
TOWARDS INTEGRATED SAFETY ANALYSIS AND DESIGN

P Fenelon, J A McDermid, M Nicholson, D J Pumfrey

High Integrity Systems Engineering Group, Department of Computer Science, University of York

Abstract

There are currently many problems with the development and assessment of software intensive safety-critical systems. In this paper
we describe the problems, and introduce a novel approach to their solution, based around goal-structuring concepts, which we
believe will ameliorate some of the difficulties. We discuss the use of modified and new forms of safety assessment notations to
provide evidence of safety, and the use of data derived from such notations as a means of providing quantified input into the design
assessment process. We then show how the design assessment can be partially automated, and from this develop some ideas on
how we might move from analytical to synthetic approaches, using safety criteria and evidence as a fitness function for comparing
alternative automatically-generated designs.

Keywords

safety assessment, architectural design, goal structures, method integration, automated design

Introduction

Much current industrial practice in the design and assessment
of safety-critical systems could, only slightly unfairly, be
characterised as an ‘over the wall’ process. A design is
produced with some cognisance of safety issues, it is ‘tossed
over the wall’ to safety assessors who analyse the design and
later ‘toss it back’ together with comments on the safety of the
design and requests for change. Whilst something of a
caricature, the above is not entirely unrepresentative of current
industrial processes.

Industrial processes which have this character do so for
organisational and cultural reasons — the design and safety
departments are separate entities, populated by engineers with
different skills — but there are also technical reasons.
Specifically there is poor integration between safety analysis
and design techniques, especially for software based systems,
and the processes used do not easily accommodate the much
tighter interaction between safety analysis and design needed
for effective integration. In this paper we describe some of our
work on producing more effective integration of safety analysis
and design, and cover process issues, design and assessment
methods and relate our work to more traditional safety analysis
practices.

There are three major strands to our work. First, we propose a
new way of organising and structuring development and
assessment processes to encourage the stronger integration of
design and analysis. Part of our aim in defining the process is to
facilitate change management. For the purposes of this paper,
however, we assume a ‘top down’ development model, but this
should be viewed in the spirit of Parnas’ ‘rational design
process — how and why to fake it’ [28]. However we do
recognise the need for investigating different designs, including
assessing different design strategies for their safety properties.

Second, we consider adaptations of classical safety techniques
to computer-based systems, introducing a modified form of
HAZOPS for carrying out analysis of high level design
proposals. We also show how techniques such as fault-trees
and zonal hazard analysis can be adapted to software, and

indicate how to carry out automated analysis of at least some
safety properties, building on classical approaches such as
Markov chains.

Third, we consider how to use the analysis techniques to guide
design synthesis, i.e. deriving detailed designs from more
abstract designs so that they have the desired safety and timing
properties. Our approach uses heuristics for searching the
design space, and the automated analysis techniques for
‘pruning’ the space, i.e. rejecting unsuitable designs. Whilst
this work is in its early stages, it draws together the other two
strands, and indicates the way in which we believe it will be
possible to achieve a much more strongly integrated, and
automated, design and safety analysis process.

First we discuss process issues, proposing a new way of
modelling and controlling processes, and setting out the role of
safety analysis in a design process. We use this discussion to
set the rest of the paper in context.

Safety Analysis and its role in the
Design Process

The design of a safety critical system inevitably involves trade-
offs. Safety requirements may conflict with other requirements,
e.g. for availability or performance, and compromises have to
be found. The identification of conflicts between requirements,
and their resolution, is therefore a central part of the design
process; we have previously proposed the use of ‘goal-
structuring’ as a way of making the ‘spine’ of the process clear
[26], focusing on the derivation of requirements. It is our
contention that these concepts help structure and document the
complex processes of developing safety critical systems,
particularly showing the relationship between safety analysis
and design. We briefly introduce the concepts and show how
they put the more detailed analyses discussed in the rest of the
paper in to context. The reader is directed towards surveys such
as Leveson’s [24] or Bennett’s [3] for an overview of some of
the techniques commonly used in software safety assessment,
and to [4] for an overview of some of the classical means of
achieving software dependability. An excellent survey of

general dependability and reliability analysis methods is given
in [35].

Goal Structuring Concepts

The two most fundamental concepts which are the basis of our
process model are:

• goal — is something that someone wishes to be achieved;
it is more general than a requirement and may encompass
process issues (e.g. some action to be performed) and
product issues, e.g. more conventional requirements;

• strategy — a strategy is a (putative) means of achieving a
goal or set of goals, e.g. a system concept; a strategy will
often generate sub-goals; meta-strategies can be used to
represent the fact that a choice exists between two or more
strategies.

Goals are decomposed through the strategies, and we will refer
to sub-goals where this is helpful. Where there is a single root
goal, the structure is a hierarchy. Where we have conflicting
goals, or multiple goals which need to be satisfied at once,
strategies will be introduced to resolve conflicts or to represent
other forms of trade-off, and the structure will be a directed
acyclic graph, as a strategy can satisfy more than one goal.

