1.19)

resulting in a discrete spectrum. Let us now take a state |p, q〉(in)α,α consisting of two particles
of the same flavour α, with momenta p > q so that they are asymptotically well separated.
Let us also assume that they scatter elastically without producing any other particle—which
is generally not the case in a QFT. Then the corresponding out-state will contain again two
particles of the same flavour and momenta p, q. If we now impose periodicity, however, we
have to account for the fact that each particle underwent a phase shift due to the scattering,
so that we have

ei p ℓ S(p, q) = 1 , ei q ℓ S(q, p) = 1 , (1.20)

where S(p, q) is the diagonal matrix element for the flavour α, Sαα
αα(p, q). Inserting the solutions

for p, q into the dispersion relations (1.13) will yield again a discrete energy spectrum.
Since we are interested in the physical spectrum, we must impose the level matching

condition (1.12), finding that there are no non-trivial one-particle states in the on shell theory,
and that for two particles one must have q = −p. If one were able to follow a similar recipe for
any number of particles of arbitrary flavours, then he would have a description of the string
spectrum. It turns out that this is possible provided that S “factorises”, i.e. provided that
a M -body scattering event can be understood as a sequence of two-body ones. Again, this
is a typical feature of integrable theories, which amounts to satisfying the celebrated Yang-

Baxter equation. Then, the M -particle analogue of eq. (1.20) are the Bethe-Yang equations

(BY equations), that are schematically of the form

ei pk ℓ

M∏

j 6=k

S(pk, pj) = 1 for k = 1, . . . ,M , (1.21)

where S(p, q) is a suitable S-matrix element. Equations of this type where first found in the
context of QFTs by Yang [58], inspired by the ansatz that Bethe proposed in the context of
quantum spin chains [59].

A spin-chain picture

The appearance of the periodic dispersion relation (1.15) and the fact that the spectrum can
be described in terms equations of the Bethe ansatz type strongly hint that the underlying
theory may have an alternative description in terms of a discrete model, perhaps of a quantum
spin chain.

It has been long known that some NLSMs are equivalent to certain quantum spin chains, see
e.g. chapter 5 in ref. [60]. For instance, a coset model similar to the one emerging from string
theory but with target space S2 is equivalent to the long wave-lenght limit of the Heisenberg
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spin chain. The Heisenberg chain is perhaps the prototype of a quantum spin chain, defined
on ℓ sites periodically identified and with Hamiltonian

H = µ

ℓ∑

j=1

(
1

4
− ~Sj · ~Sj+1

)
, (1.22)

where ~Sj is a spin at the jth site and µ is a coupling constant.
The sphere S2 may be part of the target space for our string NLSM, e.g. in the case

of AdS3×S3×M4. Therefore the spectrum of the Heisenberg chain could somehow be part of
the one that we wish to compute. For several integrable strings backgrounds this is actually
the case [61–66], and for instance in the case of AdS5/CFT4 the first evidence of integrability
was discovered in four-dimensional N = 4 SYM theory precisely in form of the Heisenberg
spin chain Hamiltonian by Minahan and Zarembo [67]. Let us briefly review that prototypical
picture.

The operator dual to the string Hamiltonian is proportional to the generator of dilata-
tions D in the CFT. String states are dual to local operators which in the ’t Hooft limit take
the form e.g.

O = tr
[
Z Z ∂µX ∂µZ ψ · · · ψ̄ Z

]
, (1.23)

where X,Z, ψ, ψ̄ are some of the (bosonic and fermionic) fundamental fields appearing in the
CFTn Lagrangian, which are all evaluated at the same spacetime point, and the trace ensures
gauge invariance. The spectral problem now reads

DO = ∆O . (1.24)

Each of the fields that compose O are identified by their transformation properties under the
n-dimensional superconformal algebra. In fact, we can think of them as of “spins” of that
algebra, so that O becomes a state of the periodic (due to the trace) spin chain.

In particular, in the case of N = 4 SYM, if we restrict to two su(2)-charged scalar fields
X,Z, we have that an operator O is equivalent to a state |Ψ〉

O = tr
[
Z Z X Z X · · ·X Z

]
←→ |Ψ〉 = |↓ ↓ ↑ ↓ ↑ · · · ↑ ↓〉 , (1.25)

where the arrows indicate su(2) spins, S3 |↓〉 = −1
2
|↓〉 and S3 |↑〉 = +1

2
|↑〉. The breakthrough

of ref. [67] was realising that at 1-loop in the weakly coupled CFT, the dilatation operator
D coincides with H of (1.22) up to suitably identifying the coupling constants. This is par-
ticularly remarkable because H enjoys a large number of symmetries that make the explicit
solution of the spectral problem possible in terms of a Bethe ansatz.

As it turns out, the whole spectral problem of N = 4 SYM can be related to a spin chain
for the superconformal algebra, and solved by considering an asymptotic spin-chain S matrix

[68, 69], in a procedure that strongly resembles the one described for the string worldsheet
theory. The first step is to consider the limit of a long spin chain, ℓ → ∞ and effectively
decompactify the chain9. We then consider collective excitations of definite momentum, called
spin waves or magnons of the form e.g.

|p〉 =
∞∑

j=1

ei p j |↓ ↓ ↓ ↓ · · · ↓ ↓ ↑ ↓ ↓ · · ·〉 , (1.26)

9In simpler cases such as the Heisenberg chain we might not need to first consider the ℓ → ∞ limit, and
the Bethe ansatz would be exact for any ℓ. However, one peculiarity of the spin chains arising from AdS/CFT
is that the Hamiltonian may couple states of different length—in the case of N = 4 SYM this can be seen
from the presence of a Yukawa interaction in the SYM Lagrangian. Then the Bethe ansatz description is only
asymptotic, i.e. valid for ℓ→∞.
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t

(a) Real process

t

(b) Virtual process

Figure 1.1: Two processes involving exchange of real or virtual particles that wrap around the
worldsheet cylinder, and therefore are not captured by the Bethe-Yang equations.

where the overturned spin sits at the jth site. Notice that we have implicitly picked a vacuum

state of downward spins. This operation is akin to the light-cone gauge fixing and breaks
the manifest symmetry of the model. Remarkably, it still may happen that the S matrix
corresponding to the scattering of two magnons is uniquely fixed by the residual symmetries,
and the multiparticle scattering “factorises” in the sense alluded to earlier. In that case, we
can proceed to write down asymptotic Bethe ansatz equations of the form (1.21) by requir-
ing that M magnons live on a periodic spin chain of finite length ℓ. Finally, requiring that
the states are invariant under cyclic permutations precisely reproduces the level-matching con-
straint (1.12), as we will see in chapter 6 where we will consider in detail a similar construction
for AdS3/CFT2.

The above picture can be seen to hold for several instances of AdS/CFT. However, in the
cases where a Lagrangian description of the CFT cannot be efficiently used, as it happens
in AdS3/CFT2, it is less clear how the spin chain emerges and how to relate it to the CFT
observables. Still, if such a description exists it may be used as a tool to investigate the CFT
side of the duality, as well as to give an alternative albeit similar way to solve the spectral
problem. One may speculate that a spin-chain description may emerge just by considering a
discretisation of the string worldsheet, but it is hard to make such a statement rigorous. In
fact, very recently for AdS3/CFT2 there appeared evidence that this may not always be the
case, as we will describe in the last chapter of this review.

The spectrum of the finite-size theory

The Bethe-Yang equations (1.21) do not describe the spectrum of the finite-size AdS/CFT
duality [70]. They rather describe the spectrum of a QFT defined on a plane, after periodic
identification of its spatial direction. To appreciate the difference between the two cases, let
us consider the processes of figure 1.1. There we depict the propagation of (possibly virtual)
particles wrapping the worldsheet cylinder, which cannot be accounted for by the S matrix
derived in the decompactified theory. In terms of the spin chain, a similar effect arises due to
the presence of long-range interactions—eventually, for a finite-length chain, such interactions
wrap around the chain, invalidating the asymptotic Bethe ansatz approach.

In the QFT context, it is possible to estimate that wrapping effects are exponentially
suppressed when ℓ is large, but nonetheless they are to be taken into account. One possibility,
pioneered by Lüscher [71, 72], is to treat them as (perturbative) corrections to the spectrum
predicted by the BY equations.

One can do even better by fully exploiting the integrability properties of S and the fact
that, while directly dealing with (integrable) S matrices in finite volume is even hardly self-
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consistent, doing so at finite temperature is quite natural. The thermodynamic Bethe ansatz
(TBA) is a tool to compute the free energy of finite-temperature integrable QFTs [73]. One
describes the thermal bath of particles in the grand canonical ensemble by taking into account
all the particles appearing in the BY equations and their bound states, and requiring thermo-
dynamic equilibrium. This means that the number of excitations is large, and their densities
are fixed. Consequently, starting from the logarithm of eq. (1.21) one then obtains a set of
non-linear coupled integral equations10.

Zamolodchikov realised that this can be used to find the ground-state energy of a finite-size
theory from the free energy of a finite-temperature one [74], provided that these are related
by exchanging the role of time and space by two Wick rotations—a “mirror” transformation.
This procedure does not introduce any additional complication in the case of a relativistic
theory, but is not straightforward in non-relativistic models. This can be seen by considering
the effects of the mirror transformation

p 7→ −i E = pmirror , E 7→ −i p = Emirror , (1.27)

on the dispersion relation E2 = ωj(p)
2, which leaves invariant the relativistic case (1.14)

yields an entirely new relation when one uses eq. (1.15). In fact, the mirror transformation
produces a novel mirror theory. The thermodynamic properties of such ancillary theory yield
the finite-size properties of the original one.

1.3 The integrability approach to AdS/CFT

Let us briefly overview the developments that lead to successfully employing integrability to
the spectral problem in AdS/CFT.

The case of AdS5/CFT4

The best understood example of integrability in AdS/CFT is the case of type IIB superstrings
on AdS5 × S5 and N = 4 SYM. This is unsurprising since such string theory background
preserves as much supersymmetry as possible, and N = 4 SYM can be easily studied in
perturbation theory. A detailed review of the string side of the story can be found in ref. [75],
while a broader account and an extensive list of references can be found in ref. [76].

The first hints of integrability were found on the gauge theory side. Early on, it was no-
ticed by Lipatov, building up on the existence of integrable structure in Yang-Mills and QCD,11

that that such structures and the extended supersymmetry of gauge theory were closely con-
nected [85, 86]. Later on, integrability was rediscovered by Minahan and Zarembo [67], by
explicitly investigating the one-loop spectrum of the dilatation operator. As we mentioned
in the previous subsection, the key point was to recognise that such operator could be in-
terpreted as an integrable spin-chain Hamiltonian—again closely related to the Heisenberg
one. It was then realised that similar structures persist at higher loop order in the ’t Hooft
coupling [87–89].

10More precisely, one obtains such an integral equation for each species of particle configurations appearing
in the thermodynamic limit. Identifying those usually requires some assumptions that go under the name of
string hypothesis.

11Such structures emerge in particular when considering the reggeised hihg-energy gluon dynamics. This is
described by the BFKL Hamiltonian [77–81] which was found to be integrable and related to a generalisation
of the Heisenberg model [82, 83], see also ref. [84].
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Almost in parallel, similar investigations were performed on the string side. As we men-
tioned, the light-cone gauge Hamiltonian there is highly non-linear [90–92]. However, exploit-
ing the Metsaev-Tseytlin [54] coset description of the Green-Schwarz action [93, 94], it was
shown that the worldsheet theory is integrable as a classical field theory [95]. Classical in-
tegrability allowed to consider special solutions of the equations of motion [96–98], including
“giant magnons” [99, 100], and to write down generalised Landau-Lifshitz equations [61–66].
These are string solitons that can be thought of as semi-classical limit of spin chain magnons
in the dual theory. In particular, they feature the non-linear dispersion relation (1.15), which
was also found in refs. [92,101]. While classical integrability is in no way guaranteed to carry
over to the quantum theory, in the case of AdS5 × S5 it was possible to find indications that
this is the case [102,103].12

Eventually, integrability was established as an all-loop feature of the AdS5/CFT4 duality,
at least up to including wrapping effects. This was first realised on the gauge theory side,
where an integrable all-loop S matrix was proposed [68, 105, 106], and then on the string side
as well [107]. In fact, the two descriptions can be precisely mapped into one another [108].

As for wrapping effects, it was shown [109] that the approach of Lüscher [71, 72] can be
extended to the AdS5 × S5 NLSM, and in fact that the whole mirror TBA approach can be
applied, yielding an exact description of the spectrum. Following the reasoning of ref. [70],
the mirror model was constructed [110]. Since this is related to the original theory by an
analytic continuation [111], its all-loop S matrix is automatically integrable. Then, the mirror
TBA equations (or equivalently, the “Y system”) were worked out [112–118]. These can also be
simplified to a finite set of non-linear integral equations [119,120], ultimately taking the form of
a “quantum spectral curve” [121,122]. All these descriptions by construction yield a spectrum
organised in multiplets of the superconformal algebra [123], for which finite-size effects are
essential [124]. The study of spectroscopy for AdS5/CFT4 by either analytical [125–131],
or entirely numerical methods [132–134] has been initiated and both provided substantial
evidence in favour of the holographic duality and demonstrated the power of the integrability
approach.

The case of AdS3/CFT2

The first indication of integrability for these backgrounds was the presence of giant magnons
solutions to AdS3×S3×T4 equations of motions [135,136].This is not entirely surprising since
the AdS5 × S5 solutions are contained in ❘× S2, which can be embedded in AdS3 × S3.

The confirmation of classical integrability was found in ref. [6] by relating the Green-
Schwarz string action in a specific κ gauge to an appropriate supercoset [55,137,138], which—
up to some U(1) factors—is

PSU(1, 1|2)L × PSU(1, 1|2)R
SO(1, 2)× SO(3) , (1.28)

for the (pure Ramond-Ramond) AdS3 × S3 × T4 background and by

D(2, 1;α)L ×D(2, 1;α)R
SO(1, 2)× SO(3)× SO(3) , (1.29)

for the (pure Ramond-Ramond) AdS3 × S3 × S3 × S1 one. This was then generalised to
arbitrary κ gauges in ref. [139]. Another indication of integrability emerged in studying the
Gubser-Klebanov-Polyakov “spinning string” classical solution [140].

12 Integrability was later identified also by studying string theory in the pure-spinor formulation, see ref. [104]
for a review.
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A peculiar feature of these backgrounds is the presence of massless excitations in the
string spectrum, which could not be straightforwardly included in the integrability machinery.
For this reason, the efforts to determine the integrable S matrix and Bethe-Yang equations
focused on the sub-sector where only massive asymptotic states are involved. After some initial
investigations based on semiclassical integrability properties [141, 142], these were fixed in
refs. [143,144] for AdS3×S3×S3×S1 and in refs. [145,146] for AdS3×S3×T4. As for the massless
modes, they were initially considered in a weakly-coupled spin chain description [147] and in
the semi-classical string integrability picture [148]. Only very recently an all-loop S matrix
for all fundamental (massive and massless) string modes was proposed [149, 150]. These
investigations were supplemented by a number of perturbative or semiclassical calculations
that, as we will see in chapter 7, confirmed the integragrability picture [151–161]. Even if
perturbative calculations of non-protected quantities in the symmetric-produt CFT are also
possible [162], it is still not completely clear how integrability would enter the gauge or CFT
side of the duality [163].

It is also very interesting to note that the AdS3 backgrounds discussed above remain
classically integrable even when supported by a mixture of RR and NSNS fluxes, as it was
recently shown by Cagnazzo and Zarembo [164]. This lead to very rapid developments in their
study [165–168], to which we will come back in chapter 8.

1.4 Plan of the review

As we have seen, the recent progress towards integrability for AdS3/CFT2 touches upon a
number of different models. To keep our discussion simple, we discuss in full detail what is
perhaps the simplest instance, i.e. the massive sector of pure-RR AdS3×S3×T4 superstrings.
This will be done both from the point of view of the worldsheet theory and of a spin-chain,
which as we will show are precisely related to one another. After detailing that prototypical
case, it will be relatively straightforward to describe the more general ones, which indeed share
several features with it. Our presentation will often deviate from the original one in an effort
to be clearer and more effective.

In chapter 2 we will discuss the worldsheet theory of free strings in AdS3 × S3 × T4 in
terms of a coset NLSM. We will focus on the massive excitations and derive their symmetries.
This follows closely ideas that were first developed for AdS5×S5 [92,107], but highlights some
novel unexpected features of the AdS3 × S3 × T4 background. Some of the results presented
here have also been found, among other things, in refs. [149,150] by different techniques. Our
presentation here strives to be as pedagogical as possible by drawing a parallel with the case
of AdS5 × S5.

In chapter 3 we will review the main ideas behind integrability, and in particular factorised
scattering approach of Zamolodchikov. We will then use the symmetries found in the previous
chapter to find the two-body S matrix. This can be determined up to two scalar functions—the
dressing factors—and satisfies several non-trivial consistency checks, most notably the Yang-
Baxter equation, which is a necessary requisite for integrability. The results of this chapter
were first found in [143,145], while the presentation follows [75,108].

Chapter 4 is devoted to the study of crossing symmetry. Firstly we will discuss crossing
invariance for worldsheet excitations, which will be a generalisation of the familiar relativistic
one [169]. Then we discuss a proposal for crossing-invariant dressing factors, originally put
forward in ref. [146], and discuss some of their analytic properties, notably their compatibility
with the expected massive bound-state spectrum of the theory. This is a relevant check because
crossing symmetry alone does not fix the form of the dressing factors completely.
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We will switch gears in chapter 5, and introduce a spin-chain picture, constructed in such
a way as to be dual to the worldsheet theory of the preceding chapters. Again the focus will
be on its symmetries, and it will lead us to a two-magnon S matrix. We will relate it in a
precise way to the worldsheet S matrix, and discuss the notion analogue to crossing in the
spin-chain picture. This chapter follows more closely the original approach [143,145] in which
the S matrix was found.

In chapter 6 we will see in some detail how the S matrix we computed can be used to find
the string energy spectrum up to the so-called wrapping corrections. To this end, we introduce
in quite some detail the asymptotic “coordinate” Bethe ansatz for both the spin-chain (which
was originally worked out in refs. [144,145]) and worldsheet pictures. Since we will be dealing
with non-diagonal S matrices, we will need to use the nesting procedure in order to write the
Bethe equations. As we will show, the Bethe ansatz in the spin-chain and worldsheet picture
describe the same physical spectrum.

In chapter 7 we will discuss how the integrability construction was put to the test. Up
to that point we will have assumed the worldsheet theory to be integrable at the quantum
level, and derived an S matrix based on that assumption. We will now check that S matrix,
including the proposed dressing factors, against perturbative and semiclassical calculations in
the worldsheet theory [6, 151–160, 165] up to one-loop and including a non-trivial two-loop
consistency check, finding complete agreement. Unfortunately it is much harder to perform
such comparisons with the perturbative expansion of the dual CFT2, where therefore some
further validation remains necessary.

In chapter 8, the final chapter, we will overview several directions in which the topics dis-
cussed here can be and are being evolved. The most natural one is the inclusion of the massless
fundamental excitations to the integrability picture [147–150]. Another is the extension of in-
tegrability to the other maximally supersymmetric AdS3 background, i.e. AdS3×S3×S3×S1.
For that case, the all-loop massive S matrix and Bethe ansatz was proposed in [143, 144] up
to the dressing factors, but several open questions remain—notably what happens in the limit
where one of the spheres blows up to give back AdS3 × S3 ×T4, up to a compactification. Fi-
nally, we will discuss the AdS3 backgrounds supported by a mixture of Ramond-Ramond and
Neveu-Schwarz-Neveu-Schwarz fluxes [164–168], which may be a novel important playground
to further our understanding of AdS/CFT integrability.

A note on notation

The bulk of the material presented here has already appeared elsewhere [143–146,149,150,165–
167]. To streamline our presentation, our notations here may differ from some of the original
ones. Furthermore, for the same reason we sometimes use slightly different convention and
normalisations—most notably for the S matrix, which after all is a matrix and as such depends
on the choice of basis. We also should warn the reader that some quantities that appear both
in the worldsheet picture and in the spin-chain one (such as the S matrix, the generators of
the symmetry algebra, etc.) will be indicated by the same letter, despite not having the same

value in the two cases. We do so because these objects play the very same role and are almost

identical in the two pictures, and because we feel that introducing different notations for each
of them would be an unnecessary burden. When confusion may arise, we do clarify in the text
what quantities we are referring to.
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2 The non-linear σ model and its symmetries

In this chapter we will analyse in more detail some features of the NLSM on AdS3 × S3 ×T4.
In particular, we will write down its gauge-fixed action, restricting to massive excitations for
simplicity. Out of that we will work out the symmetries of the theory, which will be important
in the following chapters.

As anticipated in the introduction, we want to study our theory in the light-cone gauge.
However, the technique to do so will be different and slightly more involved than the one
sketched there. In fact, in AdS backgrounds it is impossible to impose conformal and light-cone
gauge on top of each other [90,170]. The way around this issue is to use first-order formalism,
which has the further advantage naturally producing the Hamiltonian, whose eigenvalues are
what we are after.

Firstly, we will demonstrate this approach in the case of a bosonic NLSM on AdS3 ×
S3 × T4. This will allow us to describe the strategy in some detail, without dealing with the
complications due to fermions. In order accommodate these, we could take two routes

1. Consider the Green-Schwarz (GS) action for the superstring [93, 94]. This is known up
to quartic order in the fermions [171], which would give the complete action for the case
of our interest.

2. Following the approach used to study classical integrability in ref. [6], write the super-
string action as a coset action

PSU(1, 1|2)× PSU(1, 1|2)
SO(1, 2)× SO(3) × U(1)4 . (2.1)

The former method is completely general, but makes it harder to see how the isometries are
realised. This is instead manifest in the coset formulation, which however requires a specific
choice of which fermions we consider physical (the κ-gauge fixing). This choice is not suitable
for studying massive and massless excitations at the same time. Since our focus will be on the
massive excitations only, we will use the coset action, and work out its symmetries. As we will
discuss in chapter 8, the GS approach has been used in ref. [149,150] precisely to understand
the role played by the massless excitations.

2.1 Bosonic strings in light-cone gauge

To exemplify the procedure we will follow later, let us first consider a bosonic NLSM action
for closed strings, of the form

S = −h
2

∫ ℓ/2

−ℓ/2

dσ dτ γαβ∂αX
µ∂βX

ν Gµν(X) , (2.2)

15
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where we consistently set to zero the Fradkin-Tseytlin R(2) term. Notice further that we

replaced the worldsheet metric by the conformally invariant combination γαβ
√
|γ| → γαβ. Let

us introduce the conjugate momenta

pµ =
δS

δẊµ
= −hγ0β∂βXνGµν(X) , (2.3)

where Ẋµ = ∂0X
µ. Then the action can be rewritten as [90, 170]

S =

∫ ℓ/2

−ℓ/2

d2σ

(
pµẊ

µ +
γ01

γ00
C1 +

1

2h γ00
C2
)
, (2.4)

where
C1 = pµX

′µ , C2 = Gµνpµpν + h2GµνX
′µX ′ν , (2.5)

with X ′µ = ∂1X
µ. The action (2.4) is no longer manifestly covariant on the worldsheet.

However, due to the Virasoro constraints we have that it must be

C1 = 0 , C2 = 0 , (2.6)

so that the γαβ plays the role of a Langrange multiplier and will not appear in the Hamiltonian
after (2.6) is imposed.

Let us specialise to the background AdS3× S3×T4. Let t be the time-coordinate in AdS3

and φ be an angle in S3. Translations and rotations in these directions are isometries, to which
correspond two conserved charges

Ht.s. = −
∫ ℓ/2

−ℓ/2

dσ pt , J =

∫ ℓ/2

−ℓ/2

dσ pφ , (2.7)

where pt, pφ are conjugate momenta. The target space energy Ht.s. is what, after quantisa-
tion, will give us the energy spectrum we are interested in, and J is a distinguished angular
momentum. Our of these two coordinates, we can construct light-cone ones [172]1

x− = φ− t , x+ =
1

2

(
φ+ t

)
, (2.8)

and denote by xi the remaining coordinates. The light-cone gauge-fixing condition is then

x+ = τ , p+ = 1 , (2.9)

where we assumed that there is no winding.2 We will always restrict to this case, which is
the only one where the large-tension expansion of the string is well-defined. Our coordinate
choice implies that the light-cone momentum is p+ = 1

2
(pφ − pt), so that the corresponding

Noether charge is P+ = 1
2
(J+Ht.s.). In addition, the eigenvalue P+ of P+ is

P+ =

∫ ℓ/2

−ℓ/2

dσ p+ = ℓ =⇒ ℓ =
1

2

(
J + Et.s.

)
. (2.10)

This shows explicitly how in light-cone gauge, invariance under worldsheet rescaling is lost,
and in fact the worldsheet radius is fixed in term of physical charges. Moreover, relating

1In fact, a more general coordinate choice is possible [91, 173], where x+ = aφ+ (1− a)t.
2One can account for a winding of the form x+(r) − x+(−r) = 2πW , with W ∈ ❩ by allowing for a term

linear in σ in x+.
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t with τ will allow us to compute the target space energy Et.s. in terms of the worldsheet
Hamiltonian.

One of the advantages of light-cone gauge fixing is that spurious degrees of freedom can be
eliminated, which makes quantisation easier. In particular, we can get rid of the metric γαβ

by a suitable gauge fixing, whose precise form is irrelevant in the first-order formalism, and
eliminate the longitudinal modes of the string x±, p±. To this end we solve C1 = 0 for x′−

x′− = −pjx′k . (2.11)

Then, p− can be eliminated by solving the non-linear constraint C2 = 0. We have, plugging in
the light-cone gauge conditions

C2 =
1

4
(Gφφ −Gtt)(p2− + 4) + (Gφφ +Gtt)p− +

h2

4
(Gφφ −Gtt)x

′
−
2

+Gjkpjpk + h2Gjkx
′jx′k ,

(2.12)

where Gtt, Gφφ, Gjk are metric elements and x′− is a function of the transverse fields as in
eq. (2.11). Formally inverting the constraint equation gives

p− = p−
(
xj, x′j, pj

)
. (2.13)

Plugging these expressions into the action (2.4) and dropping the total time derivative ẋ−, we
find

S =

∫ ℓ/2

−ℓ/2

d2σ
(
pjẋ

j + p−
(
xj, x′j, pj

))
, (2.14)

whence we can immediately identify the worldsheet Hamiltonian density

H = −p−
(
xj, x′j, pj

)
, (2.15)

and the Poisson structure {
xk(σ), pj(σ̃)

}
= δkj δ(σ − σ̃) . (2.16)

For H to be positive, p− should be taken to be the negative root of (2.12). We also see that
the worldsheet and target-space energies are related by

H = Ht.s. − J , (2.17)

where H is the worldsheet Hamiltonian. When eliminating the longitudinal degrees of freedom
we did not solve for x−, but only for its derivative x′−. For consistency, we have to impose
that x− is periodic

0 =

∫ ℓ/2

−ℓ/2

dσ x′− = −
∫ ℓ/2

−ℓ/2

dσ pjx
′j . (2.18)

This last condition, the level-matching constraint, is difficult to impose before quantisation.
Instead, we will impose it on the Hilbert space of the quantum theory. To this end, notice
that the worldsheet momentum, i.e. the Noether charge corresponding to σ-translations, is
given precisely by

P =

∫ ℓ/2

−ℓ/2

dσ pjx
′j . (2.19)

This should not be confused with the Noether charge P+, which is constant. Therefore, the
physical states in the quantum theory will be the ones annihilated by the (quantum) worldsheet
momentum.
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Perturbative expansion of the action

It is still not straightforward to quantise the Hamiltonian H =
∫
dσH, which comes from

inverting the non-linear constraint C2 and is highly interacting. In order to proceed, we need
to systematically expand it. A way of doing so is to suitably redefine fields and coordinates
so that the Hamiltonian density can be written as

H = H2 +
1

h
H4 +

1

h2
H6 + . . . , (2.20)

where H2 is quadratic in the fields, H4 quartic, etc., and take a large-h limit. One such
procedure is the Berenstein-Maldacena-Nastase (BMN) limit [174], whereby

P+ →∞ , h→∞ ,
P+

h
fixed. (2.21)

The action then admits a perturbative expansion in 1/P+.
Alternatively, one can first consider a decompactification limit

P+ →∞ , h fixed, (2.22)

which is enough to identify asymptotic states and define an S matrix, since ℓ = P+. Then, to
perform perturbative calculations we can take a large-tensions expansion in 1/h. Building on
that, one can go on and construct a perturbative Hamiltonian and S matrix, see e.g. ref. [75]
for more details. The advantage is this approach is to distinguish the decompactification of
the worldsheet from the expansions of the Hamiltonian. In what follows, we will adopt this
latter procedure.

Evaluation of the quadratic Hamiltonian

The line element of this geometry reads

ds2 = −Gtt dt
2 +Gφφ dφ

2 + fii dzi + gii dyi + dX2
i , (2.23)

where we denoted the transverse coordinates by z1, z2 for AdS3, by y1, y2 for S3 and by
X1, . . . , X4 for the torus. The metric elements are

Gtt =

(
4 + |z|2
4− |z|2

)2

, Gφφ =

(
4− |y|2
4 + |y|2

)2

, fii =

(
4

4− |z|2
)2

, gii =

(
4

4 + |y|2
)2

. (2.24)

From (2.12), we see that it is convenient to perform the rescaling

σ → hσ , xj → h−1/2xj , pj → h−1/2pj . (2.25)

The first replacement suitably rescales the σ-derivatives, and the other two implement a field
expansion. In (2.12), keeping track of all the sub-leading terms for now, and picking the
appropriate solution have

p− = 2
Gtt +Gφφ

Gtt −Gφφ
+ 2

√
4GφφGtt + (Gtt −Gφφ)H⊥ + h2

4
(GttGφφ +GφφGtt − 2)x2−

Gφφ −Gtt
, (2.26)

with

H⊥ =
1

h

(
δjkpjpk + δjkx

′jx′k
)
+O

( 1
h2
)
. (2.27)
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Expanding to leading order gives

H2 =
1

2

(
|py|2 + |y′|2 + |y|2

)
+

1

2

(
|pz|2 + |z′|2 + |z|2

)
+

1

2

(
|pX |2 + |X ′|2

)
. (2.28)

This is the (relativistic) Hamiltonian of four massive excitations (the four transverse coordi-
nates in AdS3 × S3) and four massless ones (the tours coordinates). By supersymmetry, we
expect the superstring action at quadratic order to be given by the above H2 plus 4 + 4 free
fermions of the same masses.

At this order H is free and can be quantised in a standard way in terms of raising and
lowering operators a†j(p), a

j(p) satisfying canonical commutation relations

[
ak(p), a†j(p̃)

]
= δkj δ(p− p̃) , (2.29)

yielding3

H =

∫
dσH2 =

∫
dp

8∑

j=1

ωj(p) a
j(p) a†j(p) , ωj =

√
m2

j + p2 , (2.30)

with mj = 0 for the four number operators of the torus and mj = 1 for AdS3 × S3. The
worldsheet momentum (2.19) is then

P =

∫
dp

8∑

j=1

p aj(p) a†j(p) , (2.31)

so that a multiparticle state |p1, . . . pn〉 is physical if and only if p1 + · · ·+ pn = 0.

2.2 The AdS3 × S3 ×T4 supercoset

In this section we will write down the coset action for the superstring, following [6]. Even if
this construction is inspired by the one orginally performed in AdS5 × S5 [54], there are some
remarkable differences due to the presence of the T4 flat directions. In that case, the coset
action coincided with the GS action before fixing the κ-gauge. Here, the correspondence holds
only when κ-gauge is completely fixed. This will lead to some complications that fortunately
are irrelevant as long as we focus on the massive modes alone. We will describe AdS3 ×
S3 × T4 as the coset (2.1) which can be essentially constructed out of two copies of the
superalgebra psu(1, 1|2).

The superalgebra psu(1, 1|2)
The superalgebra psu(1, 1|2) consists of an even (“bosonic”) part given by a non-compact
su(1, 1) or sl(2), and a compact su(2) algebra. We can think of the former as being some of
the isometries from AdS3 and the latter as coming from S3. These are supplemented by eight
(“fermionic”) supercharges.

Let us denote the generators of the non-compact bosonic algebra as Li, the ones from su(2)
as Ji, and the supercharges as Qaκι. In terms of raising and lowering operators the even part
of the algebra, in a suitable real form, is given by

[
L3,L±

]
= ∓iL±,

[
L+,L−

]
= +2iL3,[

J3,J±
]
= ∓iJ±,

[
J+,J−

]
= −2iJ3,

(2.32)

3Owing to the decompactification limit, the integration ranges from −∞ to +∞, and we omit to indicate
the limits in the integral.
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and the supercharges are charged under the bosonic subalgebra

[
L3,Q±κι

]
= ± i

2
Q±κι,

[
L±,Q±κι

]
= + Q∓κι,

[
J3,Qa±ι

]
= ∓ i

2
Qa±ι,

[
J±,Qa∓ι

]
= −iQa±ι,

(2.33)

with κ = ±, ι = ± and a = ±. Finally, the supercharges’ anticommutators read

{
Q±++,Q±−−

}
= ± L∓,

{
Q±+−,Q±−+

}
= ∓ L∓,{

Q+±+,Q−±−
}
= ∓iJ±,

{
Q+±−,Q−±+

}
= ±iJ±,{

Q+±±,Q−∓∓
}
= i (+L3 ± J3),

{
Q+±∓,Q−∓±

}
= i (−L3 ∓ J3).

(2.34)

In what follows, we will need to identify two copies of this algebra with part of the superi-
sometries of AdS3 × S3 × T4, and use an explicit representation for it. In order to do so, we
will consider a realisation of the su(1, 1|2) in terms of supermatrices, and find psu(1, 1|2) as a
quotient subalgebra.

Supermatrix realisation

Let us consider ❩2-graded vector space ❈2|2. The set of its linear endomorphisms form the
superalgebra gl(2|2), that can be represented in terms of 4× 4 supermatrices

M =

(
A Θ
Ξ B

)
, (2.35)

where the 2 × 2 blocks A,B are even and Θ, Ξ are odd4. The subalgebra u(1, 1|2) can be
singled out by imposing a suitable hermiticity condition

M† +H−1MH = 0 , H = H−1 = diag(1,−1, 1, 1) , (2.36)

where H implements the non-euclidean signature. There are 8 odd and 8 even independent
solutions to such condition. Among the latter, there are two central elements

I = diag(1, 1, 1, 1) , Is = diag(1, 1,−1,−1) . (2.37)

The supertrace
strM = trA− trB , (2.38)

is an invariant of gl(2|2) and u(1, 1|2) which can be used to impose the condition strM = 0,
that mods out Is and defines the matrix algebra su(1, 1|2). However, we cannot get rid of I
by consistently imposing trM = 0 because for a generic odd (and therefore traceless) element
of u(1, 1|2) we have

tr
({
Modd,Modd

})
= −2 tr

(
ModdH

−1M†
oddH

)
< 0 . (2.39)

Therefore psu(1, 1|2) does not admits a matrix realisation. With a small abuse of language we
will refer to the quotient su(1, 1|2)/I as the “matrix realisation” of psu(1, 1|2) and, when writ-
ing anticommutators, understand equalities modulo a multiple of the identity. In appendix A.1
we give the explicit form of the generators in terms of 4 × 4 supermatrices, as well as some
additional properties of the superalgebra.

4Note that the odd elements of the supermatrix are nonetheless commuting (non-Grassmann) scalars.
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The full algebra and ❩4-automorphism

The algebra generating the supercoset (2.1) is given by two copies of psu(1, 1|2), which we will
denote by “L” or “left” and “R” or “right” and four copies of u(1). As it is always the case when
considering a superalgebra that is direct sum of two subalgebras, psu(1, 1|2)L ⊕ psu(1, 1|2)R
enjoys a ❩4-automorphism Ω, on top of the natural ❩2-grading due to the superalgebra struc-
ture. This can be defined, for instance, by a permutation of the two copies together with
multiplication by the fermion sign of one of them.

There are several inequivalent ways to define a realisation of psu(1, 1|2)L ⊕ psu(1, 1|2)R in
terms of 8× 8 supermatricesM. A possibility would be to consider two identical realisations
of psu(1, 1|2) and take their direct sum. However, this is not the most suitable choice for the
coset construction that we will carry out in the next section.5 The elements of psu(1, 1|2)L ⊕
psu(1, 1|2)R can be split in two,

ML =M⊕ 0 , MR = 0⊕ M̃ , (2.40)

where 0 is the zero matrix, andM and M̃ are in two matrix representations whose bosonic
subalgebras have opposite notions of what the highest weight vectors are. In appendix A.1
we give the explicit form of these matrices and comment more on this choice. There are also
several inequivalent ways of defining the ❩4 automorphism Ω. We will rely on an exchange of
the two psu(1, 1|2) copies supplemented by a “fermionic” operation. In particular, Ω will take
the form

Ω(M) = K−1MK , Ω4(M) =M , (2.41)

where K permutes left and right and takes into account the fermionic signs, so that in terms
of the (Hermitian) Pauli matrices we have

K = FL P , FL = I2 ⊗
(
σ3 ⊕ I2

)
, P = σ1 ⊗

(
I2 ⊗ σ1

)
. (2.42)

In this way, Ω maps the left and right bosonic subalgebras into each other and accounts for
their different matrix representations, see appendix A.1.

The advantage of such a construction is that it gives a natural way to decompose the
symmetry algebra into the direct sum of four eigenspaces relative to the eigenvalues ik with
k = 0, . . . 3. Using the matrix representation (2.35–2.40) it is easy to see that the eigenspaces
relative to ±1 consist of even elements. In particular, the eigenspace given by matrices such
that Ω(M) =M consists of su(1, 1)⊕su(2). The corresponding group is precisely the quotient
part of the coset. It only remains to extend the automorphism to u(1)4. A simple way of
doing so is declaring that all of the u(1) generators have eigenvalue −1 under Ω. A more
“symmetric” choice is to introduce a ❩2-grading on u(1)8, which amounts to realising U(1)4

as a coset (U(1)2/U(1))4. Since the latter is trivial, the two descriptions are equivalent.
Therefore, we have a vector-space decomposition of

A = psu(1, 1|2)⊕ psu(1, 1|2)⊕ u(1)4 , (2.43)

as

A =
3⊕

k=0

A(k) , Ω
(
A(k)

)
= ikA(k) . (2.44)

Using the fact that Ω is realised linearly and that

Ω(M1M2) = Ω(M1) Ω(M2) , (2.45)

5In fact, it is easy to check that carrying out the construction with the more näıve representation would
lead to an ill-defined Poisson structure in the resulting coset action.
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we have that the decomposition turns A into a ❩4-graded Lie superalgebra, i.e.

[
A(j),A(k)

]
⊂ A(j+kmod4) . (2.46)

This structure has two important consequences:

• It provides a simple way to realise the supergroup coset starting from the superalgebra
elements and to write down the string action and its symmetries, as we will do in the
rest of this chapter.

• It ensures that the string equations of motions can be written as the flattness condition
for a suitable (Lax) connection, a feature that guarantees classical integrability, see
section 3.1.

Parametrisation of group elements

It is convenient to parametrise a generic element g ∈ PSU(1, 1|2)2 × U(1)4 in terms of the
“exponential” of the algebra elements. Several choices are possible. Here we will set

g(t, φ, χ, x,X) = Λ(t, φ) g(Ψm) g(Ψl) g(x) g(X) , (2.47)

where

• t, φ are the time coordinate in AdS3 and an angle in S3, respectively. We will later use
them as light-cone coordinates.

• Ψm,l are all the fermions, which we will split into massive fermions θiL,R contained in Ψm,
and massless fermions ηiL,R contained in Ψl.

• x = (zi, yi) are the remaining four bosonic coordinates on AdS3 × S3.

• X = (X1, . . . X4) are the four bosons from T4, so that g(X) commutes with all the other
parameters.

In particular, let us set

Λ(t, φ) = e
t
2
(LL

3−L
R
3 )+φ

2
(JL

3−J
R
3 ) = ei x+Σ+−

i
2
x−Σ− , (2.48)

where we introduced the light-cone matrices in psu(1, 1|2)2

iΣ± =
(
LL

3 − LR

3

)
±
(
JL

3 − JR

3

)
. (2.49)

The remaining four fields {xk} = (z1, z2, y1, y2) appear through g(x) which is written in terms
of the remaining transverse angular momenta. For their form as well as for the forms of the
fermion parametrisation we refer the reader to appendix A.2.

Lagrangian and Noether current

Let g ∈ PSU(1, 1|2)2 × U(1)4. The one-form

A = −g−1dg , (2.50)

takes values in A, and therefore can be decomposed according to (2.44) as

A = A(1) + A(2) + A(3) + A(4) . (2.51)
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Inspired by the case of AdS5 × S5, let us define the Lagrangian

L = −h
2

(
γαβstr

(
A(2)

α A
(2)
β

)
+ εαβstr

(
A(1)

α A
(3)
β

))
, (2.52)

where definiteness we fixed the coefficient of the Wess-Zumino term strA(1) ∧ A(3). This
Lagrangian and the resulting action have several good properties. Firstly, as it is easy to check
they are manifestly real. Furthermore, A and therefore L is invariant under left multiplication
of the group element g by any constant element g0—the theory is manifestly invariant under
global (super)isometries.

One may worry that the action depends on g, rather than on the corresponding coset
representative. However, it is easy to see that under a transformation of the SU(1, 1)×SU(2)
from A(0) all the current components appearing in the action A(k), k = 1, . . . 3 transform
covariantly, so that L is left unchanged. Moreover, if we take g to be parametrised by (2.47)
and set the coefficients of the odd algebra elements to zero, we have that the Lagrangian L
reduces to the one of the bosonic NLSM on AdS3 × S3 × T4 given by eq. (2.2).

An important feature of (2.52) is that the resulting equations of motion can be written
as a flatness condition for a Lax connection. This fact, familiar from AdS5 × S5 [95] was
pointed out in ref. [6] for the AdS3 × S3 × S3 × S1 background of which AdS3 × S3 × T4 can
be seen as a limit, at least in absence of winding. In ref. [6] it was also argued that the coset
action coincides with the GS superstring action in a suitable κ-gauge, namely one where all
the massless fermions are eliminated by the gauge fixing. This was checked up to quadratic
order in the fermions.

