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Genomic data, particularly genome-scale measures of gene expression derived from DNA microarray
studies, has the potential for adding enormous information to the analysis of biological phenotypes. Perhaps
the most successful application of this data has been in the characterization of human cancers, including the
ability to predict clinical outcomes. Nevertheless, most analyses have used gene expression profiles to
define broad group distinctions, similar to the use of traditional clinical risk factors. As a result, there remains
considerable heterogeneity within the broadly defined groups and thus predictions fall short of providing
accurate predictions for individual patients. One strategy to resolve this heterogeneity is to make use of
multiple gene expression patterns that are more powerful in defining individual characteristics and predicting
outcomes than any single gene expression pattern. Statistical tree-based classification systems provide a
framework for assessing multiple patterns, that we term metagenes, selecting those that are most capable of
resolving the biological heterogeneity. Moreover, this framework provides a mechanism to combine multiple
forms of data, both genomic and clinical, to most effectively characterize individual patients and achieve the
goal of personalized predictions of clinical outcomes.

INTRODUCTION

Recent advances in genome science and technology define the
potential for increasingly complex biomedical and molecular
information to underlie a coherent system of personalized
medicine—health planning, treatment strategies and drugs
customized to the individual patient rather than broader
population cohorts. The value in genomic data is its scale
and complexity; when combined with clinical and demographic
factors, multiple forms of molecular data provide information
that has the potential to identify unique characteristics of the
individual and so lead to customized health care strategies.
Thus, rather than having access to a limited number of data
inputs that only broadly define individual characteristics, it is
conceivable that the entire genetic profile and time-sensitive
genomic characteristics of an individual will be available to aid

in substantially improved determinations of individual disease
susceptibilities, likely responses to therapies and other clinical
outcomes. Near-term advances in genome science will be key
in advancing us towards this goal, providing access to
increasingly comprehensive and precise molecular data. A
key challenge lies in the need to define analytic methods and
tools to synthesize, integrate and interpret such increasingly
complex data in order to bring it to bear in personalized
prognostic and diagnostic settings.

One good example arises in the treatment of cardiovascular
disease. Current strategies rely on a cocktail of drugs of proven
efficacy; however, most patients benefit from only a few of the
five or so drugs that are commonly used, and may indeed have
negative side effects from several of the drugs. Thus, an ability
to identify which drug or combinations of drugs is most
effective for any individual, and to effectively also predict the
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side-effects responses of that individual, will have significant
impact on the treatment decisions and strategies.

Cancer is another disease in which individualized treatment is
key. A woman diagnosed with early-stage breast cancer will
undergo surgery for removal of the tumor and then, typically, be
treated with adjuvant chemotherapy. Nevertheless, many such
women—inherently lower risk cases—unnecessarily undergo
the harsh reality of chemotherapy; such women might be spared
this experience were reliable and precise predictors of their
longer-term relapse-free condition to be available. Traditional
clinical risk factors—such as tumor size, patient age, tumor
involvement in lymph nodes and hormone receptor status—
certainly have prognostic value in connection with disease
progression and the prospects for recurrence. However,
the information arising from such factors is nowhere near as
precise and accurate as is needed to reliably identify those
individuals who will require and benefit from therapy from those
who will not. It is largely as a result of this lack of our ability to
focus in on individuals with customized predictions, and the
resulting high degree of uncertainty about outcome at the
individual level, that many otherwise lower risk women
currently undergo aggressive therapy, with its concomitant
morbidity.

Genomic information, in the form of massive profiles of gene
activity (gene expression) within tumor samples, has in recent
years demonstrated the capacity to identify characteristics that
reflect tumor behavior and that relate to disease progression and
outcomes, including cancer recurrence. Tumor-based gene
expression data from DNA microarrays adds immense detail
and complexity to the information available from traditional
clinical and pathological sources; it is a snapshot of the total
gene activity of the tumor, providing complex and detailed data
on both the inherent genetic state of the patient and on the
current characteristics of the tumor and disease state. The
potential is then for this information to substantially improve
the accuracy with which we can predict the likely development
of disease process for this patient from this point on; such
improved predictions will critically aid clinical decision making
at a level of individualization that is currently unachievable.