Some goals may be satisfied directly, e.g. by carrying out an
action, or providing a product with the right properties. We use
the term solution for the action or product which satisfies such
a goal. Goals with solutions are leaves of the goal structure, i.e.
they have no strategy or sub-goals.

We use the term constraints to refer to those goals which are
not solved directly, but which restrict the way in which other
goals are solved, i.e. which limit the set of allowable strategies

(and models, see below). The satisfaction of constraints must be
checked at multiple points in the goal hierarchy. Common
safety requirements such as ‘no single point of failure shall lead
to a hazard’ are representative of this class of goal.

It is intended that goals and strategies will provide the
traceability in developing requirements, designs and safety
cases. However there are other important facets of the structure
which are not related to goals or strategies. These include:

• models — these represent part of the system of interest, its
environment or the organisations associated with the
system; goals will often be articulated in terms of models,
especially when the model is an abstraction of the system
design; models may be the (putative) solutions to goals,
and will often be introduced by strategies (see section 2.2
below);

• justification — a justification is an argument, or other
information, e.g. the results of a safety analysis, presented
to explain why a strategy is believed to be effective; this
may either justify the strategy at the time the choice is
made, or retrospectively once solutions to the sub-goals
have been provided.

• criteria — these are the basis for judging whether or not a
goal has been satisfied; multiple criteria may be associated
with a goal.

The standard simplifying assumption in any engineering
endeavour is that we can have a ‘top down’ process, starting
with the most abstract requirements, moving through layers of
decomposition until the system is realised. We illustrate the
above concepts by considering just such a ‘simplistic’ process
involving the development of a safety case, before using the
concepts to set the work of the rest of the paper in context.
Treatment of ‘real’ processes such as issues of concurrent

Environment Model

TOP GOAL:

Certified Engine

TOP GOAL:

Engine Performance

Model of
System Concept STRATEGY JUSTIFICATION

No single point...
Failure Mode X...

Figure 1

engineering is outside the scope of this paper.

An Illustration of the Process Model

To illustrate the use of the process model we describe a
fragment of the process of decomposing requirements and
developing a safety case — in parallel, based on the same goal
structure. We take the scope of our concern to be the
development of a civil aero engine.

The top level goal will, in many cases, be to do with the
licensing or certification of the equipment or system of interest.
Thus, for an aero engine, the top level safety goal might be to
‘certify the engine to the requirements of “JAR E”, the Joint
Aviation Regulation pertinent to civil aero-engines. Other high
level goals will be concerned with performance, cost, etc. The
first level of decomposition will typically introduce a system
concept, i.e. a high level design and allocation of function
amongst technologies, and the individual top-level safety (and
other) requirements for the subsystems in the systems concept.
The goals will then be to show that these requirements have
been met1 . Thus we might get goals such as ‘show that failure
mode X does not occur more frequently than 10-Y times per
flying hour’.

The example is illustrated in Figure 1 above. Two ‘top level’
goals are introduced — one concerned with performance, the
other with safety. The goals may be articulated directly, or in
terms of a model of the situation in which the engine will be
used — the environment. A strategy for solving the goals is
introduced which identifies a system model. This examplel
introduces some direct safety goals, e.g. about allowable rates
of failure modes. It also introduces a constraint (the box with
two horizontal lines at top and bottom) which restricts the way
that all the remaining goals are satisfied, i.e. it restricts lower
level designs and strategies. In general the strategy will be
constrained by the relevant standards, and the views of the
certification and licensing body. In this specific example JAR E
identifies safety targets for engines, including allowable failure
rates for particular failure modes, and constrains the means of
compliance with those requirements, including calling up
standards and guidance such as DO 178 [30]. The justification
will probably be by appeal to accepted practices or the
requirements of the prevailing standards.

Decomposition of the safety goals will parallel the
decomposition of the system design, and failure rates will be
allocated to different components and their failure modes in
such a way that satisfying the component level goals will satisfy
the system level goals. This is carried on to the ‘bottom level’
of the design decomposition where the goals have to be
satisfied by safety analysis, or other means of compliance. The
role of the safety analyses is therefore to supply solutions to
particular goals, and the justification for a strategy, e.g. a
Markov analysis might be used to justify a strategy (design
concept) by showing that the specified failure modes of
components and the design of the system is such that the high
level failure mode and rate targets are met. Where more than

1 The safety goals may not always be in terms of the requirementsalthough
they are in many cases, e.g. Civil Aircraft Certification. In some industries,
the safety goals include showing conformance to standard designs; in this
case the goals would not map directly to requirements.

one strategy is proposed the safety analyses, and other
evaluations, may be used to choose between alternatives. Thus
the goal structure, the results of the safety analyses and aspects
of the design information will form the basis of the safety case.

Design and Analysis Process

The goal-structuring approach described above is very general,
and capable of representing the relationships of designs,
requirements and safety evidence. We need, however, to be
clearer about the structure of the development process in terms
of the information being manipulated, i.e. the contents of the
models and the scope of the goals. We propose a simple
phasing of the process:

• requirements and system concept — the system concept is
the top level design for the complete engineered system,
and the requirements are ‘top level’ goals and those
derived requirements that must be met for the system
concept to satisfy the top level requirements;

• computing system architecture — the structure of the
computing application, including the processes and their
inter-relationships together with their mappings to
hardware;

• realisation — detailed design and program code.