Finally, owing to the global A-symmetry, there exists a conserved Noether current, which
takes a simple form in the coset formulation [6]

J α = g

(
γαβA

(2)
β −

1

2
εαβ
(
A

(1)
β − A

(3)
β

))
g−1 . (2.53)

2.3 Massive modes in light-cone gauge

Following what we did in section 2.1, let us rewrite the Lagrangian (2.52) in the first-order
formalism,

L = −
(
str
(
̟A

(2)
0

)
+
h

2
εαβstr

(
A(1)

α A
(3)
β

)
+
γ01

γ00
C1 −

1

2h γ00
C2
)
, (2.54)

where we introduced the auxiliary field ̟ that without loss of generality we take to be equal
to its component ̟(2). The constraints are C1 = C2 = 0 where now

C1 = str
(
̟A

(2)
1

)
, C2 = str

(
̟2 + h(A

(2)
1 )2

)
. (2.55)

To preserve as much supersymmetry as possible, we want to fix light-cone gauge in terms
of the coordinates x± constructed in section 2.2. Such a gauge fixing is incompatible with the
κ-symmetry fixing that was necessary to assume to have a coset description [6], and should
we proceed in this way we would find that the massless fermions lack a good kinetic term
(i.e. quadratic in a field expansion). In what follows, we will restrict to considering only

massive excitations, i.e. truncate the coset to AdS3 × S3. This will be enough to elucidate
at least some of the symmetries of the theory, which is what we will later need to find the
worldsheet S matrix for massive particles. Let us therefore set, from now on,

Ψl = 0 , X1 = · · · = X4 = 0 . (2.56)
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Evaluation of the action

It is useful to split the current into an even and odd part under the ❩4 decomposition, Aeven

and Aodd respectively. We also single out the part A⊥even of Aeven which depends only on the
transverse bosonic coordinates. In terms of these quantities (whose explicit expression we
give in appendix A.2) and up to the imposing the Virasoro constrains, the Lagrangian can be
rewritten as

L = p+ẋ− + p−ẋ+ − str
(
̟A⊥even

)
− ih

4
εαβstr

(
Aodd

α Ω(Aodd
β )

)
, (2.57)

where we also made use of the ❩4 automorphism. Note that p+ is the momentum conjugate
to x−, while p− differs from the conjugate momentum to x+ due to the contribution of the
Wess-Zumino term. To see this, let us define the decomposition

̟ =
i

2
̟+Σ+ +

i

4
̟−Σ− −

1

2
̟kΣk , (2.58)

valid up to trace contributions, where Σk corresponds to the bosonic generators of the trans-
verse directions, see eq. (A.14). Then, using the explicit expressions from appendix A.2, we
get indeed

p+ = ̟+G+ −
1

2
̟−G− , p− =

i

2
str
(
̟Σ+gx

(
1 + 2Ψ2

m

)
gx
)
. (2.59)

Note that we introduced the short-hand notation gx = g(x) for the transverse bosonic coordi-
nates and the metric in the light-cone directions, G± = 1

2

(
Gtt ±Gφφ

)
.

Gauge fixing

Let us now fix light-cone gauge (with zero winding)

x+ = τ , p+ = 1 . (2.60)

From the latter equation we can immediately find the value of

̟+ =
1

G+

(
1 +

1

2
̟−G−

)
. (2.61)

Substituting ̟+ in the C1 = 0 constraint we find as expected

−x′− = pkx
′
k + fermions , (2.62)

where the complete expression of the fermion contributions are given in eq. (A.29). Recall
that it is this expression that appears in the level matching constrain, which as in the bosonic
case amounts to vanishing of the worldsheet momentum

0 =

∫ ℓ/2

−ℓ/2

dσ x′− = P . (2.63)

The last longitudinal component of the auxiliary field ̟− can be found from the quadratic
constraint C2 = 0, with

C2 = ̟+̟− +̟2
k + h str

(
(A(2)

σ )2
)
. (2.64)

The expansion of and solution to this constraint is given in appendix A.2, where we also give
the form of the auxiliary fields ̟k in terms of the conjugate momenta pk as well as some other
useful formulae. Using all this, in the next section we will write down explicit expressions to
the leading order in a field expansion.
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Noether charge

We conclude this section by writing down the conserved charges corresponding to the Noether
current (2.53). By making use of the equations of motion for the auxiliary field ̟

̟ = h γ0βA
(2)
β , (2.65)

we can write down the charges in a form that is independent of the worldsheet metric,

Q =

ℓ/2∫

−ℓ/2

dσ g(x±, x,Ψm)

(
̟ − 1

2
h
(
A

(1)
1 − A(3)

1

))
g−1(x±, x,Ψm) , (2.66)

which by using the ❩4-automorphism Ω can be recast in the form

Q =

ℓ/2∫

−ℓ/2

dσΛ gΨm
gx

(
̟ +

i

2
h gx Ω

(
Ψ′m
)
g−1x

)
g−1x g−1Ψm

Λ−1, (2.67)

where we also expressed g(x±, x,Ψm) by means of (2.47). The Noether charge Q ∈ psu(1, 1|2)2
is written as a matrix, and its independent components may be projected by defining

QM = str
(
MQ

)
, M∈ psu(1, 1|2)2 , (2.68)

which relates the superalgebra structure of psu(1, 1|2)2 to the one induced in the phase space
by the Poisson brackets6. By construction QM will be conserved,

0 =
dQM
dτ

=
∂QM
∂τ

+
{
H,QM

}
, (2.69)

where in the last equality we have expressed the conservation law in terms of the Poisson
structure. This highlights the fact that some charges will not commute with the Hamiltonian,
namely the ones that depend explicitly on τ = x+. Only the remaining charges will constitute
the manifest symmetry algebra of the theory, with H as central element. This is similar to
what we discussed in the introduction for strings in flat space, where the so(1, 9) symmetry is
broken down to so(8).

The x+ dependence enters (2.67) in a simple way, i.e. only trough Λ = Λ(x+, x−). This
makes it easy to identify the elements of M that give rise to charges commuting with H.
These are depicted in figure 2.1, and consist of the bosonic charges lying on the diagonal of
M and eight supercharges. Similarly, it is also easy to see that all of these supercharges carry
a dependence on the unphysical (and highly non-local) field x−, a fact that will be important
later.

Perturbative evaluation at leading order

We now want to find explicit expressions for the action and its symmetries perturbatively in
a field expansion. To this end, as discussed in section 2.1 we will take the decompactification
limit and perform a field expansion. We are interested in the quadratic Hamiltonian, that
comes at leading order in 1/h, and should be a suitable supersymmetric completion of (2.28),
together with its symmetry algebra.

6This pairing can be understood in terms of the moment map [107,175].
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M =




K D D K

D K K D

D K K D

K D D K


⊕




K D D K

D K K D

D K K D

K D D K




Figure 2.1: The elements of the psu(1, 1|2)2 matrixM of (2.68), distinguished by the dependence
on x± in the resulting charge QM. Elements on a white background yield an x+-dependent charge
(that does not commute with H), while the one highlighted in yellow K , D yield conserved charges.
We further distinguish between kinematical (K), i.e. x−-independent charges, and dynamical ones (D).

Quadratic expressions in the fields

Using the expansion of the auxiliary fields provided in appendix A.2 we find that the La-
grangian can be written, at leading order, as

L2 = pkẋk −
i

2
str
(
Σ+Ψm Ψ̇m

)
−H2 , (2.70)

where the quadratic Hamiltonian is

H2 =
1

2
|pk|2 +

1

2
|x′k|2 +

1

2
|xk|2 −

1

2
str
(
Σ+Ψm Ω(Ψ′m)

)
+

1

2
str
(
Ψ2

m

)
. (2.71)

As expected, this is a supersymmetric relativistic extension of what computed in the purely
bosonic NLSM. In order to write down more explicitly these results, let us use the fermion
parametrisation (A.15) so that the Lagrangian becomes

L2 = pkẋk + i θ̄j Lθ̇
j L + i θ̄j Rθ̇

j R −H2 , (2.72)

where the fermion fields are conjugate to each other, θ̄ = θ†, and indices are raised and lowered
with δjk, δjk. The quadratic Hamiltonian is

H2 =
1

2
|pk|2 +

1

2
|x′k|2 +

1

2
|xk|2 + θjLθ

′
jR − θ̄jLθ̄′jR + θ̄j Lθ

j
L + θ̄j Rθ

j
R . (2.73)

In particular, this implies that upon quantisation we find the the non-vanishing canonical
commutation relations [

xj(σ), pk(σ̃)
]
= i δjk δ(σ − σ̃) , (2.74)

and anti-commutation relations

{
θjL(σ), θ̄k L(σ̃)

}
= δjk δ(σ − σ̃) ,

{
θjR(σ), θ̄k R(σ̃)

}
= δjk δ(σ − σ̃) . (2.75)

Let us now work out the charges that commute with the Hamiltonian. We start from
the bosonic charges. From figure 2.1 we see that they can be found from contracting Q with
a diagonal matrix M. Taking into account that M ∈ psu(1, 1|2)2, we are left with four
independent choices ofM, yielding as many central charges. Two of these are well familiar:

1

2i
str
(
Σ+Q

)
= H ,

1

2i
str
(
Σ−Q

)
= −2P+ = −2P+ . (2.76)

The remaining two come from

M = L3
L + L3

R + J3
L + J3

R , N = L3
L + L3

R − J3
L − J3

R , (2.77)
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and are given in appendix A.3. We define the supercharges that commute with the Hamiltonian
by contracting Q with odd supermatrices with a single non-vanishing entry (akin to raising
and lowering operators). As expected we find eight supercharges, that we label

Q1 L,R, Q2 L,R, Q1 L,R, Q2 L,R, (2.78)

and which are Hermitian conjugate in pairs, (Qj L,R)† = Qj L,R. The general form of the charges
in terms of fields is

Q ≈
∫

dσ e+
i
2
x−

(
p θ + x θ̄ ′ + x θ

)
,

Q ≈
∫

dσ e−
i
2
x−

(
p θ + x θ̄ ′ + x θ

)
,

(2.79)

where we considered only the leading order contribution inside the brackets but kept track of
the e±

i
2
x− factor coming from Λ(x±). The precise form of all charges is given in appendix A.3.

It is however more convenient to take a Fourier transform and introduce a basis of raising
and lowering operators, thereby making the action of the σ-derivatives more apparent, and
diagonalizing some of the charges. In particular, we will take all of the central elements to be
proportional to the number operator.

Momentum-space representation

Let us introduce the bosonic creation and annihilation operators a†L,R±± and a±±L,R , as defined
in appendix A.3. An annihilation operator takes the schematic form

a±±(q) ≈
1√
2π

∫
dσ
√
ωq

(ωq x(σ) + i p(σ)) e−iqσ (2.80)

where

ωp =
√
m2 + p2 . (2.81)

The respective creation operator is the complex conjugate of (2.80). The definitions in ap-
pendix A.3 are given in such a way that the operators have canonical commutation relations

[
aκιL (p), a†

L κ̃ι̃(p̃)
]
= δκκ̃ δ

ι
ι̃ δ(p− p̃) ,

[
aκιR (p), a†

R κ̃ι̃(p̃)
]
= δκκ̃ δ

ι
ι̃ δ(p− p̃) . (2.82)

Similarly, we introduce the fermionic operators a†L,R±∓ and a±∓L,R , also defined in appendix A.3,
that have the general form e.g.

a±∓(q) ≈
1√
2π

∫
dσ
√
ωq

(
fq θ̄(σ) + gq θ(σ)

)
e−iqσ , (2.83)

where we used the fermion wave-function parameters

fp =

√
ωp +m

2
, gpfp = −

p

2
, f 2

p − g2p = m, f 2
p + g2p = ωp . (2.84)

The fermionic operators are defined to satisfy

{
aκιL (p), a†

L κ̃ι̃(p̃)
}
= δκκ̃ δ

ι
ι̃ δ(p− p̃) ,

{
aκιR (p), a†

R κ̃ι̃(p̃)
}
= δκκ̃ δ

ι
ι̃ δ(p− p̃) . (2.85)
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Since the Hamiltonian (2.73) contains only particles of unit mass, from now on we set m = 1.
At leading order, the Hamiltonian and the other central charges take the form

H =

∫
dp
∑

κ,ι=±

(
a†Lκιa

κι
L + a†Rκιa

κι
R

)
ωp ,

M =

∫
dp
∑

κ,ι=±

(
a†Lκιa

κι
L − a†Rκιa

κι
R

)
,

N =

∫
dp
∑

κ=±

κ
(
a†Lκκa

κκ
L − a†Rκκa

κκ
R

)
.

(2.86)

In particular, we see that L-excitations have charge +1 under the angular momentum M,
while R-excitations have charge −1. We will therefore refer to these excitations as “left”
and “right”. However, these do not correspond to left- and right-moving excitations on the

worldsheet. Since the angular momentum M has a component on AdS3, these excitations can
instead be thought of as left- and right-movers in the dual CFT2.

The supercharges are given by

Q1L =

∫
dp
∑

ι=±

(
fp a

†
L−ιa

+ι
L + gp a

†
R+ιa

−ι
R

)
,

Q1R =

∫
dp
∑

ι=±

(
fp a

†
R−ιa

+ι
R + gp a

†
L+ιa

−ι
L

)
,

(2.87)

and

Q2L =

∫
dp
∑

κ=±

(
fp a

†
Lκ−a

κ+
L + gp a

†
Rκ+a

κ−
R

)
κ,

Q2R =

∫
dp
∑

κ=±

(
fp a

†
Rκ−a

κ+
R + gp a

†
Lκ+a

κ−
L

)
κ,

(2.88)

together with their Hermitian conjugates QjL,R = (QjL,R)†. Notice how the form of the super-
charges is completely symmetric under exchange of the labels L↔ R, a fact that is true also
when we write them in terms of the field, see eq. (A.46).

Finally, let us recall that the worldsheet momentum is given by

P =

∫
dp
∑

κ,ι=±

(
a†Lκιa

κι
L + a†Rκιa

κι
R

)
p . (2.89)

2.4 Symmetry algebra and its representation

We can now use the perturbative information we just obtained to study the symmetry algebra
and its representations.

Commutation relations

From the explicit results of the previous section it is easy to read off the anticommutation
relations. The non-vanishing ones are

{
Q1L,Q1L

}
=
{
Q2L,Q2L

}
=

1

2
H+

1

2
M ,

{
Q1R,Q1R

}
=
{
Q2R,Q2R

}
=

1

2
H− 1

2
M ,

(2.90)
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and {
Q1L,Q1R

}
=
{
Q2L,Q2R

}
= −1

2
P ,

{
Q1L,Q1R

}
=
{
Q2L,Q2R

}
= −1

2
P .

(2.91)

From (2.90) we recognise two copies of su(1|1)2, and from (2.91) we see that each of them gets
centrally extended by two u(1) charges, which at leading order coincide and are proportional
to the worldsheet momentum7. We conclude that the symmetry algebra is

[(
su(1|1)L ⊕ su(1|1)R

)
⊕
(
u(1)⊕ u(1)

)]2
/ u(1)4 , (2.92)

where e.g. Q1L,Q1L and their central charge form one of the four su(1|1), and · · · ⊕ u(1)2

denotes the central extension by two copies of P. The quotient ensures that the central
charges of commutators differing by 1 ↔ 2 coincide. Since this algebra can be found from
centrally extending psu(1|1)4, we indicate it as psu(1|1)4c.e..

It is quite remarkable that the algebra has been extended by two elements proportional
to the worldsheet momentum P, which was not part of the original superisometries. Such an
extended algebra should not be a symmetry of the physical states, which is guaranteed by the
fact that the level matching constrain (2.63) imposes

P |physical state〉 = 0 . (2.93)

Therefore the algebra (2.92) is valid off-shell, whereas the on-shell algebra is just

(su(1|1)L ⊕ su(1|1)R)2 / u(1)2 . (2.94)

Representations on one-excitation states

Let us consider excitations of a defined momentum p, which can be created by acting on a
vacuum as

|ΦL,R
±±(p)〉 = a†±±L,R(p) |0〉 , |ΦL,R

±∓(p)〉 = a†±∓L,R(p) |0〉 , (2.95)

where the former and latter expressions correspond to bosonic and fermionic excitations,
respectively. We should distinguish between representation of the full, off-shell algebra and
representations of the on-shell one. The former is realised for general p, while the latter when
we impose p = 0. Let us start from this simpler case.

On-shell representations

On-shell states are annihilated by the total momentum operator P, so that one-particle on-
shell states are just given by particles with momentum p = 0. As a consequence, the on-shell
action of the supercharges (2.87–2.88) and their conjugates is easily found, by using that when
p = 0, we have fp=0 = ωp=0 = 1 and gp=0 = 0. We see that L- and R-excitations form two
distinct representations that are charged under QL’s and QR’s only, respectively. In figure 2.2
we draw the action of the supercharges. We see that the left excitations transform into a
bifundamental of a psu(1|1)2L consisting of the four L-supercharges. The right excitations are
in a bifundamental representation of psu(1|1)2R.

In figure 2.2 we have depicted the left and right representation slightly differently. This
is because we cannot take the same raising operators to be the same in the L- and R-algebra

7From this leading-order analysis we cannot establish whether the two right-hand-sides of (2.91) also coin-
cide at higher orders, but only that such charges should be Hermitian conjugate to each other. We will later
see they do not coincide, by more carefully investigating the structure of the supercharges.
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|ΦL
++〉

|ΦL
−+〉 |ΦL

+−〉

|ΦL
−−〉

Q1L

Q1L

Q1L

Q1L

Q2L

Q2L

−Q2L

−Q2L

|ΦR
−−〉

|ΦR
+−〉 |ΦR

−+〉

|ΦR
++〉

Q1R

Q1R

Q1R

Q1R

Q2R

Q2R

−Q2R

−Q2R

Figure 2.2: The action of the supercharges on a zero-momentum (on-shell) worldsheet excita-
tion (2.95). In this case an L-excitation is charged only under QjL and QjL, and similarly for
R-excitations. As explained in the text, the raising operators are QjL and QjR.

if we want this representation to smoothly extend to the off-shell one. If we took the raising
operators to be, e.g.

Q1L, Q2L, Q1R, Q2R, (2.96)

it would be impossible for the anticommutator {QjL,QkL} to be non-vanishing on an highest
weight state, which should happen if we deform p to be different from zero. Therefore, we will
take the raising operators to be

Q1L, Q2L, Q1R, Q2R. (2.97)

If we want to think of this algebra as embedded into psu(1, 1|2)L⊕psu(1, 1|2)R, it then follows
that the two copies of psu(1, 1|2) are in different gradings with respect to each other. As we
discuss in appendix A.1, this nicely ties to our choice of different supermatrix representatives
for the left and right copies of psu(1, 1|2).

Off-shell representations

Let us now consider an excitation of arbitrary momentum p, e.g. a left excitation. Now
this is charged under all of the supercharges—the left ones act proportionally to fp, and the
right ones to gp. However, no supercharge can transform it into a right excitation, since

nowhere in (2.87–2.88) appears an operator of the form a†RaL. The left representation is then
an irreducible representation of the whole psu(1|1)4c.e..

Clearly, the same reasoning can be applied to any right-moving excitation. Therefore,
fundamental massive particles of the superstring transform into two irreducible (L and R)
representations of the off-shell symmetry algebra, as it can be also seen by the fact that they
have different eigenvalue under M.

Tensor-product structure

From the form of the on-shell representation depicted in figure 2.2 it is easy to see that we can
describe the symmetries by means of a tensor product structure, whose factors are related to
the indices 1 and 2 of the supercharges. We then can obtain the bifundamental representation
of e.g. psu(1|1)2L from the tensor product of two fundamental representations of a psu(1|1)L.

Moreover, a tensor product structure exists in the off-shell algebra too. To see this let
us introduce bosonic and fermionic operators a†L,R, aL,R and d†L,R, dL,R, respectively. They obey
canonical (anti)commutation relations

[
aL(p), a

†
L(p̃)

]
= δ(p− p̃) ,

{
dL(p), d

†
L(p̃)

}
= δ(p− p̃) , (2.98)
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|φL(p)〉

|ψL(p)〉

qL, q̄R

q̄L,qR

|ψR(p)〉

|φR(p)〉

q̄R,qL

qR, q̄L

Figure 2.3: The action of the supercharges qL,R and q̄L,R of psu(1|1)L⊕psu(1|1)R centrally extended
on an arbitrary momentum (off-shell) excitation (2.102).

and similarly for L↔ R. By means of them we can define the supercharges

qL =

∫
dp
(
fpd
†
LaL + gpa

†
RdR

)
, qR =

∫
dp
(
fpd
†
RaR + gpa

†
LdL

)
, (2.99)

and their Hermitian conjugates q̄L and q̄R. It is easy to verify that these satisfy a centrally
extended psu(1|1)2 algebra given by

{
qL, q̄L

}
=

1

2
h+

1

2
m ,

{
qR, q̄R

}
=

1

2
h− 1

2
m ,

{
qL,qR

}
= −1

2
p ,

{
q̄L, q̄R

}
= −1

2
p ,

(2.100)

where the central charges are

h =

∫
dp
(
a†LaL + d†LdL + a†RaR + d†RdR

)
ωp ,

m =

∫
dp
(
a†LaL + d†LdL − a†RaR − d†RdR

)
,

p =

∫
dp
(
a†LaL + d†LdL + a†RaR + d†RdR

)
p .

(2.101)

Let us introduce excitations

|φL,R(p)〉 = a†L,R(p) |0〉 , |ψL,R(p)〉 = d†L,R(p) |0〉 . (2.102)

On shell we have fp=0 = 1 and gp=0 = 0, so that the excitations indeed transform in two
fundamental representations of su(1|1)L and su(1|1)R, respectively. Off-shell, these two repre-
sentations get deformed as depicted in figure 2.3.

The symmetry algebra of our worldsheet theory is in fact just given by the tensor product
of two copies of (2.99) together with the relative central charges. To see this, note that the
annihilation operators are

a++
L = aL ⊗ aL , a−−L = dL ⊗ dL , a+−L = aL ⊗ dL , a−+L = dL ⊗ aL , (2.103)

and similarly for the creation operators and for L ↔ R. When we want to emphasise that
the excitations φL,R and ψL,R are to be taken as elements of a tensor product we will instead
denote them as

|ΦL,R
+ 〉 = |φL,R〉 , |ΦL,R

− 〉 = |ψL,R〉 , (2.104)

so that ΦL
κι = ΦL

κ ⊗ ΦL
ι , and ΦR

κι = ΦR
κ ⊗ ΦR

ι . For the charges, we have

Q1L = qL ⊗ I , Q2L = I⊗ qL , Q1R = qR ⊗ I , Q2R = I⊗ qR , (2.105)
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and similarly for the Q’s. The tensor product here should respect the ❩2 grading, and yield
a minus sign when two fermionic operators are swapped. By taking this into account we see
that the charges defined in this way precisely agree with (2.87–2.88).

This scenario is quite similar to what happens for the AdS5×S5 superstring. In that case,
the off-shell algebra is given by two copies of su(2|2) centrally extended, and the excitations
transform in a representation that is the tensor product of two fundamental representations
of that algebra. In our case, su(1|1)L ⊕ su(1|1)R plays the role of su(2|2). Excitations now
transform in two distinct representations that are once again of the tensor product form. This
will have important consequences for the form of the S matrix that we will compute in the
next section. Before moving to that, let us further investigate the central charges appearing
in the off-shell algebra.

The central charges

Studying the symmetry algebra at quadratic order in the fields we have seen that it has the
form of a subalgebra of the original isometries, supplemented by two central charges that we
will denote by C and C and that vanish on-shell. At quadratic order it so happens that these
two central charges are equal and proportional to the worldsheet momentum P. In particular,
in terms of the fields we had e.g.

{
QjL,QkR

}
= −1

2
δjk
∫

dσ x′− , (2.106)

at leading order.

While—as the coset construction highlighted—the rest of the algebra is fixed by the em-
bedding into psu(1, 1|2)2, these additional central charges are not, and it is important to
understand how they are modified if we consider higher order terms in our field expansion. In
particular, we would like to understand

• whether there is any additional central charge that vanishes on-shell and appearing at
higher order in the expansion,

• and what is the form of C,C when we account for higher order terms.

The former point is negatively answered by observing that the one we are considering is
already the maximal non-trivial central extension of psu(1, 1)4. As for the latter point, the
scenario we have here is very similar to the one found in AdS5×S5, and in fact find an answer
by repeating an argument employed there, which spares us the—hardly feasible—computation
of the charges at very high orders in the field expansion.

The key observation is that in the coset construction the unphysical coordinate x− is neatly
packaged in Λ(x±) so that the supercharges can be cast in the general form

Q =

∫
dσ e+

i
2
x−

(
θ ·
(
G(1)(p, x) + 1

h
G(3)(p, x) + . . .

)
+O

(
θ3
))

, (2.107)

see also appendix A.3. Here we have expanded the charge density first order by order in the
fermions, and then we have expanded the coefficient of each such term in 1/h. Therefore,
G(1)(p, x) is linear in the bosons, G(3)(p, x) is cubic, and so on. Since the central charges
should vanish on-shell, they should be a function of P which vanishes at zero. In particular,
if we find the functional dependence of C and C on the bosonic fields alone, we will be able
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to unambiguously fix their full form [107]. The bosonic part of the Poisson bracket of two
supercharges is then e.g.

{
QjL,QkR

}
≈ δjk

∫
dσeix−

(
G(1)jL G(1)kR +

1

h

(
G(1)jL G(3)kR + G(3)jL G(1)kR

)
+ . . .

)
. (2.108)

In fact, the leading order term is precisely what we have already calculated, that is x′− restricted
to the bosonic fields only. Therefore, at the leading order of this hybrid expansion we find

{
QjL,QkR

}
= −h

2
δjk
∫

dσeix−x′− = i
h

2

(
eix−(+∞) − eix−(−∞)

)
δjk . (2.109)

Repeating this calculation to include higher orders of the bosonic expansion, one can check
that these do not spoil the form of eq. (2.109). It is actually convenient to rewrite this in a
way that makes the dependence on the worldsheet momentum manifest,8

{
QjL,QkR

}
= δjk C = i δjk ζ

h

2

(
eiP − 1

)
, (2.110)

where we isolated the boundary condition ζ = eix−(−∞). In fact, on the one-particle represen-
tation we can consistently set e.g. x−(−∞) = 0 so that ζ = 1. A similar calculation shows
that, as required by hermiticity

{
Q

jL
,Q

kR}
= δjk C = −i δjk ζ̄ h

2

(
e−iP − 1

)
. (2.111)

Of course the non-linearity of C,C in the off-shell algebra means that the same must be true
in each copy of the tensor product for c and c̄, while the last line of (2.100) holds only at
leading order in 1/h.

2.5 Chapter summary

The main result of this chapter is that we derived the off-shell symmetries of the massive
excitations of AdS3 × S3 × T4 from a perturbative analysis of the NLSM action. The sym-
metry algebra is given by two copies of a central extension of su(1|1)L ⊕ su(1|1)R, which has
anticommutation relations

{
qL, q̄L

}
=

1

2
h+

1

2
m ,

{
qR, q̄R

}
=

1

2
h− 1

2
m ,

{
qL,qR

}
= c ,

{
q̄L, q̄R

}
= c̄ .

(2.112)

The central charges c, c̄ vanish on-shell, and otherwise are non-linear functions of the world-
sheet momentum p, which for an appropriate choice of boundary conditions can be written
as

c = +i
h

2

(
e+ip − 1

)
, c̄ = −ih

2

(
e−ip − 1

)
. (2.113)

The role of the central extensions for su(1|1)2 was originally discussed in ref. [176], in the
context of AdS5/CFT4 duality, and in the case of AdS3/CFT2 in refs. [6, 135] and more
recently in ref. [165].9 We found two one-particle representation of the algebra (2.112), which

8Eq. (2.91) can be recovered by performing the rescaling P→ P/h and expanding in 1/h.
9The same symmetry algebra was also found in the analysis of the Pohlmeyer reduced sigma model of the

AdS3 × S3 in ref. [177].
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are deformations of the fundamental representation of psu(1|1): the “left” representation (L)
has a bosonic highest weight state, whereas the “right” representation (R) has a fermionic one.
Massive particles of the worldsheet theory are in two tensor product representations, L ⊗ L
and R⊗ R. This accounts for all of the 8 = 4L + 4R massive excitations.

Some remarks are in order. Firstly, owing to the coset construction, even if our approach is
perturbative we were able to capture the general form of the algebra including the non-linear
central extension. We should still bear in mind that our calculation was entirely classical, and
in principle some of these result might still be spoiled by quantum anomalies.

To exploit the coset formulation we “froze” all the massless excitations. Could taking
them into account modify the symmetries we identified? We know that the AdS3 × S3 × T4

backgrounds has 16 supersymmetries, and that the choice of light-cone gauge will break at least
half of those. Therefore, we cannot expect any new supercharge to appear from including the
massless modes. In principle, we may be overlooking some bosonic symmetries that should
supplement the algebra we found. Still, we know that the off-shell theory has at least the
symmetries given by two copies of (2.112). Of course this does not say anything on what
are the symmetries of the massless excitations. We do know that since H (and therefore the
mass) appears in the symmetry algebra, the massless excitations cannot transform in the same
representation as the massive ones. We will come back to this in chapter 8.

Let us finally stress that even if physical excitations transform under the on-shell symmetry
algebra, our interest lies mainly in the off-shell symmetries, which are the ones that constrain
the S matrix.



3 The all-loop integrable S matrix

In this chapter we will conjecture the scattering matrix for fundamental massive excitations
of the AdS3 × S3 × T4 superstring. To do so, we will rely on two results:

• the off-shell symmetry algebra found in the previous chapter,

• and the fact that the underlying classical field theory enjoys a large amount of symmetries
that make it “integrable” [6, 139,164].1

We will supplement these fact by two assumptions, namely

• that the off-shell symmetries which we found persist in the full quantum theory,

• and that the integrable structure also extends to the quantum theory.

In this way, we will be able to derive an essentially unique S matrix S, up to some prefactors—
the so-called dressing factors.

We begin by exploring the idea of integrability in classical and quantum theories, and
derive restrictions on the resulting S matrix. Then we will formulate the off-shell symmetries
at the level of the S matrix. This will be sufficient to find an S which will have several
desirable physical properties, guaranteeing the self-consistency of our procedure, as we will
see. Ultimately, the validity of our assumptions will have to be tested by comparing the
S matrix against perturbative calculations. We will come back to this in chapter 7.

3.1 Classical and quantum integrability

Integrability is a broad concept that first emerged in the context of Hamiltonian systems and
later was extended to classical and quantum field theories. There is no universal mathematical
definition of what an integrable theory is. Colloquially, an integrable theory is one that enjoys
so much symmetry so that its dynamics is completely constrained and can be solved “exactly”.
Here we will try to make this idea more precise. Note that our discussion of this general
framework will be quite essential. We refer the reader to e.g. refs. [178,179] for further details
on classical integrability and the inverse scattering method and to refs. [180–182] for scattering
factorisation and quantum integrable theories.

Classical integrable theories

In the case of an Hamiltonian system with M degrees of freedom (p1, q1, . . . , pM , qM), integra-
bility can be defined through the Liouville-Arnol’d theorem. This states that if there existsM
Poisson-commuting independent quantities F1, . . .FM , then there exists a foliation of the phase

1Classical integrability is also seen by studying the Gubser-Klebanov-Polyakov “spinning string” [140].
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Figure 3.1: In classical mechanics, the Liouville-Arnol’d theorem establishes that, when enough
conserved quantities in involution exist, the phase space is foliated in tori where the dynamics is
supported. Here we depict such a foliation, with the arrow representing the motion of a particle.

space into invariant tori2 on which the motion is supported, as depicted in figure 3.1. Further-
more there exists a canonical transformation to action-angle variables (K1, ϕ1, . . . , KM , ϕM)
that takes the equations of motion to the form

K̇j = 0 , ϕ̇j = 1 , j = 1, . . .M . (3.1)

Typically, we know only one of the Fj’s, which is the Hamiltonian. The other charges can
sometimes be found from the geometry of the problem. When that is possible—which happens
quite exceptionally—even if the Hamiltonian appears to be highly non-linear, the theorem
guarantees that we are in fact dealing with a simple system “in disguise”—such as the Kepler
problem or the Euler top.

The idea of having enough commuting conserved quantities is at the hearth of integrability,
but it is not the most convenient approach to extend it to classical field theory. In that case
there are infinitely many degrees of freedom, so that we would need to exhibit infinitely many
quantities in involution. This may be possible, but how many should we actually produce?
Two infinite sets of charges may have the same cardinality while one is strictly included in
the other. A way around this complication is given by the Lax formalism3. Consider a two-
dimensional classical field theory, and assume that the resulting equations of motion can be
cast in the form

∂τU(τ, σ, x)− ∂σV (τ, σ, x)−
[
V (τ, σ, x), U(τ, σ, x)

]
= 0 , (3.2)

where U, V are matrices depending on the fields and on the complex parameter x. Let us
define the monodromy matrix T (τ, x) by the path-ordered exponential

T (τ, x) =
←−
exp

(∫ ℓ/2

−ℓ/2

dσ U(τ, σ, x)

)
. (3.3)

An explicit computation shows that this obeys the evolution equation

∂τT (τ, x) = [V (τ,−ℓ/2, x), T (τ, x)] . (3.4)

As a consequence, ∂τ tr[T (τ, x)
j] = 0 and all of the eigenvalues of the monodromy matrix are

conserved by the time evolution. In fact, an object that nicely encodes all of these conserved
quantities is the complex curve defined by the eigenvalue equation

Γ(x, µ(x)) = 0 , Γ(x, µ) = det
(
T (τ, x)− µ 1

)
, (3.5)

2If the orbits are compact. The generalisation to non-compact orbits is straightforward.
3Such a formalism can also be very useful when dealing with finite dimensional integrable systems, but this

is beyond the purpose of our discussion.
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where µ(x) is such as to solve the leftmost equation. The resulting Γ(x) is called the spectral

curve.
On top of this set of conserved quantities, the Lax formulation guarantees more. Without

loss of generality, we may think of the equations of motion (3.2) as arising from a linear system4

∂σΨ(τ, σ, x) =U(τ, σ, x)Ψ(τ, σ, x) ,

∂τΨ(τ, σ, x) =V (τ, σ, x)Ψ(τ, σ, x) ,
(3.6)

by requiring the compatibility condition (∂σ∂τ − ∂τ∂σ)Ψ = 0. This gives us the means of
solving the non-linear equations (3.2) in terms of linear ones—a procedure sometimes called
the inverse scattering method [183–186]. The matrices U, V are functions of the fields, and in
particular U(0, σ, x) is completely determined once we fix the initial conditions for the fields at
τ = 0. From this, finding Ψ(0, σ, x) amounts to solving a linear equation. So does finding the
time evolution for Ψ(τ, σ, x). Once this is determined, the only missing step is to reconstruct
U(τ, σ, x) (and therefore the value of the fields at any given τ) from Ψ(τ, σ, x). This can
be done by solving an integral equation, the Gel’fand-Levitan-Marchenko equation [187,188],
which again is linear.

In conclusion, the mere fact that the equations of motion for a two dimensional classical
field theory can be cast in the form (3.2) implies that the system has infinitely many conserved
charges and that its equations of motions are relatively simple to solve. Moreover, for such
systems it is generally possible to relate the matrix structure with the Poisson structure of the
original Hamiltonian description in such a way as to guarantee that the conserved quantities
Poisson-commute.

Integrability for two-dimensional QFTs

Let us assume that we can quantise an integrable theory as the one described before, and that
we can do so without spoiling its infinitely many symmetries. Let

F1, . . .Fn, . . . , [Fj, Fk] = 0 (3.7)

be the set of commuting conserved charges. These charges can be simultaneously diagonalised.
For definiteness, let us suppose that this happens in a basis where Hilbert space states are
identified by their momentum and a flavour label α. Then we will have

Fn |p〉(in,out)α = Fn(p;α) |p〉(in,out)α . (3.8)

For instance, in the particular case of the sine-Gordon model where there is only one scalar
excitation of mass m, one would have

F2n+1(p) = p2n+1 , F2n(p) = p2n
√
p2 +m2 , (3.9)

which give higher charges generalizing momentum and energy. In a more general theory, the
higher charges will feature some invariant tensor constructed out of the labels α and infinitely
many functions of the particle momentum.

Let us consider the action of such a charge on an M -particle state. Considering e.g. an
in-state, we have

Fn |p1, . . . pM〉(in)α1,...αM
=
(
Fn(p1;α1) + · · ·+ Fn(pM ;αM)

)
|p1, . . . pM〉(in)α1,...αM

. (3.10)

4In fact, the monodromy matrix takes its name from representing the monodromy of a solution of this
linear system, Ψ(τ, r, x) = T (τ, x)Ψ(τ,−r, x).



38 Chapter 3. The all-loop integrable S matrix

After we evolve the state |p1, . . . pM〉(in)α1,...αM
we obtain some corresponding out-state, which we

denote by |p̃1, . . . p̃M̃〉(out)α̃1,...α̃M̃
. Since the charges are conserved, it must be that

M∑

j=1

Fn(pj;αj) =
M̃∑

k=1

Fn(p̃k; α̃k) . (3.11)

The only way for these sums to be equal for all of the Fn(p) is if the set of “in” momenta
appearing {pj} corresponds to the set of “out” momenta {p̃k}. In particular, it must be M =
M̃ .

This scenario, together with the peculiar topology of two-dimensional QFTs, has deep
implications for a scattering event. Let us start by considering a two-particle scattering event.
The in-state is |p1, p2〉(in)α1,α2

. Since this state is defined at time τ = −∞, momenta are ordered
so that p1 > p2. As time evolves, the particles move on a line until at some point they come
together and scatter. After the scattering, the products move away from each other and can
again be considered as two real particles. Because of the conservation law (3.11), the resulting
state is proportional to |p2, p1〉α̃2,α̃1

, where the momenta are exactly the same and the labels
α̃2, α̃1 may have changed.

This can be readily extended to a M -particle in-state |p1, . . . pM〉(in)α1,...αM
with p1 > p2 >

· · · > pM . At some point two of the particles undergo a 2→ 2 scattering like the one described
above. After that, the we are left withM real (as opposed to virtual) particles propagating on
a line. After a sequence of 1

2
M(M − 1) scattering events, the particles are spatially ordered as

in the out-state, having momenta pM , pM−1, . . . p1 from left to right. Therefore, an M -particle
scattering event factorises into a sequence of two-particle events, and was first put forward
by the Zamolodchikov brothers in the seminal paper [181]. This is the special property of the
multiparticle S matrix that we alluded to in the introduction. The object that we need to
determine is only the two-particle S matrix S(p1, p2).

For internal consistency, we have to require some conditions on the S matrix. The most
obvious one is that there is no 2 → M scattering unless M = 2, in sharp contrast with
what happens e.g. in a typical particle collider experiment. Another obstacle is that there
are several apparently inequivalent ways of resolving an M → M scattering in terms of a
sequence of 2 → 2 ones. In figure 3.2 we depict a generic 3 → 3 particle scattering, and the
two ways of resolving it. We must require that these two sequences of scattering events yield
the same result. Each of them gives a cubic expression in the S matrix, and their equality
results in a non-linear matrix equation—the Yang-Baxter equation. The physical reason for
the equivalence of the pictures in fig. 3.2 can be traced back to the existence of the higher
conserved charges Fn. These generate unitary transformations that shift the momentum pj
of a particle by an amount of order (pj)

n−1, and effectively transform the leftmost panel of
fig. 3.2 into the rightmost one.

To better investigate the constraints that S(p1, p2) should satisfy it is convenient to intro-
duce a more formal algebraic framework.

The Zamolodchikov-Faddeev algebra

The Zamolodchikov-Fadeev (ZF) algebra [181,189] is a tool to encode the integrability proper-
ties of a two-dimensional QFT. It is defined in terms of abstract raising and lowering operators
A†α(p) and A

α(p) which create or destroy a particle of definite momentum and flavour. Their
action on the vacuum is

Aα(p) |0〉 =0 ,

A†α(p) |0〉 = |p〉(in)α = |p〉(out)α ,
(3.12)
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(12)

(13)

(23)

1 2 3

= (123)

1 2 3

=

(23)

(13)

(12)

1 2 3

Figure 3.2: Different ways of resolving the 3→ 3 particle scattering (central panel). The lines are
colored in such a way as to allow for a non-trivial flavor structure, which may be affected by the
scattering. Taking time to flow upwards, we have in the left panel the sequence of scattering (12)-
(13)-(23), while in the right panel we have (23)-(13)-(12). The Yang-Baxter equation imposes the
equality of the two resolutions.

where we used the fact that in an integrable theory like the one we want to describe a one-
particle state undergoes a trivial time evolution. Following the discussion of the previous
section, it is natural to relate the two-particle in- and out-states as

|p1, p2〉(in)α1,α2
=A†α1

(p1)A
†
α2
(p2) |0〉 ,

|p1, p2〉(out)α3,α4
=(−1)ε(α3)ε(α4)A†α3

(p2)A
†
α4
(p1) |0〉 ,

with p1 > p2 . (3.13)

Notice that we used that the set of momenta is conserved and we ordered the action of the
creation and annihilation operators according to the ordering of the particles in the final
states. We have also written explicitly the sign arising from the exchange of two fermions,
where ε(α) = 1 for fermionic particles and zero otherwise.

The two states in (3.13) are precisely the ones related by the S matrix from (1.17) in the
2→ 2 case

|p1, p2〉(in)α1,α2
= Sα3,α4

α1,α2
(p1, p2) |p1, p2〉(out)α3,α4

, (3.14)

where we indicated by Sj3,j4
j1,j2

the matrix element of S. This equation, together with (3.13),
yields the commutation relations for the ZF operators

A†α1
(p1)A

†
α2
(p2) = (−1)ε(α3)ε(j4)Sα3,α4

α1,α2
(p1, p2)A

†
α3

(p2)A
†
α4
(p1) , (3.15)

which makes it evident that A†, A satisfy a different algebra than the one of the canonical
raising and lowering operators a†, a.

To avoid carrying around too many indices it is useful to introduce a matrix basis. Let Ej

and Ej be rows and column vectors with a single non-vanishing unit entry in the jth place.
These gives bases of the two dual vector spaces V ∗ and V . A basis of the space of matrices
on V is given by E k

j = Ej ⊗ Ek, so that by indices are naturally contracted to give

ElE j
k = δlk E

j , ElE
k

j = δkk Ej , E l
k E

j
i = δli E

j
k . (3.16)

We can then introduce vector and row operators of the ZF algebra

A† = A†(p) = A†α(p)E
α , A = A(p) = Aα(p)Eα . (3.17)

It is also useful to reabsorb a permutation and the fermionic signs into the R matrix

R(p, q) = Rα3,α4
α1,α2

(p, q)E α1
α3
⊗ E α2

α4
, Rα4,α3

α1,α2
(p, q) = (−1)ε(α3)ε(α4)Sα3,α4

α1,α2
(p, q) , (3.18)
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so that R differs from S by a graded permutation Πg, R = Πg S. In these terms the commu-
tation relations (3.15) take the form

A†(1)A
†
(2) = A†(2)A

†
(1)R(12) , (3.19)

where we added subscript indices specifying on which factors of the tensor product V ⊗V the
operators act.

In the same way as we have obtained (3.15) we can now derive similar relations involving
the annihilation operators, thus completing the ZF algebra

A†(1)A
†
(2) = A†(2)A

†
(1)R(12) , A(1)A(2) = R(12)A(2)A(1) ,

A(1)A
†
(2) =A(2)R(21)A

†
(1) + δ(p1 − p2) I .