GENE EXPRESSION PROFILES AND

PREDICTING BREAST CANCER OUTCOMES

Several studies have now reported the ability to make use of
gene expression patterns to classify and sometimes to predict
disease outcomes in cancer patients and other disease contexts
(1–8). Most of these studies do not, however, go much beyond
the traditional classification of patient populations into broad
risk groups based on the values of a defined gene expression
predictor. One such study (6,7), for example, uses a gene
expression predictor, based on a collection of 70 genes, to
classify breast cancer patients into high-risk and low-risk
categories relative to long-term recurrence. Individuals classi-
fied as high-risk are, however, simply assigned a 50%
recurrence-free survival probability. For a woman in this group,
much more is needed to refine and customize the prognosis
based on other individual clinical, genetic and genomic factors.
This initial grouping displays the power of gene expression
data to achieve a broad patient stratification that points to

accurate predictions of disease outcome, but the resulting
subgroups remain quite heterogeneous. What is needed is more
precise delineations of patients into subgroups that are more
homogeneous with respect to disease outcomes, so that a future
patient may be matched much more accurately with past
patients with closely related risk profiles. This notion was a key
motivation for our approach (8,9) to defining statistical models
for personalized prognosis: continuing the stratification of
patients to define finer sub-categorization by collections of risk
factors. We also hold the view that, to aid this refined analysis,
multiple summaries of gene expression profile should be
brought to bear—array-based expression profiles from tumors
carry information on multiple aspects of tumor biology that
may have prognostic value. In our breast cancer studies, we do
indeed find that multiple gene expression signatures—weighted
average measures of expression of defined groups of genes that
we term metagenes—are capable of defining such refined
patient stratification, and that the combination of such
signatures with traditional clinical factors can lead to more
accurate predictions. Importantly, we define predictions via
outcome probabilities that are specific to individuals in finer
patient subgroups defined by interacting patterns of risk
factors—a key step towards personalized predictions.

An illustration of the importance of going beyond traditional
single stratification of patients, and the value of using multiple
predictors of patient outcome—in this case multiple metagene
expression patterns—is depicted in Figure 1. Gene expression
measures were generated from tumors of 86 lymph node positive
breast cancer patients. Metagenes were created from the data
and used to stratify the patients. Among 500 metagenes created
in this analysis, a small number are implicated as key predictors
of survival; two are used for this display (metagenes 440 and
109). A first stratification on metagene 440 achieves only a
partial separation of the patients based on risk of recurrence—
those with a low value on metagene 440 (below the horizontal
line) are generally high-risk cases, depicted as red symbols
(Fig. 1A). In contrast, those with a high value on this metagene
(above the line) are heterogeneous with respect to recurrence.
A second metagene resolves some of the heterogeneity of this
group—those with a low value on metagene 109 (and high 440)
are largely high-risk while those with a high value on metagene
109 (and high 440) are still heterogeneous but now enriched for
low-risk cases. This remaining heterogeneity can be further
evaluated based on other factors. The actual gene expression
profiles that underlie these metagenes are shown in Figure 1B.
These graphics thus highlight the importance of multiple
predictors in resolving patient heterogeneity.

CLINICO-GENOMIC MODELS FOR

PERSONALIZED DISEASE

OUTCOME PREDICTION

The use of multiple predictors of clinical outcome need not be
limited to any one form of data, whether genomic or otherwise.
Indeed, our recent work has demonstrated that, beyond the
relevance of multiple interacting gene expression signatures, it is
the combination of genomic data with some traditional clinical
risk factors that currently define the most accurate predictions of
breast cancer recurrence. The extent of lymph node metastasis,
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for example, is currently the key clinical predictor of tumor state
and aggressiveness, and recurrence risk; so, as long as this risk
factor is available, ignoring its predictive value would be both
scientifically and professionally inappropriate.

Figure 2 indicates the relevance of this factor and also how
the partitioning analysis approach will lead trivially to a
combined clinico-genomic model. As with the use of a second
metagene, the use of a clinical factor, in this case lymph node
involvement, resolves much of the heterogeneity in the group
of samples with a high value on metagene 440. Ultimately, it
may be that molecular data alone will supercede other non-
genomic factors in prognosis, based on refined and improved
genomic technologies that improve the capacity to characterize
complex ongogenic states and the precision with which we can
record the resulting data, and that also provide additional forms
of molecular data on a genome-wide. Indeed, our own work has
already shown that genomic information can predict and
therefore begin to replace lymph node status and other clinical
factors. However, at this point we believe that the needs and
goals of personalized medicine must be addressed within an
integrated, clinico-genomic approach that allow for and weigh
the contributions of all forms of data.