We identify these groupings in the process as the information
and activities within one group are much more tightly coupled
than they are between groups. Thus, for example, one would
expect tight iteration between system concepts, requirements
and associated safety analysis to arrive at a satisfactory set of
requirements and associated system concept. This would then
be a fairly stable input to the architectural grouping of
activities. Of course there is feedback between the groups, but
there will be less iteration, in an effective development process.

In this paper our attention is mainly focused on computing
system architecture, although we will touch on the other parts
of the process. This, in part, reflects our current areas of
interest, and in part the desire to provide a reasonably complete
treatment of some key issues, not a superficial treatment of the
whole process.

Types of Analysis

To set the rest of the paper in context, we also need to consider
the types of analysis that are used in the development process.
Essentially all safety analysis techniques are concerned with
establishing causal relations between failure modes, and those
aspects of ‘normal’ behaviour which form a necessary part of
the causal chain. It is common to distinguish top-down
methods, such as Fault-Trees, from bottom-up methods, such as
FMEA. However we find that it is useful to make a finer

Known Cause Unknown
Cause

Known
Effect

Description of
behaviour

Deductive
analyses

Unknown
Effect

Inductive analyses Exploratory
Analysis

Figure 2

distinction between analyses (as described further in [14]); we
arrive at the taxonomy shown above (Figure 2).

In our taxonomy the entries can be interpreted as follows:

• known cause, unknown effects corresponds to bottom-up
analyses (e.g. FMEA);

• unknown cause, known effects corresponds to top-down
analyses (e.g. FTA);

but:

• unknown causes, unknown effects, which we term
exploratory, has no counterpart in the normal
classification.

The exploratory approach is the form of analysis which is
needed most in a ‘design emergence’ model, for example a new
system concept will need to be investigated and we will know
neither the causes nor the effects, and will be seeking to find
them. Thus having effective exploratory safety analysis methods
is central to our approach. We start our treatment of more
detailed safety analysis issues with a consideration of
exploratory safety analysis techniques, and their use for
investigating alternate architectural designs. These represent
the first stage in applying safety analysis to an emerging design
and typically these analyses provide justification for high level
strategies. We then discuss, in subsequent sections, adaptations
of classical safety analyses for assessing detailed designs and
implementations. Typically these analyses are used to confirm
the soundness of designs, and thus provide solutions to some of
the safety goals.

We next consider automation of some aspects of safety analysis,
including addressing the need for trace-offs between different
goals. We focus on timing as an additional type of goal, as
many safety-critical systems are also real-time systems. Finally,
we extend these ideas to illustrate how the analysis techniques
may be adapted to support partial design synthesis.

Alternate Designs

At the architectural design stage for new software, nothing is
known about its failure modes, and knowledge of the effects of
failure will generally be limited to a high level preliminary

hazard analysis. However, this is the stage at which it is easiest
and most cost effective to take measures to improve the safety
characteristics of a system, so exploratory analysis is
particularly important.

The SHARD (Software Hazard Analysis and Resolution in
Design) technique described here was developed after we had
conducted a survey of existing software safety analysis methods
which concluded that no technique proposed so far adequately
addressed the requirement for a structured exploratory safety
analysis of a completely new software system. SHARD is based
upon techniques derived from Hazard and Operability Studies
(HAZOP) ([9], [22]), ap• plied to software designs expressed in
a structural notation such as MASCOT 3 [20] or DORIS [31].
Whilst the principles of our approach are general, we illustrate
them in the context of MASCOT.

The primary intention of this analysis is to assess the safety (or
otherwise) of the application software. The operating
environment (e.g. the MASCOT run-time system) is assumed to
be error free, an assumption which must be justified by other
techniques such as formal verification and validation.

HAZOP, a structured system of imaginative anticipation of
hazards and the suggestion of means of overcoming them, was
developed by ICI in the mid 1960s to study the design of new
chemical plant. Various recent papers ([7], [8] and [12]) have
suggested adaptations of HAZOP to the software environment,
but the SHARD method is distinct from these in the emphasis it
places on using the results of the analysis to drive design
improvements.

Key features of the HAZOP technique adopted for SHARD are:

• The analysis is based on consideration of the properties and
behaviour of flows. In a chemical plant, these are the
pipelines connecting components such as pumps and reactor
vessels; in software, they are the control and data flows
between processing components.

• The analysis uses a set of guide words to suggest
hypothetical failure modes for consideration.