(3.20)

Consistency conditions

The algebra (3.20) in principle consitutes a tool to express an in-particle state in terms of the
out-particle basis and vice versa, i.e. a way of computing S-matrix elements. For this to be
true, however, we have to impose some further consistency conditions. We immediately find
that

A†(1)A
†
(2) = A†(2)A

†
(1)R(12) = A†(1)A

†
(2)R(21)R(12) , (3.21)

so that it must be
R(21)R(12) = R(12)R(21) = I . (3.22)

This condition, called braiding unitarity, supplements the usual physical unitarity condition,
which states that S and therefore R should be unitary as a matrix:

R(12) R
†
(12) = R†(12) R(12) = I . (3.23)

So far we have used the ZF algebra only on two-particle states. We now want to extend
it to arbitrary multiparticle states in such a way as to implement the factorisation of the
scattering. To do so, we extend the definition (3.13) by

|p1, . . . pM〉(in)α1,...αM
=A†α1

(p1) · · ·A†αM
(pM) |0〉 ,

|p1, . . . pM〉(out)α1,...αM
=(−1)

∑
k<l ε(αk)ε(αl)A†α1

(pM) · · ·A†αM
(p1) |0〉 ,

(3.24)

again with p1 > p2 > · · · > pM . If we want to use (3.20) to express in-states in terms of out-
states, we are faced with an ambiguity. Consider, for instance, the combination A†(1)A

†
(2)A

†
(3)

acting on V ⊗ V ⊗ V . We can rewrite it in two different ways:

A†(1)A
†
(2)A

†
(3) =A†(3)A

†
(2)A

†
(1)R(12)R(13)R(23) ,

A†(1)A
†
(2)A

†
(3) =A†(3)A

†
(2)A

†
(1)R(23)R(13)R(12) .

(3.25)

These coincide only provided that

R(12)R(13)R(23) = R(23)R(13)R(12) . (3.26)

This is the Yang-Baxter equation that we described in the previous subsection. In fact, com-
paring with figure 3.2 one can see that the product of the matrices appearing in the equation
precisely corresponds to the sequences of scattering events depicted there. It is then straight-
forward to see that, by repeatedly using the Yang-Baxter equation, it is possible to rearrange
a string of ZF operators of arbitrary length, which ensures factorisation of any multiparticle
scattering.
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Symmetries

In our subsequent study, it will be important to make use of the transformation properties of
S matrix under the off-shell symmetry algebra.

The simplest case is given by the central charges, which make up the whole bosonic part of
the off-shell symmetries. Let us consider a charge that is proportional to the number operator

Xf =

∫
dp f(p)A†(p)A(p) , (3.27)

where f(p) is an arbitrary function of the momentum. Using braiding unitarity it is easy to
prove [75] that Xf must satisfy the relations

Xf A
†(p) = A†(p)

(
f(p) +Xf

)
, Xf A(p) = A(p)

(
− f(p) +Xf

)
. (3.28)

Therefore, these functions must form an abelian subalgebra of the ZF algebra. In particular,
we expect the worldsheet momentum, the Hamiltonian and the two central charges found in
the previous section to be part of it.

Let us now consider a more general non-abelian (super)algebra G, and let us assume that
the one-particle vector space V carries one or more irreducible representations of G. Eventually
we will identify G with the full off-shell algebra. It is then natural to take G to commute with
the worldsheet momentum and the particle number5 as well as with all the higher conserved
charges—compatibly with our assumption of integrability. Then we can write the linear action
of a symmetry generator Q ∈ G on the zero-, one-, two-particle Hilbert spaces, etc. as

Q · |0〉 = 0 ,

Q · A†α(p) |0〉 = Qβ
α(p)A

†
β(p) |0〉 ,

Q · A†α1
(p)A†α2

(q) |Ω〉 = Qβ1,β2
α1,α2

(p, q)A†β1
(p)A†β2

(q) |0〉 ,
(3.29)

and so on.
Since Qα is a symmetry of the theory, we can simultaneously transform the in- and out-

states without affecting the S-matrix elements. In particular using (3.13) in

Q · |p1, p2〉(in)α1,α2
= S ·Q · |p1, p2〉(out)α3,α4

, (3.30)

we get the invariance condition

Sα3,α4

β3,β4
(p1, p2)Q

β3,β4
α1,α2

(p1, p2) =(−1)ε(α3)ε(α4)+ε(β3)ε(β4)

Qα3,α4

β3,β4
(p2, p1)S

β3,β4
α1,α2

(p1, p2) ,
(3.31)

which can be more compactly expressed in the matrix notation in terms of R:

R(12)(p1, p2)Q(12)(p1, p2) = Q(21)(p2, p1)R(12)(p1, p2) . (3.32)

Let us further investigate the form of the structure constants. Since our symmetry alge-
bra G has a non-trivial centre, any of its irreducible representations is labelled by the value of
the momentum and the other central charges {c}. Therefore we in principle we have to allow
for6

Qβ
α(p) → Qβ

α(p; {c}) ,
Qβ1,β2

α1,α2
(p1, p2) → Qβ1,β2

α1,α2
(p1, p2; {c1, c2}) .

(3.33)

5Since we are dealing with a supersymmetric theory, we also require that (−1)F , where F is the fermion
number, to be conserved. Note that F itself is generally not conserved, resulting in processes such as fermion-
fermion → boson-boson.

6This notation is a bit heavy, and we will keep the dependence on the central charges implicit where no
confusion may arise.
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In a matrix notation, we can decompose the action of Qα (12) on the factors of the tensor
product as

Q(12)(p1, p2; {c1, c2}) = Q(p1, {c1})⊗ I+ Ig
(
I⊗Q(p2, {c2})

)
Ig, (3.34)

where Ig is the graded identity matrix.
In order to further specify the form of this representation we will need to input some

information on the symmetry algebra. We will do so in the next section.

3.2 Representations of su(1|1)2 centrally extended

Rather than focusing on the whole off-shell symmetry algebra psu(1|1)4c.e., let us focus on a
single su(1|1)2c.e.. The commutation relations are given by (2.112), and we rewrite them here
for convenience {

qL, q̄L
}
= hL ,

{
qR, q̄R

}
= hR ,{

qL,qR
}
= c ,

{
q̄L, q̄R

}
= c̄ ,

(3.35)

where we introduce a left- and right-“Hamiltonian” hL,R so that

h = hL + hR , m = hL − hR . (3.36)

We already know that how to represent this algebra on the space of left- and right-excitations
φL,R, ψL,R when c = c̄ = −1

2
p. In terms of oscillators, that representation is given by (2.100)

and (2.101). Here we want to deform that representation to allow for

c = +iζ
h

2

(
e+ip − 1

)
, c̄ = −iζ̄ h

2

(
e−ip − 1

)
. (3.37)

This will amount to suitably deforming the parameters fp, gp and ωp appearing in the repre-
sentation. The deformed parameters will depend on the momentum p, the coupling constant h
and the phase ζ that we found in (2.110).

The phase ζ has the meaning of a boundary condition on the unphysical field x− in the coset
model, ζ = eix−(−∞). When we want the representation of su(1|1)2c.e. to describe excitations of
the superstring, we will set ζ = 1. Then

c = +i
h

2

(
e+ip − 1

)
, c̄ = −i h

2

(
e−ip − 1

)
. (3.38)

Shortening condition

In the previous chapter, we have found two irreducible representations of dimension two. These
are both short (or atypical) representations of su(1|1)2c.e.. In fact, if we consider e.g. the left
representation, we have that |φL〉 is the highest weight state, annihilated by the two raising
operators

q̄L |φL〉 = 0 , qR |φL〉 = 0 . (3.39)

However, the highest weight is also annihilated by a combination of the lowering operators
(
hR qL − c q̄R

)
|φL〉 = 0 . (3.40)

The vanishing of this combination of charges is the shortening condition. It also implies the
vanishing of the anticommutator

0 =
{
q̄L, hR qL − c q̄R

}
= hL hR − c̄ c , (3.41)
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which we will also refer to as shortening condition.
Had we considered the right-representation, we would have found a fermionic highest weight

state
q̄L |ψR〉 = 0 , qR |ψR〉 = 0 . (3.42)

The same combination appearing in (3.40) annihilates |ψR〉. In fact, we can take (3.41) as
shortening condition of both the left- and right-representations.

One-particle representation

Since the excitations span a space V of dimension only four, it is quite handy to introduce a
4× 4 matrix representation for the (super)charges. Let us pick a basis

B = (φL, ψL, φR, ψR) . (3.43)

We can then make an ansatz for the supercharges in the one-particle representation,

qL =




0 0 0 0
aL 0 0 0
0 0 0 b̄R

0 0 0 0


 , qR =




0 bL 0 0
0 0 0 0
0 0 0 0
0 0 aR 0


 ,

q̄L =




0 āL 0 0
0 0 0 0
0 0 0 0
0 0 b̄R 0


 , q̄R =




0 0 0 0
b̄L 0 0 0
0 0 0 āR

0 0 0 0


 ,

(3.44)

where we made it manifest that (qL,R)† = q̄L,R. The parameters aL,R, bL,R and their conjugates
characterise the L- and R-representations, which sit in the diagonal matrix blocks. We can
think of these matrices as explicit realisations of the tensors Qk

j (p; {c}) introduced in the
previous section. The set of parameters {c} consists of h and ζ, on which aL,R, bL,R and their
conjugates depend.

From the anticommutators, we find immediately the central charges

hL =


 |aL|2 I 0

0 |bR|2 I


 , hR =


 |bL|2 I 0

0 |aR|2 I


 ,

c =


 aLbL I 0

0 aRbR I


 , c̄ =


 āLb̄L I 0

0 āRb̄R I


 .

(3.45)

It can be explicitly checked that the shortening condition holds. Furthermore, can use the
fact that the angular momentum

m = hL − hR = diag(+1,+1,−1,−1), (3.46)

is quantised and should not receive corrections, together with the explicit form (3.37) of c, c̄ in
terms of the momentum to solve for the representation parameters. To do so, let us introduce
the Zhukovski paramterisation of the momentum in terms of variables x±p satisfying

x+p
x−p

= eip ,

(
x+p +

1

x+p

)
−
(
x−p +

1

x−p

)
=

2i

h
. (3.47)
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We find

aL

p = aR

p =
√
ζ e

1
4
i pηp , āL

p = āR

p =
1√
ζ
e−

3
4
i p ηp ,

bLp = bRp = −
√
ζ
e−

3
4
i p

x−p
ηp , b̄Lp = b̄Rp = − 1√

ζ

e
1
4
i p

x+p
ηp ,

(3.48)

where we explicitly indicated the momentum dependence on the representation parameters
and introduced the function

ηp = eip/4
√
i
h

2

(
x−p − x+p

)
. (3.49)

The definition (3.49) is given in such a way that ηp will have nice analyticity properties that
we will use in the next chapter. Note that if we want to identify the vectors in V with states
of the superstring, we should restrict to representations having ζ = 1 to reproduce (3.38).

There is some arbitrariness the choice of the representation coefficients, e.g. corresponding
to a change of normalisation of the basis vectors in B. We fix some of this freedom by requiring
that we are truly deforming the relativistic representation found perturbatively in the previous
chapter. In this way, if we rescale p → p/h and expand the coefficients in 1/h, we find as
expected

aL,R
p = fp +O

(
1/h
)
= āL,R

p , bL,Rp = gp +O
(
1/h
)
= b̄L,Rp . (3.50)

Dispersion relation

By explicitly evaluating h = hL + hR we find

h =
h

2i

(
x+p −

1

x+p
− x−p +

1

x−p

)
I =

√
1 + 4h2 sin2

(p
2

)
I . (3.51)

We anticipated the presence of such a non-relativistic dispersion relation in the introduction.
In fact, it is an immediate consequence of the shortening condition (3.41) and the non-linear
form of c and c̄. Let us rewrite (3.41) as

0 =
(
h+m

) (
h−m

)
− 4 c̄ c , (3.52)

Using the fact that the eigenvalues of m are ±1 so that m2 = 1, we have

h2 = 1 + 4 c̄ c = 1 + 4h2 sin2
(p
2

)
, (3.53)

i.e. precisely the dispersion relation (3.51).

Left-right symmetry

The identity between left- and right-representation coefficients in (3.48) suggests the presence
of a discrete symmetry relating them. This is not surprising when we think of the original coset
model, where L and R where introduced as arbitrary labels for the two copies of psu(1, 1|2).
Furthermore, as discussed in the previous chapter (see also appendix A.3), the supercharges in
the symmetry algebra are naturally split in two sets differing only by the relabelling L ↔ R,
while the energy and the central charges take have the same form on both representations.
As a consequence, up to exchanging raising and lowering operators, we can map the left
representation into the right one and vice versa.

This results in a discrete ❩2-symmetry, which we will call left-right (LR) symmetry. When
extended to multiparticle states, this will tell us that e.g. any configuration involving only
left excitations has an equivalent realisation in terms of right excitations only, etc., which will
yield restrictions on the S-matrix elements.



3.2. Representations of su(1|1)2 centrally extended 45

Two-particle representation

The two-particle representation is the tensor product of two one-particle representations like
the one we just constructed. Its structure constants will be of the form Qβ1,β2

α1,α2
(p1, p2; {c1, c2})

where p1, p2 and c1, c2 are the momenta and the central charges of the one-particle represen-
tations. Even if the two-particle representation will have central charges of the form (3.38),
i.e. with ζ = 1, this may not necessarily be the case for the two factors. To see that, let us
evaluate the structure constant Qβ1,β2

α1,α2
(p1, p2; {c1, c2}) for the central charge c of (3.38). Since

this acts diagonally, we have

c · A†α1
(p1)A

†
α2
(p2) |0〉 = i

h

2

(
ei(p1+p2) − 1

)
δβ1
α1
δβ2
α2
A†α1

(p1)A
†
α2
(p2) |0〉 , (3.54)

where we used (3.28) which implies that the worldsheet momentum of this state is p1 + p2 as
we expect. From this, we can read off

Cβ1,β2
α1,α2

(p1, p2; {c1, c2}) = i
h

2

(
ei(p1+p2) − 1

)
δβ1
α1
δβ2
α2
, (3.55)

On the other hand, we can commute c with one creation operator at the time, finding
instead

Cβ1,β2
α1,α2

(p1, p2; {c1, c2}) = i
h

2

(
ζ1(e

ip1 − 1) + ζ2(e
ip2 − 1)

)
δβ1
α1
δβ2
α2
, (3.56)

Clearly, (3.55) and (3.56) should match, which cannot happen if ζ1 = ζ2 = 1. We conclude
that the two-particle representation is the tensor product of two one-particle representations
with non-trivial central charge values ζ1,2. It is easy to check that the two expressions we
found match if and only if

(I): ζ1 = 1 , ζ2 = eip1 or (II): ζ1 = eip2 , ζ2 = 1 . (3.57)

As discussed, for consistency with left-right symmetry it natural to take the same choice of
ζ1,2 for both the L and R irreducible representations. Therefore, we can label the whole
representation space V by the choice of the central charge, V = V (pi, ζi). Then the action of
the S matrix on the two-particle (reducible) representation is

S : V (p1, ζ1)⊗ V (p2, ζ2) → V (p2, ζ2)⊗ V (p1, ζ1) . (3.58)

If we assign the value of ζ1,2 on the intial states according to either choice in (3.57), we find
that S exchanges (I) with (II) or vice versa. In what follows we will consider the choice (I) for
the initial states, which as we will see will reproduce the perturbative results.

We can now rewrite more explicitly (3.34) for a supercharge as

Q(12)(p1, p2) = Q(p1, ζ1 = 1)⊗ I+ Σ⊗Q(p2, ζ2 = eip1), (3.59)

where we used that Q is odd in order to rewrite the action of the graded identity in terms of
the fermion sign matrix, which in the basis B is

Σ = diag(+1,−1,+1,−1) . (3.60)

The 16 × 16 matrix representation is then found by taking the one-particle charge Q to be
equal to each of the matrices (3.44).

The choice of a non-trivial ζ1 gives the general form of the two-particle representation

Q(12) = Q(p1)⊗ I+ e±
i
2
p1 Σ⊗Q(p2) , (3.61)
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where the sign in the exponent depends on which supercharge we consider—positive for Q
and negative for Q. This can be compared to the more usual relation

Q(12) = Q(p1)⊗ I+ Σ⊗Q(p2) . (3.62)

In algebraic terms, the latter is a trivial (graded) coproduct, i.e. the most natural way of
extending the action of an operator to a tensor product space. We can then say that the
symmetries of the superstring have a non-trivial coproduct. The mathematical object to deal
with such structures is an Hopf albegra7. The relevance of Hopf algebras in AdS/CFT is well
known [190], see also refs. [191,192] for a review. In fact, it is possible to use such an algebraic
approach to find R in the case at hand. Here we will follow an equivalent and more direct
route, and refer the reader to ref. [145] for the Hopf-algebraic derivation of the S matrix.

In principle we could go on and construct the representation of the symmetries on higher
multiparticle states. This can be done either explicitly [75] or by subsequent applications of
the Hopf-algebra coproduct. However, since our focus is on the two-particle S matrix, we will
not need to work out the resulting expressions.

3.3 Finding the S matrix

In this section we want to find the S matrix of massive fundamental excitations of the AdS3×
S3 × T4 superstring. This can be done working with R or S, but it will be useful for us to
introduce the graded matrix Š(p, q) satisfying

Š(p, q) = Ig S(p, q) = ΠR(p, q) , (3.63)

where Π is the permutation and Ig is the graded identity. This will make some of our ex-
pressions easier to manipulate, because all permutations of tensor product factors will be
automatically accounted for, and match with refs. [143, 145].

Our strategy will be to write down the most general operator

Š : V (p, 1)⊗ V (q, eip) → V (q, eip)⊗ V (p, 1) , (3.64)

as 16× 16 matrix, and require that it satisfies suitable physical properties, which we now list.

Off-shell symmetries

The S matrix should commute with the whole off-shell symmetry algebra. Since the latter is
generated by the supercharges, it is enough to impose that the S matrix commutes with qL,R

and q̄L,R in the 16× 16 matrix representation given by (3.59).
Explicitly, in terms of Š, we have

Š(12)(p, q)Q(12)(p, q) = Q(12)(q, p) Š(12)(p, q) , (3.65)

where Q(12)(p, q) is defined by (3.59). This should be imposed for all four supercharges. Notice
that, unlike (3.32), this equations does not feature Q(21).

Since (3.65) is a linear equation, any solution can be multiplied by a prefactor. In our
case, the charges (3.44) have a block-diagonal structure due to the presence of two (L and R)
irreducible representations in V . Therefore, we expect (3.65) to determine Š at best up to four
scalar factors for the LL, LR, RL and RR blocks. We will refer to the part of S determined
independently from these factors (i.e., suitable ratios of the matrix elements) as its “matrix
part”.

7More precisely, an Hopf algebra is also equipped with an “antipode” involution, which has the physical
interpretation of a particle-to-antiparticle transformation.
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Left-right symmetry

An additional constraint is the discrete left-right symmetry, which amounts to imposing that
scattering processes differing only by relabelling L ↔ R should be indistinguishable. In par-
ticular, this removes part of the ambiguity due to scalar factors, relating the LL block to the
RR one, and the LR one to the RL one.

Braiding and physical unitarity

In section 3.1 we have established that the R matrix must satisfy braiding unitarity as well
as be unitary as a matrix. In terms of Š this gives

Š(12)(q, p) Š(12)(p, q) = I ,
(
Š(12)(p, q)

)†
Š(12)(p, q) = I . (3.66)

One of these two equations quadratic constrains can be eliminated in terms of the linear one

Š(12)(q, p) =
(
Š(12)(p, q)

)†
. (3.67)

While this linear equation will put a restriction on the reality properties of the scalar factors,
it is easy to see that the matrix part should automatically satisfy it. In fact, taking the
conjugate of (3.65), we find

Q(12)(p, q)
(
Š(12)(p, q)

)†
=
(
Š(12)(p, q)

)†
Q(12)(q, p) . (3.68)

Since for any chargeQ(12) its conjugateQ(12) is also part of the algebra, we have that Š(12)(p, q)
†

satisfies the same invariance condition that define Š(12)(q, p). Therefore the part of each of the
two S matrices that is completely determined by symmetries must coincide.

The reflectionless su(1|1)2c.e. S matrix

It turns out that imposing all the symmetries together with the unitarity requirements gives
two physically distinct solutions for Špq = Š(12)(p, q). These coincide on the LL and RR sectors,
but are different on the mixed sectors. One solution gives

(T): 〈X LYR| Špq |X LYR〉 = 0 and 〈X RYL| Špq |X LYR〉 6= 0 , (3.69)

and similarly for L↔ R, whereas the other gives

(R): 〈X LYR| Špq |X LYR〉 6= 0 and 〈X RYL| Špq |X LYR〉 = 0 , (3.70)

where X ,Y are two generic excitations. Keeping into account that the matrix Š permutes the
final states, the case we indicated by (T) corresponds to pure transmission of the target-space
chirality, while (R) corresponds to pure reflection. From the symmetry properties, there is no
reason to choose one over the other. However, by a perturbative calculation it is easy to check
which are the non-vanishing matrix elements. In fact, a tree-level calculation suffices [153],
and shows that the case (R) cannot reproduce the worldsheet superstring S matrix. From now
on, we will restrict our considerations to the case (T) of a pure-transmission (or reflectionless)
S matrix.

Constructing the tensor-product basis out of B, we can explicitly represent Špq as a 16×16
matrix which naturally splits in four blocks depending on the target-space chiralities of the
particle scattered

Špq =


 ŠLL

pq ŠRL
pq

ŠLR
pq ŠRR

pq


 . (3.71)
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


ALL
pq 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 CLL
pq 0 0 DLL

pq 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ARL
pq 0 0 0 0 FRL

pq 0 0

0 0 0 0 0 0 0 0 0 0 0 0 DRL
pq 0 0 0

0 BLL
pq 0 0 ELL

pq 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 FLL
pq 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 CRL
pq 0 0 0 0 0 0

0 0 0 0 0 0 0 0 BRL
pq 0 0 0 0 ERL

pq 0 0

0 0 ALR
pq 0 0 0 0 FLR

pq 0 0 0 0 0 0 0 0

0 0 0 0 0 0 DLR
pq 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 ARR
pq 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 CRR
pq 0 0 DRR

pq 0

0 0 0 CLR
pq 0 0 0 0 0 0 0 0 0 0 0 0

0 0 BLR
pq 0 0 0 0 ELR

pq 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 BRR
pq 0 0 ERR

pq 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FRR
pq




Figure 3.3: The matrix representation of Š(12)(p, q) in the basis constructed out of the tensor
product of B. Notice how each block is given by a 4 × 4 S matrix suitably embedded in a tensor
product structure.

The full form of the S matrix is given in figure 3.3. Let us further investigate its structure.
Due to LR symmetry, it is natural to distinguish the scattering of particles of the same or
opposite chirality.

Same-chirality scattering

Let us consider particles of the same, let us say LL, chirality. Then the non-vanishing scattering
processes are

Š |φL

pφ
L

q 〉 = A
LL

pq |φL

qφ
L

p 〉 , Š |φL

pψ
L

q 〉 = B
LL

pq |ψL

qφ
L

p 〉+ C
LL

pq |φL

qψ
L

p 〉 ,
Š |ψL

pψ
L

q 〉 = F
LL

pq |ψL

qψ
L

p〉 , Š |ψL

pφ
L

q 〉 = D
LL

pq |φL

qψ
L

p 〉+ E
LL

pq |ψL

qφ
L

p 〉 .
(3.72)

These are determined up to a single, overall scalar factor S LL
pq , and they read

A
LL

pq = S
LL

pq e
i
2
(p−q)

x−p − x+q
x+p − x−q

, B
LL

pq = S
LL

pq e
− i

2
q
x+p − x+q
x+p − x−q

,

C
LL

pq = S
LL

pq e
i
4
(p−3q)−2i

h
ηp ηq

x+p − x−q
, D

LL

pq = S
LL

pq e
i
2
p
x−p − x−q
x+p − x−q

,

E
LL

pq = S
LL

pq e
− i

4
(p+q)−2i

h
ηp ηq

x+p − x−q
, F

LL

pq = −S
LL

pq .

(3.73)

In the RR sector we find exactly the same formulae, in terms of a scalar factor S RR
pq .

Requiring LR-symmetry implies, for instance,

〈φL

qφ
L

p| Š |φL

pφ
L

q〉 = 〈φR

qφ
R

p | Š |φR

pφ
R

q 〉 , (3.74)

so that it must be
S

LL

pq = S
RR

pq = Spq . (3.75)
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Opposite-chirality scattering

If we now consider processes of LR chirality we find

Š |φL

pφ
R

q 〉 = A
LR

pq |φR

qφ
L

p 〉+ B
LR

pq |ψR

q ψ
L

p〉 , Š |φL

pψ
R

q 〉 = C
LR

pq |ψR

q φ
L

p 〉 ,
Š |ψL

pψ
R

q 〉 = E
LR

pq |ψR

q ψ
L

p〉+ F
LR

pq |φR

qφ
L

p〉 , Š |ψL

pφ
R

q 〉 = D
LR

pq |φR

qψ
L

p 〉 ,
(3.76)

while for RL

Š |φR

pφ
L

q 〉 = A
RL

pq |φL

qφ
R

p 〉+ B
RL

pq |ψL

qψ
R

p 〉 , Š |φR

pψ
L

q 〉 = C
RL

pq |ψL

qφ
R

p 〉 ,
Š |ψR

pψ
L

q 〉 = E
RL

pq |ψL

qψ
R

p 〉+ F
RL

pq |φL

qφ
R

p 〉 , Š |ψR

pφ
L

q 〉 = D
RL

pq |φL

qψ
R

p 〉 .
(3.77)

The elements read

A
LR

pq = S
LR

pq e
i
2
(p+q)

1− x+p x−q
1− x+p x+q

, B
LR

pq = S
LR

pq e
i
4
(3p−q)

2i
h
ηp ηq

1− x+p x+q
,

C
LR

pq = S
LR

pq e
i
2
(2p+q)

1− x−p x−q
1− x+p x+q

, D
LR

pq = S
LR

pq e
i
2
p ,

E
LR

pq = −S
LR

pq e
ip
1− x−p x+q
1− x+p x+q

, F
LR

pq = S
LR

pq e
i
4
(p−q) −2i

h
ηp ηq

1− x+p x+q
,

(3.78)

and

A
RL

pq = S
RL

pq e
− i

2
(p+q)

1− x+p x−q
1− x−p x−q

, B
RL

pq = S
RL

pq e
− i

4
(p+3q)

2i
h
ηp ηq

1− x−p x−q
,

C
RL

pq = S
RL

pq e
− i

2
q , D

RL

pq = S
RL

pq e
− i

2
(p+2q)

1− x+p x+q
1− x−p x−q

,

E
RL

pq = −S
RL

pq e
−iq

1− x−p x+q
1− x−p x−q

, F
RL

pq = S
RL

pq e
− i

4
(3p+5q) −2i

h
ηp ηq

1− x−p x−q
.

(3.79)

Now LR-symmetry implies e.g.

〈ψR

q φ
L

p| Š |φL

pψ
R

q 〉 = 〈ψL

qφ
R

p | Š |φR

pψ
L

q 〉 . (3.80)

This can be solved in terms of a single scalar factor S̃pq

S
LR

pq = S̃pqe
− i

2
(p+q)

(
1− x+p x+q
1− x−p x−q

)+1/2

,

S
RL

pq = S̃pqe
+ i

2
(p+q)

(
1− x+p x+q
1− x−p x−q

)−1/2
.

(3.81)

By this choice, we find not only C
RL
pq = C

LR
pq , but also A

RL
pq = A

LR
pq , B

RL
pq = B

LR
pq , and so on.

Scalar factors

The requirements of braiding unitarity and physical unitarity pose constrains on the scalar

factors Spq and S̃pq. In particular, they must satisfy

S (p, q)S (q, p) = 1 ,
∣∣S (p, q)

∣∣2 = 1 ,

S̃ (p, q) S̃ (q, p) = 1 ,
∣∣S̃ (p, q)

∣∣2 = 1 .
(3.82)
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i.e. they are given by two antisymmetric phases.
There is an additional condition that we can require on the S matrix, that is crossing sym-

metry. This is an extension of the well-known relativistic covariance under particle-antiparticle
transformation to our non-relativistic S matrix. Crossing invariance will put stringent require-
ments on the analytic structure of the dressing factors, which we will analyse at length in the
next chapter.

The full S matrix

The full S matrix that we are eventually interested in is not the su(1|1)2c.e.-invariant one. In-
stead, it is invariant under two copies of such an algebra, with the excitations transforming in
a tensor product representation (2.103–2.105). One way to find it is to construct a represen-
tation of the full psu(1|1)4c.e. similar to (3.59), in terms of 64× 64 matrices. The S matrix one
would find then by repeating the procedure of this section is precisely the tensor product of
two copies of the 16× 16 matrix we just found,8

Špsu(1|1)4c.e.
= Šsu(1|1)2c.e.

⊗ Šsu(1|1)2c.e.
. (3.83)

The tensor product should take into account the signs arising from permuting the fermions.
In components this gives

(
Špsu(1|1)4c.e.

)α3,α4

α1,α2
=
(
Špsu(1|1)4c.e.

)κ3ι3,κ4ι4

κ1ι1,κ2ι2
=

(−1)ε(ι1)ε(κ2)+ε(ι3)ε(κ4)
(
Šsu(1|1)2c.e.

)κ3,κ4

κ1,κ2

(
Šsu(1|1)2c.e.

)ι3,ι4
ι1,ι2

,
(3.84)

where we used the notation introduced in (2.104), with α = κι. From this, all of the scattering
elements can be readily calculated, and again we have that the scattering can be decomposed
based on the LR chirality, with the matrix elements being the “square” of what found in the
previous section. To illustrate this, let us work out a few processes in the LL sector

Špsu(1|1)4c.e.
|ΦL

++ pΦ
L

++ q〉 =A
LL

pqA
LL

pq |ΦL

++ qΦ
L

++ p〉 ,
Špsu(1|1)4c.e.

|ΦL

++ pΦ
L

−− q〉 =B
LL

pqB
LL

pq |ΦL

−− qΦ
L

++ p〉+ C
LL

pqC
LL

pq |ΦL

++ qΦ
L

−− p〉
+ B

LL

pqC
LL

pq

(
|ΦL

−+ qΦ
L

+− p〉 − |ΦL

+− qΦ
L

−+ p〉
)
,

(3.85)

where we used the short-hand notation |ΦL
±± p〉 = |ΦL

±±(p)〉 and so on. Similarly, in the LR
sector we have for instance

Špsu(1|1)4c.e.
|ΦL

++ pΦ
R

++ q〉 =A
LR

pqA
LR

pq |ΦR

++ qΦ
L

++ p〉 − B
LR

pqB
LR

pq |ΦR

−− qΦ
L

−− p〉
+ A

LR

pqB
LR

pq

(
|ΦR

+− qΦ
L

+− p〉+ |ΦR

−+ qΦ
L

−+ p〉
)
,

Špsu(1|1)4c.e.
|ΦL

++ pΦ
R

−− q〉 =C
LR

pqC
LR

pq |ΦR

−− qΦ
L

++ p〉 .
(3.86)

In particular, in Špsu(1|1)4c.e.
there are still only two undetermined scalar factors, i.e. S 2 and S̃ 2.

It is also interesting to note that the tensor-product structure yields symmetric and anti-
symmetric combinations of S-matrix elements, in a way reminiscent of su(2) invariance. As
we will see in chapter 8, this is no accident: there is indeed an hidden su(2) structure in this
theory, which we will make manifest when we will address the massless sector.

In what follows, unless confusion may arise, we will drop the subscript invariant algebra
from Š.

8The tensor product yields a 256 × 256 matrix with many vanishing elements, rather than 64 × 64 one.
This is because in (2.103) we do not consider any state of the form e.g. φL ⊗ φR, that do exist in the tensor
product space.
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Yang-Baxter equation and integrability

Once we have successfully derived the 2→ 2 S matrix by maxing use of the off-shell symmetry,
the question remains as to whether such an S matrix can be used to define an arbitraryM →M
scattering. The condition for this is expressed by Yang-Baxter equation (3.26), which in terms
of Špq = Š(p, q) reads

Šqr ⊗ I · I⊗ Špr · Špq ⊗ I = I⊗ Špq · Špr ⊗ I · I⊗ Šqr , (3.87)

where we made the three-particle tensor product explicit.
It is easy to check that the Yang-Baxter equation is non-trivially9 satisfied by the su(1|1)2c.e.

S matrix that we found, as well as by the psu(1|1)4c.e. one—a fact following from the tensor-
product structure. Therefore, they can be both used to define an integrable two-dimensional
QFT.

Comparison with the su(2|2)-symmetric S matrix

The symmetry algebra su(1|1)L⊕su(1|1)R centrally extended can be embedded into su(2|2)c.e..
This last algebra is also related to an integrable S matrix. The S matrix of fundamental string
excitations in AdS5×S5 is in fact invariant under two copies of su(2|2)c.e., with the excitations
transforming in a tensor product representation akin to the one we encountered here, see
e.g. [75].

Since su(1|1)2c.e. ⊂ su(2|2)c.e. we could expect that the su(2|2)c.e.-invariant S matrix should
arise of a special limit of our Š. Differently from su(1|1)2, in su(2|2)c.e. there exists an addi-
tional su(2)⊕ su(2) symmetry. The excitations φL,R then would transform as a doublet under
the former su(2), while ψL,R would be a doublet under the latter. This would require the
scattering to take the form

Špq

(
|φL

pφ
R

q 〉+ |φR

pφ
L

q〉
)
= #

(
|φL

pφ
R

q 〉+ |φR

pφ
L

q〉
)
,

Špq

(
|φL

pφ
R

q 〉 − |φR

pφ
L

q〉
)
= #

(
|φL

pφ
R

q 〉 − |φR

pφ
L

q〉
)
+#

(
|ψL

pψ
R

q 〉 − |ψR

pψ
L

q 〉
)
.

(3.88)

We immediately see that we cannot obtain this general form from the su(1|1)2c.e. S matrix
that we have constructed. The reason is that we have imposed on the S matrix the dis-
crete LR symmetry, which is incompatible with the additional su(2)⊕ su(2) invariance. It is
this symmetry that distinguishes the massive sector of AdS3 × S3 × T4 from a truncation of
the AdS5× S5 superstring at all loops. Notice also that in the latter case the excitations form
a single irreducible representation of the symmetry algebra, and hence a single scalar factor is
left undetermined.

3.4 Chapter summary

The main result of this chapter is the derivation of the two-particle S matrix Š (which is
related to S by some fermion signs) for the scattering of fundamental massive excitations of
the AdS3 × S3 × T4 superstring, and of the non-relativistic dispersion relation (3.53). The
matrix Š satisfies the Yang-Baxter equation as well as braiding unitarity and physical unitarity,
so that we can use it to unambiguously define any multiparticle scattering. Š is defined up to

two antisymmetric unit-norm functions Spq, S̃pq—the dressing factors.

9 In the case of Š
su(1|1)2c.e.

, once the YB equation is spelled out in components, one finds 112 equations
involving the non-zero matrix elements, which vanish by using their explicit form.
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R
φΦ
qP

φ(p1) φ(p2)

φ(q)

Φ(P )

=

R
φφ
qp1

R
φφ
qp2

φ(p1) φ(p2)

φ(q)

Φ(P )

Figure 3.4: The bootstrap condition for the bound-state S matrix. We consider two particles φ
with complex momenta p1 =

1
2P + iv and p2 =

1
2P − iv that form a bound state Φ of momentum P

(thicker violet line). The scattering of a third particle φ(q) with Φ(P ) can be resolved in terms of
the scattering with its constituents. Note that the point in the diagram at which the two particle
fuse to give a bound state should not be interpreted as a scattering event.

It may appear strange that we could determine Š for the massive excitations while com-
pletely ignoring the massless ones. Even if we expect those to transform in a different ir-
reducible representation of the symmetry algebra, it is easy to see that perturbatively there
exist quartic massive-massless interactions in the Lagrangian—the two sectors are coupled.
Therefore, the effective vertices for massive particles will contain massless excitations running
in the loops, even if they cannot appear in the final states. We can draw a parallel of sorts
with SU(N) Yang-Mills theory, with the de Wit-Faddeev-Popov ghosts playing the role of
the massless modes in the massive sector. Even if we ignore the ghosts, we can still correctly
predict that the S-matrix elements will be SU(N) invariant. However, to compute their value
we need to take the ghosts into account—not everything is fixed by the SU(N) symmetry.
Here SU(N) is replaced by a much larger symmetry, involving the off-shell algebra as well as
the higher conserved charges, and the only undertermined elements are the dressing factors.
They will contain the dynamical information about the theory, featuring poles and cuts in
such a way as to also account for processes involving virtual massless particles. We will return
to this topic in the next chapter.

We should also stress that we only computed the S matrix of fundamental massive exci-
tations. If the theory admits bound states, the S matrix that scatters those should also be
determined to have a complete handle on the spectrum, in particular to compute the wrapping
effects [110, 112]. Typically, this can be done again by means of integrability. The scattering
of a particle with a bound state can be defined as illustrated in figure 3.4, i.e. in term of
the scattering with its constituents—a procedure called bootstrap. This is particularly simple
when one takes advantage of the Hopf algebra structure, see e.g. refs. [191–193]. In the case
of AdS3 × S3 × T4, such a calculation has not been performed so far.



4 Crossing symmetry and dressing factors

In this chapter we will see that crossing symmetry puts stringent requirements on the analytic
structure of the dressing factors.

In a relativistic theory, crossing symmetry is a consequence of the fact that fields are
constructed out of particle and antiparticle creation and annihilation operators. One can then
show that any two elements of the S matrix related by a particle-to-antiparticle transformation
are equivalent up to performing an analytic continuation, which exchanges the branches of the
dispersion relation. This invariance is illustrated pictorially in figure 4.1. There we have
introduced the relativistic rapidity ϑ satisfying

E = m coshϑ , p = m sinhϑ , (4.1)

which parametrises the positive branch of the dispersion relation E2 = m2 + p2. In a theory
where all particles coincide with their antiparticles (e.g. photons), each of them can be mapped
into each of the other by shifting

ϑ→ ϑ+ iπ . (4.2)

This flips both the sign of E and p. If particles and antiparticles do not coincide, the transfor-
mation (4.2) should be supplemented by a linear map sending the particle-representation into
the antiparticle one—e.g. in the case of quarks and antiquarks, this would be a map between
the fundamental and anti-funtamental representation of su(3).

These concept can be extended to the non-relativistic S matrix that we computed in the
previous chapter. In order to do so, it is first convenient to introduce a rapidity variable
z akin to ϑ. Then, we will study the charge-conjugation properties of the psu(1|1)4c.e. or
equivalently su(1|1)2c.e. algebras that we constructed in the previous chapter. This will lead us
to formulate the crossing equations constraining the dressing factors, for which we will find a
solution in section 4.2.

R(ϑ)

1 2

2 1

ϑ

t = R(ϑc)

1 2

2 1

ϑ− π

t

Figure 4.1: In a relativistic theory, crossing invariance can be understood by looking at a scattering
process in two different ways. In the left panel, time flows upwards, and the scattering of particles 1
and 2 happens with rapidity ϑ = ϑ2 − ϑ1. In the right panel, time flows from left to right, and
the same scattering involves the antiparticle of 2 (moving backwards in time) and 1. The scattering
happens with rapidity ϑc = ϑ+ iπ, which can be understood as a Lorentzian angle.
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4.1 Crossing symmetry

Let us start by defining the rapidity z and its domain.

Uniformising the dispersion relation

The all-loop dispersion relation for massive excitations on AdS3 × S3 × T4 reads

E2(p) = 1 + 4h2 sin2 p

2
. (4.3)

This is the same functional form appearing in AdS5×S5. To uniformise the dispersion relation
we can introduce a rapidity variable following ref. [169]. Let z satisfy

p(z) = 2 amz , sin
p(z)

2
= sn(z, κ) , E(z) = dn(z, κ) , (4.4)

in terms of Jacobi’s elliptic functions, where the elliptic modulus is κ = −4h2. This defines a
torus with a real period 2ω1 and an imaginary period 2ω2 that depend on h through

ω1 = 2K(κ) , ω2 = 2iK(1− κ)− 2K(κ) , (4.5)

where K is the complete elliptic integral of the first kind. In this parameterisation the real
z-axis corresponds to real momentum and positive energy. In order to describe bound states,
it is useful to consider complex momenta, and therefore complex rapidities z in the torus. One
can check that all the definitions we have given are also ω1-periodic, so that we can always
restrict to |Re(z)| ≤ ω1/2, corresponding to −π < p ≤ π.

The Zhukovski variables x±(z) are meromorphic functions on the torus

x±(z) =
1

2h

(
cn(z, κ)

sn(z, κ)
± i
)
(1 + dn(z, κ)) , (4.6)

and satisfy the relations (3.47). Furthermore we can resolve the square root in ηp by

η(z) =
dn z

2

(
cn z

2
+ i sn z

2
dn z

2

)

1 + 4h2 sn4 z
2

. (4.7)

The S-matrix elements that we computed in the previous chapter can now be expressed purely
in terms of z. Remarkably, they are all rational functions on two copies1 of the elliptic torus,
up to the dressing factors.

In figure 4.2 we depict the rapidity torus, highlighting several significant curves. The red
ones correspond to |x±(z)| = 1. In analogy with AdS5 × S5, we will call the region they
delimit which contains the real z-axis the physical region—this is where the complex momenta
of physical bound state are expected to be found [110]. It can be identified by requiring
|x±(z)| > 1. In what follows, we will consider all S-matrix elements corresponding to physical
processes to be evaluated at rapidities lying in the physical region.

A shift z → z + ω2 flips the sign of energy and momentum (4.4). The region containing
the line Im(z) = ω2 corresponds to real crossed variables, having real momentum and real
negative energy. In terms of the Zukhovski variables we have that

x+(z ± ω2) =
1

x+(z)
, x−(z ± ω2) =

1

x−(z)
, η(z ± ω2) =

±i
x+(z)

η(z) , (4.8)

1Recall that S(p1, p2) or more precisely S(z1, z2) depends on z1 and z2 separately, in contrast with the
relativistic case where it would be S(ϑ1, ϑ2) = S(ϑ1 − ϑ2).
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(b) Torus with Im(x±) = 0 curves
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(c) Torus with both curves

Figure 4.2: The rapidity torus with several significant curves. The solid blue line is the real z-axis
(physical region), the dashed blue line is the z = ω2 axis (“crossed” region). In the leftmost figure the
torus is divided in four regions by |x±| = 1 and in the central figure it is divided by Im(x±) = 0. The
rightmost picture depicts both sets of curves, which intersect in eight points with real part ±ω1/4,
denoted by stars.

so that the shift maps the physical region |x±| > 1 to |x±| < 1. The scattering of antiparticles,
which take the negative branch of the dispersion relation, will give S-matrix elements evaluated
for z in the crossed region, i.e. for |x±(z)| < 1.