CLASSIFICATION TREE MODELS

These analyses involve the successive partitioning of patient
sample—and by inference the populations they represent—into
more and more homogeneous subgroups, and illustrate the
ability of statistical tree-like partitioning methods to capture non-
linear interactions between potential predictors of clinical
outcome. The analyses rely on application of statistical
classification tree models (10,11), developed using Bayesian

Figure 1. (A) Scatter plot of 86 lymph node positive breast cancer samples on
two metagenes related to cancer recurrence, showing 5-year recurrence-free
survivors (blue) and cases of recurrence within 5 years (red). Note that a first
stratification by a threshold on metagene 440, as indicated, partitions samples
into a clearly high-risk group (low metagene 440) and a group of mixed cases
(high metagene 440). Subsequent partitioning of this latter group, according to
a threshold on metagene 109, defines a further high-risk subset (high metagene
440 coupled with low metagene 109), leaving the (high metagene 440, low
metagene 109) group remaining to be further evaluated based on other meta-
genes and clinical factors. This illustrates the ability of tree-like partitioning
methods to capture non-linear interactions between potential predictors of
clinical outcomes, and highlights the importance of multiple predictors in resol-
ving patient heterogeneity. (B) Gene expression intensity images for genes
defining metagenes 440 (consisting of 117 genes) and 109 (31 genes) in the
node-positive breast cancer samples. Each column represents one patient,
ordered by the value of the metagene. In the case of metagene 440, a threshold
as indicated in (A) corresponds to a partition of patients as indicated here.
A refined sample partition can then be defined on metagene 109 for those cases
of ‘high metagene 440’ as also indicated.

Figure 2. Scatter plot of node positive breast cancer samples on metagene 440
and a transform to log scale of the axillary lymph node positive count, showing
5-year recurrence free survivors (blue) and cases of recurrence within 5 years
(red). As in Fig. 1, the utility of successive partitioning of samples according
to thresholds on these two predictors of recurrence is highlighted, now indicating
the relevance and importance of an integrative clinico-genomic approach.
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statistical methods (8,9,12). The partitions illustrated in Figure 1
correspond with the splits of the first two nodes in the upper part
of the single tree model in Figure 3. At each node of a tree, the
collection of metagenes and clinical factors is sampled to
determine which functions to optimally divide the patients at the
node—a split is made if the significance exceeds a specified level.
The growth of trees is terminated when no additional metagene or
clinical variable can be selected that allows a significant further
split. Multiple possible splits generate collections of trees, and
each is then formally evaluated based on statistical fit to the data.
Each tree generates predictions for future patients: a new patient
is assigned to a unique leaf of any one tree based on her genomic
profile and other factors, with the corresponding prediction of
recurrence based on the model-based probability at that leaf.
Finally, overall predictions are based on averaging across the
collection of candidate tree models.

The technical framework of predictive tree models is capable
of using any form of data, and evaluates and selects from
clinical and metagene factors in defining the most predictively
reliable sets of models. This is obviously important in terms of
both the scientific goals of customizing analysis to define
personalized prognosis, since the models can evaluate and use
clinical and demographic patient information as well as
genomic data, and also in terms of integrating genomic
information into the current professional culture of clinical
decision-making. Our recent work with breast cancer bears this
out, and a simple example in Figure 3 illustrates the

combination of the key clinical risk factor—extent of invasion
of the axillary lymph nodes—with metagene signatures. These
two tree models are from a larger set automatically generated in
a combined clinico-genomic model for 5-year recurrence
among these lymph node-positive patients, extending our
previous work with a more refined subgroup (9).

The true predictive accuracy of any class of models can be
assessed using cross-validation protocols in which the analysis
is repeatedly performed by removing one sample, carrying out
the training of the model on the remaining samples, and then
predicting the state of the held out sample. Importantly, the
entire model building process—including the selection of
metagenes and clinical factors as well as the generation of trees
properly weighted by the data—is performed each time to
provide a true predictive evaluation. In our initial breast cancer
studies, we find that the current predictive models are capable
of achieving very substantial accuracy in prediction of
recurrence and lymph node metastasis, with correct predictive
classifications made at around the 85–90% level.