The capability of the method to identify all the important failure
modes of a system clearly depends upon the selection of
appropriate guide words. The set of guide words used in the

Failure Categorisation

Flow Service Timing Value

Protocol Type Omission Commission Early Late Subtle Coarse

Boolean No update Unwanted
Update

N/A Old
Data

Stuck at... N/A

Pool Value “ “ “ “ wrong in
tolerance

out of
tolerance

Complex “ “ “ “ Incorrect Inconsistent

Boolean No Data Extra Data Early Late Stuck at... N/A

Channel Value “ “ “ “ wrong in
tolerance

out of
tolerance

Complex “ “ “ “ incorrect inconsistent

Figure 3

process industries HAZOP method has been developed and
refined by the experience of many years' application of the
method; for application to software, it is necessary to propose a
means of developing a set (or sets) of guide words with a high
degree of confidence in their completeness.

Guide word selection in the SHARD method is based upon the
considerable body of research work (e.g. [13] and [5]) in the
field of software failure classification.

From this work, the following failure classes have been
identified as the basis for guide word generation in SHARD:

Service provision : Omission, Commission

Service timing : Early, late

Service value : Coarse Incorrect, Subtle Incorrect

For each specific application, these basic failure classes are
refined by considering their interpretation in the context of a
particular combination of data type and path protocols (i.e. the
communication model, which determines the timing and service
provision characteristics of a flow). For some combinations of
data type and path protocol, consideration of one fault class may
result in the definition of more than one guide word. The guide
words thus defined are recorded in a table, and the appropriate
set selected as each flow is analysed. Figure 3 shows a typical
table of guide words derived for some basic combinations of
MASCOT data types and path protocols.2

The starting point for analysis of a software design is the top-
level (context) MASCOT diagram of the system, i.e. its logical
architecture, developed from the functional requirements of the
system. The information (control and data) flows in the diagram
are identified and consistently labelled, and the design is
reviewed to ensure that the intended behaviour of each flow
under normal operation is clear. The appropriate set of guide
words for each flow is then selected by reference to its path
protocol and data type.

Taking a flow at a time, each guide word is considered in turn,
and may suggest one or more hypothetical failure modes, which
are recorded. For each hypothetical failure mode, possible
causes and potential consequences are sought — effectively
introducing both deductive and inductive phases into the
analysis. If a hypothetical failure can be shown to have both
conceivable cause(s) and hazardous consequences, it is termed
a meaningful failure mode, and consideration must be given to
measures which can be taken to remove its causes or limit its
effects. An important feature of the method is that, for those
hypothetical failure modes which are not considered
meaningful, a justification must be given for this decision. In
most cases this will be a simple statement but, where the
decision is difficult, it may be necessary to supply a more
complete argument, perhaps based on design refinement and
the application of more detailed safety analysis.

For each meaningful failure mode identified, alternative
strategies are suggested for removing its causes or limiting its

2 Pools are shared data areas with destructive write. Channels are buffered
streams with destructive read..

effects. These may include proposing alternative designs,
modifying the current design, or establishing further
requirements which must be satisfied by lower-level design
elaboration to achieve acceptable system-level safety properties.
These alternative strategies are evaluated either by repeating
the analysis for revised design proposals, or by proposing and
analysing designs for the next level of decomposition, taking
account of any new derived requirements. As the design is
progressively refined, SHARD will not be able to support the
detailed analysis of issues such as schedulability and resource
usage which are required to select between alternatives, and
techniques for automating analysis must be applied.

The results of the SHARD analysis are recorded in a tabular
format similar to that used for FMEA/FMECA, which also
includes fields for recording the alternative strategies
considered and a justification for the eventual selection,
although these may simply contain pointers to other documents.

We can now relate the use of SHARD to the concepts
introduced earlier. A meta-strategy will represent the evaluation
of design alternatives. Each strategy will have an associated
model, defining the design (the MASCOT diagram) and a
subgoal to carry out the SHARD analysis. The SHARD tables
will be the solution to the subgoal and the derived requirements
will form further subgoals. The justification for classifying
particular failure modes as non-meaningful will be part of the
justification of the strategy. The justification for the meta-
strategy (selecting the “best” strategy will be a comparative
evaluation of the safety properties (including failure modes) of
the designs, and other relevant information, e.g. cost.

Safety Analysis Notations

Various causally based techniques for assessing systems safety
based in known designs have evolved. These traditionally fall
into two classes — methods which work from known causes to
unknown effects (such as Failure Modes and Effects Analysis)
[1] or those which work from known effects back to initially
unknown causes (such as Fault Tree Analysis) [34]. Unlike
SHARD, these techniques may only be used once we have a
fully detailed design, although fault trees can easily be applied
to incomplete designs.

In classical safety engineering applications, these techniques
are probabilistic and quantitative. In the software domain, we
must treat them as deterministic and quantitative, but when
considering the interaction with the rest of the system
(actuators, sensors etc.) we may then need to reconsider
probabilistic aspects of the system's behaviour and integrate
data from software safety analysis with that derived from
probabilistic assessment of other parts of the system.

Fault Trees

Classical fault tree analysis is formulated in terms of a
recursive causal ordering of events which contribute to a given
undesired top event (i.e. a hazardous failure mode); AND and
OR combinators (and simple variations on these) are used to
structure the event space, and analysis techniques allow the
reduction of fault trees to standard sum-of-products ("cutset")
forms. In fact, AND is the only truly causal combinator in fault
tree analysis; OR-decomposition merely represents alternative
event sequences with the same net causal effect. The
probability of the top event may be calculated if those of the

leaf events are known — as the sum of products of the
probabilities of the tree arranged in minimal cutset form.