Charge conjugation

Let us go back to the representations of psu(1|1)4c.e., or equivalently of su(1|1)2c.e.. Even better,
since we know how to obtain multiparticle representations in terms of a non-trivial coproduct,
we can even restrict to the one-particle representation given by the 4× 4 supermatrices (3.44)
and by the relative central charges. We can label this pair of representations as

VLR(e, c, c̄) = VL(e, c, c̄)⊕ VR(e, c, c̄) , (4.9)

where e labels the energy and c, c̄ the central charges eigenvalues.
By transforming all of the charges and supercharges x by means of a supertransposition

x→ −xst , (4.10)

we find another representation of su(1|1)2c.e.. Notice that the minus sign is needed to ensure
that the anticommutation relations are preserved. This clearly flips the sign of the central
charges. In particular, we now have that E < 0 and that left and right excitation have swapped
their charge under m.

Combining x→ −xst with the crossing transformation z → z + ω2, we can almost obtain
a pair of representations with the same central charges as the one that we started from. If
that were the case, that would mean that there exists a (anti)unitary transformation relating
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−xst(z + ω2) with x(z)—that is, a charge conjugation matrix. There are two obstructions for
this to be the case. Firstly, for the eigenvalues of m to be swapped, charge conjugation must
exchange the left and right irreducible representations. Secondly, the crossing transformation
does flip the sign of energy, but acts on C(z) as

c(z) = iζ
h

2

(
eip(z) − 1

)
→ c(z + ω2) = −e−ip(z) c(z) , (4.11)

and similarly for c̄(z). These additional phase factors can be accounted for if we additionally
transform the supercharges q = qL,R by a phase

(
− qst(z + ω2)

)
→ e+

i
2
p
(
− qst(z + ω2)

)
,

(
− q̄st(z + ω2)

)
→ e−

i
2
p
(
− q̄st(z + ω2)

)
.

(4.12)

This transformation is an U(1) automorphism of su(1|1)2c.e.. Using it, we can finally conclude
that, for the supercharges it must be

−e+ i
2
p qst(z + ω2) = C q(z)C

−1 ,

−e− i
2
p q̄st(z + ω2) = C q̄(z)C

−1 ,
(4.13)

where C is the charge-conjugation matrix, which exchanges the left and right representations.
It can be written in the basis B as

C =




0 0 ξRL 0
0 0 0 −i ξRL

ξLR 0 0 0
0 −i ξLR 0 0


 . (4.14)

The two normalisation constants ξLR and ξRL, one per representation, can be set without loss
of generality to e.g.

ξLR = ξRL = 1 . (4.15)

In this way C 2 = Σ and C −1 = C †.
By using the fact supertransposition acts on the supercharges as qst = qt Σ, we can rewrite

eq. (4.13) as

qt(z ± ω2) = ∓e−
i
2
p ΣC

† q(z)C ,

q̄t(z ± ω2) = ∓e+
i
2
p ΣC

† q̄(z)C ,
(4.16)

where we also used the fact that ΣC = C Σ and Σq = −qΣ. Note how these equations are
related by Hermitian conjugation.

Crossing equations

The fact that the charges enjoy the invariance (4.13) together with the fundamental invariance
property of the S matrix

R(12) Q(12) = Q(21) R(12) , (4.17)

allows us to derive an additional property of R12.
2 To this end, let us focus on the case where

Q is one of the supercharges qL,R or of their conjugates—the invariance under the central

2We choose to work with R here rather than S or Š to obtain a more compact and familiar-looking final
expression the crossing equations.
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charges follows trivially. Furthermore, let us recall that Q(12) is given by the coproduct (3.59),
and similarly Q(21) is given by

Q(21)(p, q) = Q(p, ζ1 = eiq)⊗ Σ + I⊗Q(q, ζ2 = 1). (4.18)

It is then easy to write down the invariance of R under q = qL,R

R(12)(z1, z2)
(
q(z1)⊗ I+ e

i
2
p1Σ⊗ q(z2)

)

=
(
e

i
2
p2q(z1)⊗ Σ + I⊗ q(z2)

)
R(12)(z1, z2) ,

(4.19)

where pj = p(zj). If we take the transpose of this equation with respect to e.g. the first space,
we find

(
−Σqt(z1)⊗ I+ Σ⊗ q(z2)

)
Rt1

(12)(z1, z2)

= Rt1
(12)(z1, z2)

(
−e i

2
p2Σqt(z1)⊗ Σ + e

i
2
p1I⊗ q(z2)

)
.

(4.20)

where we also multiplied by −Σ from the left. This equation holds for any z1, z2. If we now
perform a shift z1 → z1 + ω2 and use (4.16), we can recast the equation in the form

(
q(z1)⊗ I+ e

i
2
p1Σ⊗ q(z2)

)
C(1) R

t1
(12)(z1 + ω2, z2)C

†
(1)

= C(1) R
t1
(12)(z1 + ω2, z2)C

†
(1)

(
e

i
2
p2q(z1)⊗ Σ + I⊗ q(z2)

)
,

(4.21)

where C(1) = C ⊗ I. Comparing this expression with (4.19), we see that the combination

C(1) R
t1
(12)(z1 + ω2, z2)C

†
(1) has the same invariance property with respect to qL as the inverse

of R(12)(z1, z2). In fact, it is not hard to see that the same calculation applies to all of the
supercharges.3 We can therefore require that it is

C(1) R
t1
(12)(z1 + ω2, z2)C

†
(1) =

(
R(12)(z1, z2)

)−1
. (4.22)

This is the crossing equation. If we had repeated a similar calculation taking the transpose in
the second space, we would have found

C(2) R
t2
(12)(z1, z2 − ω2)C

†
(2) =

(
R(12)(z1, z2)

)−1
. (4.23)

In fact, the two crossing equations are related by braiding unitarity, as we will see explicitly
in the next subsection.

What we have just found with regard to crossing symmetry is somewhat similar to what
happened for the unitarity condition (3.68). The invariance property we have found is seemigly
new, but it can be found from manipulating eq. (4.19). Since the matrix part of R has
been found imposing (4.19), it will automatically satisfy crossing invariance. However, this

requirement will mean that the scalar factors Spq and S̃pq may not be arbitrary, but satisfy
the analyticity requirements coming from (4.22) or equivalently (4.23).

Here we have derived the crossing symmetry requirements for the su(1|1)2c.e. S matrix. The
ones for the bigger psu(1|1)4c.e. S matrix follow immediately by requiring that it is given by the
tensor product (3.83) of two crossing invariant su(1|1)2c.e. S matrices. Equivalently, it is easy
to repeat the construction of the charge-conjugation matrix for the charges in psu(1|1)4c.e. and
obtain the crossing equations in that way.

3Note that in the case of q̄L,R the sign in the phase shifts e±
i

2
p is everywhere opposite to the one we used

for qL,R.
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Constraints on the scalar factors

Let us write the requirements imposed by crossing symmetry on the scalar factors of the
psu(1|1)4c.e. S matrix. For later convenience, let us normalise the scalar factors by introducing
two functions σ(p1, p2) and σ̃(p1, p2) satisfying

S
2(p1, p2) = σ−2(p1, p2)

x+1 − x−2
x−1 − x+2

1− 1
x−

1 x+
2

1− 1
x+
1 x−

2

,

S̃
2(p1, p2) = σ̃−2(p1, p2)

1− 1
x−

1 x+
2

1− 1
x+
1 x−

2

,

(4.24)

In this way the phase for the same-chirality diagonal processes features the Beisert-Dippel-
Staudacher [194] matrix element. The scalar factors have the form

σ(p1, p2) = ei θ(p1,p2), σ̃(p1, p2) = ei θ̃(p1,p2), (4.25)

where θ(p1, p2) and θ̃(p1, p2) are antisymmetric real analytic functions for real p1, p2—a re-
quirement that follows from unitarity.

The crossing equations that we have found then imply

σ(pc1, p2)
2 σ̃(p1, p2)

2 = g(p1, p2) , σ(p1, p2)
2 σ̃(pc1, p2)

2 = g̃(p1, p2) ,

σ(p1, p
c

2)
2 σ̃(p1, p2)

2 =
1

g̃(pc2, p1)
, σ(p1, p2)

2 σ̃(p1, p
c

2)
2 =

1

g(pc2, p1)
,

(4.26)

where

g(p1, p2) =

(
x−2
x+2

)2

(
1− 1

x+
1 x+

2

)(
1− 1

x−

1 x−

2

)

(
1− 1

x+
1 x−

2

)2
x−1 − x+2
x+1 − x−2

,

g̃(p1, p2) =

(
x−2
x+2

)2 (
x−1 − x+2

)2
(
x+1 − x+2

) (
x−1 − x−2

)
1− 1

x−

1 x+
2

1− 1
x+
1 x−

2

.

(4.27)

and the superscript c indicates crossing. More precisely, we have

pc1 = p(z1 + ω2) , pc2 = p(z2 − ω2) . (4.28)

It is then easy to check that the four equations (4.26) are related by the antisymmetry of the
scalar factors, i.e. owing to unitarity. Therefore, it will be enough to restrict ourselves to e.g.

σ(pc1, p2)
2 σ̃(p1, p2)

2 = g(p1, p2) , σ(p1, p2)
2 σ̃(pc1, p2)

2 = g̃(p1, p2) , (4.29)

which are the ones due to (4.22).
We have remarked how the matrix part of R is a meromorphic function on the rapidity

torus. However, by iterating the crossing transformation twice we find that the dressing factors
are not 2ω2-periodic:

σ(z1 + 2ω2, z2)
2

σ(z1, z2)2
=
g(z1 + ω2, z2)

g̃(z1, z2)
=

(
x+1 − x+2
x+1 − x−2

x−1 − x−2
x−1 − x+2

)2

,

σ̃(z1 + 2ω2, z2)
2

σ̃(z1, z2)2
=
g̃(z1 + ω2, z2)

g(z1, z2)
=

(
1− 1

x+
1 x−

2

1− 1
x+
1 x+

2

1− 1
x−

1 x+
2

1− 1
x−

1 x−

2

)2

.

(4.30)
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Figure 4.3: The paths used for analytic continuation from z to z + ω2 (in purple) are vertical
segments that lie close to the boundary of |Re(γ)| < ω1/4. They cross the red lines |x±| = 1 when
Im(x±) < 0.

Therefore, they must have cuts on the rapidity torus, so that the whole crossing-invariant
S matrix is defined on some more complicated surface. In fact, even if we considered shifts by
4ω2, 6ω2, etc. we would still find no periodicity, meaning that the dressing phases should live
on an infinite cover of the z-torus.

Even in the better-understood case of AdS5×S5 it is unknown how to define a generalised
rapidity that resolves the additional cuts and describes that cover. Therefore, in what follows
we will continue using z (or x±z ), keeping in mind that when describing paths on the torus
additional care should be used in the case where a cut is crossed.

4.2 Solving the crossing equations

A solution for the crossing equations is given by two antisymmetric phases satisfying eq. (4.29).
It is convenient to rewrite this in terms of crossing equations for the sum and the difference of
the two phases θ(p1, p2) and θ̃(p1, p2). Let us denote the product and the ratio of the dressing
factors by

σ+(p1, p2) = σ(p1, p2) σ̃(p1, p2) , σ−(p1, p2) =
σ(p1, p2)

σ̃(p1, p2)
, (4.31)

and corresponding phases by θ+(p1, p2) and θ
−(p1, p2). By analogy with the case of AdS5 ×

S5 [103], it is also useful to rewrite each phase as

θ(p1, p2) = χ(x+1 , x
+
2 ) + χ(x−1 , x

−
2 )− χ(x+1 , x−2 )− χ(x−1 , x+2 ) , (4.32)

where χ is an antisymmetric function. Similar expressions can be introduced for θ̃(p1, p2),
θ+(p1, p2) and θ

−(p1, p2).
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Dressing phases in AdS5 × S5

Due to the many similarities of our S matrix with the AdS5×S5, it is worth briefly describing
the solution of the crossing equation in that case. In the AdS5×S5 S matrix, a single dressing
phase appears. An all-loop solution to its crossing equation [169] was found by Beisert, Eden
and Staudacher (BES) [106]

σBES(z1, z2)σ
BES(z1 + ω2, z2) = h(x±1 , x

±
2 ),

h(x±1 , x
±
2 ) =

x−2
x+2

x−1 − x+2
x−1 − x−2

1− 1
x+
1 x+

2

1− 1
x+
1 x−

2

.
(4.33)

A particularly useful representation of this phase was given by Dorey, Hofman and Maldacena
(DHM) [195]

χBES(x, y) = i

∫
	

dw

2πi

∫
	

dw̃

2πi

1

x− w
1

y − w̃ log
Γ[1 + i

2
h(w + 1/w − w̃ − 1/w̃)]

Γ[1− i
2
h(w + 1/w − w̃ − 1/w̃)]

. (4.34)

This is valid in the physical region |x| < 1, |y| < 1. On the boundary of this region, the
integral representations has cuts so that a path should be chosen to analytically continue the
expression to the crossed region.

As it is discussed in detail in [111], for the AdS5 × S5 crossing equations to be solved we
can chose the path depicted in figure 4.3. These are curves γ(z) that go from z to z + ω2

with constant Re(γ), and which lie close to the boundaries of the region |Re(γ)| < ω1/4 and
crossing the lines |x±| = 1 in the region Im(x±) < 0. Then, the precise statement of the
crossing equation (4.33) is that the BES dressing factor evaluated for z in the physical region
as defined by the DHM double integral, times itself analytically continued through the cuts
of (4.34) along γ(z), equals the rational function on the right hand side.4

Our crossing equations (4.29) will be interpreted in a similar sense. In fact, we will from
now consider the crossing transformation as a continuation along the paths γ(z) described in
figure 4.3. This will be understood every time we write pc, zc and so on.

At leading order O(h−1) in a large-h expansion,5 the BES phase reduces to the Arutyunov-
Frolov-Staudacher (AFS) phase [103]. This was found based on rather general considerations
on the large-h behaviour of the energy of string states, and for this reason it is expected to be
common to several AdS/CFT duals. It can be written as

σAFS(x1, x2) =

(
1− 1

x−

1 x+
2

1− 1
x+
1 x−

2

)(
1− 1

x+
1 x−

2

1− 1
x+
1 x+

2

1− 1
x−

1 x+
2

1− 1
x−

1 x−

2

) i
2
h(x1+1/x1−x2−1/x2)

, (4.35)

The next-to-leading-order term in strong-coupling expansion is the Hernández-López (HL)
phase [197],

χHL(x, y) =
π

2

∫
	

dw

2πi

∫
	

dw̃

2πi

1

x− w
1

y − w̃ sign(w̃ + 1/w̃ − w − 1/w) . (4.36)

4Actually, we are restricting to a subset of all the allowed paths used in the case of AdS5 × S5, see section
4 in [111]. This more special choice will be the one suitable for our crossing equations.

5To find the asymptotic expansion of the BES phase at strong coupling one can expand the integrand using

that i log Γ(1+ix)
Γ(1−ix) = −x log x2

e2
− π

2 sign(Rex) − 2
∑∞

n=0
ζ(−2n−1)

2n+1
(−1)n

x2n+1 for Rex 6= 0. This expression corrects

some typos in the expansion given in [196].
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The HL phase appears at order O(1), and indeed its expression is h-independent. For later
convenience, let us perform one of the two integrals in (4.36) and obtain the representation

χHL(x, y) =

( ∫
x −

∫

x

)
dw

4π

1

x− w (log (y − w)− log (y − 1/w)) , (4.37)

where the two integrals are performed in the upper and lower unit semi-circle respectively,
counterclockwise in both cases. The HL phase solves the “odd” part of the AdS5 crossing
equation [69]

σHL(z1, z2)σ
HL(z1 + ω2, z2) =

√
h12
h1̄2

=
√
h12 (h12)∗ , (4.38)

where

h12 (h12)
∗ =

ℓHL(x+1 , x
−
2 ) ℓ

HL(x−1 , x
+
2 )

ℓHL(x+1 , x
+
2 ) ℓ

HL(x−1 , x
−
2 )
, ℓHL(x, y) =

x− y
1− xy , (4.39)

where complex conjugation amounts to sending x±k → x∓k .
6

Solution for the sum of the phases

Taking the product of the two crossing equations (4.29), we find an equation for σ+

σ+(z1, z2)
2
σ+(z1 + ω2, z2)

2
= g12 g̃12 . (4.40)

We observe that the r.h.s of this equation can be written in terms of the function h12 appearing
on the r.h.s of the AdS5 crossing equation (4.33)

g12 g̃12 =
(h12)

3

(h12)∗
, (4.41)

where we used the constrain (3.47). The above relation allows us to solve the crossing equa-
tion (4.40) using parts of the AdS5 dressing phase

σ+
12 =

(σBES
12 )2

σHL
12

, i.e. θ+12 = 2θBES
12 − θHL

12 . (4.42)

To show that such a σ+
12 satisfies equation (4.40) one need only use equations (4.33) and (4.38).

It is convenient to express σ+
12 in terms of a DHM-like double-integral representation, by

defining χ+(x, y) as

χ+(x, y) = 2χBES(x, y)− χHL(x, y)

=

∫
	

dw

2πi

∫
	

dw̃

2πi

1

x− w
1

y − w̃

(
2i log

Γ[1 + ih(w + 1/w − w̃ − 1/w̃)]

Γ[1− ih(w + 1/w − w̃ − 1/w̃)]

− π

2
sign(w̃ + 1/w̃ − w − 1/w)

)
,

(4.43)

in the physical region. Notice that the above expression is exact to all orders in the coupling
h. We postpone the perturbative expansion of this and the following expressions to chapter 7,
where we will also compare them with independent results.

6One can check that in order for (4.37) to solve (4.38) it is necessary to choose the path of analytic
continuation as in figure 4.3. This is discussed in more detail in ref. [146].
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Solution for the difference of the phases

Taking the ratio of the two crossing equations (4.29), we get

σ−(z1, z2)
2

σ−(z1 + ω2, z2)
2 =

g̃12
g12

, (4.44)

where
g̃12
g12

=
ℓ−(x+1 , x

−
2 )ℓ
−(x−1 , x

+
2 )

ℓ−(x+1 , x
+
2 )ℓ
−(x−1 , x

−
2 )
, ℓ−(x, y) ≡ (x− y)

(
1− 1

xy

)
. (4.45)

Notice that this equation involves the ratio rather than the product of the dressing factor with
its analytic continuation. As it can be explicitly verified7, defining χ−(x, y) in the physical
region (|x|, |y| > 1) by the integral

χ−(x, y) =

∫
	

dw

8π

1

x− w log

[
(y − w)

(
1− 1

yw

)]
sign((w − 1/w)/i) − x↔ y

=

( ∫
x −

∫

x

)
dw

8π

1

x− w log

[
(y − w)

(
1− 1

yw

)]
− x↔ y ,

(4.46)

solves the crossing equation (4.44). By construction, χ− is antisymmetric. Note that the
integrand of χ− does not depend explicitly on the coupling h, in contrast to the solution of
the crossing equation (4.40) which is solved by an integrand with an infinite series expansion
in h. This is because equation (4.44) is “odd” in the sense of ref. [69].

The all-loop expressions for χ and χ̃ are then given by

χ(x, y) = χBES(x, y) +
1

2

(
−χHL(x, y) + χ−(x, y)

)
,

χ̃(x, y) = χBES(x, y) +
1

2

(
−χHL(x, y)− χ−(x, y)

)
.

(4.47)

These solutions are expressed in terms of the non-perturbative BES phase plus terms at the
HL order. These latter contributions to χ and χ̃ are independent of h. As such, they can be
added to the DHM representation of the BES phase without affecting the h-resummation.

4.3 Poles of the S matrix

Now that we have found a solution to the crossing equations, it is natural to ask whether this
is the solution appearing in the AdS3 × S3 × T4 S matrix. It is clear that our phases could
be multiplied by any “CDD factor” [198], that is, any solution of the homogeneous crossing
equations

σCDD

p q σ̃CDD

pc q = 1 , σCDD

pc q σ̃
CDD

p q = 1 . (4.48)

Such solutions exist. The simplest ones are meromorphic functions on the torus, which can
be defined in terms of

χCDD

pq =
i

2
log

(x− y)n1

(1− xy)n2
, χ̃CDD

pq =
i

2
log

(x− y)n2

(1− xy)n1
, (4.49)

with n1, n2 integer constants. Such factors will modify the pole structure of the S matrix.
However, there is a close connection between simple poles in the physical region of the S matrix
and the bound states of the model. Therefore, by exploring the expected bound-state spectrum
of the model we will be able to put stringent restriction on the CDD factors.

7See ref. [146] for the details of such calculation.
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Bound states and short representations

Excitations transform in representations of psu(1|1)4c.e.. Furthermore, the representations sat-
isfy a shortening condition which immediately follows from the one of su(1|1)2c.e., see eq. (3.41)

H2 = M2 +CC . (4.50)

Bound states preserving some supersymmetry also transform in a short representation of the
symmetry algebra. Let us consider a two-particle state containing two left-moving particles,
e.g. |ΦL

++Φ
L
++〉. For generic values of the momenta p and q the tensor product of two funda-

mental left representations is an irreducible long representation. However, at special points the
tensor product becomes reducible. In particular, we find that the shortening condition (4.50)
is satisfied for

x+p = x−q or x−p = x+q . (4.51)

Only at these points it is possible to construct short sub-representations. Therefore any pole
in the S-matrix corresponding to a supersymmetric bound state will have to satisfy one of
these conditions.

An interesting feature of the psu(1|1)4c.e. algebra is that all short irreducible representations
are two-dimensional while all long irreducible representations have dimension four. A two-
particle bound state will therefore transform in a representation which has the same form as
the fundamental representation, differing only in the values of the central charges. This should
be contrasted with the centrally extended psu(2|2) algebra appearing in AdS5×S5 [89,105,107],
where the fundamental representation has dimension four while the M -particle bound state
has dimension 4M [199].

At the points where the tensor product becomes reducible some of the elements of the
S matrix become zero or develop poles. These singularities will appear both in the dressing
factors, as we will investigate later, and in the ratio of S matrix elements. In fact, with an
appropriate normalisation we will have

Rpq V0 = 0 , V0 ⊂ VL(p)⊗ VL(q) , (4.52)

when p and q satisfy (4.51), while Rpq is regular (finite) on the complement of V0. The
bound state representation is then the factor representation on the quotient space VL(p) ⊗
VL(q)/V0 [200]. Using the explicit form of the S matrix, for the point x+p = x−q we find that
the state |ΦL

++Φ
L
++〉 belongs to the short representation, and we will therefore refer to it as a

su(2) bound state. In the case x−p = x+q the short representation includes the state |ΦL
−−Φ

L
−−〉,

and is a potential sl(2) bound state.8

To decide which bound state belongs to the physical spectrum we need to impose addi-
tional constraints on the momenta of the fundamental excitations. In the region s1 ≪ s2 the
wave function of a scattering state takes the general form9

Ψ(s1, s2) ≈ ei(ps1+qs2) + S(p, q)ei(ps2+qs1), (4.53)

where the first term describes the incoming wave and the second term the outgoing wave, or
equivalently

Ψ(s1, s2) ≈
1

S(p, q)
ei(ps1+qs2) + ei(ps2+qs1). (4.54)

8In AdS5 × S5 the physical bound states correspond to “su(2) bound states”. The “sl(2) bound states”
appear as bound states of the mirror theory that we alluded to in the introduction [110].

9In order to avoid confusion with the dressing phase we denote the world-sheet coordinate by s.
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To find a bound state we analytically continue the wave function to complex values of the
momenta

p =
p̃

2
+ iv, q =

p̃

2
− iv. (4.55)

The wave function then behaves as

Ψ(s1, s2) ≈
1

S(p, q)
ev(s2−s1) + e−v(s2−s1) , s1 ≪ s2 . (4.56)

If there are bond states in the spectrum, we expect S(p, q) to have a pole, as it can be
understood in a diagrammatic expansion in terms of a propagator that goes on the mass
shell. Additionally, for the bound-state wave function to be normalizable, the outgoing-wave
exponential should be decaying. Hence we are interested in the solution where the momentum
of the first particle has a positive imaginary part, v > 0. By imposing the condition (3.47) for
x±p and x±q in the physical region, we find that for x+p = x−q the momentum p has a positive
imaginary part, while x−p = x+q leads to the imaginary part being negative. We hence conclude
that only the su(2) bound state can appear in the physical spectrum. Of course this will have
to be confirmed by the presence of suitable poles in the S matrix, which will pose a constraint
on the dressing factors

So far we have only considered bound states in the LL-sector. If we start with two right-
moving excitations we again find an su(2) bound state at x+p = x−q , simply by left-right
symmetry. It is interesting to consider a state consisting of one left- and one right-moving
excitations such as |ΦL

++Φ
R
−−〉 . In this case the shortening condition (4.50) is satisfied for

x+p = 1/x+q and x−p = 1/x−q . Neither of these solutions lie in the physical region |x±p | > 1,
|x±q | > 1 and hence there are no supersymmetric bound states in the LR sector.

In summary we find that, based on the shortening condition and the matrix form of Rpq,
physical two-particle su(2) bound states exist in the LL and RR sectors. The LR sector, on
the other hand, does not contain any bound states.

Semiclassical bound states from giant magnons

Owing to its integrability, the AdS5 × S5 NLSM admits classical off-shell soliton solutions
called giant magnons [99]. These can be thought of as a coherent superposition of several
many one-particle excitations (magnons in the dual spin chain). The simplest giant magnon
is a classical string solution living in a ❘ × S2 subspace of AdS5 × S5, and having a definite
momentum p. It can be extended to a solution in ❘ × S3, the dyonic giant magnon [100],
which carries angular momentum M along the additional angle. This solution corresponds to
the semiclassical limit of a bound state of |M | fundamental magnons [201].

Since both the fundamental giant magnon and the dyonic extension live in ❘ × S3 they
can be directly embedded in AdS3 × S3 [202]. How does our discussion on the allowed bound
states fit together with the giant magnon picture?

An important difference between our case and AdS5×S5 is that in the latter space a dyonic
giant magnon with positive M-charge +M can be continuously rotated to the corresponding
magnon with negative charge −M , due to the presence of an additional su(2) symmetry.
However, in the case of AdS3× S3 such a rotation is not possible since the intermediate states
would not sit inside S3. Therefore, while in AdS5 × S5 there is no notion of left and right
giant magnon, in our case the two states with charges +M and −M are independent and can
be distinguished by the sing of their eigenvalue under M—their target-space chirality. Only
configurations of the same chirality can be used to build a dyonic giant magnon, so that only
the corresponding microscopic excitations will have bound states. Since the notion of left and



4.3. Poles of the S matrix 65

ΦL
++(p)ΦL

++(q)

ΦL
++(p) ΦL

++(q)

(a) s channel, LL sector

ΦR
++(p

c)

ΦL
++(q) ΦR

++(p
c)

ΦL
++(q)

(b) t channel from crossing

Figure 4.4: On the left two particles in the same sector form an su(2) bound state in the s channel.
Applying the crossing transformation to ΦL

++(p) yields the t-channel diagram on the right, where on
particle has unphysical momentum pc (red dashed lines).

right excitations was defined precisely in terms of their charge under M, we must expect to
have LL and RR su(2)-bound states resembling the ones of AdS5×S5, but no LR or RL bound
states. This is precisely the result of our representation-theoretical analysis of the previous
subsection.

Simple poles of the S matrix

Scattering processes involving formation or exchange of bound states give rise to single poles
in the S matrix for physical values of the spectral parameters [203]. Let us consider the s-
channel diagram in figure 4.4a. The process involves two fundamental particles from the same
sector, e.g. two left-movers, in the physical region |xi| > 1, i = p, q, which form an on-shell
boundstate and then split up again. Similarly to the case of the su(2) sector in AdS5 [195,201],
this should lead to a pole in the corresponding S-matrix element at x+p = x−q . The relevant
element is, up to inessential eip prefactors which we will always drop here,

Apq = 〈ΦL

++ ΦL

++| Špq |ΦL

++ ΦL

++〉 =
x−p − x+q
x+p − x−q

1− 1
x−

p x+
q

1− 1
x+
p x−

q

σ−2pq . (4.57)

As it can be directly checked [146], the dressing factor is regular at x+p = x−q , so that Apq has
a simple pole there.

This s channel process is related through crossing symmetry to the exchange of a bound
state in the t channel, depicted in figure 4.4b. There the particle of momentum p has been
crossed so that x±pc = 1/x±p are not in the physical region. Since the two processes are related
by crossing symmetry, the poles in the s channel automatically fix the singularities in the
t channel. In fact crossing symmetry implies [145]

ApqÃpcq = 1, where Ãpq = 〈ΦL

++ ΦR

++| Špq |ΦR

++ ΦL

++〉 , (4.58)

so that a pole of Apq corresponds to a pole of Ã−1pcq. We can check this explicitly by considering

Ãpcq =
1− 1

x−

pc
x+
q

1− 1
x−

pc
x−

q

1− 1
x+
pc
x−

q

1− 1
x+
pc
x+
q

σ̃−2pcq. (4.59)

Since σ̃ is regular when continued inside the unit circle [146], Ãpcq has a zero at x+pc = 1/x−q ,
as expected.
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ΦR
−−(p)ΦL

++(q)

ΦR
−−(p) ΦL

++(q)

(a) RL s channel (forbidden)

ΦL
−−(p

c)

ΦL
++(q) ΦL

−−(p
c)

ΦL
++(q)

(b) crossed LL t channel (forbidden)

Figure 4.5: On the left the would-be Landau diagram for one left- and one right-moving particle
is depicted. This process should be absent. Similarly, the crossed process on the right should be
absent, and the corresponding S-matrix element have no pole.

If we consider S-matrix elements involving one left- and one right-moving particle we expect
no poles, since there are no corresponding bound states. Therefore a process such as the one
depicted in figure 4.5a should not happen. Indeed, the S-matrix element

B̃pq = 〈ΦL

++ ΦR

−−| Špq |ΦR

−−Φ
L

++〉 =
1− 1

x−

p x+
q

1− 1
x+
p x−

q

1− 1
x+
p x+

q

1− 1
x−

p x−

q

σ̃−2pq , (4.60)

is regular in the physical region, and in particular has no pole at x+p = x−q . It is an interesting
check that the same holds in the crossed channel, whose exchange diagram would be as in
figure 4.5b, should it exist. Again crossing symmetry relates the two processes in a simple
way (because we are scattering highest weight states), i.e.

B̃pqBpcq = 1, where Bpq = 〈ΦL

++ ΦL

−−| Špq |ΦL

−−Φ
L

++〉 , (4.61)

which implies the first crossing equation in (4.26). Since B̃pq has no singularity at x+p = x−q
we expect Bpcq to have no singularity at x+pc = 1/x−q . Explicitly we have

Bpcq =
(x−pc − x−q )2

(x−pc − x+q )(x+pc − x−q )
1− 1

x−

pc
x+
q

1− 1
x+
pc
x−

q

σ−2pcq. (4.62)

The rational terms have a pole at x+pc = 1/x−q , but once the dressing factor is continued to the
crossed region, this is canceled by a zero of σ−2, so that the result is non-singular.

Conditions on CDD factors

The fact that we correctly match the structure of single poles in the physical region tells us
that for any CDD factors of the form (4.49) we must set n1 = n2 = 0. However, in principle
we could still allow for different solutions of the homogeneous crossing equations. If these
are defined on a cover of the rapidity torus and feature no poles in the physical region, for
instance, they would not be ruled out by our bound-state analysis. Since the dressing phases
we propose live on such a cover, such solutions cannot be ruled out.

4.4 Chapter summary

In this chapter we have formalised the particle-to-antiparticle symmetry of the non-relativistic
worldsheet theory in terms of a set of crossing equations, in the spirit of what was done in
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AdS5× S5 by Janik [169]. In our case, we find that the particle-to-antiparticle transformation
exchanges the left and right representations. This is a qualitatively new feature, which tells
us that for consistency of our 2-dimensional worldsheet theory we cannot restrict ourselves to
particles of a single target-space chirality, even if they form an irreducible representation of
the off-shell symmetry algebra.

The crossing equation couples the LL and LR dressing factors factors Spq and S̃pq or
equivalently σpq and σ̃pq. Specifically, it relates one scalar factor evaluated in the physical
region with another analytically continued to the crossed region. We see that, were it not for
the dressing factors, the S matrix would be a rational function on a double complex torus—
instead, it is defined on an infinite cover of it.

The main result of the chapter is an all-loop solution to the crossing equations. This
features the well known Beisert-Eden-Staudacher [106] and Hernández-López [197] dressing
factors that originally emerged in AdS5 × S5, together with a novel factor defined by (4.46).
This also shows that the BES phase, which essentially constitutes the dressing factors of
integrable AdS5/CFT4 and AdS4/CFT3, is not universal to all AdS/CFT duals.

Besides being crossing-symmetric, the dressing factors we found reproduce the bound-state
spectrum we expect to find in the physical region. Still, it is unclear whether they are the

physical solution of the crossing equations, or should be modified by multiplying them by a
solution of the homogeneous equations, which could be highly non-trivial. To check whether
this is the case, we can compare the large-h expansion of the dressing factors to independent
perturbative calculations. We will successfully do so in chapter 7. Additionally, we could try
to investigate further the analytic properties of the S matrix, especially beyond the physical
region. For instance, its properties in the region where a mirror theory should be defined10

will be important to formulate the mirror thermodynamical Bethe ansatz description that we
mentioned in the introduction. So far, such an investigation has not been performed.

Finally, we should remark that in principle the dressing factors of massive particles should
also contain some information due to the presence of massless virtual particles. This could
appear through a solution of the homogeneous crossing equations, too. At the moment,
however, it is not clear what its contribution should be, or whether somehow it has already
been accounted for.

10This is the region in the middle of the green curves in figure 4.3, corresponding to a shift of 1
2ω2, which in

fact reproduces the mirror transformation (1.27).



5 The psu(1, 1|2)2 spin chain

In this chapter we will see how the all-loop S matrix can be found in a spin-chain picture.
Inspired from what happens in the case AdS5 × S5, which we briefly discussed in the intro-
duction, it is rather natural to assume that strings on AdS3 × S3 × T4 can be described in
terms of a spin chain. If we restrict to the massive sector, the “spins” should be in modules of
psu(1, 1|2)2. By picking a ground state for the chain, and considering fluctuations around it,
we will find an off-shell symmetry algebra. Out of this we will able to fix a two-body S matrix.
While the S matrix that we found out of the Zamolodchikov-Faddeev algebra in chapter 3
describes the reordering of two ZF creation operators, the one we study in this chapter acts on
pairs of spin-chain sites. Consistently extending it to an M -sites S matrix will again require
a sort of Yang-Baxter equation to hold. Equivalently, we can describe the S matrix as acting
on plane-wave excitations (magnons), which will allow us to show that it is in fact equivalent
to the worldsheet S matrix, in a sense that we will specify.

This spin-chain picture was the way in which the S matrix was originally derived [143,145].
To keep our presentation as homogeneous as possible, here we use slightly different conventions
than in refs. [143,145].

5.1 The weakly-coupled spin chain

We want to describe the all-loop psu(1, 1|2)2 spin-chain dual to free AdS3×S3 strings. At weak
coupling—that is, for h ≪ 1—the spin chain was originally constructed in [141]. There one
finds two copies of the superalgebra psu(1, 1|2), describing the left- and right-moving sectors
of the dual CFT. At leading order in a h→ 0 expansion, left- and right-movers decouple. The
spectrum is then described by two homogeneous spin-chains with the sites of each transforming
in the representation1 (1

2
; 1
2
) of psu(1, 1|2)—one for the left and one for the right sector. At

higher orders in h the two sectors couple to each other through local interactions. We will be
able to account for all of these interactions from symmetry arguments.

The spin-chain algebra and representation

The sites of each psu(1, 1|2) spin-chain transform in the infinite-dimensional representation

(1
2
; 1
2
), consisting of the bosonic su(2) doublets φ

(n)
± and the two sets of fermionic su(2) singlets

ψ
(n)
± , where the index n indicates the sl(2) quantum number. In the spin-chain picture it

is convenient to consider a real form of psu(1, 1|2) which differs from the one we saw in

1To make contact with the coset construction, we take the su(1, 1) spin to be positive. Still, the 1
2 repre-

sentation of su(1, 1) is infinite-dimensional, while the 1
2 representation of su(2) is finite-dimensional. This is

in contrast with ref. [145] where we considered the (− 1
2 ;

1
2 ) representation of psu(1, 1|2).

68
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section 2.2.2 Let us consider

[
L3,L±

]
= ±L±,

[
L+,L−

]
= 2L3,[

J3,J±
]
= ±J±,

[
J+,J−

]
= 2J3,

(5.1)

for the bosonic charges and

[
L3,Q±κι

]
= ∓1

2
Q±κι,

[
L±,Q±κι

]
= Q∓κι,

[
J3,Qa±ι

]
= ±1

2
Qa±ι,

[
J±,Qa∓ι

]
= Qa±ι,

(5.2)

with κ = ±, ι = ± and a = ±. The anticommutators then are

{
Q±++,Q±−−

}
= ±L∓,

{
Q±+−,Q±−+

}
= ∓L∓,{

Q+±+,Q−±−
}
= ∓J±,

{
Q+±−,Q−±+

}
= ±J±,{

Q+±±,Q−∓∓
}
= +L3 ± J3,

{
Q+±∓,Q−∓±

}
= −L3 ∓ J3.

(5.3)

Further properties of psu(1, 1|2) are given in appendix A.1.

Let us focus our attention on the action of the generators on a single site, which may be in
any of the states of the (1

2
; 1
2
) module. We have that bosonic states are charged under su(2)

J3 |φ(n)
± 〉 = ±

1

2
|φ(n)
± 〉 , J+ |φ(n)

− 〉 = |φ(n)
+ 〉 , J− |φ(n)

+ 〉 = |φ(n)
− 〉 , (5.4)

and all states are charged under sl(2)

L3 |φ(n)
κ 〉 =

(
1
2
+ n
)
|φ(n)

κ 〉 , L3 |ψ(n)
ι 〉 = (1 + n) |ψ(n)

ι 〉 ,
L− |φ(n)

κ 〉 = +n |φ(n−1)
κ 〉 , L− |ψ(n)

ι 〉 = +
√
(n+ 1)n |ψ(n−1)

ι 〉 ,
L+ |φ(n)

κ 〉 = −(n+ 1) |φ(n+1)
κ 〉 , L+ |ψ(n)

ι 〉 = −
√
(n+ 2)(n+ 1) |ψ(n+1)

ι 〉 .
(5.5)

Finally, the supercharges act as

Q−±ι |φ(n)
∓ 〉 = ±

√
n+ 1 |ψ(n)

ι 〉 , Q+±ι |φ(n)
∓ 〉 = ±

√
n |ψ(n−1)

ι 〉 ,
Q−κ± |ψ(n)

∓ 〉 = ∓
√
n+ 1 |φ(n+1)

κ 〉 , Q+κ± |ψ(n)
∓ 〉 = ∓

√
n+ 1 |φ(n)

κ 〉 .
(5.6)

Therefore, the highest weight state |φ(0)
+ 〉 is annihilated by the su(2) grading raising oper-

ators Q+±±, and by the two generators Q−+±. Hence, the representation (1
2
; 1
2
) is a short

representation, satisfying the shortening conditions

{
Q+−∓,Q−+±

}
|φ(0)

+ 〉 = ±(L3 − J3) |φ(0)
+ 〉 = 0. (5.7)

The action of the generators on part of the module is depicted in figure 5.1. We will take the
sites of the left and right spin-chains to transform in identical modules. At the very end of
our construction, we will see that self-consistency dictates the left and right algebras to be in
different gradings, as it was the case in the coset construction of chapter 2.

2This difference in the real form is familiar from AdS5/CFT4, see e.g. ref. [204].
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∣∣∣φ(0)
κ

〉

∣∣∣φ(1)
κ

〉

∣∣∣φ(2)
κ

〉

∣∣∣ψ(0)
ι

〉

∣∣∣ψ(1)
ι

〉

ǫιβQ+κβ

ǫκαQ−αι

ǫκαQ+αι

ǫιβQ−κβ

ǫιβQ+κβ

ǫκαQ−αι

ǫκαQ+αι

ǫιβQ−κβ

L−L+

L−L+

L−L+

Jα

Jα

Jα

...

...

...

Figure 5.1: An illustration of the short
(
1
2 ;

1
2

)
module, where the action of the (super)charges is

represented up to the numerical coefficients. These are given in eqs. (5.4–5.6).

The ground state

The states of the left- and right-moving spin-chains of length ℓ transform in the ℓ-fold tensor
product of the above representation. The ground state of the full spin-chain is given by

|0〉ℓ =
∣∣∣(φ(0)

+ )ℓ
〉
⊗
∣∣∣(φ(0)

+ )ℓ
〉
. (5.8)

This is the highest weight state of the short ( ℓ
2
; ℓ
2
)⊗ ( ℓ

2
; ℓ
2
) representation of the superalgebra

psu(1, 1|2)L⊕psu(1, 1|2)R. Such a choice preserves as much supersymmetry as possible. Specif-
ically, the ground state is preserved by eight supercharges Qj L,R and Qj L,R, with j = 1, 2, as
well as two central charges HL,R. In terms of the psu(1, 1|2) generators they are given by

Q1L = QL

−++, Q2L = −QL

−+−, Q1L = QL

+−−, Q2L = QL

+−+,

Q1R = QR

−++, Q2R = −QR

−+−, Q1R = QR

+−−, Q2R = QR

+−+,
(5.9)

and
HL = LL

3 − JL

3, HR = LR

3 − JR

3 . (5.10)

This forms two (one left, one right) copies of the (su(1|1)2)/u(1) algebra, where the quotient
is due to the fact that we have the same Hamiltonian for j = 1, 2:

{
Qj L,Qk L

}
= δjkHL ,

{
Qj R,Qk R

}
= δjkHR . (5.11)

The charges HL and HR are the left- and right-moving spin-chain Hamiltonians. Let us define

H = HL +HR, M = HL −HR, (5.12)

where the positive-definite combination H has the interpretation of the spin-chain Hamilto-
nian, and may depend on the momenta of the spin-chain excitations. The central charge M
measures an angular momentum in AdS3 × S3 and should be quantised.

This symmetry algebra appears at small coupling, when the L and R sectors are decoupled.
It also coincides with the on-shell symmetry algebra of section 2.4. This picture is similar to
what happens in AdS5× S5, where the small-coupling spin chain does not display dependence
on the additional momentum-dependent central charges.
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|φ(0)− 〉

|ψ(0)
+ 〉 − |ψ(0)

− 〉

|φ(1)+ 〉

Q1

Q
1

Q1

Q
1

Q2

Q
2

−Q2

−Q
2

Figure 5.2: The action of the supercharges Qj = Qj L,R and Q
j
= Qj L,R on the either of the left-

or right-bifundamental representation (5.17). It takes the same form of figure 2.2.