A further critical aspect of prognosis is the need to provide
honest assessments of the uncertainty associated with any
prediction. A predicted 70% recurrence probability, for
example, should be treated quite differently by clinical decision
makers if its associated uncertainty is �30% than if it were
�2%. Communication of such uncertainties can be critical to the
patient and the treating physician in allowing informed decisions
to be made regarding the best choice for further therapeutic

Figure 3. Two candidate tree models that combine clinical and metagene expression predictors to define personalized predictions of 5-year recurrence. The boxes at
nodes indicate (i) the risk factors chosen to define the partition at the node; (ii) the numbers x/y of patients from the sample, indicating the number (x) of cases
recurrence-free at 5 years, and the number ( y) of those that recurred within 5 years; and (iii) the corresponding model-based prediction of the probability of recur-
rence within 5 years for future patients whose clinical and genomic characteristics would place them at the node. A future patient is assigned to a leaf of a given tree
based on her combination of clinical and genomic factors, and that tree implies the prediction based on the recurrence probability at that leaf. The integrative
clinico-genomic model fits multiple such tree models, weights them according to how well they fit the data, and then combines them according to the resulting
weights to derive overall probabilistic predictions for future cases.
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treatment. Uncertainty in the predictions can arise from
variability in tissue processing, hybridization measures and the
limitations of analyzing relatively small numbers of samples.
Perhaps most importantly, substantial uncertainty is inherent in
cases for which a patient’s characteristics are in conflict, so that
different models may suggest different outcomes. Hence, it is
important to reflect model uncertainty in prediction. The use of
multiple plausible tree models (i.e. multiple statistical models)
reflects the fact that there are multiple plausible combinations of
interacting clinical and genomic patterns that adequately
represent the observed data. Then it is critical to define overall
predictions by appropriately averaging across the multiple
candidate models rather than selecting one single model. To
do otherwise runs the risk of incurring bias in predictions and,
often more importantly, underestimating uncertainty about
predicted probabilities. A single model produces a predicted
probability with an associated uncertainty interval reflecting
the precision of the estimated probability; combining such
predictions across multiple plausible tree models, with appro-
priate weights that reflect the relative fit of the trees to observed
data, can very substantially increase the uncertainty about
the resulting overall prediction, and this is particularly true in
cases when various models conflict in their predictions.
Communicating this information to the patient and clinician is
vital as it reflects inherent ambiguity that must be factored into
the personalized decision process.

The two candidate trees in Figure 3 reflect also represent the
fact that multiple metagene signatures (metagenes 440 and 307
in this example) may be surrogates for each other due to patterns
of between-metagene correlation. In this analysis, a range of
additional tree models involves the metagenes displayed here as
well as a number of additional, correlated metagenes. This
reflects the ability of the multiple metagene model approach to
deal properly with the scale and complexity of tumor-based gene
expression profiles that naturally leads to multiple measures of
extent and aggressiveness of the tumor that show up as potential
predictors of recurrence and other outcomes. Resulting, overall
predictions, appropriately averaged over plausible models and
with accompanying measures of honest uncertainty, then define
the relevant summaries of the complex of interactions of
predictive variables that are customized to the patient and so feed
into the process of personalized prognosis.

THE NEXT STEPS: TOWARDS

REFINED THERAPIES

Advances and success in predicting disease outcomes based on
studies involving existing therapeutic strategies are major steps
in the process of bringing genomic information to clinical
practice. Genomic information now has proven capacity to
substantially improve prognosis in critical clinical contexts; our
work with multiple metagene signatures in clinico-genomic
models in breast cancer exemplifies this, and the near future
will surely see application of multiple forms of genomic data in
purely prognostic clinical settings to better manage patients
based on personalized predictions.

Beyond this, one of the major steps in the application of
genomic information in achieving the goals of personalized
medicine will be concurrent development of new therapeutic
modalities that can be matched to the individual patient’s
characteristics. This will rely on substantial advances in our
understanding of multiple genes and interacting pathways that
may eventually represent new therapeutic targets. Hence, in
parallel with the move to the clinic of prognostic tests, we see as
key the initiation of larger-scale efforts to develop investigations
of the gene pathways and interactions that are indicated by the
discovery of metagene patterns that are truly predictive of the
critical clinical endpoints. Defining focused efforts to under-
stand the biology underlying this predictive value will pave the
way for therapeutic advances towards curing cancer, rather than
just better personalized disease management.
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