Various applications of FTA techniques to software have been
made. Taylor's cause-consequence analysis influenced work on
software FTA [33] and Leveson's template-based approach to
FTA for Ada programs [23] provide satisfactory descriptions of
the failure behaviour of small fragments of program code, but
the large-scale structure of the system is not reflected in the
fault trees generated. In particular, Leveson's approach based
around the use of instances of template fault trees for individual
program statements composed according to a set of rules gives
rise to fault-trees constructed from the bottom up. In fact, it can
be thought of as a form of Failure Modes and Effects Analysis
using FTA notation.

Our initial approach [14] merged some of the low-level
structuring offered by Leveson's system — the templates —
with traditional top-down construction of fault trees. We
partitioned programs into related groups of statements —
effectively, we are carrying out a manual form of decomposition
into components about which we can reason independently.

Later developments to our method exploited the observation
that most safety-critical programs contain well-defined
fragments of code whose higher-level failure modes we already
understand in terms of their failure behaviour at the systems
level — for example, assignment of default values to out-of-
range readings in data acquisition yields subtle incorrect but
timely failure modes, and so on. Such programming clichés may
be identified by reference to a pre-defined library of software
components (this gives us the theoretical power to re-use safety
analysis data in software development) or may be discovered on
an application-specific basis — in practice, a mixture of these
approaches is usually necessary. A simple fault tree — OR'ing
together the basic failure modes of the component — replaces
the template-based trees which would otherwise have been
generated from the statements. In many cases, this approach
means that fault tree analysis down to the code level is not
necessary, assuming we have sufficient understanding of the
components being re-used.

Rates of individual failure modes can be combined to give
failure rates for effects, and propagated through FTAs to give
the rate, or probability, of the hazardous “top event”.

FMEA and FTA

The top-down, component-structured approach to fault tree
analysis we propose integrates well with Failure Modes and
Effects Analysis, a complementary technique which is often
used with FTA in industry. FMEA works from known
component failure modes and rates (in many industries,
component suppliers provide tabular details of failure modes
and probabilities to systems integrators) to unknown system-
level effects; it is essentially a tabular, labour-intensive process
with a highly experiential focus.

FMEA has had relatively few successful applications to
software to date. For example, Raheja [29] has proposed a
technique which is clearly a derivation of classical FMEA, but
does not appear to capture the essence of a software
“component” in a well-defined way.

We believe that our FTA structures (particularly the cliché-
identification) will let us provide data which will integrate well
with FMEA-style analyses of the underlying hardware
infrastructure and related sensors and actuators; hardware
failure modes can provide input to software fault trees, and the
output failure modes of software components can be fed into
higher-level FMEAs and FTAs of the overall system.

Failure Propagation And Transformation
Notation

We have developed an integrated notation to ameliorate some
of the limitations of FTA and FMEA when applied to software.
Fault trees, even those formed by our hierarchical hybrid
approach, often tend to be intractably large. Also, although
FMECA is a powerful technique for analysing well-known
failure modes its textual worksheet format makes it difficult to
trace effects from one level to another.

What is needed is a graphical notation which allows us to work
in both the top-down mode offered by FTA and the bottom-up
mode of FMECA. Ideally this notation should be compact and
should enable “end-to-end” modelling of the failure behaviour
of a system. We believe that our Failure Propagation and
Transformation Notation (FPTN) offers the desired properties.
The notation is quite general — it is not inherently specific to
software or even to computing systems in general — but fits in
well with the MASCOT and SHARD methods.

Basics

In FPTN a system is represented as a number of modules each
corresponding to some functional element within that system.
Modules have standardised attributes; a name, a criticality level
and (where applicable) indication of any recovery mechanisms
which might exist in that module.

Modules may be nested hierarchically, and can be either “black
box” (non-decomposable modules at the lowest level of
abstraction being considered) or “white box” (decomposable
with a known internal structure).

In FPTN modules are connected not by the data which normally
flows between them, but by the failures which propagate
between them. Inside each module we list those failure modes
which are generated purely internally by that module (i.e. do
not depend upon any external conditions), those failure modes
which are unconditionally prevented from propagating further
by the module (failures caught by exception handlers or other
recovery mechanisms) and also a set of equations characterising
the relationship between input and output failure modes, where
input failure modes are those to which the component is
susceptible and output failure modes are those which it passes
on to its environment. Again we can see the relevance of the
failure mode classifications: we would expect to detect coarse
failures but not subtle ones, and so on.

These equations take the form of a set of logical relationships
between inputs and outputs — each equation describes the
relationship between some subset of the input failure modes
and one of the output failures. The canonical form of these
equations is a “sum of products” form which is isomorphic to
the minimal cutset form of a fault tree, with the output failure
mode being considered as the top event. Thus each FPTN

module corresponds to an abstraction of a set of fault trees
describing a particular component.

So far we have only described failure propagation. Where does
transformation come into the notation?