For later convenience, let us introduce two additional generators VL,R
1 and VL,R

2 acting as
outer automorphisms. These can be constructed from the psu(1, 1|2) generators JL,R

3 and the
automorphisms UL,R defined in eq. (A.7),

VL,R
1 = −UL,R − JL,R

3 , VL,R
2 = +UL,R − JL,R

3 ,

V1 = +VL

1 −VR

1 , V2 = +VL

2 −VR

2 .
(5.13)

While all four left and right generators are automorphisms of psu(1, 1|2)2, only the combina-
tions V1 and V2 annihilate the vacuum (5.8). Note also that V1 commutes with Q2 L,R and
Q2 L,R, while V2 commutes with Q1 L,R and Q1 L,R. The commutation relations involving the
supercharges then read

[
Vj,Q

kL
]
= −δkj QkL,

[
Vj,Q

kL
]
= +δkj Q

kL,
[
Vj,Q

kR
]
= +δkj QkR,

[
Vj,Q

kR
]
= −δkj QkR.

(5.14)

The generators Vj give useful restrictions on the allowed deformations of the weak-coupling
representations. Taking them into account, we regroup the symmetry algebra into two copies
of u(1)⊕ su(1|1)2, with the generators given by

{
Q1L,Q1R,Q1L,Q1R,HL,HR,V1

}
and

{
Q2L,Q2R,Q2L,Q2R,HL,HR,V2

}
, (5.15)

respectively. This splitting is familiar from section 2.4, where it corresponded to a tensor-
product structure in the representation of the excitations. We will see that the same holds here.

Excitations at weak coupling

To construct excited spin-chain states we replace one or more of the ground state sites by
any other state in the same module. We can classify these excitations by their eigenvalues
under the left and right spin-chain Hamiltonians HL and HR at zero coupling. Let us consider
excitations in the left sector. Replacing one of the highest weight states φ

(0)
+ by the scalar

φ
(n)
− or φ

(n)
+ increases the eigenvalue of HL by n or n + 1, respectively. Similarly, insertion of

a fermion ψ
(n)
± also adds n to the energy. The lightest excitations are therefore

φ
(0)
− , ψ

(0)
+ , ψ

(0)
− , φ

(1)
+ . (5.16)

It is easy to see that the charges of any heavier excitation can be reproduced by considering
a combination of the four states above. These states form a four-dimensional bifundamental
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Z ΦL
++ Z Z ΦR

−− Z Z

left

right
φ
(0)
+ φ

(0)
+ φ

(0)
+ φ

(0)
+ φ

(1)
+ φ

(0)
+ φ

(0)
+

φ
(0)
+ φ

(0)
− φ

(0)
+ φ

(0)
+ φ

(0)
+ φ

(0)
+ φ

(0)
+

Figure 5.3: A pictorial representation of the psu(1, 1|2)2 spin chain. We can think of it as two (left

and right) spin chains, each with ground state φ
(0)
+ . Excitations of the whole chain are considered as

left- or right- moving depending on whether we excite a spin in the left or right chain.

representation of either of the two psu(1|1)2 algebras (5.11), as illustrated in figure 5.2. To
emphasise this we introduce the notation

ΦL

++=φ
(0)
− ⊗φ(0)

+ , ΦL

−−=φ
(1)
+ ⊗φ(0)

+ , ΦL

−+=ψ
(0)
+ ⊗φ(0)

+ , ΦL

+−=−ψ(0)
− ⊗φ(0)

+ ,

ΦR

++=φ
(0)
+ ⊗φ(0)

− , ΦR

−−=φ
(0)
+ ⊗φ(1)

+ , ΦR

−+=φ
(0)
+ ⊗ψ(0)

+ , ΦR

+−=−φ(0)
+ ⊗ψ(0)

− ,
(5.17)

where the tensor product is over left and right sites. As before,the excitations Φ±± are bosons
while Φ±∓ are fermions in either the left and right sector. We will also defined the short-hand
for a vacuum site,

Z = φ
(0)
+ ⊗ φ(0)

+ . (5.18)

In figure 5.3 the structure of the spin chain is represented pictorially.

Fundamental representations

As we did in the string picture, we can make the bifundamental nature of the representation
above more explicit. Let us consider the left module. We introduce a fundamental su(1|1)
representation with basis (φL|ψL), and the generators q, q̄ and h acting as

qL |φL〉 = aL |ψL〉 , q̄L |ψL〉 = āL |φL〉 , hL = |aL|2 IL. (5.19)

where IL is the identity on the (φL|ψL) representation. The representation for right-movers is
similar,

qR |φR〉 = aR |ψR〉 , q̄R |ψR〉 = āR |φR〉 , hR = |aR|2 IR. (5.20)

We can also write down the action of the automorphism generators vL,R and v, which corre-
spond to VL,R

j and Vj respectively. This is found from the charges written in table 5.1. The
parameter v appearing there is a label of the representation, and as we will see it is natural
to take it to be the same in the left and right ones. Looking at the eigenvalues, we see that
indeed v annihilates the vacuum, whereas each of the vL,R do not, and instead measure its
length.

5.2 The dynamical spin chain

At non-vanishing coupling h > 0, the spin-chain HamiltonianH should depend on h and on the
momentum of the excitations. This requires the bifundamental representations discussed above
to be deformed—a procedure akin to going from the one-particle, on-shell p = 0 representation
to a general off-shell one.

This deformation should be done in such a way that the angular momentum M remains
quantised, i.e. undeformed. This can be done if we allow the right generators to act nontrivially
on the left-moving excitations, and vice versa, which is what we expect from chapters 2 and 3.
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2vL 2vR 2v

|0 〉 −ℓ −ℓ 0
|φL〉 −ℓ+ v −ℓ +v
|ψL〉 −ℓ+ v − 1 −ℓ +v − 1
|φR〉 −ℓ −ℓ+ v −v
|ψR〉 −ℓ −ℓ+ v − 1 −v + 1

qL −1 0 −1
q̄L +1 0 +1
qR 0 −1 +1
q̄R 0 +1 −1

Table 5.1: Charges under the automorphisms vL,R and v of the ground state, of the single excitation
states in the left- and right-moving multiplets as well as of the supercharges. All the spin-chain states
have length ℓ. To make the table less cluttered, the charges have been rescaled.

Constructing the central extension

Let us investigate how to centrally extend the algebra. For simplicity, let us focus on con-
structing the extension of u(1)⊕ su(1|1)2 in (5.15). The generalisation to the full algebra and
tensor-product representation will be straightforward.

We want the left representation to be charged under all of the supercharges. Focusing on
the highest weight state |φL〉, we have two possibilities

(I) : qR |φL〉 6= 0 , or (II) : q̄R |φL〉 6= 0 . (5.21)

In case (I), in the right-hand side there should be a fermion whose charge under v is

v qR |φL〉 = 1

2

(
v + 1

)
qR |φL〉 . (5.22)

Looking back at table 5.1, we see that there are no such fermionic states on the vacuum |0〉ℓ
preserved by v. On the other hand, in case (II) we have

v q̄R |φL〉 = 1

2

(
v − 1

)
q̄R |φL〉 , (5.23)

so that the state |ψL〉 is a good candidate to appear on the right hand side. Therefore, let us
restrict to case (II), and further investigate the central extension by looking at the action of
vL and vR. We have

vL q̄R |φL〉 = 1

2

(
v − 1− (ℓ− 1)

)
q̄R |φL〉 ,

vR q̄R |φL〉 = 1

2

(
− (ℓ− 1)

)
q̄R |φL〉 .

(5.24)

We can interpret this by saying that q̄R acts on a state in the left-representation of length ℓ
by exchanging a boson with fermion and reducing the length of the chain by one. If we write
separately the left and right sites of the chain in a tensor product form, we have

q̄R |φL〉 = q̄R
( ∣∣φZℓ−1

〉 )
≈
∣∣ψ Zℓ−2

〉
. (5.25)

More compactly, we can denote this action by q̄R |φ〉 ≈ |ψ Z−〉, to indicate that the state on
the right hand side has been constructed on a vacuum of a length shorter by one with respect
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to the one on the left hand side. Still, the vacuum is of the form (5.8), which is why this action
preserves v.3 It is also convenient to introduce a symbol Z+ corresponding to the insertion of
an additional vacuum site. We can finally write the action of centrally extended algebra on
the left representation as

qL |φL〉 = aL |ψL〉 , q̄L |ψL〉 = āL |φL〉 ,
q̄R |φL〉 = b̄L

∣∣ψLZ−
〉
, qR |ψL〉 = bL

∣∣φLZ+
〉
,

(5.26)

and similarly on the right one as

qR |φR〉 = aR |ψR〉 , q̄R |ψR〉 = āR |φR〉 ,
q̄L |φR〉 = b̄R

∣∣ψRZ−
〉
, qL |ψR〉 = bR

∣∣φRZ+
〉
,

(5.27)

This action is very similar to (3.44), but the algebra is now realised in terms of a dynamical

spin chain, where the symmetry generators may add or remove sites. Dynamical effects are a
common feature of the spin chains appearing in AdS/CFT [105, 205, 206], see also ref. [207].
In the one-particle representation we can ignore length-changing effects as long as we restrict
to asymptotic states with ℓ→∞, which we will always do in this chapter. Then, the algebra
that we constructed closes to a central extension of su(1|1)2

{
qL, q̄L

}
= hL ,

{
qR, q̄R

}
= hR ,{

qL,qR
}
= c ,

{
q̄L, q̄R

}
= c̄ ,

(5.28)

where on the one-particle representation

c = aLbLIL + aRbRIR , c̄ = āLb̄LIL + āRb̄RIR . (5.29)

Eq. (5.28) defines the same algebra we found from analysis of the off-shell symmetries of
asymptotic string states (3.35).

Magnons

Since the supercharges and in particular H are momentum-dependent we will consider spin-
chain states in which the excitations carry specific momenta—these are the objects that ulti-
mately we will want to scatter. A one-excitation state can then be written as a plane wave4

|Xp〉 =
ℓ∑

n=1

e−ipn |Zn−1XZℓ−n〉 , (5.30)

where X is any left or right excitation. Of course we can always think of localizing an excitation
by constructing an appropriate wave packet. It is now straightforward to generalise this form
to the case of multiple excitations. For two excitations we have e.g.

|XpYq〉 =
ℓ∑

n1<n2

e−i(pn1+qn2) |ZZ · · ·ZZXZZ · · ·ZZYZZ · · ·ZZ〉 , (5.31)

3The central extension (I) can also be understood in terms of length-changing effects, that however do not
preserve (5.8). In fact, they correspond to adding one site to the left spin chain and removing one to the right

one, or vice versa. This would force us to consider a much larger set of vacua |0〉 = |ZL〉 ⊗ |ZL̃〉 which has no
analogue in the string theory. This central extension is further discussed in [143].

4We have the possibility of choosing the plane-wave coefficient to be e±ipn. Here we pick the negative sign,
in contrast with the original choice of ref. [143], to more easily compare with the string theory results. The
two resulting S matrices are related by a change of basis, as we will discuss in the summary to this chapter.
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with p > q and the excitations sitting at positions n1 and n2. We restrict to asymptotic

states, where the spin chain is considered to be very long, ℓ→∞, and the excitations are well
separated. The interactions are then described by the spin-chain S matrix S(p1, p2) permuting
the order of excitations along the chain.

The length-changing action on the spin-chain excitations takes a simple form on the
magnons. Adding or removing a vacuum site by Z± in the plane-wave ansatz we get

|Z±Xp〉 = e±ip |XpZ
±〉 , (5.32)

i.e. communtation with the length-changing effects result in a momentum-dependent phase.
By these relations we can always shift any insertions of Z± through all excitations and collect
them at the right end of the state, and since we are dealing with asymptotic states, identify
|XpZ

±〉 = |Xp〉. Using the identification of length-changing effects with phase shifts we will
obtain a non-trivial coproduct similar to the one that in the NLSM appeared due to the
non-local field x−.

Charge action on multiparticle states

Suppose now that we want to act with a (super)charge on an asymptotic state containing two
magnons, for instance |φL

pφ
L
q〉. How to do this follows from the natural action of the charges

in the spin-chain representation, whereby a charge acts separately on every site of the chain
as a derivation. To take statistics into account, such action should be graded, so that every
time a supercharge is anticommuted (from the left, in our convention) past a fermionic site in
the chain, we pick up a minus sign. Therefore, we find e.g.

qL |φL

pφ
L

q〉 = aL

p |ψL

pφ
L

q〉+ aL

q |φL

pψ
L

q 〉 , (5.33)

where we made explicit the dependence of the representation coefficients on the momentum,
while for two fermions it would be

q̄L |ψL

pψ
L

q 〉 = āL

p |φL

pψ
L

q 〉 − āL

q |ψL

pφ
L

q〉 . (5.34)

It is particularly interesting to look at the action of the supercharges that give rise to the
central extension:

qR |ψL

pψ
L

q 〉 = bLp |φL

pZ
+ψL

q 〉 − bLq |ψL

pφ
L

qZ
+〉

= bLpe
iq |φL

pψ
L

qZ
+〉 − bLq |ψL

pφ
L

qZ
+〉

≈ bLpe
iq |φL

pψ
L

q 〉 − bLq |ψL

pφ
L

q〉 ,
(5.35)

where in the last line we used that we are dealing with asymptotic states. We have that length-
changing effects induce a non-trivial coproduct on asymptotic multi-magnon states. This will
dictate a specific form for the coefficient of the one-particle representation, as well as for the
form of the two-particle one.

One-particle representation coefficients

Let us consider the left-moving representation. We already know that the coefficients of the
undeformed algebra, which coincide with ones we evaluated at zero momentum, satisfy

|aL

p=0|2 = 1 , |bLp=0|2 = 0 . (5.36)
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The action of c and c̄ on a one-particle state is given by aL
pb

L
p and ā

L
p b̄

L
p respectively, that should

vanish at p = 0, too. The action on the two particle states is more interesting: following the
discussion of the previous subsection we get that it must be

aL

pb
L

p e
iq + aL

qb
L

q = 0 if p+ q = 0 , (5.37)

Similar equations hold for the right-moving excitations by exchanging L ↔ R. Finally, we
must require that the angular momentum m remains quantised for any value of p, which gives

|aL

p|2 − |bLp|2 = +1 , |bRp |2 − |aR

p |2 = −1 , (5.38)

on the left and right representations respectively. Condition (5.37) can be solved by setting

aL

pb
L

p = i
h

2
(eip − 1) ⇒ c = i

h

2
(eip − 1) I , (5.39)

and similarly for c̄. We therefore find the non-linear form of the central charges from the
length-changing effects, rather than from the presence of x−. While in the string-theoretical
description the presence of the complex exponential was due to the choice of the light-cone
geodesics, here it arises from the plane-wave ansatz for the magnons.

Together with their conjugates, the parameters (5.39) can be used to fix the dispersion
relation. In fact, as in section 3.2 we are dealing with short representations of su(1|1)2c.e. or
equivalently psu(1|1)4c.e., so that we have the shortening condition

H2 = M2 +CC = I+CC . (5.40)

In terms of ap and bp we can find the dispersion relation by taking the positive branch of the
square root of the shortening condition:

ω(p) = |aL

p|2 + |bLp|2 =
√

1 + |aL
p|2|bLp|2 =

√
1 + 4h2 sin2

(p
2

)
. (5.41)

Taking into account all of these conditions, we can parametrise the one-particle representation
as we did in (3.48)

aL = aR = e
1
4
i pηp , āL = āR = e−

3
4
i p ηp ,

bL = bR = −e
− 3

4
i p

x−p
ηp , b̄L = b̄R = −e

1
4
i p

x+p
ηp ,

(5.42)

where the Zhukovski parameters x±p and ηp are given by eqs. (3.47) and (3.49). Once again the
symmetry between the left and right representations is reflected by having the same choice of
parameters.

Two-particle representation

As we have seen, using the spin-chain picture we can automatically build the two-particle
representation on the space of magnons. It is useful to work with matrices, and to this end
we introduce a basis B which takes the same form of (3.43), where now the excitations are
interpreted as magnons. Then it is easy to check that the charges qL,R and their conjugates
have the same form as in (3.44). What is different, however, is the action on the two-particle
states. Before we had the expression (3.59) whereby the coproduct would be deformed by
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a factor of e±
i
2
p when the charge acts on the second-particle space. Here, the momentum-

dependence by e±iq is on the first-magnon space, and only on one of the two representations,
as in (5.35).

To express this, let us introduce two matrices Lp and Rp that act on the left and right
representation exclusively,

Lp = eip IL + IR , Rp = IL + eip IR . (5.43)

Then, on a two-magnon state we have

(qL(p, q))(12) =
(
Rq q

L(p)
)
⊗ I+ Σ⊗ qL(q) ,

(qR(p, q))(12) =
(
Lq qR(p)

)
⊗ I+ Σ⊗ qR(q) ,

(q̄L(p, q))(12) =
(
R
†
q q̄

L(p)
)
⊗ I+ Σ⊗ q̄L(q) ,

(q̄R(p, q))(12) =
(
L
†
q q̄R(p)

)
⊗ I+ Σ⊗ q̄R(q) .

(5.44)

Here we made the fermion signs explicit by means of the matrix Σ, see eq. (3.60).

5.3 The spin-chain S matrix

Following our discussion, we are now in a position to derive the two-body spin-chain S matrix,
which should be invariant under the dynamical symmetry algebra that we constructed. As in
chapter 3, it is easier to first derive our results for su(1|1)2c.e..

We have two interpretations for such an S matrix: on the one hand, we can think of it as
an operator S that acts on pairs of spin-chain sites, possibly inserting or removing vacuum
sites. On the other hand, we reduce its action to the one of a 16× 16 matrix S (or Š, in the
convention of chapter 3) on the vector space Vmagn(p) ⊗ Vmagn(q) where now the symmetries
have a momentum-dependent coproduct (5.44). The former condition is useful to re-derive
some properties of the spin chain that we first obtained from the ZF algebra, while the latter
is more suitable for explicit calculations.

Properties of the S matrix

The two-body spin-chain S matrix has very similar properties to the two-particle QFT S matrix
we investigated in chapter 3, and as before they will be useful to explicitly find it, up to the
scalar factors.

Symmetries

The crucial ingredient to find the form of the S matrix is requiring that it respects the su(1|1)2c.e.
(or su(1|1)4c.e.) symmetry, i.e.

S(12) Q = QS(12) . (5.45)

This can be written for the magnon S matrix as

Š(12)(p, q) Q(12)(p, q) = Q(12)(q, p) Š(12)(p, q) , (5.46)

or equivalently
R(12)(p, q) Q(12)(p, q) = Q(21)(q, p) R(12)(p, q) , (5.47)

with the action of the supercharges on the two-magnon state is given by (5.44). Additionally,
we will once again require left-right symmetry, i.e. that elements of the S matrix that differ
only by relabeling L↔ R should be equal.
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Braiding unitarity and physical unitarity

The concept of braiding unitarity is quite natural in the spin-chain formalism: before, the
S matrix was exchanging two ZF creation operators, whence (3.66) followed by iterating the
exchange twice. Here we have that the twofold exchange of two excitations should be incon-
sequential,

S(12) S(12) = I , (5.48)

where the subscript indices indicates the spaces where the matrix acts. This is depicted in
figure 5.4a, and in terms of a matrix formulation reads

Š(p, q) Š(q, p) = I = R(p, q)R(q, p) . (5.49)

Physical unitarity is once again just a natural reality condition on the scattering elements,
which can be simply phrased in terms of a matrix representation of S,

Š† Š = Š Š† = I = R† R = R R† . (5.50)

Yang-Baxter equation and multiparticle scattering

We now want to extend the action of the two-body S matrix to M sites. Once again this
can be done in several inequivalent ways, as illustrated in figure 5.4b in the case of M = 3.
Requiring the equivalence of the two pictures we get again the Yang-Baxter equation

S(12) S(23) S(12) = S(23) S(12) S(23). (5.51)

We should not forget that the spin-chain S matrix will naturally feature length-changing
processes, so that rewriting the above equation on the space of magnons requires some care.
If we can restrict to processes where no length-changing effects arise, it is easy to rewrite the
YB equation e.g. for Š

(no length-changing) Šqr ⊗ I · I⊗ Špr · Špq ⊗ I = I⊗ Špq · Špr ⊗ I · I⊗ Šqr , (5.52)

where the subscripts indicate the dependence on the magnon momenta p, q and r. This has
the same form as (3.87).

More generally, however, this is not the case. Let us assume that there exists a process
where two magnons Xp and Yq scatter giving Ỹq and X̃p, and producing length-changing effects,
i.e.

|XpYq〉 7→ # |ỸqX̃p Z
±〉 . (5.53)

When we take equation (5.51) and project it on the asymptotic states, we want to write all
of the vacuum sites to the right of the excitations. When the process (5.53) involves the two
leftmost magnons, this means that the symbol Z± should be commuted with the last magnon.
If this rightmost magnon has momentum r, we have to account for this by writing an explicit
factor of e±ir in the Yang-Baxter equation. Therefore in presence of length-changing effects

the Yang-Baxter equation is twisted and reads

I⊗ Špq ·
(
Fq ŠprF

†
q

)
⊗ I · I⊗ Šqr =

(
Fp ŠqrF

†
p

)
⊗ I · I⊗ Špr ·

(
Fr ŠpqF

†
r

)
⊗ I, (5.54)

where the matrix F implements a twist depending on the momentum of the rightmost magnon.
Again, once the Yang-Baxter equation is established to resolve the case of M = 3 sites,
any M > 3 case follows.
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S(12)

S(12)

=

(a) Unitarity

S(12)

S(23)

S(12)

= S(123) =

S(23)

S(12)

S(23)

(b) Yang-Baxter equation

Figure 5.4: Consistency conditions on the spin-chain S matrix. Unitarity (left panel) requires that
acting twice with S(12) on a two-particle state gives back the original state. The Yang-Baxter equation
(right panel) resolves the ambiguity in decomposing the scattering of three excitations. Note how,
with respect to figure 3.2, this picture takes into account how S permutes the spin-chain excitations.

S-matrix elements

Using all of the properties listed above it is easy to find the whole S matrix up to two scalar

factors Spq and S̃pq. Once again symmetry and unitarity requirements narrow down the
solutions to two possibilities: a pure-transmission and a pure-reflection S matrix, in the sense
discussed in section 3.3. As we saw there, the physical choice is the pure-transmission one.
Even if the form (i.e. the non-vanishing elements) of such a matrix is the same as in chapter 3,
the explicit expressions for the elements differ. Let us write down those expressions, splitting
them in the same-chirality and opposite-chirality sectors.

Same-chirality scattering

Let us consider the scattering of two left magnons. The non-vanishing scattering processes
are, as before,

S |φL

pφ
L

q 〉 = A
LL

pq |φL

qφ
L

p 〉 , S |φL

pψ
L

q 〉 = B
LL

pq |ψL

qφ
L

p 〉+ C
LL

pq |φL

qψ
L

p 〉 ,
S |ψL

pψ
L

q 〉 = F
LL

pq |ψL

qψ
L

p〉 , S |ψL

pφ
L

q 〉 = D
LL

pq |φL

qψ
L

p 〉+ E
LL |ψL

qφ
L

p 〉 .
(5.55)

The matrix elements now read

A
LL

pq =
1

S LL
pq

x+p − x−q
x−p − x+q

, B
LL

pq =
1

S LL
pq

x−p − x−q
x−p − x+q

,

C
LL

pq =
e

i
4
(p−3q)

S LL
pq

2i
h
ηp ηq

x−p − x+q
, D

LL

pq =
1

S LL
pq

x+p − x+q
x−p − x+q

,

E
LL

pq =
e

i
4
(q−3p)

S LL
pq

2i
h
ηp ηq

x−p − x+q
, F

LL

pq =
−1
S LL

pq

.

(5.56)

Whether to insert the scalar factor S LL
pq or its inverse is arbitrary. The present choice has

the advantage that it makes the diagonal matrix element A
LL
pq precisely equal to the inverse

of its string-theoretical counterpart, see eq. (3.73). Again, in the RR sector we find the same
expressions with a scalar factor S RR

pq and once again LR symmetry implies

S
LL

pq = S
RR

pq = Spq . (5.57)
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Opposite-chirality scattering

If we now consider processes of LR chirality we find

S |φL

pφ
R

q 〉 = A
LR

pq |φR

qφ
L

p 〉+ B
LR

pq |ψR

q ψ
L

pZ
−〉 , S |φL

pψ
R

q 〉 = C
LR

pq |ψR

q φ
L

p 〉 ,
S |ψL

pψ
R

q 〉 = E
LR

pq |ψR

q ψ
L

p〉+ F
LR

pq |φR

qφ
L

pZ
+〉 , S |ψL

pφ
R

q 〉 = D
LR

pq |φR

qψ
L

p 〉 ,
(5.58)

while for RL

S |φR

pφ
L

q 〉 = A
RL

pq |φL

qφ
R

p 〉+ B
RL

pq |ψL

qψ
R

pZ
−〉 , S |φR

pψ
L

q 〉 = C
RL

pq |ψL

qφ
R

p 〉 ,
S |ψR

pψ
L

q 〉 = E
RL

pq |ψL

qψ
R

p 〉+ F
RL

pq |φL

qφ
R

pZ
+〉 , S |ψR

pφ
L

q 〉 = D
RL

pq |φL

qψ
R

p 〉 .
(5.59)

Notice that we have highlighted the presence of length-changing effects. They are responsible
for the presence of a twist F in multi-magnon scattering events, and notably in the Yang-
Baxter equation (5.51). In fact, from (5.58) we can write the explicit form of the matrix Fp

as
Fp = Up ⊗Up , (5.60)

where Up is a diagonal matrix

Up = diag
(
e

i
2
p, 1, e

i
2
p, 1
)
. (5.61)

We then find that the twisted YB equation is satisfied, upon using the form of the matrix
elements (5.56) and

A
LR

pq =
e−iq

S LR
pq

1− x−p x+q
1− x−p x−q

, B
LR

pq =
e−

3i
4
(p+q)

S LR
pq

−2i
h
ηp ηq

1− x−p x−q
,

C
LR

pq =
e−i(p+q)

S LR
pq

1− x+p x+q
1− x−p x−q

, D
LR

pq =
1

S LR
pq

,

E
LR

pq =
−eip
S LR

pq

1− x+p x−q
1− x−p x−q

, F
LR

pq =
e−

3i
4
(p+q)

S LR
pq

2i
h
ηp ηq

1− x−p x−q
,

(5.62)

with the remaining ones following by left-right symmetry.
As before, we can use a single scalar factor for the LR and RL sectors by the definition

S
LR

pq = S̃pqe
− i

2
(p+q)

(
1− x+p x+q
1− x−p x−q

)+1/2

,

S
RL

pq = S̃pqe
+ i

2
(p+q)

(
1− x+p x+q
1− x−p x−q

)−1/2
,

(5.63)

After which LR symmetry becomes manifest upon relabeling L↔ R.

5.4 Comparing with the worlsheet S matrix

The S-matrix elements we just found differ from the ones of chapter 3. Firstly, they seem to be
related to the inverse scattering processes. This can be explained by our ansatz (5.30) for the
magnon wave functions. The choice of a negative sign in the phase factor is non-standard [180]
and leads to a two-magnon scattering wave function of the form

Ψ(n1, n2) = e−i(pn1+qn2) + S(p, q) e−i(pn2+qn1), (5.64)
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with p > q. We can relate this to the standard form (4.53) by flipping the sign of p and q
which however reverse their order, yielding S(q, p) ≈ S(p, q)−1.

Still, the Š that we found in the previous section cannot be just the inverse of the worldsheet
one, as the latter satisfies Yang-Baxter equation rather than its twisted version (5.54). This
discrepancy is due to the form of the spin-chain coproduct (5.44), as it was well understood
already in the case of AdS5/CFT4 [108].

From the spin-chain to the worldsheet coproduct

Any coproduct can be modified by a non-local, momentum dependent change of basis in
the two-excitation space [108, 190–192]. As it was shown in ref. [108], such transformations
appear naturally from changes of basis of ZF algebra operators. In the case of the spin chain
coproduct, let us consider the following change of basis on Vmagn(p)⊗ Vmagn(q), acting on the
charges as

Q(12)(p, q)→ U
†
q ⊗ I ·Q(12)(p, q) ·Uq ⊗ I , (5.65)

and, in the case of the su(1|1)2c.e. spin-chain S matrix, let us take Up as in eq. (5.61). We then
find a new form for the two-particle supercharges

U
†
q ⊗ I · (qL,R(p, q))(12) ·Uq ⊗ I = qL,R(p)⊗ I e+

i
2
q + Σ⊗ qL,R(q) ,

U
†
q ⊗ I · (q̄L,R(p, q))(12) ·Uq ⊗ I = q̄L,R(p)⊗ I e−

i
2
q + Σ⊗ q̄L,R(q) ,

(5.66)

which is now identical for L and R supercharges, but still different from the worldsheet one 3.61.
The transformation (5.65) induces a change on the R and Š matrices,

R(p, q)→ U
†
q ⊗ I ·R(p, q) ·Uq ⊗ I ,

Š(p, q)→ U
†
p ⊗ I · Š(p, q) ·Uq ⊗ I ,

(5.67)

and the resulting matrices are precisely the ones that we would have found from the invariances

R(p, q)Q(12)(p, q) = Q(21)(q, p)R(p, q) ,

Š(p, q)Q(12)(p, q) = Q(12)(q, p) Š(p, q) ,
(5.68)

had we considered the charges on the right hand side of (5.66). In fact, those transformed
scattering matrices would obey the usual untwisted Yang-Baxter equation. To see this one
can plug the right hand side of (5.68) in the twisted Yang-Baxter equation (5.54) and use the
fact that the twist matrix Fp is precisely given by (5.60).

It is worth exploring further the symmetry invariance condition in the new frame, which
explicitly takes the form

U
†
q ⊗ I ·Rpq ·Uq ⊗ I ·

(
qL,R(p)⊗ I e

i
2
q + Σ⊗ qL,R(q)

)

=
(
qL,R(q)⊗ Σ + e

i
2
q I⊗ qL,R(p)

)
·U †

q ⊗ I ·Rpq ·Uq ⊗ I ,
(5.69)

where we used the coproduct appearing in the right hand side of (5.66), and a similar equation
holds for the conjugates q̄L,R. Using the graded permutation matrix Πg and introducing the
short-hand notation

R̃pq = Πg ·U †
q ⊗ I ·Rpq ·Uq ⊗ I · Πg , (5.70)

we can finally write5

R̃pq ·
(
qL,R(q)⊗ I + e

i
2
q Σ⊗ qL,R(p)

)
=
(
qL,R(p)⊗ Σ e

i
2
q + I⊗ qL,R(q)

)
· R̃pq . (5.71)

5We use that (Πg)2 = I and that for any supercharge Q we have Πg ·I⊗Q ·Πg = Q⊗Σ and Πg ·Σ⊗Q ·Πg =
Q⊗ I.
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Comparing this with the QFT invariance property of R (4.19), we see that they coincide
upon swapping the momenta p ↔ q. We have therefore established the relation between the
worldsheet and spin-chain (magnon) S matrices,

Rpq

∣∣∣
worldsheet

= Πg ·U †
p ⊗ I ·Rqp ·Up ⊗ I · Πg

∣∣∣
spin chain

, (5.72)

which confirms that the S matrix computed in this chapter and the one of chapter 3 describe
scattering processes “inverse” to each other. It is easy to explicitly check that this identity
holds using the explicit form of the S matrix elements given here and in the previous chapters.

Scalar factors and crossing

We have established that the matrix part of Rpq can be computed equivalently in a spin-chain
or worldsheet picture. However, in our previous discussion we have also exploited crossing
invariance of the scalar factors to constrain their form. Crossing symmetry is seemingly a
purely field theoretical property, and is not obvious that anything similar can be imposed
purely in a spin chain picture.6

An ingenious observation due to Beisert [105], see also ref. [196], shows that this is actually
the case. Suppose that we can construct a two-magnon singlet state |1q1q2〉 that is annihilated
by all of the supercharges, i.e. in our case a singlet satisfying

qL,R |1q1q2〉 = 0 , q̄L,R |1q1q2〉 = 0 . (5.73)

By su(1|1)2c.e. symmetry, scattering any magnon |Xp〉 with it should have no consequences. On
the other hand, we can think of scattering its constituent magnons separately with |Xp〉, as
illustrated in figure 5.5, which is reminiscent of the bootstrap condition, see figure 3.4. This
implies that the product of certain pairs of S-matrix elements should give one, when they are
evaluated at momenta p, q1 and p, q2. This is a constraint on the scalar factors. Moreover,
since the state |1q1q2〉 has zero momentum and energy, it must be

q1 = −q2 , ω(q1) = −ω(q2) . (5.74)

The only non-trivial solutions to these equations imply that one of the two momenta has been
continued to the crossed region, i.e.

q1 = qc2 or q2 = qc1 . (5.75)

Focusing for the moment on the latter choice, in the case of psu(1|1)2c.e. we have that the
singlet takes the form

|1qqc〉 = ξLR
∣∣1LR

qqc

〉
+ ξRL

∣∣1RL

qqc

〉

= ξLR

(
e−

i
2
q
∣∣φL

qφ
R

qc

〉
+ i
∣∣ψL

qψ
R

qc

〉)
+ ξRL

(
e−

i
2
q
∣∣φR

qφ
L

qc

〉
+ i
∣∣ψR

q ψ
L

qc

〉)
.

(5.76)

The fact that the singlet couples the L and R representations is not surprising, since in
particular it should be annihilated by m. This whole discussion is more and more reminiscent
of the one of crossing of section 4.1. In fact, by an argument of Arutyunov and Frolov [75]

6However, once the spin-chain coproduct (5.44) has been established, this could be used to define a Hopf
algebra structure where the notion of crossing symmetry is naturally related to the antipode operation, see
appendix B in ref. [145].
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S(12)

S(23)

1

= 1

Figure 5.5: The scattering of a fundamental excitation with a singlet is trivial. We depict the
singlet as composed of two excitation, one of which moves “backward” due to analytical continuation
to the crossed region.

it is not hard to see that the two are equivalent. If we remove the length-changing effects we
have that

|1qqc〉 → U
†
qc |1qqc〉 = A†(q) C A† t(qc) , (5.77)

where the last expression in terms of the ZF creation operation are contracted to form a
scalar7. Then triviality of scattering with |Xp〉 amounts to the statement

A†(1)(p)
(
A†(2)(q) C(2) A

† t
(2)(q

c)
)
=
(
A†(2)(q) C(2) A

† t
(2)(q

c)
)
A†(1)(p) . (5.78)

It is straightforward to use the ZF algebra relations to find

A†(1)(p) A
†
(2)(q) C(2) A

† t
(2)(q

c)

= A†(2)(q) A
†
(1)(p) R(12)(p, q) C(2) A

† t
(2)(q

c)

= A†(2)(q)
(
A†(1)(p) A

†
(2)(q

c) C(2) R
t2
(12)(p, q)

)t2

= A†(2)(q)
(
A†(2)(q

c) A†(1)(p) R(12)(p, q
c) C

t2
(2) R

t2
(12)(p, q)

)t2

= A†(2)(q)
(
R(12)(p, q) C(2) R

t2
(12)(p, q

c)
)
A† t(2)(q

c) A†(1)(p) .

(5.79)

The expression in the last line equals the right hand side of (5.78) if

R(12)(p, q) C(2) R
t2
(12)(p, q

c) = C(2) . (5.80)

This is precisely equivalent8 to the crossing equations (4.23). If we instead chose to set q1 = qc2
we can derive the crossing equation in the first variable instead. In that case we have

|1qcq〉 = ξLR
∣∣1LR

qcq

〉
+ ξRL

∣∣1RL

qcq

〉

= ξLR

(
e

i
2
q
∣∣φL

qcφ
R

q

〉
− i
∣∣ψL

qcψ
R

q

〉)
+ ξRL

(
e

i
2
q
∣∣φR

qcφ
L

q

〉
− i
∣∣ψR

qcψ
L

q

〉)
,

(5.81)

which we can rewrite as

|1qcq〉 → U
†
q |1qcq〉 = A†(qc) C

† A† t(q) , (5.82)

which leads to a similar discussion as above and reproduces (4.22).
Finally, to further confirm our derivation, it is easy to check explicitly that imposing

S(23) S(12) |Xp 1qqc〉 = |1qqc Xp〉 , S(23) S(12) |Xp 1qcq〉 = |1qcq Xp〉 , (5.83)

results precisely in the equations (4.26) for the dressing factors. As always, all of this can be
straightforwardly extended to the psu(1|1)4c.e. S matrix, see also ref. [145].

7 Recall that A† is a row vector so that A† t is a column vector.
8 It may appear strange that, while matching the S matrices also required exchanging p↔ q and involved

graded permutations, none of this is necessary to reproduce the crossing equation. This is simply due to the
fact that crossing invariance must hold (or, can be imposed) for R, its inverse, and its graded permutation.
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5.5 Chapter summary

In this chapter we have seen how the all-loop S matrix and dispersion relation of chapter 3
can be equivalently found from a spin-chain picture.

Our derivation built on the weakly-coupled spin chain description of ref. [141]. For h≪ 1,
we can think of two spin chains, one containing left-moving excitations transforming un-
der psu(1, 1|2)L, and the other containing right-moving ones transforming under psu(1, 1|2)R,
as in figure 5.3. We have then shown how from the psu(1, 1|2)2 representations it is possi-
ble to construct a 1

2
-supersymmetric vacuum, and excitations above it that transform under

a psu(1|1)4 residual symmetry. In fact, this weak-coupling symmetry is precisely equal to the
on-shell symmetry of worldsheet excitations.

Moreover, we have extended our construction to arbitrary values of the coupling. This
results in the excitations of a given chirality being charged under both left and right super-
charges, together with a central extension of the residual symmetries and a dynamical spin
chain, where the number of sites can fluctuate. Using these symmetries, supplemented by a
discrete left-right one, we have been able to determine the two-magnon S matrix, which in fact
satisfies an analogue of the Yang-Baxter equation and can be used to construct many-magnon
S matrices in a consistent way.

The construction, including the form of the psu(1, 1)4c.e. symmetry, was strongly reminiscent
of what we did in the worldsheet theory in chapter 3. Still, an apparent difference was in the
form of the coproduct (5.44) that defines the action of the symmetries on several spin-chain
sites. We have shown explicitly that, up to a change of the two-particle basis, such a difference
can be reabsorbed and in fact the worldsheet and spin-chain S matrices are equivalent (5.72).
This was expected based on what happens in AdS5/CFT4, see ref. [108]. The final ingredient
to put the spin-chain and worldsheet pictures on the same footing was crossing symmetry,
which would appear to be a genuinely field-theoretical feature. We show that an equivalent
notion holds for our spin-chain, similarly to was argued by Beisert in ref. [105].

Let us conclude by mentioning that the notations used here for the spin-chain symmetry
algebra and S matrix differ from the ones of our original works [143,145]. The present choice
was meant to further emphasise the similarities with the worldsheet analysis, in particular by
taking the very same form of the supercharges on the one-magnon representation as it was for
the one-particle representation in chapter 3. Relating this choice with [143, 145] amounts to
another change of the two-particle basis, see also ref. [108].



6 The all-loop Bethe ansatz equations

Once the two-body S matrix and the dispersion relation are known, it only remains to impose
that the spatial dimension of the worldsheet, or equivalently the spin chain, are given by a
circle of finite length ℓ. This results in the Bethe-Yang equations for the QFT, or in the
asymptotic1 Bethe ansatz equations (BAE) for the spin chain. As we will argue, the equations
are equivalent in the two frameworks, so that the two theories will have the same spectrum
of momenta and, given that the dispersion relation is the same, of energy. There are several
ways of deriving the BAE. Here we will focus on what is perhaps the most intuitive way from
the physical point of view, that is the coordinate Bethe ansatz. We will work it out for both
the spin-chain and the worldsheet picture.

6.1 Bethe ansatz essentials

Before working out the BAE for S matrix that we found in the previous chapters, let us
illustrate the idea behind the Bethe ansatz on the simplest possible example, and postpone
the more complicated cases to the next sections. We consider here the su(1|1)2c.e. S matrix and
restrict to a single type of excitation, e.g. X = φL. Even if this truncation violates crossing
symmetry, it is consistent from the scattering point of view, since φL

p scatters diagonally with
itself. Then, the S matrix reduces to a number.

Imposing periodicity

The spin-chain picture is perhaps the easiest to visualise. Let us therefore start by considering
the M -magnon asymptotic wave function for an integrable theory. Consider an asymptotic
state

|Xp1 · · · XpM 〉 =
∑

n1≪···≪nM

e−i(p1n1+···+pMnM ) |Z · · ·ZX(n1)Z · · ·ZX(nM )Z · · ·〉 , (6.1)

with p1 > · · · > pM , which is a natural generalisation of the two-magnon state (5.31). By
the same reasoning that gave us factorised scattering in chapter 3, it is clear now that the
magnons will undergo pairwise scattering along the one-dimensional chain. For instance, if the
first and second magnon scatter, we will get to an ansatz where the magnon with momentum
p1 is in the region indexed by n2, and vice versa. In general, the multimagnon wave function
will be a combination

|Ψ(p1, . . . , pM)〉 =
∑

π∈SM

χ(pπ(1), . . . pπ(M))
∣∣∣Xpπ(1)

· · · Xpπ(M)

〉
, (6.2)

1As we mentioned in the introduction, these equations are asymptotic because they ignore wrapping effects.
With this caveat in mind, we will often interchangeably refer to (asymptotic) Bethe ansatz and Bethe-Yang
equations when comparing the spin-chain and worldsheet approaches.
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Xp1 Xp2 XpM

n1 n2 · · · nM

=
Xp2 Xp3 Xp1

n2 n3 · · · n1 + ℓ

0 ℓ 2ℓ

n1 n2 nM n1 n2 nM n1

Figure 6.1: Illustrations of the periodicity condition leading to the Bethe ansatz equations. Above:
the two ends of the chain have been identified, so that the first excitation Xp1 in position n1 can be
thought as sitting at the end of the chain, in position n1 + ℓ. This can be realised by scattering Xp1

through all of the Xpj . Below: equivalently, the wave-function should be ℓ-periodic as a function
on ❘. The box identifies the periodicity condition evaluated as in (6.5).

where π ∈ SM is a permutation. This wave function is still asymptotic, in the sense that it
does not explicitly depend on regions where two magnons come close, i.e. where scattering
happens. Interactions are encoded in the coefficients χ, which will involve S-matrix elements.
Comparing with the two-magnon case (5.31) and (5.64) it is immediate to see that if the
permutation involves only two indices, it will be

χ(p1, . . . pj+1, pj, . . . pM) = S(pj, pj+1)χ(p1, . . . pj, pj+1, . . . pM) . (6.3)

If we now take into account factorised scattering, we can immediately extend this to an arbi-

trary permutation, so that we can rewrite

|Ψ(p1, . . . , pM)〉 =
∑

π∈SM

Sπ |Xp1 · · · XpM 〉 ,

Sπ |Xp1 · · · XpM 〉 =
∏

(j,k)∈π

S(pj, pk)
∣∣∣Xpπ(1)

· · · Xpπ(M)

〉
,

(6.4)

where we set χ(p1, . . . pM) = 1.
We now will impose that this wave function is ℓ-periodic. Let us shift e.g. the first

coordinate n1 by ℓ and bring it all the way around the chain:

(n1, n2, . . . nM−1, nM)→ (n2, n3, . . . nM , n1 + ℓ) , (6.5)

as depicted in figure 6.1. Periodicity is the statement that |Ψ〉 is invariant under such a
transformation. This is not granted by the ansatz (6.2). Using (6.3) we in fact have that
shifting n1 by ℓ gives the periodicity condition2

|Ψ(p1, . . . pM)〉 =
(
e−ip1ℓ

M∏

j=2

S(p1, pj)

)
|Ψ(p1, . . . pM)〉 . (6.6)

We then have to require the expression in the big brackets to be equal to 1. Physically, this
is a quantisation condition for the momentum p1. There are several such conditions: suppose
that we repeat the shift (6.5) for n2, then n3, until nk. We then get to the configuration

(nk, nk+1, . . . nM , n1 + ℓ, . . . nk−1 + ℓ, nk + ℓ) . (6.7)

2One may find the notation of eq. (6.6) confusing, since quantum-mechanical states are defined up to an
overall phase. However here we normalised χ(p1, . . . pM ) = 1. Eq. (6.6) should be then understood as a
condition of spatial periodicity on the wave-function.
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Imposing periodicity for any k = 1, . . .M results in k coupled equations for the magnon
momenta

spin chain: e−ipkℓ
M∏

j 6=k

S(pk, pj) = 1 , k = 1, . . .M . (6.8)

These are the celebrated Bethe ansatz equations. More precisely, the above derivation is
referred to as the coordinate Bethe ansatz.

Let us remark that in our derivation we assumed that Xp has a single flavour, so that the
scattering is diagonal and the S matrix S(p, q) is just a number. Extending the discussion
above to the case of several flavours that scatter diagonally, i.e. by pure transmission of all
quantum numbers is completely straightforward—it only requires adding flavour indices to
Xp and S(p, q). Our S matrix is not so simple, because the fermion number is not always
transmitted, for instance in the process

S |φL

pψ
L

q 〉 = B
LL

pq |ψL

qφ
L

p 〉+ C
LL

pq |φL

qψ
L

p 〉 . (6.9)

In order to impose periodicity we will first have to diagonalise the action of the S matrix by
the so-called nested Bethe ansatz. This is a technical complication that we will address in the
next section in the simple case of the su(1|1)2c.e. S matrix.

Bethe ansatz from the worldsheet

It is easy to see that the reasoning above can be repeated almost verbatim from the point of
view of the ZF algebra and S matrix. In that case, the asymptotic wave function would be

|Ψ(p1, . . . pM)〉 =
∑

π∈SM

χ(pπ(1), . . . pπ(M))
∣∣pπ(1), . . . pπ(M)

〉
, (6.10)

where each asymptotic state would read, in position space,

|p1, . . . pM〉 =
∫

σ1≪···≪σM

dσ1 · · · dσMei(p1σ1+···+pMσM )A†(σ1) · · ·A†(σM) |0〉 . (6.11)

Note that we kept an ordering such that the particle of momentum p1 is the leftmost one. We
can now require periodicity under shifts of σj → σj + ℓ, obtaining the Bethe ansatz

worldsheet: eipkℓ
M∏

j 6=k

S(pk, pj) = 1 , k = 1, . . .M . (6.12)

The different sign in the plane-wave coefficient resulted in different quantisation conditions.
As discussed in the previous chapter, that same sign choice makes the spin chain S matrix be
the inverse of the worldsheet one. Indeed, equations (6.12) and (6.8) are related by invert-
ing S(p, q).

The level-matching condition

In chapter 2 we have found that in string theory the only physical states are the ones satisfying
the constraint

P |physical〉 = 0 , (6.13)

in the case of zero winding. This results in a condition on the momenta of the M -particle
state

p1 + · · ·+ pM = 0 . (6.14)
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Z Xp1 Z Z Xp2 Z Xp3 Z Z

e−ip1 e−ip2 e−ip3

Figure 6.2: By shifting each magnon to the right by one site, we produce a shift of e−i(p1+···+pM ).
On the other hand, for a cyclic chain this produces no effect, so that consistency dictates the level-
matching condition (6.15).

If we allow for winding it is not hard to see that the right hand side of the constraint should
not vanish, but rather equal 2πW , where the integer W is the winding number.

This string-theoretical requirement has an interesting equivalent in the spin-chain picture.
Consider an M -magnon asymptotic state in the spin chain, and imagine of shifting each
magnon e.g. to the left by one site, as in figure 6.2. On the one hand, cyclicity of the chain
requires this transformation to leave it invariant. On the other hand, by eq. (5.32) this results
in M phase shifts of the form e−ipj . We then have an additional requirement

ei(p1+···+pM ) = 1 . (6.15)

We then find that the spin chain and worldsheet pictures are completely equivalent, mutatis

mutandis, from the Bethe ansatz point of view. It is then just a matter of convenience to
derive our equations with reference to one or the other framework.

6.2 Nested Bethe ansatz

In this subsection we will illustrate how the nesting procedure works for the simple case of
the su(1|1)2c.e. S matrix. In what follows, for definiteness, we will work from the spin-chain

point of view, and only at the end of the day comment on the worldsheet picture.
The strategy will be to split the action of the S matrix in several steps: first, consider a set

of “level-I excitations” on the usual vacuum, that have the property of scattering diagonally
among themselves. For these excitations, the coordinate Bethe ansatz can be straightforwardly
implemented as we illustrated in the previous section. In order to incorporate the remaining
excitations, we construct a new “level-II” vacuum. This is a state consisting of level-I exci-
tations only. We can now consider level-II excitations on this vacuum that scatter trivially
among themselves. If needed, we can use those to construct a level-III vacuum, and so on. In
this way, level by level, the scattering is very simple. Of course, we will have to require that
e.g. the level-II excitations propagate on the level-II vacuum in a way that is compatible with
the dynamics of the fundamental S matrix. This will ensure that different levels are “glued”
in a consistent way.

Level-I excitations

For definiteness, here we work with the spin-chain S matrix. Looking at the scattering elements
in section 5.3, we see that there are several non-diagonal scattering processes. The level-I
vacuum is the usual one,

|0〉I =
∣∣Zℓ
〉
. (6.16)

We have two possible choices of processes that scatter diagonally among themselves:

V I
A =

{
φL, ψR

}
, V I

B =
{
φR, ψL

}
. (6.17)
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We can think of this as a choice of the highest weight states in the left and right representations,
or equivalently of the grading of the superalgebra. Clearly the choice A corresponds to having
as lowering operators qL and q̄R, while B corresponds to picking q̄L and qR. Let us for the
moment pick the choice A.

A level-I state is a collection of excitations of V I
A, e.g.

∣∣X α1
p1
, . . .X αM

pM

〉I
=
∣∣ZZX α1

p1
ZZ · · ·ZZX αM

pM
ZZ · · ·

〉
, (6.18)

like in (6.1). There will be M I
L left excitations and M I

R right ones, distinguished by the flavour
label α, so that

M =M I
L +M I

R . (6.19)

Out of such states we can as before construct the asymptotic level-one wave function by acting
with the multiparticle S matrix Sπ

|Ψ(p1, . . . , pM)〉Iα1,...αM
=
∑

π∈SM

Sπ
∣∣X α1

p1
, . . .X αM

pM

〉I
. (6.20)

Now also the S matrix will carry flavour indices α that can take values L and R. Still, by
construction Šπ acts diagonally on the level-one states,

Sπ
∣∣X α1

p1
, . . .X αM

pM

〉I
= SI

π(p1, . . . pM)
∣∣X απ(1)

pπ(1) , . . .X
απ(M)
pπ(M)

〉I
, (6.21)

where the phase Sπ factorises

Sπ(p1, . . . pM) =
∏

(j,k)∈π

SI,I
αjαk

(pj, pk) . (6.22)

The level-one S-matrix elements SI,I
αjαk

can be immediately read off the fundamental S matrix
elements of section 5.3,

SI,I
LL = A

LL , SI,I
RR = F

RR , SI,I
LR = C

LR , SI,I
RL = D

RL . (6.23)

Level-II excitations

The level-II vacuum is a collection of level-I excitations

|0〉II =
∣∣X α1

p1
· · · X αM

pM

〉
. (6.24)

Level-II excitations can be constructed by acting on |0〉II with the lowering operators. Acting
by qL turns φL and ψR into ψL and φR respectively3. However we want to treat |0〉II as a
vacuum, so that the scattering properties its the level-II excitations should be blind to the
underlying level-I excitations. The effect of qR would be similar, up to exchanging the left and
right modules.

The generic form of a level-II state containing a single excitation is

∣∣YL

y

〉II
=

M∑

k=1

χk(y
L)
∣∣X α1

p1
· · · YL

y · · · X αM
pM

〉
,

χk(y
L) = f(yL, pk)

k−1∏

j=1

SII,I
αkαj

(yL, pj) ,

(6.25)

3Since we are working in the spin chain picture, we should not forget to insert the appropriate length-
changing effects.
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where for brevity we wrote YL = qLX αk
pk

. The superscript L in YL is meant to remind us
that we are acting on the vacuum by a left lowering operator. The coefficient f(yL, pk) stands
for the creation of a level-II excitation on top of a level-I one which had momentum pk,
while SII,I

αkαj
(yL, pj) accounts for the scattering of the level-II excitation with level-I ones, that

is needed to position the former at site k. These functions cannot be arbitrary if we want this
description to be compatible with the one at level I. To this end, we require that creating a
level-II excitation and scattering the underlying level-I excitation are commuting operations:

Sπ |yL〉II = SI
π(p1, . . . pM) |yL〉IIπ , (6.26)

where |yL〉IIπ is the level-II state constructed on the permuted vacuum,

|yL〉IIπ =
M∑

k=1

χk,π(y
L)
∣∣X απ(1)

pπ(1) · · · YL

y · · · X
απ(M)
pπ(M)

〉
,

χk,π(y
L) = f(yL, pπ(k))

k−1∏

j=1

SII,I
απ(k)απ(j)

(yL, pπ(j)) .

(6.27)

On the other hand, Sπ |y〉II can be computed just by acting on the excitations with the S matrix
of section 5.3, regardless of whether they are in the first or second level.

Level-II excitations: propagation

To be more specific, let us consider a level-II vacuum consisting of two φL bosons, and one
level-II excitation on it,

|yL〉II
LL

= fL(y
L, p)

∣∣ψL

pφ
L

q

〉
+ fL(y

L, q)SII,I
LL (yL, p)

∣∣φL

pψ
L

q

〉
. (6.28)

The generalisation to a longer vacuum will be straightforward owing to the factorisation prop-
erty. Note how both of the expressions on the right hand side of the non-diagonal scattering
processes appear in the ansatz. After scattering, the compatibility condition (6.26) mandates
that this should be proportional to

|y〉II
LL,π = fL(y

L, q)
∣∣ψL

qφ
L

p

〉
+ fL(y

L, p)SII,I
LL (yL, q)

∣∣φL

qψ
L

p

〉
, (6.29)

with a proportionality constant equal to SI,I
LL(p, q) = A

LL
pq . On the other hand, we can act

with Spq on
∣∣ψL

pφ
L
q

〉
and

∣∣φL
pψ

L
q

〉
, as in (5.55). The resulting expression can be proportional

to |yL〉II
LL,π and in fact equate A

LL
pq |y〉IILL,π, provided that the level-II coefficients satisfy

SII,I
LL (yL, q)fL(y

L, p) ALL

pq = fL(y
L, p) DLL

pq + fL(y
L, q)SII,I

LL (yL, p) CLL

pq ,

fL(y
L, q) ALL

pq = fL(y
L, p) ELL

pq + fL(y
L, q)SII,I

LL (yL, p) BLL

pq .
(6.30)

Using the explicit form of the S-matrix elements (5.56), we find that it must be

fL(y
L, p) = gL(y

L)
ηp e

i
4
p

kL(yL)− x−p
, SII,I

LL (yL, p) =
kL(y

L)− x+p
kL(yL)− x−p

, (6.31)

where gL(y) and kL(y) are arbitrary functions of y. Note that at this nesting level none of
these functions can depend on the dressing factors.
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A similar calculation in the right sector gives the ansatz

|yL〉II
RR

= fR(y
L, p)

∣∣φR

pZ
+ψR

q

〉
− fR(y

L, q)SII,I
RR (y

L, p)
∣∣ψR

pφ
R

qZ
+
〉
,

|yL〉II
RR,π = fR(y

L, q)
∣∣φR

qZ
+ψR

p

〉
− fR(y

L, p)SII,I
RR (y

L, q)
∣∣ψR

q φ
R

pZ
+
〉
,

(6.32)

where now ψR is the level-I excitation, and length-changing effects appear. The minus signs
take into account the fact that the underlying vacuum is fermionic. With this choice it will
be easier to impose the periodicity condition at the end of the day, since all fermion signs will
be accounted for. The consistency condition now results in the equations

SII,I
RR (y

L, q)fR(y
L, p) FRR

pq = −fR(y
L, p)eiqCRR

pq + fR(y
L, q)SII,I

RR (y, p) D
RR

pq ,

fR(y
L, q)eipFRR

pq = +fR(y
L, p)eiqBRR

pq − fR(y
L, q)SII,I

RR (y, p) E
RR

pq .
(6.33)

which are solved by

fR(y
L, p) = −i gR

x−p
(y)

ηp e
− 3

4
ip

1− 1
kR(yL)x+

p

, SII,I
RR (y

L, p) =
1− 1

kR(yL)x−

p

1− 1
kR(yL)x+

p

. (6.34)

There is one last consistency condition the we should impose, which is the one arising when
the vacuum contains states of the left and right modules. For two states, this gives a level-II
excitation

|yL〉II
LR

= +fL(y
L, p)

∣∣ψL

pψ
R

q

〉
+ fR(y

L, q)SII,I
RL (y

L, p)
∣∣φL

pφ
R

qZ
+
〉
,

|yL〉II
LR,π = −fR(y

L, q)
∣∣ψR

q ψ
L

p

〉
+ fL(y

L, p)SII,I
LR (yL, q)

∣∣φR

qZ
+φL

p

〉
,

(6.35)

when we take a left and right state in this order. This results in the equations

SII,I
LR (yL, q)fL(y

L, p)eip CLR

pq = fL(y
L, p) ELR

pq + fR(y
L, q)SII,I

RL (y
L, p) BLR

pq ,

−fR(y
L, q) CLR

pq = fL(y
L, p) FLR

pq + fR(y
L, q)SII,I

RL (y
L, p) ALR

pq .
(6.36)

These conditions can be solved by imposing

kL(y
L) = kR(y

L) = yL , gL(y
L) = −i y gR(yL) ,

SII,I
RL (y

L, p) = SII,I
LL (yL, p) , SII,I

LR (yL, p) = SII,I
RR (y

L, p) .
(6.37)

The two last equations can be interpreted by saying that when we act with the lowering
operator qL in the plane-wave ansatz (6.25) we create a well-defined excitation. Its scattering
does not depend on the underlying vacuum that it is created out of, but only on what it
scatters with. This confirms that the lowering operators are blind to the constituents of |0〉II.

So far we have exclusively considered excitations created by qL. We can create different
level-II excitations by acting with q̄R instead. We will denote the corresponding one-particle
excitation by |yR〉II. The computations follow the same pattern, up to appropriately taking
into account the form of the S-matrix elements and the length-changing effects. We have, in
particular

SII,I
LL (yR, p) =

1− 1
yRx+

p

1− 1
yRx−

p

, SII,I
RR (y

R, p) =
yR − x−p
yR − x+p

,

SII,I
RL (y

R, p) = SII,I
LL (yR, p) , SII,I

LR (yR, p) = SII,I
RR (y

R, p) ,

(6.38)

where as usual fermion signs have been accounted for.
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Level-II excitations: scattering

The preceding discussion covers all of the dynamics involving a single level-II excitation on
an arbitrary vacuum, owing to factorisation of scattering. However, as soon as we include
another excitation, a new dynamics arises: scattering of two level-II excitations.

A state containing two level-II excitations obtained by acting with qL takes the form

|yL

1 , y
L

2〉II =
M∑

k<l

χk(y
L

1)χl(y
L

2)
∣∣X α1

p1
· · · YL

y1
· · · YL

y2
· · · X αM

pM

〉
, (6.39)

where YL
y1

sits at position k and YL
y2

at position l. Once again, this ansatz is subject to a
condition similar to (6.26), reading

Šπ |yL

1 , y
L

2〉II = SI
π(p1, . . . pM) |yL

1 , y
L

2〉IIπ , (6.40)

Clearly the only problems may arise from the scattering of yL
1 and yL

2 . Let us consider the case
where we have two left-excitations on a length-two vacuum. We make an ansatz

|yL

1y
L

2〉IILL
= fL(y

L

1 , p)fL(y
L

2 , q) S
II,I
LL (yL

2 , p) |ψL

pψ
L

q 〉
− fL(y

L

2 , p)fL(y
L

1 , q) S
II,I
LL (yL

1 , p)S
II,II
LL (yL

1 , y
L

2) |ψL

pψ
L

q 〉 ,
|yL

1y
L

2〉IILL,π = fL(y
L

1 , q)fL(y
L

2 , p) S
II,I
LL (yL

2 , q) |ψL

qψ
L

p〉
− fL(y

L

2 , q)fL(y
L

1 , p) S
II,I
LL (yL

1 , q)S
II,II
LL (yL

1 , y
L

2) |ψL

qψ
L

p〉 ,

(6.41)

where again we accounted for the minus sign. The only new ingredient is the undetermined
factor SII,II

LL (yL
1 , y

L
2) that represents the scattering of the two level-II excitations. It is easy to

see that the consistency condition is solved by

SII,II
LL (yL

1 , y
L

2) = 1 , (6.42)

i.e. the scattering is trivial. In fact, it is immediate to check that all of the level-II scattering
matrices are trivial, including the ones scattering |yR〉 with |yL〉 or with itself. Using factori-
sation of scattering, all our considerations extend to any level-II state with M II

L left and M II
R

right excitations.
Since we have taken into account all of the fundamental excitations and diagonalised all

scattering processes, the nesting procedure terminates here. Had we to include additional
non-diagonal processes, it would be necessary to construct a level-III vacuum, and so on.

Bethe ansatz equations

The Bethe ansatz equations arise now out of imposing periodicity for each set of excitations.
Looking at (6.40) we see that we chose an ordering of the level-II magnons. As discussed in
the previous section, the description should be unchanged if we rearrange them using the fact
that the chain is periodic. It is easy to see that this gives the conditions

1 =

M I
L∏

j=1

SII,I
LL (yL

k , pj)

M I
R∏

j=1

SII,I
RR (y

L

k , pj) , k = 1, . . .M II
L ,

1 =

M I
L∏

j=1

SII,I
LL (yR

k , pj)

M I
R∏

j=1

SII,I
RR (y

R

k , pj) , k = 1, . . .M II
R ,

(6.43)
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where we used that SII,II = 1. Note that we do not have to take into account any additional
fermion sign, due to our convention. One pictorial way to interpret this equation is to take
one level-II excitation and carry it along the chain: by periodicity, the phase arising from the
whole scattering sequence should be one.

Fundamental excitations obey a slightly modified version of (6.8), which now includes also
higher level excitations:

eipL =

M I
L∏

j 6=k

SI,I
LL(p

L

k, p
L

j )

M I
R∏

j=1

SI,I
LR(p

L

k, p
R

j )

M II
L∏

j=1

SI,II
LL (pL

k, y
L

j )

M II
R∏

j=1

SI,II
LR (pL

k, y
R

j ) ,

eipL =

M I
R∏

j 6=k

SI,I
RR(p

R

k , p
R

j )

M I
L∏

j=1

SI,I
RL(p

R

k , p
L

j )

M II
R∏

j=1

SI,II
RR (p

R

k , y
R

j )

M II
L∏

j=1

SI,II
RL (p

R

k , y
L

j ) ,

(6.44)

for k = 1, . . .M I
L,R. Note that we have introduced explicit labels for the momenta of left and

right excitations. For brevity, in terms of the Zukhovski variables, we set

x±j = x±j (p
L), x̃±j = x±j (p

R), y = yL, ỹ = yR. (6.45)

The we can write the full set of Bethe equations as

(
x+k
x−k

)ℓ

=

M I
L∏

j=1
j 6=k

x+k − x−j
x−k − x+j

S
LL

kj

M II
L∏

j=1

x−k − yj
x+k − yj

M I
R∏

j=1

√√√√√
1− 1

x+
k
x̃+
j

1− 1
x−

k
x̃−

j

S
LR

k̃

M II
R∏

j=1

1− 1
x−

k
ỹj

1− 1
x+
k
ỹj

, (6.46)

1 =

KI
L∏

j=1

yk − x+j
yk − x−j

KI
R∏

j=1

1− 1
ykx̃

−

j

1− 1
ykx̃

+
j

, (6.47)

(
x̃+k
x̃−k

)ℓ

=

M I
R∏

j=1
j 6=k

S
RR

k̃̃

M II
R∏

j=1

x̃+k − ỹj
x̃−k − ỹj

M I
L∏

j=1

√√√√√
1− 1

x̃−

k
x−

j

1− 1
x̃+
k
x+
j

S
RL

k̃j

M II
L∏

j=1

1− 1
x̃+
k
yj

1− 1
x̃−

k
yj

, (6.48)

1 =

M II
R∏

j=1

ỹk − x̃−j
ỹk − x̃+j

M II
L∏

j=1

1− 1
ỹkx

+
j

1− 1
ỹkx

−

j

. (6.49)

These equations should be supplemented by the level matching condition

1 =

M I
L∏

j=1

x+j
x−j

M I
R∏

j=1

x̃+j
x̃−j

. (6.50)

By these equations, we can find the asymptotic spectrum of the theory. In fact, once we
specify a state by its classical dimension and angular momenta, the labels M I

L,R, M
II
L,R and ℓ

will be fixed. Then it only remains to solve the above equations: first for the auxiliary roots
y, ỹ and then for the momenta. Using those, we can compute the energy by the dispersion
relation

E({x±, x̃±}) =
M I

L∑

j=1

√
1 + 4h2 sin2 pj

2
+

M I
R∑

j=1

√
1 + 4h2 sin2 p̃j

2
. (6.51)

Since the S matrix and Bethe ansatz that we just considered now does not correspond to
the physical theory we are interested in, we will postpone the identification of the excitation
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numbers with physical charges to the next section, where we will consider the full psu(1, 1|2)2
Bethe ansatz. Before moving to that, remark that at the beginning of the nesting procedure
we choose the set of excitations V I

A in (6.17). The other choice quite clearly would lead to
a set of equation differing by L ↔ R, and hopefully this will leave the spectrum unchanged.
This is actually the case, as we show in appendix A.4 by a duality transformation of the
equations [68, 208].

Worldsheet picture

In the worldsheet picture, the derivation of the Bethe ansatz equations (more properly, of the
Bethe-Yang equations) follows the same logic as above. The nesting procedure is exactly the
same, since the form of the S matrix (i.e. its non-vanishing entries) is the same. Again, we
have two choices of level-I excitations, given by V I

A, V
I
B as in (6.17). For the choice V I

A, the
level-I S matrices are as before

SI,I
LL = A

LL , SI,I
RR = F

RR , SI,I
LR = C

LR , SI,I
RL = D

RL . (6.52)

Now, however, these elements should be read off the worldsheet fundamental S matrix of
section 3.3. As we discussed at length in the previous chapter, those elements differ from
their spin-chain counterparts for being their inverse4 and featuring additional factors of the
form eip.

The diagonalisation works in the same way. In fact, even the compatibility equations that
fix the higher-level S-matrix elements SII,I, take essentially the same form as above, e.g. as
in (6.30). In the worldsheet picture however we have no length-changing effects, and the
non-trivial coproduct is entirely encoded in the form of the S matrix elements of section 3.3.
Unsurprisingly, we find the inverse of the spin-chain results up to some factors of eip. More
specifically, we have for the level-II excitations coming from qL

SII,I
LL (yL, p) =

yL − x−p
yL − x+p

e+
i
2
p , SII,I

RR (y
L, p) =

1− 1
yLx+

p

1− 1
yLx−

p

e+
i
2
p ,

SII,I
RL (y

L, p) = SII,I
LL (yL, p) , SII,I

LR (yL, p) = SII,I
RR (y

L, p) ,

(6.53)

and for the ones coming from q̄R

SII,I
LL (yR, p) =

1− 1
yRx−

p

1− 1
yRx+

p

e−
i
2
p , SII,I

RR (y
R, p) =

yR − x+p
yR − x−p

e−
i
2
p ,

SII,I
RL (y

R, p) = SII,I
LL (yR, p) , SII,I

LR (yR, p) = SII,I
RR (y

R, p) ,

(6.54)

while again for all the excitations it is

SII,II = 1 . (6.55)

Using as before the short-hand notation (6.45), we can write the Bethe-Yang equations as

(
x+k
x−k

)ℓ+δ

= e
i
2
Ptot.
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j=1
j 6=k

x+k − x−j
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S
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M II
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x+k − yj
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R∏

j=1

√√√√√
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k
x̃+
j

1− 1
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k
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j

S
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k̃

M II
R∏

j=1

1− 1
x−

k
ỹj

1− 1
x+
k
ỹj

, (6.56)

4Looking at formula (5.72) we see that a graded permutation appears in the map between the spin-chain
and worldsheet frame. Since we are dealing with diagonal elements and due to left-right symmetry, this plays
no role.
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1 = e−
i
2
Ptot.

M I
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yk − x+j
yk − x−j
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j=1

1− 1
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j

1− 1
ykx̃

+
j

, (6.57)

(
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x̃−k

)ℓ+δ

=
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j 6=k

S
RR
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M II
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x̃+k − ỹj
x̃−k − ỹj
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√√√√√
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S
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x̃+
k
yj

1− 1
x̃−

k
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, (6.58)

1 = e+
i
2
Ptot.

M II
R∏

j=1

ỹk − x̃−j
ỹk − x̃+j

M II
L∏

j=1

1− 1
ỹkx

+
j

1− 1
ỹkx

−

j

, (6.59)

where now ℓ has the interpretation of the worldsheet size5 and we introduced the shift

δ = −1
2
M I

L +
1
2
M II

L − 1
2
M II

R . (6.60)

In order to rewrite the equations in terms of this quantity and the total momentum Ptot.,
we observed that whenever we multiply the momentum-carrying terms by an expression such
as ei(p f(q)−q f(p)), we can collect

M I
L∏

j 6=k

ei(pkf(pj)−pj f(pk))
M I

R∏

j=1

ei(pkf(pj)−pj f(pk)) = eipk Ftot. e−iPtot. f(pk) , (6.61)

where Ftot. is the sum of f(pj) on all momentum-carrying excitations. In this simple case, we
can use this identity with f(p) = 1. We then have that the only new features of the worldsheet
Bethe ansatz are a shift in the notion of length with respect to the spin-chain one, and some
(fractionary) powers of the total momentum.

6.3 The psu(1, 1|2)2 Bethe ansatz

Let us finally work out the Bethe equations for the full psu(1|1)4c.e. S matrix, again in a spin-
chain picture. The derivation will be similar to the one we worked out in detail in the previous
section, and we will only sketch the most conceptual points, referring the reader to ref. [145]
for more details.

Sketch of the nesting procedure

Again, we want to construct asymptotic eigenstates of the multi-magnon S matrix. We start
from the level-I vacuum, which again is just |0〉I ≡ |Zℓ〉. To proceed with nesting, we need to
choose a maximal set of excitations that scatter by pure transmission among each other. The
structure of S leads to four possible choices

V II
A = {ΦL

++,Φ
R

−−}, V II
B = {ΦL

−−,Φ
R

++},
V II
C = {ΦL

+−,Φ
R

−+}, V II
D = {ΦL

−+,Φ
R

+−}.
(6.62)

Each candidate level-II vacuum is composed of one left and one right excitation, that are either
both bosonic or both fermionic. Correspondingly, we will have different choices of the lowering
operators. In the following we will choose the set V II

A to construct the level-II vacuum. As we

5Strictly speaking, in this simple exercise the Bethe equations are not supposed to be matched with a
genuine worldsheet theory—we will use the full psu(1|1)4c.e. S matrix for that purpose.
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Q1L Q2L Q1R Q2R

ΦL
++ ΦL

−+ ΦL
+− ΦL

−+Z
− ΦL

+−Z
−

ΦR
−− ΦR

+−Z
+ ΦR

−+Z
+ ΦR

+− ΦR
−+

Table 6.1: Action of the lowering operators on the states of the level-II vacuum V II
A , including

length-changing effects in the spin-chain picture.

expect, the other possible choices are related by dualities, allowing us to write all-loop Bethe
equations in four different ways, as we discuss in appendix A.4.

Level-II excitations can be found as before by acting with the lowering operators on the
level-II vacuum. Now we have four supercharges at our disposal, i.e. Q1L,Q2L and Q1R,Q2R.
In table 6.1 we collect their action on the fields in V II

A , writing also the length-changing effect.

The presence of additional fields and charges produces a new feature: the fields ΦL
−−,Φ

R
++

can be created by acting twice with the supercharges (i.e., respectively by consecutively ap-
plying Q1L and Q2L or ΦL

++ and Q1R and Q2R on Φ̄R
−−) and therefore can be considered as

composite excitations. As such, they will not explicitly appear in the Bethe ansatz, but rather
be represented by pair of suitable excitations.

Apart from this, the calculations to diagonalise the S matrix are exactly the same as the
ones of the previous section. This is not surprising, since the lowering operators we should
consider now are tensor products of the previous ones, and we deal again with doublets of
su(1|1)—now we have e.g. (ΦL

++|ΦL
−+) instead of (φL|ψL). In particular, we find once again

non-trivial matrices SII,I, with the same functional form as before, and trivial SII,II matrix for
all level-II excitations.

Bethe equations

As before, to obtain the Bethe ansatz equations we impose periodic boundary conditions on
a spin-chain of finite length ℓ and use the S matrix in its diagonal form. We have again two
momentum-carrying excitations, i.e. the ones in V I

A. We denote as before the corresponding
Zukhovski variables by x± and x̃± for left and right excitations respectively. Their number is
denoted by M I

L and M I
R. We have two auxiliary “left” roots denoted by y1, y2, corresponding

respectively to the action of the supercharges Q1L, Q2L. The two auxiliary “right” roots are
denoted by y1̃, y2̃ and they correspond respectively to the action of the supercharges Q1R, Q2R.
The number of the corresponding excitations is denoted by M II

1L, M
II
2L, M

II
1R, and M II

2R. The
Bethe equations then read

1 =

M I
L∏

j=1

y1,k − x+j
y1,k − x−j

M I
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j=1

1− 1
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−

j

1− 1
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+
j

, (6.63)

(
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=
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k
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,

(6.64)
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1 =

M I
L∏

j=1
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y2,k − x−j
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j=1

1− 1
y2,kx̃
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j

1− 1
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+
j

, (6.65)

1 =

M I
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j=1
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j=1

1− 1
y1̃,kx

+
j

1− 1
y1̃,kx

−

j

, (6.66)

(
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)ℓ

=
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×
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1− 1
x̃−

k
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j

1− 1
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x+
j

1− 1
x̃+
k
x−

j

1− 1
x̃−

k
x+
j

σ̃2(x̃k, xj)

M II
1L∏

j=1

1− 1
x̃+
k
y1,j

1− 1
x̃−

k
y1,j

M II
2L∏

j=1

1− 1
x̃+
k
y3,j

1− 1
x̃−

k
y2,j

,

(6.67)

1 =

M I
R∏

j=1

y2̃,k − x̃−j
y2̃,k − x̃+j

M I
L∏

j=1

1− 1
y2̃,kx

+
j

1− 1
y2̃,kx

−

j

. (6.68)

Note that, since we are dealing with the physical S matrix for the massive modes, we normalised
the level-I scattering factors in terms of the canonical dressing factors σpq and σ̃pq. The level
matching condition is once again

M I
L∏

j

x+j
x−j

M I
R∏

j

x̃+j
x̃−j

= 1. (6.69)

The total energy of a multi-excitation state that satisfies the Bethe equations and the level
matching condition is given by

E({x±, x̃±}) =
M I

L∑

j=1

√
1 + 4h2 sin2 pj

2
+

M I
R∑

j=1

√
1 + 4h2 sin2 p̃j

2
. (6.70)

Let us now analyse the small-h limit, which in the spin-chain picture is the most natural,
since there the left and right chains decouple and the dynamical length-changing effects are
suppressed. We will come back to the large-h limit in section 7.2, when we will compare it
with an independent result, the “finite-gap” equations.

Small-h limit and Cartan matrix

When we are dealing with non-dynamical spin chains having a Lie (super)algebra structure,
the Bethe equations can immediately be written down using data from the algebra and its
representations [67, 209]. In particular, in the case of psu(1, 1|2)2, we should write

(
ul,k +

i
2
wl

ul,k − i
2
wl

)ℓ

=

Kl∏

j=1
j 6=k

ul,k − ul,j + i
2
All

ul,k − ul,j − i
2
All

∏

l′ 6=l

(
Kl′∏

j=1

ul,k − ul′,j + i
2
All′

ul,k − ul,j − i
2
All′

)
, (6.71)

where wl are weights, All′ are elements of the Cartan matrix of psu(1, 1|2)2, and Kl are
excitation numbers pertaining to each Cartan element. Since, as discussed in appendix A.1,
each copy of psu(1, 1|2) has rank 3, we expect to find 6 equations from this construction.
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+1

(a)

±1
(b)

−1
(c)

Figure 6.3: Three Dynkin diagrams for psu(1, 1|2). From left to right, we depict the su(2) grading,
two fully fermionic gradings and the sl(2) grading.

On the other hand, when h ≪ 1, we can expand the Zukhovski variables in terms of the
spin-chain rapidity u as

x± ≈ ux ± i/2
h/2

, y ≈ uy
h/2

, (6.72)

in the left sector, where ui are finite as h → 0, and similarly in the right sector. In these
terms, we have the familiar formulae (see e.g. [182])

p ≈ u+ i
2

u− i
2

, E = 1 + δD ≈ 1 +
2h2

1 + 4 u2
, (6.73)

where in the last formula we split the energy into a classical contribution and the correction
due to the anomalous dimension, that for M excitations is

δD(p) = E(p)−M = −ih
M∑

k=1

(
1

x−k
− 1

x+k

)
, (6.74)

where the sum is over all (left and right) momentum-carrying excitations.
If we assume that the dressing phases σ and σ̃ expand trivially in this limit6, we indeed

find that the Bethe ansatz takes the form (6.71) and we can read off the resulting Cartan
matrix

A =




0 −1 0 0 0 0
−1 +2 −1 0 0 0
0 −1 0 0 0 0
0 0 0 0 +1 0
0 0 0 +1 −2 +1
0 0 0 0 +1 0



. (6.75)

Comparing this with the Cartan matrices in appendix A.1, in particular equations (A.3)
and (A.6), we see that this does correspond to psu(1, 1|2)2, with different gradings for the two
factors of the algebra. The left copy is in the su(2) grading, while the right one is in the sl(2)
grading, represented by the Dynkin diagrams of figure 6.3a and 6.3c. This shows that there is
a strict connection between the type of particles appearing in the Bethe ansatz and the nodes
of the Dynkin diagrams. In the Cartan basis is natural to identify the nodes by 1, 2, 3 for the
left algebra and 1̃, 2̃, 3̃ for the right one. We can identify the momentum-carrying excitations
with the middle nodes,

M I
L = K2 , M I

R = K2̃ , (6.76)

and the remaining ones with the peripheral nodes

M II
1L = K1 , M II

2L = K3 , M II
1R = K1̃ , M II

2R = K3̃ . (6.77)

6 In the next chapter we will return on this issue and see that this is not exactly the case.
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+1 −1

Dynkin links

Fermionic inversion symmetry links

Dressing phase σpq
Dressing phase σ̃pq

Figure 6.4: The Dynkin diagram for psu(1, 1|2)2 with the various interaction terms appearing in
the Bethe ansatz indicated. The label ±1 inside the middle Dynkin nodes indicate the su(2) and
sl(2) gradings of the left- and right-moving sectors.

In this way it is easy to represent the Bethe equations pictorially, as in figure 6.4. There, the
solid links are the ones that survive the h→ 0 limit (together with the self interaction of the
momentum-carrying nodes), and therefore can be read off directly from the Dynkin diagram.
The dashed ones can be interpreted as arising from the ❩4-graded structure of the model,
and finally the curly lines are couplings involving the dressing phases, which as discussed can
appear only between momentum-carrying nodes.

Not surprisingly, different Dynkin diagrams would appear, should we choose different level-
I excitations in nesting procedure. As we discuss in appendix A.4, this amounts to dualisation
of the Bethe equations, i.e. to replacing a set of roots with an equivalent one. In particular,
after dualisation of the nodes 1 and 1̃ the Bethe equations are written in a different grading,
where all the nodes of the Dynkin diagrams are fermionic. From the weak coupling expansion
we get the Cartan matrix

Ã =




0 1 0 0 0 0
1 0 −1 0 0 0
0 −1 0 0 0 0
0 0 0 0 −1 0
0 0 0 −1 0 1
0 0 0 0 1 0



, (6.78)

corresponding to the fermionic gradings in (A.4). If we had dualised the nodes 3 and 3̃ instead
we would have found the Cartan matrix −Ã. The consecutive dualisation of 1, 1̃ and 3, 3̃
gives the Cartan matrix −A. These last two choices are once again a manifestation of left-right
symmetry.

Global charges

By expanding the Bethe equations around large values of the spectral parameter u we should
obtain the global charges of the symmetry algebra [68,141]. In doing so we will assume again
that the dressing factors σpq and σ̃pq do not contribute to the charges.7

As we have seen above, the left- and right-moving sectors of the Bethe equations are natu-
rally written using different gradings of the psu(1, 1|2) algebra. The Dynkin labels r1, r2 and
r3 for the left-movers therefore give the eigenvalues of the Cartan generators hj given in (A.2),

while the labels r1̃, r2̃ and r3̃ for the right-movers correspond to the generators h̃j in (A.5).
Expanding the Bethe equations around small values of the momentum (or equivalently large

7 In the next chapter we will see that the dressing factors do contribute, and in a troubling way.
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values of the rapidity u) we find

r1 = r3 = +K2 +
1
2
δD, r2 = ℓ+K1 − 2K2 +K3,

r1̃ = r3̃ = −K2̃ − 1
2
δD, r2̃ = ℓ−K1̃ + 2K2̃ −K3̃ + δD,

(6.79)

where the anomalous dimension δD is given by (6.74).
A representation of psu(1, 1|2)2 can be labeled by the eigenvalues of the highest weight

state under the four generators LL
3, L

R
3 , J

L
3 and JR

3 . It is useful to combine them into the
charges

D = LL

3 + LR

3 , J = JL

3 + JR

3 ,

L = LL

3 − LR

3 , K = JL

3 − JR

3 .
(6.80)

The most important of these is the generator of dilatations D, that is the dual of the target-
space energy. It is related to the spin-chain Hamiltonian H by

H = D− J, (6.81)

a relation that we have already seen in (2.17) in terms of the worldsheet theory.
We can now express the eigenvalues of the generators (6.80) in terms of the excitation

numbers Kj as
D = +K2̃ +

1
2
(K1 +K3 −K1̃ −K3̃) + ℓ+ δD,

L = −K2̄ +
1
2
(K1 +K3 +K1̄ +K3̃),

J = −K2 +
1
2
(K1 +K3 −K1̃ −K3̃) + ℓ,

K = −K2 +
1
2
(K1 +K3 +K1̃ +K3̃).

(6.82)

Note that the anomalous dimension δD only contributes to the eigenvalue ∆ of the dilatation
operator. The eigenvalue of the Hamiltonian now takes the form

E = ∆− J = K2 +K2̃ + δD, (6.83)

as expected from equation (6.74).

Worldsheet picture

As we have seen in the previous section, the Bethe ansatz in the worldsheet picture is not very
different from the spin-chain one, and in fact can be found in an analogous way.

The resulting equations read

1 = e−
i
2
Ptot.

M I
L∏

j=1

y1,k − x+j
y1,k − x−j

M I
R∏

j=1

1− 1
y1,kx̃

−

j

1− 1
y1,kx̃

+
j

, (6.84)

(
x+k
x−k

)ℓ+δ

= eiPtot.

KI
L∏

j=1
j 6=k

x+k − x−j
x−k − x+j

1− 1
x+
k
x−

j

1− 1
x−

k
x+
j

σ2(xk, xj)

M II
1L∏

j=1

x−k − y1,j
x+k − y1,j

M II
2L∏

j=1

x−k − y2,j
x+k − y2,j

×
M I

R∏

j=1

1− 1
x+
k
x̃+
j

1− 1
x−

k
x̃−

j

1− 1
x+
k
x̃−

j

1− 1
x−

k
x̃+
j

σ̃2(xk, x̃j)

M II
1R∏

j=1

1− 1
x−

k
y1̃,j

1− 1
x+
k
y1̃,j

M II
2R∏

j=1

1− 1
x−

k
y2̃,j

1− 1
x+
k
y2̃,j

,

(6.85)

1 = e−
i
2
Ptot.

M I
L∏

j=1

y2,k − x+j
y2,k − x−j

M I
R∏

j=1

1− 1
y2,kx̃

−

j

1− 1
y2,kx̃

+
j

, (6.86)
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1 = e+
i
2
Ptot.

M I
R∏

j=1

y1̃,k − x̃−j
y1̃,k − x̃+j

M I
L∏

j=1

1− 1
y1̃,kx

+
j

1− 1
y1̃,kx

−

j

, (6.87)

(
x̃+k
x̃−k

)ℓ+δ

=

M I
R∏

j=1
j 6=k

x̃−k − x̃+j
x̃+k − x̃−j

1− 1
x̃+
k
x̃−

j

1− 1
x̃−

k
x̃+
j

σ2(x̃k, x̃j)

M II
1R∏

j=1

x̃+k − y1̃,j
x̃−k − y1̃,j

M II
2R∏

j=1

x̃+k − y2̃,j
x̃−k − y2̃,j

×
M I

L∏

j=1

1− 1
x̃−

k
x−

j

1− 1
x̃+
k
x+
j

1− 1
x̃+
k
x−

j

1− 1
x̃−

k
x+
j

σ̃2(x̃k, xj)

M II
1L∏

j=1

1− 1
x̃+
k
y1,j

1− 1
x̃−

k
y1,j

M II
2L∏

j=1

1− 1
x̃+
k
y3,j

1− 1
x̃−

k
y2,j

,

(6.88)

1 = e+
i
2
Ptot.

M I
R∏

j=1

y2̃,k − x̃−j
y2̃,k − x̃+j

M I
L∏

j=1

1− 1
y2̃,kx

+
j

1− 1
y2̃,kx

−

j

, (6.89)

where now

δ = −M I
L +

1
2
M II

1L +
1
2
M II

1L − 1
2
M II

1R − 1
2
M II

2R . (6.90)

By comparing with (6.82), we see that the difference between the spin-chain and worldsheet
notion of length is given by the charge J , which is the S3 angular momentum. Moreover, the
total-momentum contributions drop out of the equations upon imposition of the level-matching
constraint—the spin-chain and worldsheet construction are equivalent.