We can consider failures as lying in particular domains such as
those used as guidewords in figure 1. We would expect users of
FPTN to add or substitute failure modes appropriate to their
application domain as necessary — for example, the clichés we
referred to above will often introduce new types of application-
specific failure mode.

In many systems the domain of a failure may be changed as it
propagates through the system. For example, some computation
in a real-time computer system may overrun its budgeted
execution time, thereby triggering a watchdog timer which
forces it to return an approximate result — in this example a
time domain failure (the overrun) has been transformed into a
(hopefully subtle) value-domain failure (the approximate
result). Such structures occur so widely in large software
systems that our notation has been tailored to model them. Each
failure mode in a system is typed with its domain and in
addition to describing the logical relationships between failure
modes the type annotations allow FPTN to describe the changes
in failure domain which take place.

Scope and Usage of FPTN

The flexibility of FPTN means that it has many potential uses,
of which this paper describes several. At its most basic level
FPTN can act as an abstraction and representation of complex
fault trees and/or FMECA tables; as we become more ambitious
we can use FPTN to bring many other systems safety activities
into the software domain because of its rich causal model. The
notation can be tied closely to the design process and, at the
highest levels of abstraction, can be used as a system model in
high-level argumentation about system safety, as input to a tool
such as SAM [15].

FPTN can have two roles as part of the overall safety analysis.
Most obviously, it can be used as (part of) the safety analysis of
some artefact. Thus it might be used directly to provide the
solution to some leaf goal. More plausibly, it might be used to
provide a summary of more detailed FTA and FMEAs which is
more meaningful in terms of overall system behaviour.

Less obviously, but perhaps more usefully, FPTN can be used
to specify failure behaviour requirements — to state what
output failure modes are acceptable, given the assumed input
failure modes. Thus FPTN might be used to state a derived
requirement (subgoal) arising out of a SHARD analysis, for the
allowable failure behaviour of a design component. The
solution to this goal might well be an FPTN model derived
from the actual artefact.

An FPTN “solution” satisfies an FPTN “goal” if the failure
modes and rates are “no worse”, i.e. there are no additional
hazardous failure modes and the rates are less than or equal to
those in the goal. The failure rates and probabilities are
propagated through the solution FPTN in the same way as they
are through fault-trees.

Zonal Analysis

FTA, FMEA and SHARD are based on the logical structure of
the design. However, in systems safety assessment a number of
experiential analyses based upon knowledge of the physical
structure of the system and arrangement of its components are
commonly carried out. Zonal Hazard Analysis (ZHA) is typical
of these processes; in its usual aerospace domain ZHA
considers the interactions of logically unrelated systems in the
same physical part (zone) of an aircraft (e.g. nose, wings, etc.).
For example, ZHA would consider the effect of a hydraulic leak
on electrical connectors in the same zone. Similar approaches
have not, as far as we are aware, been applied to software
systems.

In part this is due to the failure, mentioned above, of many
approaches to software FTA and FMECA to correctly identify
the software components and their failure modes. Also, in
attempting to carry out a ZHA-like process on software we need
to consider the tricky problem of what actually constitutes a
“software zone”.

FPTN can assist in the identification and modelling of zones.
We assume a typical computational model as found in many
real-time and safety-critical systems — one in which a number
of communicating tasks are mapped on to a set of processors,
communicating either by shared memory or message passing
over a bus. Each task is identified with an FPTN module. We
note that the failure propagation will not normally respect the
logical structure of the design; for example, it may propagate
via memory corruption.

We can define a zone in several ways appropriate for different
kinds of analysis, and different ‘strengths of protection’ of the
run-time system and infrastructure:

• “Strict” zones: we consider all tasks in the system and all
propagations of failures between them. If we can partition
the system task set into two or more disjoint subsets (zones)
such that no failures propagate between the subsets (of
course we must consider the transitive closure of the
propagation) then these can be termed strict zones

• “Task-based” zones: for each task (module) we can
identify a set of other tasks which are affected by the
transitive closure of failure modes propagated from it. We
can therefore consider in general terms the parts of a system
“infected” by arbitrary failures of a particular task or
module.

• “Failure-based” zones: are simply defined as the transitive
closure of modules affected by a particular failure mode.

For ZHA-like partitioning of a system to be accurate we need to
add such failure domains as “addressing error”,
“communications failure” and so on, as mentioned in the
section on FPTN to reflect the impact of infrastructure failures
on the application. Where the kernel, or run-time system,
implements segregation domains we would need to model all
failures as passing through the kernel and, and to represent it in
FPTN.

Several interesting properties arise from this new form of
analysis; we can reason about graceful (or otherwise!)
degradation of a system by deducing what zones are affected by
particular failures; we can use our knowledge of zones within

the system to place redundant or replica tasks such that
common-mode failures do not affect them and we can provide
input into the task allocation problem. Indeed software ZHA
can perhaps best be thought of as a form of common-cause
analysis.

This use of FPTN to perform zonal analysis may provide a
solution to a leaf goal. Specifically, it may be used to show that
the constraint “no single point failure shall lead to a hazard” is
met, even considering the effects of common-mode software
failures on the design. However it is unclear how valuable this
possibility is as, in many cases, protection against single point
failure would be provided by hardware redundancy.

Mechanising Safety Analysis

SHARD and FPTN, together with more classical techniques
such as FTA and FMEA, enable the failure behaviour of
systems to be described logically. They also facilitate numerical
analysis of failure rates and probabilities. Logical analysis is
useful for selecting between outline designs early in the
process, but the numerical data is needed to “close out” the
analysis — to provide the solutions at the bottom of the goal
structures. We consider the numerical analysis of safety
properties in the context of a DIA architecture [31], which
supports point-to-point inter-node communication.

As mentioned earlier, safety-critical systems are also often real-
time systems. Thus we need to ensure that a design satisfies its
timing goals as well as its safety goals. We first consider timing
issues.

Analysis of an Allocation

Consider the problem of analysing a given allocation of
application tasks to processors. The information required
includes the set of processors, which processors are directly
linked, and which tasks reside on which processors. The task
set includes intermediaries (routing tasks) for those processors
that are not directly linked. Also, the worst case execution
times (WCETs) of tasks are required. A number of tools now
exist to estimate the worst case execution time of a task [36],
[16]. At higher levels of design, time budgets can be used in
place of calculated WCETs. These are then replaced with actual
figures as tasks are instantiated as code. The message traffic
between tasks also need to be known. In hard real-time systems
transactions, i.e. sets of precedence constrained tasks, have
response deadlines placed upon them. The transactions in the
system need to be identified.

If the tasks in a transaction are placed on a processor, or set of
processors that no other tasks in the system reside on, the worst
case response times produced for the subsystem tasks can be
summed to give the system response time. However, if other
tasks can reside on the same processors then the worst case
timing characteristics of the transaction are subject to
interference from higher priority tasks and blocking from lower
level tasks from other transactions.

Analysis of the allocation requires satisfaction of simultaneous
equations identifying the interactions between the tasks.
Solution of these equations can be based on unique priority
static scheduling of hard real-time systems. Audsley et al [2]
introduce the appropriate scheduling theory and Burns et al [6]
apply the theory to DIA.

For an allocation to be feasible, not only must all the tasks and
transactions meet their deadlines but the available resources
must not be exceeded. This forms the set of criteria for the
satisfaction of a timing/resource usage goal. For our exemplar
architecture, resource constraints include the maximum number
of tasks allowable on a processor, the maximum private and
shared memory capacity of processors and links respectively,
and the maximum number of messages that can be sent down
each link. An allocation can easily be checked to show that it is
feasible with respect to its resource constraints.

Choosing an Allocation

Given that a particular allocation can be analysed for its timing
and resource usage how can we choose between the set of
possible allocations? This can be done manually, but it can also
be automated, using the scheduling test as an acceptance
criterion. This is a combinatorial optimisation problem in which
a solution space needs to be traversed to find the best feasible
solution. A number of search techniques exist, which are
variants of the neighbourhood search paradigm. Simulated
Annealing [21] which considers a set of single solution points
has proved to be an effective method of solving the allocation
problem for known hardware configurations of DIA. Genetic
Algorithms [20] allow a population of solutions to be used and
should allow extensions to allow the configuration and safety
design elements to be considered. (see below). In the Simulated
Annealing (SA) approach a single initial, usually random,
solution is produced and evaluated against a 'goodness' value
which forms the criterion for choosing between alternatives. For
the exemplar architecture with known tasks placed on given
hardware elements the following 'goodness' criterion is used for
timing properties

Ep= K
0
Emem+K1Edual+K2Edead+K3Etask+K4Etime

where

Ki is a weighting factor for element i

Ep = ‘goodness’ criterion for proposed allocation p

Emem = excess private memory required over capacity available.
0 if less than maximum used.

Edual = excess shared memory required over capacity avilable. 0
if less than maximum used.

Edead = penalty associated with the number of tasks that cannot
meet their deadline in the worst case.

Etime = penalty associated with the total task response time of
the system

Etask = penalty associated with the number of routing tasks in
the system (for forwarding messages between processors
not connected by a point-to-point link).

The algorithm will seek feasible solutions, then minimise the
value associated with this measure. The solution is altered
either by changing the priority of a task or moving a set of tasks
to different processors. This new solution is evaluated and if it
is better, i.e has a smaller value than the previous solution, it is
accepted. In order to reduce the chances of converging to a local
minimum a poorer solution can also be accepted. The
probability of accepting such moves is reduced as the algorithm
progresses. Thus we can think of the optimisation technique as
providing a meta-strategy which generates and evaluates many
strategies, selecting a near-optimal result.

Safety and the Allocation Problem

The use of safety design idioms will have an effect on the
timing and resource usage aspects of a design. The allocation of
tasks may be constrained by the idiom being used. To show the
effect of safety design idioms we will consider the application
of watchdogs and replication techniques to our exemplar
architecture.