Let us remark that ℓ is not a gauge-invariant quantity. Going back to the (e.g. bosonic)
string theory discussion of chapter 2, we have seen that ℓ = P+ depends on the choice of
ligthcone gauge-fixing. In a more general a-dependent gauge fixing [91, 172, 173], we would
have

ℓ = P+ = aEt.s. + (1− a) J = J + aE . (6.91)

Since the spectrum is supposed to be gauge invariant, the dependence on a should drop from
the Bethe-Yang equation. This can be understood in terms of an overall prefactor for the S ma-
trix, which in particular has a non-trivial momentum dependence in the form ei a (p δDq−q δDp).
It is easy to check that this factor drops out of the crossing equations, and therefore cannot
be fixed based on our symmetry arguments. Moreover, from (6.61) we see that this produces
exactly the energy-dependent shift that can cancel the a-dependent part of ℓ. A tree-level
perturbative calculation [153, 154, 165] immediately shows that the factor appears in such a
way as to cancel the gauge dependence, as it is expected from what happens in AdS5×S5, see
e.g. ref. [210].

6.4 Chapter summary

In this chapter we have worked out the asymptotic Bethe ansatz equations for the all-loop
S matrix we found earlier. We outlined the procedure for doing so in a spin-chain and world-
sheet picture, that turned out to be equivalent.

The Bethe equations can be nicely summarised in figure 6.4, where the excitations are
represented by the corresponding nodes of the psu(1, 1|2)2 Dynkin diagram. This is a manifes-
tation of the psu(1, 1|2)2 symmetry of the spectrum, which in the Bethe ansatz construction
is expected [123], see also the discussion in chapter 8. As we have already seen a number of
times, such a symmetry requires the two copies of the superalgebra to be in opposite gradings.

As we stressed in the introduction, these equations describe only the asymptotic spectrum,
i.e. the spectrum when ℓ is finite but large. This is due to wrapping effects: either particles
wrapping around the worldsheet or the spin-chain non-local interactions wrapping around the
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chain. While these effects are exponentially suppressed in ℓ, a complete treatment of the spec-
tral problem requires accounting for them. This can be done by the mirror thermodynamical
Bethe ansatz (Mirror TBA), as we briefly sketched in section 1.2. As we mentioned there, this
requires having a handle over the whole asymptotic spectrum of the theory, including massless
excitations and bound states. For this reason, such a description is for the moment beyond
our reach.



7 Comparison with perturbative calculations

It is finally time to compare the results of the integrability approach to perturbative compu-
tations. This will give us some insight on whether our assumptions were correct.

Since the dual CFT2 is quite hard to evaluate perturbatively [162], all the calculations so
far available are from the string side. Therefore, they all require the limit h → ∞. This can
be taken in several ways, depending on how the magnon momentum scales. We have already
encountered in chapter 2 the BMN or near-plane-wave limit [174], whereby the momentum
scales as p ∼ p/h and the Zhukovsky variables expand as

x±
p
=

(
1± ip

2h

)
(1 + ωp)

p
+O(1/h2), ωp =

√
1 + p2 . (7.1)

In this approximation, the theory becomes relativistic as the dispersion ωp shows. Another
useful limit is the Maldacena-Swanson or near-flat-space (NFS) limit [211], whereby one uses
light-cone kinematics and scales p ∼ p−/

√
h. In this regime, loop calculations on the world-

sheet are more feasible. Finally, it will be useful to consider the semiclassical limit, whereby
we also take the number of excitations to infinity and scale the spectral parameters as

x± = x± i

h

x2

x2 − 1
+O

(
1

h3

)
. (7.2)

The expansion of the S-matrix elements would be straightforward were not for the dressing
factors, that require particular care.

7.1 Expansions of the dressing factors

In chapter 4 we solved the AdS3 crossing equations (4.29) in terms of (4.47). In what follows
we give the strong- and weak-coupling expansions of these all-loop phases.

Strong-coupling expansion

The dressing phases admit an expansion in terms of local conserved charges qr(p) [103]

θ(p1, p2) =
∞∑

r=1

∞∑

s>r
r+s=odd

cr,s(h) [qr(p1)qs(p2)− qr(p2)qs(p1)] , (7.3)

where cr,s(h) are functions of the coupling constant h with expansion

cr,s(h) = hc(0)r,s + c(1)r,s + c(2)r,sh
−1 + . . . (7.4)

and are antisymmetric in r, s. The phase θ̃(p1, p2) has a similar expansion where the coefficients
will be denoted c̃r,s(h). The expression above is similar to the corresponding one in AdS5, but

103
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unlike what happens in that case, we will need to include the r = 1 terms. This new feature
was first noted in ref. [155]. For r ≥ 2 the conserved charges are given by

qr(pk) = Qr(x
+
k )−Qr(x

−
k ) =

i

r − 1

[
1

(x+k )
r−1
− 1

(x−k )
r−1

]
,

Qr(x) =
i

r − 1

1

xr−1
,

(7.5)

where we introduced the function Qr(xk) for later convenience. For r = 1 the charge is just
the momentum

q1(pk) = Q1(x
+
k )−Q1(x

−
k ) = −i log

(
x+k
x−k

)
, Q1(x) ≡ i log

(
1

x

)
. (7.6)

Expressing θ(p1, p2) in terms of χ (see equation (4.32)), we obtain the expansion

χ(x, y) =
∞∑

r=1

∞∑

s>r
r+s=odd

cr,s(h) [Qr(x)Qs(y)−Qr(y)Qs(x)] . (7.7)

with a corresponding expression for χ̃. The coefficients cr,s and c̃r,s can be obtained by ex-
panding the integrands through which χ and χ̃ are defined. This expansion is in h ≫ 1 and
then in x, y ≫ 1. Recall that our phases involve the Hernández-López [197] and Beisert-Eden-
Staudacher phases [106], as well as the phase χ− of eq. (4.46). The expansions for χBES and
χHL are well known in the literature, and in particular we have

χHL(x, y) =
2

π

∞∑

r=2

∞∑

s>r
r+s=odd

(r − 1)(s− 1)

(r − s)(r + s− 2)
[Qr(x)Qs(y)−Qr(y)Qs(x)] . (7.8)

The expansion for χ− (see equation (4.46)) is

χ−(x, y) = − 1

π

∞∑

r=2

∞∑

s>r
r+s=odd

(r − 1)2 + (s− 1)2

(r − s)(r + s− 2)
[Qr(x)Qs(y)−Qr(y)Qs(x)]

+
1

2π

∞∑

s>1
s=even

[Q1(x)Qs(y)−Q1(y)Qs(x)] .

(7.9)

Expanding (4.47) at large h we find

χ(x, y) = hχAFS(x, y) +
1

2
(χHL(x, y) + χ−(x, y)) +O

(1
h

)
,

χ̃(x, y) = hχAFS(x, y) +
1

2
(χHL(x, y)− χ−(x, y)) +O

(1
h

)
,

(7.10)

where we have extracted the h-scaling of each phase. At leading order both phases reduce
to the Arutyunov-Frolov-Staudacher one [103]. However, at HL-order all three terms on the
right hand side of equation (4.47) contribute and we find

c(1)r,s = +
1

2π

1− (−1)s+r

2

[
s− r

s+ r − 2
− 1

2

(
δr,1 − δ1,s

)]
,

c̃(1)r,s = − 1

2π

1− (−1)s+r

2

[
s+ r − 2

s− r − 1

2

(
δr,1 − δ1,s

)]
,

(7.11)

for s > r > 0. Finally, the higher order coefficients c
(n)
r,s = c̃

(n)
r,s with n > 1 are exactly the same

as in the expansion of the BES phase.
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Semiclassical and near-flat-space limits

In order to compare with perturbative results, it is convenient to write explicit expressions
for our phases in the semiclassical limit (7.2). Such an expansion for the BES phase is well
known: the leading order O(1/h) is given by the AFS phase (4.35), which in our normalisation
reads

θAFS(x, y) =
2

h

x− y
(x2 − 1)(xy − 1)(y2 − 1)

+O

(
1

h3

)
, (7.12)

whereas the next-to-leading-order is given by the HL phase which can be found by expand-
ing (4.36) under the integral. Doing so also for (4.46), we get to the expressions

θ(x, y) = θAFS(x, y) +
1

πh2
x2

x2 − 1

y2

y2 − 1

[ (x+ y)2(1− 1
xy
)

(x2 − 1)(x− y)(y2 − 1)

+
2

(x− y)2 log
(x+ 1

x− 1

y − 1

y + 1

)]
+O

(
1

h3

)
,

θ̃(x, y) = θAFS(x, y) +
1

πh2
x2

x2 − 1

y2

y2 − 1

[ (xy + 1)2( 1
x
− 1

y
)

(x2 − 1)(xy − 1)(y2 − 1)

+
2

(xy − 1)2
log
(x+ 1

x− 1

y − 1

y + 1

)]
+O

(
1

h3

)
.

(7.13)

Let us also evaluate the dressing factors in the near-flat-space limit [211]

θ(p−, q−) =
p−q−(p− − q−)
8h(p− + q−)

+
p2−q

2
−

(
p2− + 2p−q− log

q−
p−
− q2−

)

64πh2(p− − q−)2
+O

(
1

h3

)
,

θ̃(p−, q−) =
p−q−(p− − q−)
8h(p− + q−)

−
p2−q

2
−

(
p2− − 2p−q− log

q−
p−
− q2−

)

64πh2(p− + q−)2
+O

(
1

h3

)
.

(7.14)

Weak-coupling expansion

In this subsection we compute the weak-coupling expansion of the dressing phases. While this
will not be comparable with any direct calculation, it naturally enters our spin-chain Bethe
ansatz, in particular in the identification of the global charges.

The results for σBES are well known from AdS5/CFT4. The leading-order contribution
to the dressing phase starts at O(h6) [106], and comes from the r = 2, s = 3 terms in the
expansion of χBES.1 The AdS3 dressing phases (4.47) contain extra terms besides the BES
phase. The coefficients cr,s and c̃r,s that come from these extra contributions are all order h0

(see equation (7.9) and (7.8)). The coupling constant dependence comes only from the charges
qr and qs in equation (7.7) through x±. In fact, the leading contribution comes from the r = 1
and s = 2 term, and can be written

θ(p, q) = +i h c
(1)
1,2

(
p δD(q)− q δD(p)

)
+O(h3) ,

θ̃(p, q) = −i h c(1)1,2

(
p δD(q)− q δD(p)

)
+O(h3) ,

(7.15)

where δD(p) = E(p)−1 is the anomalous part of the dispersion relation. Note that the O(h2)
terms vanish.

1See equation (7.7), and recall that for the BES phase there is no r = 1 term.
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The above result shows that the r = 1 terms, which are novel to AdS3, contribute at order
h to the BA, and so should modify the energy of states in the weakly-coupled spin-chain at
order h3. Let us remark that a priori we do not know how h(λ) behaves at weak coupling,
where λ is the genuine CFT2 coupling constant.2 This prevents us from determining whether
the O(h1) contribution to θ(p, q) in the equation above comes with an integral power of λ as
one would expect in a weakly-coupled planar limit.

Integrable spin chains with long-range interactions have been systematically considered
in ref. [212] where, among other things, the weak-coupling expansion of the dressing factor
and of some conserved charged was analysed. Interestingly, it appears that the weak-coupling
properties of the AdS3 spin chain differ from those found in that general analysis. This is not
entirely surprising, since in contrast to ref. [212], the psu(1, 1|2)2 spin chain consists of both a
left-moving and a right-moving sector. Something similar happens in the study of alternating
spin chains [213], where novel operators that do not exist for the homogeneous spin chains of
ref. [212] modify the structure of the dressing factor found there. We can then conclude that
the AdS3/CFT2 weakly-coupled spin-chain dynamics is substantially different from the ones
we are familiar with.

Let us now investigate how these contributions modify the Bethe ansatz picture. The form
of the right hand side of eq. (7.15) is reminiscent of a gauge-dependent shift of the length, as
discussed at the end of section 6.2. Indeed, if in the Bethe equations appeared e.g. only left
excitations and therefore only θ(p, q) we could use the level-matching to reabsorb such factor
in a shift of ℓ as in (6.61), at least in absence of winding. However, as soon as left and right

excitations are present such a procedure is impossible, because the correction due to θ̃(p, q)
has opposite sign than the one of θ(p, q), see (7.15). What is more, such terms are non-integer,
and it is easy to see that they would appear in the identification of the global charges (6.79).
In particular, the Dynkin label r2 corresponds to su(2) and as such should be an integer—but
the phase contribution would contain anomalous terms.

At the moment we have no resolution for such a puzzle. It is tempting to say that perhaps
the dressing factors should be modified by a solution of the homogeneous crossing equations,
in such a way to remove such contributions.3 However one should bear in mind that these
r = 1 terms appear also in independent string calculations [155,157], as we will discuss in the
next section. This once again points to some subtlety in interpreting these results, and in fact
our whole construction, at weak coupling.

7.2 Comparisons

In this section we will look first at explicit S-matrix elements obtained from string theory.
These include tree-level, one-loop and two-loop results. While the tree-level terms can be
found directly in full generality, evaluating the one-loop ones requires either going to particular
kinematic regions or using additional tricks such as unitarity techniques.4

For this reason, to investigate the one-loop structure of the dressing factors sometimes a
different approach is more useful: one can focus on a specific classical solution of the string
NLSM and compute the one-loop corrections to its energy, whence the dressing factors can
be reverse engineered. This can be done using the classical integrability properties the we

2Recall, for example, that in AdS5/CFT4 h ∼
√
λ it is while in AdS4/CFT3 it is h ∼ λ.

3In the case of AdS5/CFT4, for instance, there exist a crossing-symmetric phase that reproduces the leading
large-h behaviour, but fails to match the weak-coupling structure of the CFT4 [69].

4At a late stage of the preparation of this thesis, ref. [160] appeared. There, fully-fledged one-loop calcu-
lations are performed in the near-BMN limit of AdS3/CFT2. Just like the ones that we will discuss more in
detail hereafter, those results agree with our proposals for S matrix and dressing factors.
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described in section 3.1, and in particular the spectral curve. In the same way, one can obtain
finite-gap equations that capture part of the semiclassical spectrum.

Tree-level S matrix

To expand the S matrix of section 3.3 at tree level it suffices to use the AFS phase (4.35) and
to plug in (7.1). As discussed in section 6.3, we should take into account gauge terms of the
form ei a (p δDq−q δDp).

In ref. [165] Hoare and Tseytlin (HT), among other things, wrote down a tree level S matrix
for all the massive excitations of AdS3× S3×T4, from a suitable truncation of the AdS5× S5

S matrix5. It is immediate to see that the scattering processes allowed in the HT S matrix are
those that are non-zero in the one we derived in section 3.3. In particular, both S matrices
are reflectionless, and both come from the tensor product of two su(1|1)2c.e. S matrices. In fact
we can match our results both with the full S matrix (4.1) and with each factor (4.8) of [165].
We should note that the HT S matrix is written in terms of R rather than S or Š which leads
to some. Then, up to a change of basis, we find perfect agreement [145] with the integrability
results of the previous chapters.

In ref. [153,154] the AdS3×S3×S3×S1 and AdS3×S3×T4 S matrices have been investigated
perturbatively by Rughoonauth, Sundin and Wulff (RSW) and by Sundin and Wulff (SW).
At tree-level, the comparison is similar to the one above. Since in SW some computations
are performed for the more general AdS3 × S3 × S3 × S1 background, we should take the
parameter α = 1 everywhere to recover the T4 background at tree level. Only a subset of the
S matrix elements has been computed. Still, this probes the left-left and left-right diagonal
and non-diagonal scattering, yielding agreement with the integrability construction.

One- and two-loop S-matrix elements

Sundin and Wulff [154] also computed certain one-loop elements in the near-flat-space limit.

These correspond to certain elements A, Ã, C, C̃, some of which we encountered in chapter 4.
They are defined by

Apq = 〈ΦL

++qΦ
L

++p| Špq |ΦL

++pΦ
L

++q〉 , Ãpq = 〈ΦR

++qΦ
L

++p| Špq |ΦL

++pΦ
R

++q〉 ,
Cpq = 〈ΦL

−−qΦ
L

++p| Špq |ΦL

++pΦ
L

−−q〉 , C̃pq = 〈ΦR

−−qΦ
L

++p| Špq |ΦL

++pΦ
R

−−q〉 .
(7.16)

and read6

Apq = 1− i

4h

p−q−(p− + q−)

p− − q−
(7.17)

+
1

32h2
p2−q

2
−

q2− − p2−

(
i

π
(p− + q−)

2 − 2i

π

q−p−(q− + p−)

q− − p−
log

q−
p−
− (q− + p−)

3

q− − p−

)
,

5Such a truncation is possible at tree level, but as we have seen the two matrices should be genuinely
different at higher orders in a loop expansion.

6The tree level expressions for C and C̃ ware not given in [154], but were communicated privately to us by
the authors. We include them here for the sake of completeness.
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Ãpq = 1− i

4h

p−q−(p− − q−)
p− + q−

(7.18)

− 1

32h2
p2−q

2
−

q2− − p2−

(
i

π
(p− − q−)2 +

2i

π

q−p−(q− − p−)
q− + p−

log
q−
p−

+
(q2− + p2−)(q− − p−)

q− + p−

)
,

Cpq = 1− i

4h
p−q− (7.19)

+
1

32h2
p2−q

2
−

q2− − p2−

(
i

π
(p− + q−)

2 − 2i

π

q−p−(q− + p−)

q− − p−
log

q−
p−
− (q2− + p2−)(q− + p−)

q− − p−

)
,

C̃pq = 1− i

4h
p−q− (7.20)

− 1

32h2
p2−q

2
−

q2− − p2−

(
i

π
(p− − q−)2 +

2i

π

q−p−(q− − p−)
q− + p−

log
q−
p−

+ (q2− − p2−)
)
,

where in contrast with [154] we explicitly used the coupling constant h as a loop-counting
parameter. A first nontrivial requirement of our construction is that these elements satisfy
the crossing equations of chapter 4, that read simply

Apq Ãpqc = 1, Cpqc C̃pq = 1. (7.21)

It is easy to check that this is actually the case, observing that in light-cone coordinate crossing
the second variable q → qc amounts to q− → qc− = −q−, and taking everywhere the upper
branch of the logarithm [146]. Using the near-flat-space expansion of the dressing phases (7.14)
we can check that we perfectly match these elements. This is a first direct validation of the
dressing factors presented in chapter 4.

A different approach to obtain higher-loop expressions is to use unitarity techniques (akin to
the optical theorem) and exploit two-dimensional kinematics [158, 159]. Engelund, McKeown
and Roiban (EKR) have applied such techniques to AdS3 × S3 × T4 in ref. [159], obtaining
near-BMN one- and two-loop results for the diagonal S-matrix elements. However, in such
an approach only the logarithmic part of the elements is predicted unambiguously. Moreover,
an l-loop calculation requires as input the matrix structure of S at (l − 1)-loop. At one-loop
one can rely on the tree-level perturbative results above, but the two-loop calculation requires
using the symmetries of the model to constrain S as we did. Despite not being completely
independent, the two-loop result is a very non-trivial consistency check of the S matrix and
dressing factors. Once again, the proposed all-loop S matrix satisfies it.

Yet another approach to computing the dressing factors is to obtain them from the semi-
classical energy shifts to classical NSLM solutions. This approach was pioneered in [214, 215]
in the case of AdS5 × S5 and was later applied to AdS3 × S3 × T4 as well [155–157, 202]. In
ref. [155], Beccaria, Levkovic-Maslyuk, Macorini and Tseytlin (BLMMT) have computed the
one-loop dressing phase. Their calculation pre-dated the all-loop proposal [146] based on cross-
ing symmetry. Up to different normalisation due to the choice of the expansion parameters
resulting in a factor of 4π, their results are given in terms of the expansion (7.3) by

c
(1)
BLMMT r,s = c(1)r,s , c̃

(1)
BLMMT r,s = c̃(1)r,s ,

c
(1)
BLMMT 1,s = 2c

(1)
1,s , c̃

(1)
BLMMT 1,s = 2c̃

(1)
1,s .

(7.22)

The coefficients c
(1)
r,s and c̃

(1)
r,s do not match our proposal when r = 1. In fact, it is not hard to

see [145] that the resulting phases do not even satisfy the proposed crossing equations.
A resolution of this discrepancy was proposed by Abbott [157], who highlighted a subtlety

in the definition of the charges Qr in the semiclassical derivation, as in refs. [216, 217]. This
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results in a factor of 1
2
in the normalisation of Q1, and does not affect any higher charge.

Taking this into account, Abbot showed that the semiclassical calculation perfectly matches
our proposal for the dressing factors. Later, two additional validations of this result were
proposed. One was a direct one-loop calculation in the near-BMN expansion by Sundin [160],
and one a unitarity-based calculation in the same regime by Bianchi and Hoare [161]. Both
agreed with the expansion of the all-loop dressing factors proposed in [146].

Finite-gap equations

The spectral curve Γ(x) (3.5) encodes all the information about the conserved charges of
the classical NLSM. The same is true for its eigenvalues {γj(x)}, or equivalently the “quasi-
momenta” {pj(x)}, given by γj(x) = eipj(x). In the case where Γ(x) is an algebraic curve, i.e. it
has finite genus, it is possible to write down integral equations for the discontinuities at its cuts
to describe Γ(x)—the finite-gap equations. By solving those equations we can find the classical
energy of a solution having a given set of charges. The finite gap equations for AdS3×S3×T4,
were proposed in the seminal paper [6] by Babichenko, Stefański and Zarembo, and we expect
that they describe a suitable classical limit of the all-loop spectrum.

It is natural to expect that the finite-gap equations are a limit of the Bethe equations
where the magnon momenta condense to form cuts [102]. We introduce the densities7

ρj(x) =

Kj∑

k=1

x2

x2 − 1
δ(x− xj,k), j = 1, 2, 3, 1̃, 2̃, 3̃, (7.23)

and take the excitation numbers to be large, Kj ≫ 1. By making use of the expansion (7.2),
we find the following finite gap-equations

2πn1 = −
∫

ρ2(y)

x− ydy −
∫

ρ2̃(y)

x− 1/y

dy

y2
(7.24)

2πn2 = −
x

x2 − 1
2πE −

∫
ρ1(y)

x− ydy + 2 −
∫

ρ2(y)

x− ydy −
∫

ρ3(y)

x− ydy

+

∫
ρ1̃(y)

x− 1/y

dy

y2
+

∫
ρ3̃(y)

x− 1/y

dy

y2
+

1

x2 − 1
M,

(7.25)

2πn3 = −
∫

ρ2(y)

x− ydy −
∫

ρ2̃(y)

x− 1/y

dy

y2
(7.26)

2πn1̃ =

∫
ρ2(y)

x− 1/y

dy

y2
+

∫
ρ2̃(y)

x− ydy (7.27)

2πn2̃ = −
x

x2 − 1
2πE −

∫
ρ1(y)

x− 1/y

dy

y2
−
∫

ρ3(y)

x− 1/y

dy

y2

+

∫
ρ1̃(y)

x− ydy − 2 −
∫

ρ2̃(y)

x− ydy +
∫

ρ3̃(y)

x− ydy +
1

x2 − 1
M,

(7.28)

2πn3̃ =

∫
ρ2(y)

x− 1/y

dy

y2
+

∫
ρ2̃(y)

x− ydy, (7.29)

where −
∫
denotes the principal-value integral. Here E corresponds to the residue of the quasi-

momentum and it is given by

E =
1

2π
(L− ǫ1 + 2ǫ2 − ǫ3 + ǫ1̃ + ǫ3̃), (7.30)

7Here we find it convenient to work in terms of excitation numbers Kj rather than M I,II
j L,R. The relation

between the two sets is given in eqs. (6.76–6.76).
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where

ǫj =

∫
ρj(x)

x2
dx. (7.31)

The quantityM has the meaning of winding of the corresponding solutions and it is given by

M = P1 + P3 − P1̃ + 2P2̃ − P3̃ = P1 − P2 + P3 − P1̃ + P2̃ − P3̃, (7.32)

where

Pj =

∫
ρj(x)

x
dx. (7.33)

The last equality in (7.32) is possible thanks to the level matching condition that reads

P2 + P2̃ = 0. (7.34)

The finite-gap equations that we derived are apparently different but equivalent to the ones
in [6]. In fact, if we repeated the same construction performed there (see also refs. [151,152])
with a different choice of the grading, such as (6.75), we would have found precisely (7.24–
7.29). While for the Bethe-Yang equations we had only four choices of grading, all of them
involving different Cartan matrices in the left and right sectors, at the classical level the are
more choices—one can change grading to each copy of psu(1, 1|2) independently. We can then
conclude that the proposed all-loop construction is compatible with semiclassical integrability
calculations too.

7.3 Chapter summary

In this chapter we have compared the all-loop integrability results, that relied on several
assumptions, with independent ones. This comparison is a check of quantum integrability, but
is also an important test for the dressing factors, that were not completely fixed by crossing
invariance. All of the independent calculations that we checked were performed on the string

theory side, that is at large values of h. The proposal discussed in the previous chapters,
including the dressing factors, reproduces all of them. This non-trivial matching holds at
one-loop and puts strong requirements on the two-loop S matrix elements too. Based on that,
we are confident to say that we expect a quantum-integrable dynamics for the AdS3×S3×T4

superstring, and we expect the psu(1|1)4c.e. symmetry and a discrete left-right symmetry to
play a crucial role in it.

Still, it is highly desirable to test even further this construction results. In particular, we
only have limited understanding of the weakly-coupled h≪ 1 regime, and of how h(λ) scales
in terms of the CFT coupling λ. Moreover, as we discussed in section 7.1, the dressing factors
have a different structure compared to the ones of AdS5/CFT4 or AdS4/CFT3, that yields
new puzzling features at weak coupling.

Let us conclude this chapter by reviewing some earlier and slightly different proposals
for the S matrix and dressing factors of AdS3 × S3 × T4. The earliest proposal is due to
David and Sahoo [135, 136], and it was derived from a study of the giant magnons and their
symmetry properties. That proposal also relied on a su(1|1)2c.e. symmetry, but was restricted
to left-left sector. As we have argued in chapter 4, such a restriction is not compatible
with crossing symmetry. Indeed the structure of the dressing factors and crossing equations
put forward there yielded a single dressing phase, which appears incompatible with later
calculations [155,157,160,161].

In ref. [6], Babichenko, Stefański and Zarembo (BSZ) conjectured a set of all-loop Bethe
equations from the finite-gap equations. Those equations differed in two ways from the ones
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we derived from the all-loop S matrix in chapter 6. Firstly they were written in a different
grading, which as discussed in section 7.2 just amounts to a duality transformation. Secondly,
some terms8 that are sub-leading in the finite-gap limit—and hence could not straightfor-
wardly be reverse engineered—were not accounted for, which would lead to a different energy
spectrum from the one of the construction we reviewed. After that, in ref. [142] Ahn and
Bombardelli (AB) proposed an all-loop integrable S matrix constructed so as to reproduce the
BSZ conjecture for the Bethe equations. By construction, such an S matrix does not match
the one discussed here, in particular in the LR sector, and cannot be matched to the pertur-
bative calculations described in this chapter.9 Nonetheless, it is quite intriguing that such an
S matrix exists, and it would be interesting to investigate whether it describe an integrable
worldsheet theory for some superstring background.

8Namely, the symmetric phases that appear in the couplings between left and right sectors in front of σ̃2
pq,

see eqs. (6.64) and (6.67). These are required for the unitarity of the S matrix.
9As discussed more in detail in ref. [143], the AB S matrix is not invariant under the extended symme-

try su(1|1)2c.e., but only under su(1|1)2, making it qualitatively different from the one discussed in chapter 3.



8 Recent developments and new directions

Now that we have a good handle on the simplest aspects of AdS3/CFT2 integrability, in this
chapter we will describe some directions that are now being investigated, which go beyond
those aspects. The most natural one in order to complete our treatment is the inclusion of
massless excitations in the integrability description.

8.1 Massless modes in AdS3 × S3 ×T4

We have seen in section 2.1 that the bosonic string spectrum on AdS3× S3×T4 features four
fundamental massless excitations. By supersymmetry, these must be supplemented by four
fermionic ones. Extending our S-matrix treatment to such excitations appears problematic at
first sight. Massless excitations are characterised by the scaling of their dispersion relation at
small momentum, of the form1

ω(p)2 = c2 p2 +O(p4) , (8.1)

which results in ω(p) being a non-analytic function of p around zero. Consequently it is natural
to distinguish between left- and right-movers on the worldsheet, having respectively p > 0
and p < 0, and energy

Eleft = +c p+O(p3) , Eright = −c p+O(p3) . (8.2)

This should not be confused with the notion of left- and right-movers in the dual CFT, i.e. the
“L” and “R” labels that were ubiquitous in the previous chapters.

In the familiar relativistic case, higher orders in p are absent, and the dispersion relation
is linear. Therefore, the group velocity of a wave-packet is

vrel =
∂ω

∂p
= ±c , (8.3)

i.e., massless relativistic particles move at the speed of light. Particles with the same world-
sheet chirality then cannot scatter, regardless of the value of their momentum. Still, a formal
treatment of relativistic massless theories in terms of factorised scattering is possible [218–221].
To this end it is however necessary to introduce appropriate rapidity variables and take suitable
limits.

In the case of our interest, however, factorised scattering appears to be simpler than in
the relativistic case. In fact, as argued in [150], the dispersion relation of massless worldsheet
particles should take the form

ω(p)2 = 4h2 sin2
(p
2

)
, (8.4)

from which we find the group velocity

vnon-rel = ±h cos
(p
2

)
. (8.5)

1More general definitions of massless (quasi)particles may be given, but this one will suffice for our purposes.
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|ΦL
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|ΦL
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Q2L

−Q2L
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•

|ΦR
−−〉

|ΦR
+−〉 |ΦR

−+〉

|ΦR
++〉

Q1R

Q1R

Q2R

−Q2R

J α
•

Figure 8.1: The action of the supercharges on the massive excitations is supplemented by J α
• from

su(2)•, acting on the massive fermions only. Note that for clarity we only depict the action of some
of the supercharges, i.e. the ones that remain non-trivial on-shell.

We see then that massless excitations that have different momenta also have different velocities,
so that we can expect them to scatter in a way similar to massive excitations. Starting from
this intuition, in refs. [149,150] the fundamental S matrix of massive and massless excitations
was computed. Since ref. [150] gives a very detailed account of the derivation, here we will
only outline its conceptual steps. The approach is similar to the one used in chapters 2 and 3,
relying on the off-shell symmetry algebra of the theory. As we have mentioned in chapter 2,
the coset formalism is not suitable for treating massive and massless excitations at the same
time. The issue is that the coset κ-gauge fixing—whereby all physical fermions are taken to
live in the coset—is not compatible with light-cone gauge. To overcome this, it is possible to
use the Green-Schwarz superstring formalism, taking a κ gauge where the massless fermions
live on the torus. Then one can compute the Noether charges and Killing spinors of the
AdS3 × S3 × T4 geometry to find the off-shell symmetries.

One then finds that the psu(1|1)4 is supplemented by a bosonic o(4) symmetry coming
from the torus, with in particular an so(4) = su(2)• ⊕ su(2)◦ symmetry. This may appear
surprising, as one would näıvely expect only u(1)4 isometries from the torus. However, the
presence of periodic boundary conditions on T4 is probed only by winding modes, that in the
decompactification limit, where the S matrix is defined, are irrelevant. The massive funda-
mental excitations are charged under some of the torus isometries. In fact, the fermions ΦL

±∓

and ΦR
±∓ form two doublets under su(2)•, as depicted in figure 8.1. The massless excitations

are also charged under so(4), and we label them accordingly. Using Greek letters for funda-
mental and antifundamental su(2)• indices, and Latin ones for su(2)◦, we can write the eight
massless excitations as

bosons: T αa , fermions: χa, χ̃a , (8.6)

see figure 8.2. The fermions χa and χ̃a are distinguished by having opposite eigenvalues under
the bosonic charge N of eq. (2.86). The psu(1|1)4 supercharges are also charged under su(2)•,
forming four doublets

QαL , Q L

α , Q R

α , QαR . (8.7)

This is the hidden su(2) action that we saw emerging in the massive sector from the tensor
product structure when looking at the S-matrix elements in section 3.3.

The final ingredient for finding the S matrix is understanding if and how the non-trivial
central extension appears when going from the on-shell to the off-shell symmetry algebra. In
the coset formulation we saw this easily because the light-cone coordinate x− was2 neatly
packaged into Λ(x±) as an exponential. Without reference to the coset representatives, the
same terms naturally arise in the Green-Schwarz formulation, by requiring that the fermions

2Recall that x− is related to the total worldsheet momentum by P = −
∫
dσ x′−.
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|χ1〉

|T 11〉 |T 21〉

|χ̃1〉

J α
• J a

◦

|χ2〉

|T 12〉 |T 22〉

|χ̃2〉

Jα
•

Figure 8.2: The massless excitations sit in two psu(1|1)4c.e. modules, with fermionic highest weight
states. The two modules transform as a doublet under su(2)◦, and additionally the bosons Tαa also
carry a Greek index of su(2)•.

are not charged under the light-cone isometries [150], see also e.g. ref. [222]. In fact one
can see that the central extension takes the same form as in the massive sector. With these
ingredients it is then straightforward to find the 2→ 2 S matrix, which for massless excitations
is expressed in terms of modified Zukhovsky variables satisfying

x+p
x−p

= eip , x+p x
−
p = 1 , x±p = e±

i
2
p sign

(
sin

p

2

)
, (8.8)

whereby we get the dispersion relation (8.4) by the usual formula (3.51). Unsurprisingly, since
we are dealing with massless particles, a non-analyticity arises at p = 0, whence a splitting
into left- and right-movers of the worldsheet can be introduced. It is also interesting to observe
that on symmetry grounds, unless the so(4) invariance of the S matrix is broken, quantum
effects cannot give a mass the massless particles—unlike what happens in other integrable
theories such as the Gross-Neveu model [223,224].

The worldsheet S matrix again factors in a tensor-product structure, and depends on five
distinct dressing phases,

S
••
pq , S̃

••
pq , S

•◦
pq , S

◦•
pq , S

◦◦
pq , (8.9)

where the first two phases are the massive-massive ones that we already studied in chapter 4,
while the remaining three pertain to the massive-massless, massless-massive and massless-
massless sectors, respectively. The requirement of crossing symmetry for all these phases
can be written down straightforwardly, but a proposal for the latter three and a study of
their properties is still lacking. To this end it may be useful to first obtain some insight in
their perturbative form by performing worldsheet calculations, following ref. [154] and perhaps
taking advantage of the recent advances in unitarity techniques [158,159].

The proposal of the all-loop S matrix for all fundamental excitations is a crucial step
forward in AdS3/CFT2 integrability, but should be supplemented by several related investiga-
tions. Among these, finding the Bethe-Yang equations and studying how the full N = (4, 4)
infinite-dimensional symmetry is realised at the level of the asymptotic spectrum is probably
the most important one. Once that has been understood, it should also be possible to for-
mulate a string hypothesis and mirror TBA equations for this model, and to start to tackle
finite-size physics, “spectroscopy”, comparison with other approaches, and many other issues,
some of which we will mention in the conclusions. We foresee many of these studies to be
completed in the near future, rapidly advancing our understanding of this model.
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(a) (b)

Figure 8.3: Two Dynkin diagrams for d(2, 1;α). Diagram (b) corresponds to a completely fermionic
grading.

8.2 Integrability for the AdS3 × S3 × S3 × S1 background

As discussed in the introduction, there is another AdS3 background (in fact, a family of
backgrounds) that preserves the maximal amount of supersymmetry, i.e. 16 supercharges. It
is given by AdS3 × S3 × S3 × S1 provided that the curvature radii of the two spheres R(1)

and R(2) satisfy
1

R2
(1)

+
1

R2
(2)

=
1

R2
AdS

, (8.10)

where RAdS is the radius of AdS3. This gives an one-parameter family that can be labelled
by α

α =
R2

AdS

R2
(1)

= 1− R2
AdS

R2
(2)

, (8.11)

with 0 < α < 1. Clearly, up to exchanging the role of the two spheres, we can restrict
to 1

2
≤ α < 1, where the point α = 1

2
is special in that the two spheres become identical there.

Another interesting configuration is the one where α→ 1, when R(1) equates the AdS radius
and R(2) blows up. In this limit the second sphere becomes flat, and decompactifies to ❘3.
Up to the fact that ❘3 should be compactified back to T3, which can be done in several ways,
we have basically obtained again the AdS3 × S3 × T4 background. However, since this limit
appears quite delicate, let us for the moment take 1

2
≤ α < 1 and come back to it later.

Once again the background has flat directions that give rise to massless excitations in its
spectrum in light-cone gauge. Instead of the four massless modes from T4, here we have two:
one resides on the circle S1, and one is shared by the two spheres3. Once again, up to discarding
the massless excitations, the string action can be written in terms of a coset [6, 151,152]

D(2, 1;α)×D(2, 1;α)

SU(1, 1)× SU(2)× SU(2) , (8.12)

where D(2, 1;α) is the supergroup corresponding to the exceptional basic simple Lie superalge-
bra d(2, 1;α), see refs. [225,226]. Here 1

2
≤ α < 1 is precisely the curvature ratio of eq. (8.11),

and the case α = 1
2
gives d(2, 1; 1

2
) ∼= osp(4|2). The superalgebra d(2, 1;α) can be written in

two inequivalent gradings. In figure 8.3 we illustrate the relative Dynkin diagrams.

Classical and perturbative aspects

Clearly the coset (8.12) can be equipped with a ❩4 automorphisms, whence classical integra-
bility follows, in the sense that the equations of motion admit the Lax representation that

3To preserve as much supersymmetry as possible, the light-cone geodesic runs trough the time coordinate
in AdS3 and both of the spheres. The massless excitation comes from a coordinate on the spheres that is
orthogonal to such geodesic.
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Mass m = α m = 1 m = 1− α m = 0

Bosons φ1L, φ1R Φ2L, Φ2R φ3L, φ3R ϕ0, ϕ4

Table 8.1: Fundamental bosonic excitations of the AdS3×S3×S3×S1 in light-cone gauge. Fermions
follow by supersymmetry. The massive modes are labelled (left-right) by the sign of a suitable target-
space angular momentum, which can be interpreted as the chirality in the dual CFT2—much like in
AdS3× S3×T4. The massless excitation ϕ0 is shared between the two spheres, while ϕ4 lives on the
circle S1.

we briefly discussed in section 3.1. However, this as usual requires some care in dealing with
the massless modes, that are not automatically present in the coset construction and must
be added by hand. This was shown to be possible by Babichenko, Stefański and Zarembo
in ref. [6] in a specific κ-gauge fixing, and then extended by Sundin and Wulff [139] to an
arbitrary κ gauge.

A perturbative investigation of the spectrum in light-cone gauge yields again 8+8 bosonic
and fermionic fundamental excitations. They come in eight supersymmetric doublets, with
four different masses. We collect them in table 8.1. There are 4+4 “light” excitations (φj| θj)
of mass 0 < m < 1 and 2 + 2 “heavy” ones (Φj|Θj) of mass m = 1, plus the aforementioned
massless modes (ϕj|ϑj).

In ref. [6], besides establishing classical integrability for this background, the finite-gap
equations for massive excitations were written down. In that context, it naturally appears
that the heavy modes are actually composite, consisting of two light excitations of mass α
and 1 − α. From the point of view of the S matrix, this is reflected in the presence of a
tree-level light-light-heavy vertex.

In order to understand whether the heavy mode is truly composite one should analyse its
(renormalised) two-point function. If this displays a pole at mass m = 1, then the heavy mode
should be treated as a fundamental particle, and included in the asymptotic states. If the pole
is replaced by a branch cut, then the mode should be treated as composite. This issue was
investigated at one loop in ref. [139], where at least in the simpler case when α = 1

2
it was

established that the latter scenario occurs.

Quantum integrability

The investigation of integrability beyond the classical limit was initiated by Ohlsson Sax and
Stefański in ref. [141], by constructing a weakly-coupled spin chain with d(2, 1;α)2 symmetry.
This corresponds to the strongly-coupled regime in the NLSM, i.e. to the opposite of what
was considered in ref. [6]. Even at weak coupling, the spin chain appears substantially more
complicated than the psu(1, 1|2)2 one, which we discussed in chapter 5. The d(2, 1;α)2 spin
chain is given by the direct product of two alternating spin chains. Each alternating chain
has its odd and even sites in the short (infinite-dimensional) d(2, 1;α) representations (α

2
; 1
2
; 0)

and (1−α
2
; 0; 1

2
), respectively. At weak coupling, the alternating spin chains are decoupled, and

correspond to left- and right-moving excitations, as it happened for psu(1, 1|2)2. The setup is
illustrated in figure 8.4.

In ref. [143] this picture was used to study the all-loop integrability properties of the chain.
As we did in chapter 5, the first step of this analysis was to pick a vacuum for the chain that
preserved as much supersymmetry as possible, and study fundamental excitations on top of
it. This resulted in 4 + 4 excitations, the bosonic ones being

|φ1L〉 , |φ1R〉 , |φ3L〉 , |φ3R〉 . (8.13)
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left

right

Figure 8.4: Pictorial representation of the d(2, 1;α)2 alternating spin chains. We can think of it
as composed of two (left and right) alternating chain. For each of these, odd (cyan) sites are in
the (α2 ;

1
2 ; 0) representation of d(2, 1;α), while even (pink) sites are in the (1−α2 ; 12 ; 0) representation.

The dotted squares represent the combination of sites which we identify as fundamental excitations
of the whole d(2, 1;α)2 chain.

These are precisely the light modes of table 8.1. Each of these excitations forms a doublet with
its fermionic partner, and transforms under su(1|1)2c.e. that is, under the very same algebra
that we have analysed at length in the previous chapters. In fact, should we consider only |φ1L〉
and |φ1R〉, we would have the same algebra and representation as in section 3.2, up to rescaling
the mass. This rescaling can be easily done in terms of modified Zhukovski variables

x+j,p
x−j,p

= eip , x+j,p +
1

x+j,p
− x−j,p −

1

x−j,p
=

2imj

h
, (8.14)

with m1 = α for |φ1 L,R〉 and m3 = 1− α for |φ3 L,R〉. Then the dispersion relation reads

E =
h

2i

(
x+j,p −

1

x+j,p
− x−j,p +

1

x−j,p

)
=

√
m2

j + 4h2 sin2
(p
2

)
, (8.15)

so that a large-h expansion4 reproduces the spectrum of table 8.1. Furthermore, for the same
reasons as in the previous chapters, it is natural to take the spin chain to have a discrete
left-right symmetry.

Despite the many similarities, let us point out two important differences between this spin
chain and the psu(1, 1|2)2 one. Firstly, the present symmetry algebra su(1|1)2c.e. is half of
the psu(1|1)4c.e. algebra of chapter 5. What earlier was only one tensor product factor, which
we introduced for convenience, is now the full, physical symmetry algebra of the spin-chain
excitations. Secondly, even if when we restrict to a subset of particles of a given mass we
just need to rescale the Zhukovski variables (8.14), the presence of different masses introduces
novel features. In particular, scattering processes involving particles of different masses are
new to this spin chain.

Using this spin-chain picture, an all-loop S matrix was worked out in ref. [143]. We can
summarise it as a block matrix

S =

(
S11 S31

S13 S33

)
, (8.16)

where Sjj is given by rewriting the su(1|1)2 S matrix of chapter 3 using the Zhukovski vari-
ables (8.14), and Sjk with j 6= k scatters particle of different masses. One finds that the mass
quantum number is always transmitted, e.g.

|Xj,p Yk,q〉 −→ # |Ỹk,q X̃j,p〉 , j 6= k , (8.17)

where Xj,p, Yk,q are magnon excitations of definite mass and momentum and X̃j,p, Ỹk,q are their
scattering products. We can further subdivide the mixed-mass scattering by chirality e.g.

S13 =

(
SLL
13 SRL

13

SLR
13 SRR

13

)
. (8.18)

4Scaling as usual the momentum as 1/h.
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Dynkin links

Fermionic inversion symmetry links

Dressing phases Sjj and S̃jj

Dressing phases Sjk and S̃jk

Figure 8.5: The Dynkin diagram for d(2, 1;α)2 in mixed grading (see figure 8.3), with the various
interaction terms of the Bethe ansatz indicated. Note how now, besides dressing phases that couple
nodes of the same mass (in blue), there appear phases coupling nodes of mass α with ones of mass 1−α
(in red).

We then find that each block is given by the corresponding one from chapter 3, up to rescaling
each of the two Zhukovski variables independently.

The resulting S matrix satisfies the Yang-Baxter equation and, after imposing unitarity
and left-right symmetry, depends on four dressing factors

Sjj , S̃jj , Sjk , S̃jk . (8.19)

In reducing the number of the dressing factors to four, we assumed that the mass-dependence
in e.g. S11 and S33 comes from the same functional dependence on m. Crossing symmetry
relates the first two of dressing factors among themselves, and the last two among themselves.
So far, there is no all-loop proposal for these dressing factors. Even if there have been some
tree-level and one-loop worldsheet perturbative calculations that validate5 the proposed all-
loop S matrix [6,153,154,202], the understanding of this model is quite limited and calculations
are more involved due to the presence of the additional parameter α.

From the proposed S matrix, the all-loop Bethe ansatz equations have been written in [144],
in a way much similar to what we did in section 6.2. Once again, the equations are written
in a mixed grading for the two copies of d(2, 1;α), and feature slightly different phases with
respect to the early proposals that were reverse-engineered from the finite-gap equations, see
refs. [6, 141]. We schematically represent them in figure 8.5.

Massless modes and α→ 1 limit

Once again, incorporating the massless excitations in the integrability description does not
appear to be straightforward. Very recently, some progress has been made at the level of the
finite-gap equations [148]. The original set of finite-gap equations did not include any of the
massless modes of the AdS3 × S3 × S3 × S1 background, not even the one shared by the two
spheres, which should be captured by the supercoset (8.12). In ref. [148] Lloyd and Stefański
showed that such a mode can be accounted for by implementing the Virasoro constraints as
suitable conditions on the residues at the poles of the quasimomenta—in particular, as weaker
conditions than the ones assumed in the earlier literature. Therefore, accounting for the

5There may arise some confusion concerning ref. [154], where the one-loop matrix elements found for the
limiting case α = 1 are compared with the all-loop S matrix at 1

2 ≤ α < 1 and a mismatch is found. This is
because, as we have seen, the S matrix radically changes in that limit, and the notion of fundamental particles
is different at α < 1 and α = 1, see also the next subsection. Taking this into account, we can match the
calculations of ref. [154] with both the AdS3 × S3 × S3 × S1 and AdS3 × S3 × T4 S matrices, for appropriate
values of α.
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massless mode does not result in additional cuts in the algebraic curve description, but rather
in a modification of the residues of the quasimomenta, which contribute to the determination
of the energy of the state. Such a prescription can be also employed to accommodate the
massless mode of S1, or the four modes of T4. This is a promising advance, which hopefully
will help including massless modes in general all-loop integrability scenarios.

Another interesting direction is to exploit this background to generate massless modes.
This can be done by taking the limit in which one of the spheres becomes flat, α→ 1. At the
level of d(2, 1;α) this corresponds to a contraction of one of the su(2) bosonic subalgebras.
The limit is quite subtle, because this eliminates one of the simple roots, see figure 8.3a, and
introduces a novel fermionic one. At the level of the S matrix, the limit is non-trivial too. We
argued that the mass-one excitations Φ2 L,R are composite in the case of AdS3 × S3 × S3 × S1.
In AdS3×S3×T4, there are four fundamental bosonic modes of mass one, two of which can be
obtained from the one of mass α. The remaining two must be the once-composite modes Φ2 L,R.

All this makes the comparison not straightforward. However, in the limit of the weakly-
coupled spin chain some progress could be made [147]. There it was shown that theRmatrix is
regular in the limit α→ 1, where its representations can be studied. The d(2, 1;α) alternating
spin chain does not quite go to the psu(1, 1|2) homogeneous one. While the even sites are given
by the (1

2
, 1
2
) psu(1, 1|2) module (see section 5.1), the odd ones are given by 0 ⊕ 0 ⊕ (1

2
, 1
2
),

i.e. also feature two singlets. These are related to the massless modes, and yield a degenerate
vacuum. By writing down the corresponding Bethe ansatz equations and carefully studying
their degeneracies it is possible to show that the degeneration is compatible with the chiral
ring of the dual CFT—this is however quite subtle and requires considerations that go beyond
the weakly-coupled regime.

8.3 Mixed-flux backgrounds

Up to this point, our focus has been on integrable non-linear σ models corresponding to
superstring backgrounds supported by a pure Ramond-Ramond flux. This is in close analogy
with the prototypical integrability example of the AdS5× S5 superstring. As we mentioned in
the introduction, however, AdS3 backgrounds are special in that they can also be supported
by a Neveu-Schwarz-Neveu-Schwarz flux, or by a combination of NSNS and RR fluxes. As
discussed, the pure NSNS theory is in a way simpler to quantise and, at least in the case
of AdS3× S3×T4, is well-understood [45,48–51]6. Such a case can in fact be understood as a
supersymmetric extension of the SL(2)×SU(2) Wess-Zumino-Witten (WZW) model, whence
the free-string spectrum can be found by CFT techniques. The mixed-flux case has also been
considered [52,55,56], but until recently the solution of the relative spectral problem appeared
to be out of reach.

Classical integrability

In ref. [164], Cagnazzo and Zarembo investigated such mixed flux backgrounds. In general,
their Lagrangian takes the form

L = −h
2

(
γαβGµν(X) + q εαβBµν(X)

)
∂αX

µ∂βX
ν + fermions . (8.20)

In a coset formulation such as the one of chapter 2, this can be written as

S = −h
2

(∫
d2σγαβstr(A(2)

α A
(2)
β ) +

q

3

∫

B

d3σεαβγstr(A(2)
α A

(2)
β A(2)

γ )
)
+ fermions . (8.21)

6The AdS3 × S3 × S3 × S1 background has also been studied, but remains more obscure [33, 36–38].
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Note that the last term is non-local, as it is a topological integral over a three-dimensional
manifold B such that its boundary ∂B is the string worldsheet. Locally its integrand is a total
derivative, so that the equations of motion can be consistently written in terms of worldsheet
fields only. The choice q = 0 gives back the pure RR case, while q = 1 corresponds to the
pure NSNS one. Interestingly, the string-theoretical S duality exchanges the RR and NSNS
fluxes, which corresponds to sending q →

√
1− q2 in this description. However, S duality

is not realized perturbatively, so that the relative invariance will not necessarily be manifest
in the string spectrum. Using an appropriate extension of (8.21) to include fermions, it was
shown in ref. [164] that the corresponding classical theory is integrable for a suitable choice
of the couplings. Such a choice is precisely the same that guarantees κ symmetry as well as
conformal invariance. In fact, the same picture holds at the classical level also when including
the massless modes and considering the AdS3 × S3 × S3 × S1 background.

Towards quantum integrability

Following this realisation, Hoare and Tseytlin started investigating the integrability of the
quantum theory in the S-matrix approach that we described in chapter 3. In ref. [165], they
computed the tree-level S matrix for q 6= 0, focusing on the simplest case of massive excitations
on AdS3 × S3 × T4. In that case it turned out that the q-dependence was quite mild, and
amounted to a relatively simply modification of some of the S-matrix elements and in particular
of the tree-level dispersion relation

√
p2 + 1 −→

√
(p± q)2 + 1− q2 , (8.22)

where the sign ± should be chosen suitably for each the S-matrix element. Building on that,
in ref. [166] they proposed an all-loop, mixed-flux S matrix in terms of a modification of the
one proposed in ref. [145]. The “matrix part” of S should then be given by replacing the
usual7 definition of the Zukhovski variables

eip =
x+(p)

x−(p)
, E(p) + 1 = i h

(
x−(p) + x+(p)

)
, (8.23)

with the q-dependent ones

eip =
x+±(p)

x−±(p)
, E±(p) + 1± 2hq sin p

2
= ih

√
1− q2

(
x−±(p) + x+±(p)

)
, (8.24)

where we in fact introduced two pairs of Zhukovski parameters x±±, each pair depending on
one modified dispersion relation E±, with

8

E±(p)
2 =

(
1± 2hq sin

p

2

)2
+ 4h2(1− q2) sin2

(p
2

)
. (8.25)

This conjecture for the S matrix is compatible with the tree-level one, and with the off-shell
symmetry algebra of the mixed flux theory, which however does not fix the dispersion relation
entirely. The dispersion relation can essentially be narrowed down to (8.25) by requiring peri-
odicity in p, which is what happens in the pure-RR case. As we mentioned in the introduction,
one can think of this periodicity as coming from a discretisation of the worldsheet whence the
spin-chain picture emerges—which is well established in several instances of integrable (pure-
RR) string backgrounds.

7The form in which we write the definition of the Zhukovski parameters here is equivalent to (3.47), as it
can be seen by using the definition of E(p) in terms of x±.

8Special care is needed to consider the limit q → 1.
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To further validate this proposal, Hoare, Stepanchuk and Tseytlin [167] have investigated
solitonic solutions for the mixed flux theory. Studying the dyonic giant magnon solution, they
were able to determine that the dispersion relation in that case takes the form

E±(p)
2 = (1± hq p)2 + 4h2(1− q2) sin2

(p
2

)
, (8.26)

that in fact is incompatible with the earlier conjecture (8.25), despite going to the same tree-
level expression (8.22). Now the q-linear term in brackets spoils periodicity in the momen-
tum p—a completely new and somewhat unexpected feature. Note that this also contradicts
the näıve expectation of periodicity from a discretisation of the worldsheet that we discussed
in the introduction and is at odds with a spin-chain description. This last picture is also vali-
dated from the study of the bound-state dispersion relation [167], and is consistent with the
study of finite-size giant magnons later performed in ref. [168]. Still, in light of its unexpected
features some further investigation may be desirable, which may come through a two-loop
calculation9 for the dispersion relation, in the spirit of [101, 227], that for these backgrounds
has not been performed yet, or to work it out from the analysis of the semiclassical algebra
like in ref. [150]. In any case, the implications of such dispersion relation may be radically
new and are yet to be understood.

We must conclude that so far integrability for mixed-flux backgrounds remains a bit of a
puzzle even in the simplest case of AdS3 × S3 × T4 restricted to massive modes, but we have
high hopes of witnessing significant progress in the subject in the coming years. We find this
particularly exciting because it may offer a way to understand the relation between the notion
of solvability in terms of the worldsheet S matrix (the pure-RR case) and by representation
theory of chiral algebras (pure-NSNS). Such a structure has been partially uncovered in the
case of relativistic massless integrable theories that we mentioned in section 8.1. In the case
of the massless sine-Gordon model, it was possible to see how the higher charges from integra-
bility fit into the Virasoro algebra, thus relating the two descriptions, see ref. [221]. Whether
something similar will happen in the AdS3/CFT2 setup and what role is played by the dual
CFT2 is a very interesting question.

8.4 Conclusions and outlook

In this chapter we have reviewed the most promising and relevant lines of research in integra-
bility for AdS3/CFT2. As we have seen, rapid progress is being made in including massless
modes into the integrability machinery, see refs. [147–150]. More general backgrounds such
as AdS3×S3×S3 [143,144] or the ones supported by mixed fluxes [161,164–168] are also being
actively investigated, and show indications of being integrable. All this offers a unique play-
ground to gain a new understanding of integrability for massless (non-relativistic) S matrices,
of the relation between the charges of the Zamolodchikov-Faddeev algebra with the Virasoro
ones appearing in the CFT2 as well as in the worldsheet CFT, and of string dualities.

Once the massless modes issue has been finally cleared, it would also be very interesting
to further investigate the relations between the integrability construction and the symmetric-
product orbifold CFT which is the dual to AdS3×S3×T4 strings [3,21,22,45–50]. Quite likely,
such a study would be most fruitful in a spin-chain framework such as the one of ref. [163].
Repeating that study for the AdS3× S3× S3× S1 background could then shed some new light
on the quite obscure CFT2 dual arising in that case [33, 36–38].

9In the present case, a simpler near-flat-space calculation may not be sufficient to unveil the form of the
dispersion relation, and a subtler near-BMN calculation would be necessary, perhaps taking advantage of the
unitarity techniques that we mentioned in chapter 7.
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We should also mention a related but somewhat more distant field of investigation, that
is the study of higher-spin theories in AdS3 backgrounds. Non-trivial theories involving
fields of spin higher than two can be formulated on three-dimensional Minkowski space and
on AdSd spaces. Such fields may be thought as arising from the tensionless limit of string the-
ory [228–230] whereby the tower of string states becomes massless. A special feature of AdS3

is that there (like it happens for gravity [231, 232]) higher-spin theories can be described as
Chern-Simons theories [233]. In this way, it was possible to show that asymptotically they en-
joy aW∞(λ) infinite-dimensional symmetry [234,235], which also characterises minimal models
in CFT2 [236], see ref. [237] for a review. This provided a new approach to holograpic du-
alities, and lead to rapid developments [238–241]—see also ref. [242] for a review—including
a recent study of higher spins in the AdS3 × S3 × S3 × S1 background [243], whereby the
same d(2, 1;α) representations constructed in [141] and used in [143,144] emerge [244]. While
a comparison of higher-spin theory results with the S-matrix integrability ones has not been
performed yet, we expect these two approaches to make contact in the future. This may
lead to a more quantitative understanding of the tensionless limit—at least at the level of the
free string spectrum—adding to the recent progresses in flat space [245] and in the context
of AdS4/CFT3 [246].

Another interesting direction which should be explored in due course is to consider defor-
mations of the AdS3 backgrounds. This road has been taken in the case of AdS5/CFT4, where
a plethora of deformations has been shows to preserve integrability, such as orbifolds [247,248]
and T-duality-shift-T-duality (TsT) deformations [249,250] of the background, and quantum
deformations (in the sense of quantum groups) of the underlying symmetry algebra [251–254],
which also result in a string NLSM [255,256], see also ref. [257,258] for a review of the spectral
problem in these contexts. The rationale in these approaches is to get rid of as much manifest
symmetry as possible in an effort to get closer to more realistic theories. This amounts to
breaking R-symmetry and supersymmetry in the geometric deformations of the background,
and even conformal (and Lorentz) symmetry in the case of quantum deformations. What
could be new and very interesting in the case of AdS3 is that integrable deformations of that
sort may include BTZ-like black hole geometries, which as we remarked in the introduction
are in fact locally isometric to AdS3. In fact, it appears that the quotient that yields the BTZ
background imposes boundary conditions that are compatible with classical integrability, so
that the classical string theory is integrable there [259,260]. This raises high hopes of putting
an integrability handle on such geometries, which would be extremely interesting.

All of these avenues appear very exciting, and unique to three-dimensional gravity theories
and its dual two-dimensional CFTs. We are confident that in the near future we will witness
substantial progress along many of them.



A Appendices

A.1 Generalities of the psu(1, 1|2) superalgebra
We have given the (anti)commutation relations of the superalgebra psu(1, 1|2) in section 2.2.
In this appendix we will collect some useful additional notions about it, see also ref. [225].

Serre-Chevalley bases

Superalgebras have in general several inequivalent Dynkin diagrams, corresponding to different
choices of simple roots. Each such choice gives a set of Cartan generators hi, and corresponding
raising and lowering operators ei and fi, where the index i takes values from 1 to the rank of
the algebra, which is 3 for psu(1, 1|2). These generators satisfy an algebra of the form

[
hi, hj

]
= 0,

[
ei, fj

]
= δijhj,

[
hi, ej

]
= +Aijej,

[
hi, fj

]
= −Aijfj, (A.1)

where Aij is the Cartan matrix.
Here we will mainly consider two gradings of psu(1, 1|2). In the su(2) grading the simple

roots are given by

h1 = +L3 − J3, e1 = +Q+−−, f1 = +Q−++,

h2 = +2J3, e2 = +J+, f2 = +J−,

h3 = +L3 − J3, e3 = +Q+−+, f3 = −Q−+−.
(A.2)

This leads to the Cartan matrix 


0 −1 0
−1 +2 −1
0 −1 0


 . (A.3)

The corresponding Dynkin diagram is shown in figure A.1 (a). In the construction of the coset
of chapter 2 and in the spin-chain one of chapter 5, we generally pick psu(1, 1|2)L to be in
this grading. The Dynkin diagram for the sl(2) grading is shown in figure A.1 (c). This is the
grading that we generally use for psu(1, 1|2)R.

There are also fermionic gradings of psu(1, 1|2), in which all three raising operators ei are
odd. In particular we can choose them to be either

Q+−+, Q++−, Q−++ , or Q−+−, Q−−+, Q+−− .

This leads to the Cartan matrices



0 +1 0
+1 0 −1
0 −1 0


 , and




0 −1 0
−1 0 +1
0 +1 0


 , (A.4)

respectively, corresponding to the Dynkin diagram in figure A.1 (b).
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+1

(a)

±1
(b)

−1
(c)

Figure A.1: Three Dynkin diagrams for psu(1, 1|2).

In the sl(2) grading we have

h̃1 = −L3 + J3, ẽ1 = −Q−++, f̃1 = +Q+−−,

h̃2 = +2L3, ẽ2 = +L−, f̃2 = −L+,

h̃3 = −L3 + J3, ẽ3 = −Q−+−, f̃3 = −Q+−+,

(A.5)

with the Cartan matrix 


0 +1 0
+1 −2 +1
0 +1 0


 . (A.6)

A continuous automorphism

It is useful to note that psu(1, 1|2) admits an u(1)-automorphismU, acting on the supercharges
as

[
U,Qaκ±

]
= ±1

2
Qaκ± , (A.7)

and commuting with the bosonic charges. If one thinks of psu(1, 1|2) as a contraction of the
exceptional superalgebra d(2, 1;α) with α → 0, the generator U can be identified with with
one of the generators of su(2) ⊂ d(2, 1;α) that is contracted. This is described in more detail
in ref. [141].

Supermatrix realisation

Once the reality condition (2.36) is imposed, we are left with eight even independent super-
matrices. Eliminating trace and supertrace, we can identify the six even generators as

L1 =
1

2




0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0


, J1 =

1

2




0 0 0 0
0 0 0 0
0 0 0 i
0 0 i 0


,

L2 =
1

2




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


, J2 =

1

2




0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0


,

L3 =
1

2




i 0 0 0
0 −i 0 0
0 0 0 0
0 0 0 0


, J3 =

1

2




0 0 0 0
0 0 0 0
0 0 i 0
0 0 0 −i


,

(A.8)
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while the eight supercharges are

Q1
11 =




0 0 i 0
0 0 0 0
i 0 0 0
0 0 0 0


, Q2

11 =




0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0


,

Q1
21 =




0 0 0 i
0 0 0 0
0 0 0 0
i 0 0 0


, Q2

21 =




0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0


,

Q1
12 =




0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0


, Q2

12 =




0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


,

Q1
22 =




0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0


, Q2

22 =




0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0


.

(A.9)

While this choice of the generators satisfies (2.36), it can be useful to consider complex com-
binations such as L±,J± and Q±±±. In particular we have

L± = L1 ± iL2 , J± = J1 ± iJ2 . (A.10)

Two copies of psu(1, 1|2)
We can take the representation for M, i.e. the one defining the left copy of psu(1, 1|2), to
be given by the previous expressions. The matrix in the representation M̃, instead, is in a
representation that has opposite weights for the bosonic subalgebra. This can be realised by
sending

L2 → −L2 , L3 → −L3 , J2 → −J2 , J3 → −J3 . (A.11)

In fact, this corresponds to exchanging raising with lowering operators L± and J± without
affecting the commutation relations. The transformation straightforwardly extends to the
whole superalgebra.

The transformation (A.11) implies that the bosonic subalgebras in each (left and right)
copy of psu(1, 1|2) have opposite notions of what are the positive bosonic roots. If we take this
notion to be induced from the choice of simple roots, it follows that the two copies cannot be
in the same grading. More specifically, if one copy is in the grading of fig. A.1a with Cartan
matrix (A.3), then the other is in the grading of fig. A.1c with Cartan matrix (A.6). If one of
them has the fully-fermion grading of fig. A.1b, then the other does too, and they have Cartan
matrices of opposite signs, see (A.4).

It is also interesting to notice that then the ❩4-automorphism Ω of eq. (2.41) acts on a
bosonic matrix as

Ω(Lj ⊕O) = O⊕ L̃j , Ω(Jj ⊕O) = O⊕ J̃j , (A.12)

i.e. exchanges the left and right bosonic subalgebras.

A.2 Explicit expressions for the coset action

Here we will collect some explicit expressions that appear when evaluating the coset action of
chapter 2 and expanding it.
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Parametrisation of group elements

We parametrise a group element by (2.47). The light-cone coordinate Λ(t, φ) has been defined
in eq. (2.48). The transverse coordinates {xk} = (z1, z2, y1, y2) are given by

g(x) = i
Iz + z1Σ1 + z2Σ2√

1− 1
4
|z|2

+ i
Iy + y1Σ3 + y2Σ4√

1 + 1
4
|y|2

, (A.13)

with
Iz =

1
2

(
I+ Σ+Σ−

)
, Σ1 = LL

1 − LR

1 , Σ3 = JL

1 − JR

1 ,

Iy =
1
2

(
I− Σ+Σ−

)
, Σ2 = LL

2 − LR

2 , Σ4 = JL

2 − JR

2 .
(A.14)

We have split the fermions in massive and massless ones. The former are θ1L, θ
2
L and θ1R, θ

2
R

that in terms of a psu(1, 1|2)2 matrix we write as

Ψm =




0 0 0 −θ1L
0 0 θ̄2L 0
0 θ2L 0 0
θ̄1L 0 0 0


⊕




0 0 0 −θ2R
0 0 −θ̄1R 0
0 −θ1R 0 0
θ̄2R 0 0 0


 . (A.15)

The four massless fermions are instead

Ψl =




0 0 η1L 0
0 0 0 η2L
−η̄1L 0 0 0
0 η̄2L 0 0


⊕




0 0 η̄2R 0
0 0 0 −η1R
−η̄2R 0 0 0
0 −η̄1R 0 0


 . (A.16)

In both cases, the bar denotes complex conjugation, e.g.

(
θ1L
)†

= θ̄1L , (A.17)

ans so on. We can now parametrise the corresponding group element as

g(Ψm,l) = 1 + Ψm,l +
1

2
Ψ2

m,l . (A.18)

Note that one can think that such a parametrisation emerges equivalently from g(Ψ) = exp(Ψ)
or g(Ψ) = Ψ +

√
1 + Ψ2, since the expansions terminate at O(Ψ2).

Finally, the T4 elements can be found from exponentiating the corresponding generators,

g(X) = ei
∑4

k=1 XkT
k

=
4∏

k=1

eiXkT
k

, (A.19)

where we made it explicit that they all commute.

Explicit expressions for perturbative evaluation

To define quantities related to the transverse bosonic fields xk let us introduce indices a, s so
that xa = (z1, z2) and xs = (y1, y2). Then the metric elements are

g± =

(
1√

4 + |y|2
± 1√

4− |z|2

)
, ga =

2i za√
4− |z|2

, gs =
2i ys√
4 + |y|2

. (A.20)
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It is useful to rewrite the parametrisation (A.13) of g(x) in light-cone coordinates

g(x) = i g+I+ i g−Σ8 + gkΣk , (A.21)

where I is the identity, Σ8 = −Σ+Σ− and Σk are given by (A.14). It is then easy to compute

g(x)2 = G+I +G−Σ8 +GMΣM , (A.22)

where now

G± = −
(
4− |y|2
4 + |y|2 ±

4 + |z|2
4− |z|2

)
, Ga = −

8 za
4− |z|2 , Gs = −

8 ys
4 + |y|2 . (A.23)

We can work out the expression of the momenta {pk} = (pz1, p
z
2, p

y
1, p

y
2) canonically conjugated

to {xk} = (z1, z2, y1, y2), in terms of the auxiliary fields ̟k. They are

pa =
4̟a

4− |z|2 , ps =
4̟s

4 + |y|2 . (A.24)

Let us now look at the Lagrangian more in detail. The even and odd currents are given by

Aeven =− i

2
g−1x

(
dx+Σ+

(
1 + 2Ψ2

m

)
+

1

2
dx−Σ− − i

[
dΨm,Ψm

])
gx − g−1x dgx ,

Aodd =− i g−1x dx+Σ+Ψmgx − g−1x dΨmgx ,

(A.25)

where we used that the fermion parametrisation (A.15) is quadratic at most. The part of the
even current that depends solely on the transverse bosonic coordinates is

A⊥even = −1

2
g−1x

[
Ψ̇m,Ψm

]
gx − g−1x ġx . (A.26)

Using these expressions it is easy to get to eq. (2.57). Moreover we have

str(̟g−1x ġx) = pkẋk . (A.27)

We can also further simplify

str(̟g−1x

[
Ψ̇m,Ψm

]
gx) =

i

4

(
̟+G+ −̟−G−

)
str
(
Σ+

[
Ψ̇m,Ψm

])

+
1

4
̟kstr

(
Σkg

−1
x

[
Ψ̇m,Ψm

]
gx
)
.

(A.28)

Solving the constraints

We have from C1 = 0

− x′− = pkx
′
k +

1

4
̟kstr

(
Σkg

−1
x

[
Ψ′m,Ψm

]
gx
)
+
i

8
str
(
Σ+

[
Ψ′m,Ψm

])
, (A.29)

which we can expand as

− x′− = pkx
′
k −

i

4
str
(
Σ+ΨmΨ

′
m

)
+ . . . , (A.30)

where the ellipsis indicate higher order terms. The quadratic constraint is

C2 =
1

G+

(
̟−G− + 1

)
̟− + |̟k|2 + h str

(
(A

(2)
1 )2

)
, (A.31)
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where

A
(2)
1 =− i

4
x′−
(
g−1x Σ−gx − Ω(g−1x Σ−gx)

)
− 1

2

(
g−1x g′x + g′xg

−1
x

)

− 1

4

(
g−1x

[
Ψ′m,Ψm

]
gx − Ω

(
g−1x

[
Ψ′m,Ψm

]
gx
))
.

(A.32)

By dropping higher order terms, from C2 = 0 we have

̟− = −1

2
|̟k|2 −

1

2
|x′k|2 + . . . (A.33)

Dropping the total τ -derivative ẋ−, the Lagrangian reads

L2 = p− + pkẋk −
i

4
str
(
Σ+ΨmΨ̇m

)
− i

4
εαβstr

(
Aodd

α Ω(Aodd
β )

)
+ . . . , (A.34)

with

p− = ̟− −
1

2

(
|xk|2 + strΨ2

m

)
+ . . . . (A.35)

For the purpose of expanding the Lagrangian and the Noether charge (2.67) in powers of the
fields it is useful to note that at leading order it is

Aodd
0 = −iΨm − Ψ̇m + . . . , Aodd

1 = −Ψ′m + . . . . (A.36)

When plugged into the Lagrangian (A.34), and of using the explicit form of Ψm, this gives
contributions of the form

− i

4
εαβstr

(
Aodd

α Ω(Aodd
β )

)
=

1

2
str
(
Σ+Ψm Ω(Ψ′m)

)
− i

2

(
Ψ̇m Ω(Ψ′m)

)
+ . . . , (A.37)

where the double-derivative terms all vanish after two integrations by parts. By these expres-
sions it is easy to derive the Lagrangian and Hamiltonian of the main text (2.71).

To derive some of these results is useful to use the identities

Σ±g
−1
x = gxΣ± , Σ±Ψm = ∓ΨmΣ± . (A.38)

A.3 Quadratic charges in terms of the fields

In order to compactly write down that form of the symmetry generators, it is useful to intro-
duce complex bosonic coordinates

X1
L = z1 + i z2 , X2

L = y1 + i y2 , X1
R = z1 − i z2 , X2

R = y1 − i y2 , (A.39)

and conjugate momenta

P1 L = pz1 − ipz2 , P2 L = py1 − ipy2 , P1R = pz1 + ipz2 , P2R = py1 + ipy2 . (A.40)

It is clear that (Xj
L)
† = Xj

R and (Pj L)
† = Pj R. We will raise and lower indices by

Xj L = δjkX
k
L , Xj R = δjkX

k
R , P j

L = δjkPk L , P j
R = δjkPk R . (A.41)

Similarly, if necessary, we will raise an lower the fermion indices by

θj L,R = δjkθ
j
L,R , θ̄jL,R = δjkθ̄j L,R . (A.42)
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The quadratic Lagrangian becomes

L2 = Pj LẊ
j
L + Pj RẊ

j
R + i θ̄j Lθ̇

j L + i θ̄j Rθ̇
j R −H2 . (A.43)

In particular, this implies that the upon quantisation the non-vanishing commutators are

[
Xj

L(σ), Pk L(σ̃)
]
= i δjk δ(σ − σ̃) ,

[
Xj

R(σ), Pk R(σ̃)
]
= i δjk δ(σ − σ̃) , (A.44)

compatibly with the ones we originally found (2.74–2.75).

The form of the bosonic charges is then

H =

∫
dσ

(
1

2
P j

LPj R + 2Xj
L

′X ′j R + 2Xj
LXj R + θjLθ

′
jR − θ̄jLθ̄′jR + θ̄j Lθ

j
L + θ̄j Rθ

j
R

)
,

M =

∫
dσ
(
θ̄j Lθ

j
L − θ̄j Rθ

j
R + iPj LX

j
L − iPj RX

j
R

)
,

N =

∫
dσ i

(
P1 LX

1
L − P2 LX

2
L − P1RX

1
R + P2RX

2
R

)
.

(A.45)

The four supercharges Qj L,R read

Q1L = e−
i
4
π

∫
dσe

i
2
x−

(
i

2
P2R θ̄1L −X2

L θ
1
R

′ +X2
L θ̄1L

− i

2
P1L θ2L +X1

R θ̄
′
2R +X1

R θ
2
L

)
,

Q1R = e−
i
4
π

∫
dσe

i
2
x−

(
i

2
P2L θ̄1R −X2

R θ
1
L

′ +X2
R θ̄1R

− i

2
P1R θ

2
R +X1

L θ̄
′
2L +X1

L θ
2
R

)
,

Q2L = e+
i
4
π

∫
dσe

i
2
x−

(
i

2
P1L θ

1
L +X1

R θ̄
′
1R −X1

R θ
1
L

+
i

2
P2R θ̄2L +X2

L θ
2
R

′ +X2
L θ̄2L

)
,

Q2R = e+
i
4
π

∫
dσe

i
2
x−

(
i

2
P1R θ

1
R +X1

L θ̄
′
1L −X1

L θ
1
R

+
i

2
P2L θ̄2R +X2

R θ
2
L

′ +X2
R θ̄2R

)
,

(A.46)

and the remaining four can be found by taking the complex conjugate of these expressions.
Notice how left and right supercharges differ only by exchanging the labels L ↔ R. The
factors e±

i
4
π is inserted so that the charges take a simpler expression in terms of oscillators.
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From field to oscillators

We can define bosonic lowering operators

a−−L (p) =
1√
2π

∫
dσ
√
ωp

(
ωpX

1
L(σ) +

i

2
P1R(σ)

)
e−ipσ ,

a−−R (p) =
1√
2π

∫
dσ
√
ωp

(
ωpX

1
R(σ) +

i

2
P1L(σ)

)
e−ipσ ,

a++
L (p) =

1√
2π

∫
dσ
√
ωp

(
ωpX

2
L(σ) +

i

2
P2R(σ)

)
e−ipσ ,

a++
R (p) =

1√
2π

∫
dσ
√
ωp

(
ωpX

2
R(σ) +

i

2
P2L(σ)

)
e−ipσ ,

(A.47)

with the raising operator being the conjugate of these. Similarly, for fermions we have

a−+L (p) =
e+

i
4
π

√
2π

∫
dσ
√
ωp

(
fp θ

1
L(σ) + i gpθ̄1R(σ)

)
e−ipσ ,

a−+R (p) =
e+

i
4
π

√
2π

∫
dσ
√
ωp

(
fp θ

1
R(σ) + i gpθ̄1L(σ)

)
e−ipσ ,

a+−L (p) =
e−

i
4
π

√
2π

∫
dσ
√
ωp

(
fpθ̄2L(σ)− i gpθ2R(σ)

)
e−ipσ ,

a+−R (p) =
e−

i
4
π

√
2π

∫
dσ
√
ωp

(
fpθ̄2R(σ)− i gpθ2L(σ)

)
e−ipσ .

(A.48)

Once we drop the x−-dependence from (A.46), and by making use of the explicit form of
the wave-function parameters (2.81–2.84) with mass m = 1, the charges can be recast in the
form (2.86–2.87).

A.4 Dualisation of the Bethe ansatz equations

While performing the nesting procedure in chapter 6, we had to chose a set of level-I excita-
tions. Here we will show that the different choices we could make lead there, to equivalent
equations (i.e. that describe the same spectrum), by performing a fermionic duality [68, 208]
of the Bethe equations.

Duality for the su(1|1)2c.e. Bethe equations

Let us start from the simpler case we treated in section 6.2. We will work in the spin-chain
frame for definiteness.

The idea is that one can write a new set of equations equivalent to the previous one, in
which all the auxiliary roots y, ỹ are replaced by a dual set of auxiliary roots ŷ, ̂̃y. We will see
that the resulting equations have the same form as the original ones, up to exchanging the
left and right sectors, which makes it clear that they correspond to the choice V I

B in (6.17).
Let us define the polynomial P(ξ) as

P(ξ) =

M I
L∏

j=1

(ξ − x+j )
M I

R∏

j=1

(ξ − 1

x̃−j
)−

M I
L∏

j=1

(ξ − x−j )
M I

R∏

j=1

(ξ − 1

x̃+j
). (A.49)
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This is a polynomial of degree n = M I
L +M I

R − 1. Then the Bethe equations for the left and
right auxiliary excitations can be rewritten respectively as

P(y) = 0 , P(1/ỹ) = 0 . (A.50)

Another zero of the polynomial is at ξ = 0. The equation P(0) = 0 is equivalent to the
level-matching condition. We denote the remaining zeros by ŷ and ̂̃y, because they correspond
to the dualisation of respectevely left and right excitations. We can thus rewrite P(ξ) as

P(ξ) = ξ

M II
L∏

j=1

(ξ − yj)
M̂ II

L∏

j=1

(ξ − ŷj)
M II

R∏

j=1

(ξ − 1

ỹj
)

M̂ II
R∏

j=1

(ξ − 1

̂̃yj
) (A.51)

for M̂ II
L = M I

L − KII
L − 1 and M̂ II

R = M I
R − KII

R − 1 roots. Let us now dualise the Bethe
equations for level-I excitations. We write the expression P(x+k )/P(x−k ) using the two possible
representations for the polynomial, getting the equation

x+k
x−k

M II
L∏

j=1

x+k − yj
x−k − yj

M̂ II
L∏

j=1

x+k − ŷj
x−k − ŷj

M II
R∏

j=1

x+k − 1/ỹj
x−k − 1/ỹj

M̂ II
R∏

j=1

x+k − 1/̂̃yj
x−k − 1/̂̃yj

=

−
M I

L∏

j=1

x+k − x−j
x−k − x+j

M I
R∏

j=1

x+k − 1/x̃+j
x−k − 1/x̃−j

,

(A.52)

that becomes

(
x+k
x−k

)−1−M II
R−M̂

II
R+M I

R
M I

L∏

j=1
j 6=k

x+k − x−j
x−k − x+j

M II
L∏

j=1

x−k − yj
x+k − yj

M II
R∏

j=1

1− 1
x−

k
ỹj

1− 1
x+
k
ỹj

=

M̂ II
L∏

j=1

x+k − ŷj
x−k − ŷj

M̂ II
R∏

j=1

1− 1

x+
k
̂̃yj

1− 1

x−

k
̂̃yj

M I
R∏

j=1

1− 1
x−

k
x̃−

j

1− 1
x+
k
x̃+
j

,

(A.53)

where the exponent of x+k /x
−
k is in fact 0. With the help of this substitution, the Bethe

equation for left excitations can thus be rewritten as

(
x+k
x−k

)ℓ

=

M I
L∏

j=1
j 6=k

S
LL

kj

M̂ II
L∏

j=1

x+k − ŷj
x−k − ŷj

M I
R∏

j=1

√√√√√
1− 1

x−

k
x̃−

j

1− 1
x+
k
x̃+
j

S
LR

k̃

M̂ II
R∏

j=1

1− 1

x+
k
̂̃yj

1− 1

x−

k
̂̃yj

. (A.54)

This equation has precisely the same form as the original equation for the right excita-
tions (6.48).

Similarly, using P(1/x̃+k )/P(1/x̃−k ), one can obtain the dualised Bethe equation for type
1̃ excitations

(
x̃+k
x̃−k

)ℓ

=

M I
R∏

j=1
j 6=k

x̃+k − x̃−j
x̃−k − x̃+j

S
RR

k̃̃

M̂ II
R∏

j=1

x̃−k − ̂̃yj
x̃+k − ̂̃yj

M I
L∏

j=1

√√√√√
1− 1

x̃+
k
x+
j

1− 1
x̃−

k
x−

j

S
RL

k̃j

M̂ II
L∏

j=1

1− 1
x̃−

k
ŷj

1− 1
x̃+
k
ŷj

, (A.55)

which has the same form as the original Bethe equations for type 1 excitations.
We have found a new set of Bethe equations, with the same form of the original ones

up to exchanging left with right excitations and substituting (y,K2) and (ỹ, K2̃) by (ŷ, K̂2)

and (̂̃y, K̂2̃), respectively.
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Duality for the psu(1|1)4c.e. Bethe equations

As argued in section 6.3, there are four different possible gradings in which we can write
the all-loop Bethe equations for the psu(1|1)4c.e. S matrix. Once again, these are related by
dualities. Labelling the excitation numbers Kj by the corresponding Cartan elements as in
eqs. (6.76–6.77), let us define again the polynomial

P(ξ) =

K2∏

j=1

(ξ − x+j )
K2̃∏

j=1

(ξ − 1

x̃−j
)−

K2∏

j=1

(ξ − x−j )
K2̃∏

j=1

(ξ − 1

x̃+j
) , (A.56)

of degree n = K2+K2̃−1. The Bethe equations for auxiliary roots y1, y3, y1̃, y3̃ can be written
respectively as

P(y1) = 0, P(y3) = 0, P(1/y1̃) = 0, P(1/y3̃) = 0. (A.57)

We can choose to dualise either the auxiliary roots y1, y1̃ or y3, y3̃. In the first case we consider

a set of dual K̂1, K̂1̃ roots such that K1+K̂1 = K2−1 and K1̃+K̂1̃ = K2̃−1. The polynomial
can thus be rewritten as

P(ξ) = ξ

K1∏

j=1

(ξ − y1,j)
K̂1∏

j=1

(ξ − ŷ1,j)
K1̃∏

j=1

(
ξ − 1

y1̃,j

) K̂1̃∏

j=1

(
ξ − 1

ŷ1̃,j

)
(A.58)

As we did in the previous subsection, we can evaluate the quantities
P(x+

k
)

P(x−

k
)
and

P(1/x̃−

k
)

P(1/x̃+
k
)
. The

resulting identities, plugged into the Bethe ansatz equations, allow us to rewrite them as

1 =

K2∏

j=1

ŷ1,k − x−j
ŷ1,k − x+j

K2̃∏

j=1

1− 1
ŷ1,kx̃

+
j

1− 1
ŷ1,kx̃

−

j

, (A.59)

(
x+k
x−k

)ℓ

=

K2∏

j=1
j 6=k

1− 1
x+
k
x−

j

1− 1
x−

k
x+
j

σ2(xk, xj)

K̂1∏

j=1

x+k − ŷ1,j
x−k − ŷ1,j

K3∏

j=1

x−k − y3,j
x+k − y3,j

×
K2̃∏

j=1

1− 1
x+
k
x̃−

j

1− 1
x−

k
x̃+
j

σ̃2(xk, x̃j)

K̂1̃∏

j=1

1− 1
x+
k
ŷ1̃,j

1− 1
x−

k
ŷ1̃,j

K3̃∏

j=1

1− 1
x−

k
y3̃,j

1− 1
x+
k
y3̃,j

,

(A.60)

1 =
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The above equations are the ones that we would have found if we had chosen ΦL
−+,Φ

R
+− to

be the fields composing the level-II vacuum. Similarly, one could have dualised the auxiliary
roots y3, y3̃ and obtained the Bethe equations corresponding to the choice of ΦL

+−,Φ
R
−+ in

the level-II vacuum. We do not write them, since they are equal to the ones written above
after exchanging 1 and 3, as expected. Two consecutive dualisations, i.e. dualising y1, y1̃ and
then y3, y3̃ (in any order) give Bethe equations corresponding to the choice of ΦL

−−,Φ
R
++ in the

level-II vacuum. They are equal to the Bethe equations derived in section 6.3 after exchanging
L↔R.



Bibliography

[1] G. ’t Hooft, “Dimensional reduction in quantum gravity”, gr-qc/9310026.

[2] L. Susskind, “The world as a hologram”, J.Math.Phys. 36, 6377 (1995), hep-th/9409089.

[3] J. M. Maldacena, “The large-N limit of superconformal field theories and supergravity”,
Adv.Theor.Math.Phys. 2, 231 (1998), hep-th/9711200.

[4] E. Witten, “Anti-de Sitter space and holography”, Adv.Theor.Math.Phys. 2, 253 (1998),
hep-th/9802150.

[5] S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from noncritical
string theory”, Phys.Lett. B428, 105 (1998), hep-th/9802109.
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[65] B. Stefański, Jr. and A. A. Tseytlin, “Super spin chain coherent state actions and AdS5 × S5

superstring”, Nucl.Phys. B718, 83 (2005), hep-th/0503185.
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