Watchdogs can help guard against timing failures in
architectures, such as DIA. A table of worst case execution
times can be produced from analysis of the code of a task and
the watchdog set to this value. Tasks which over-run their times
can be made to fail silently or produce a known erroneous
value, i.e. to turn a timing failure into a subtle value failure as
mentioned above. The impact of watchdogs on the allocation
problem is to increase the worst case execution time of the task.
If the watchdog interrupts the task it may cause extra code to be
executed. This must also be included as part of the worst case
execution time of the task.

Replication of a task or more importantly a transaction, has a
greater impact on the allocation problem. A number of different
replication protocols can be envisaged to help mask the effects
of permanent or transient faults. Most forms involve the
production of a second set of task(s) which are not allowed to
be on the same processor(s) or use the same link(s) for message
passing, as the original(s). This is particularly difficult in DIA
because of the use of routing tasks and the temporal decoupling
of the processors in a DIA network. [32]

One or more decision tasks are often required to decide which
value is to be propagated through the system. Thus if
replication is to be used we need to identify the transactions to
which it is to be applied, and the form it is to take.

The goodness value of a given allocation needs to indicate
whether the proposed allocation of replica tasks or use of
watchdogs is feasible. In addition it must also take into account
the failure properties, specifically the failure modes propagated
through the system. This can be evaluated by combining the
FPTN models for the code modules, and computing rates of
failure modes (if the basic data from hardware FMEAs is
available). The FPTN goals form criteria for acceptability of the
allocation. However, the failure rate computation is complex.

A number of simple reliability measures, such as reliability
block diagrams, are deterministic. However most realistic
strategies do not admit deterministic solutions. Typically
Markov and semi-Markov analysis is required and these
techniques are very computationally expensive. Powerful tools
to estimate and predict system reliability have been produced.
The main comparative work on these tools considers five tools
[17].

Zonal analysis and analysis reuse should allow reduction of the
(re)computation required to produce new failure rate estimates
for designs. The HARP [11] tool, for instance, has a number of
features that help integrate the tool with the other analytical
methods discussed in this paper. HARP allows the fault model
to be input in the form of a fault tree (recall that FPTN models
can be viewed as sets of fault trees). It then automatically
transforms the tree into an appropriate Markov chain. To model
sequence dependencies it provides four new fault tree gates.

Fault tree analysis also allows logical analysis to be carried out
to go with the quantitative analysis [10].

Thus, in principle, part of the design process can be automated.
In effect, the optimisation techniques form meta-strategies and
the timing and failure criteria can be used to select acceptable
designs. We have demonstrated this approach on small
examples in the SPIRITS project, but there are many technical
problems to address.

Design Synthesis

We have considered how to produce and evaluate alternative
designs for timing and safety properties. We have demonstrated
how, for a given architecture, with known hardware
components (links and processors), and a proposed set of safety
design idioms (to mask or remove failure modes) tasks can be
allocated to processors such that no safety, timing or resource
constraints are violated. The safety of the proposed design is
measured by the failure modes and rates. Our design synthesis
approach based on Simulated Annealing can address this
problem, but Genetic Algorithms seem a better prospect for
developing effective automated design tools.

Genetic Algorithms are population based heuristic optimisation
techniques that are used to navigate a solution space. The
solution space to be searched is the safety, timing, resource
usage and functionality characteristics of alternate designs. A
Genetic Algorithm can be characterised as a two stage process.
It starts with a current population. Selection is applied to this
population to create an intermediate population. Then
recombination and mutation are applied to the intermediate
population to create the next population.

For the allocation problem already considered using SA, a
variant can be produced. The full Chromosome consists of
appropriate genes of processor, priority and route chromosomes.
The fitness function for any given possible solution is analogous
to the goodness criterion in SA. In this approachthe selection
mechanism to determine members of the population to survive
to the next generation is a Boltzmann tournament [25].

The GA approach can be extended to incorporate other aspects
of a design. For instance, it can consider different
infrastructures. For our exemplar architecture DIA the number
of processor and links in a system may not fixed. The
configuration of links can also vary. The chromosome is
extended to include two new chromosomes describing the
liveness of each processor and link, and the fitness function can
be extended to accommodate the extra effects of changing the
infrastructure.

A similar approach can be adopted to consider the use of
different safety design idioms that could potentially overcome
identified failure modes in system components, both hardware
and software.

From our limited experiments, it has become apparent that the
designer can dramatically affect not only the speed with which
any algorithm reaches a solution but also the quality of the
solution produced. For instance some allocations are known to
be infeasible because tasks need to be connected to particular
peripherals, or need to be placed on a particular type of
processor. A neighbourhood search technique, both simulated
annealing and genetic algorithms are neighbourhood

techniques, called Tabu search [18] could provide a method of
including designer information. In Tabu search, a dynamic set
of user-defined rules, which defines those neighbours that are
tabu, is produced. Tabu search is still in its infancy, and is
being expanded to include Aspiration Criteria, where rules are
produced to indicate that certain moves are preferred over
others. Each rule can be given a weight, negative if tabu, and
positive if an aspiration. This would appear to offer a direct
way of evolving criteria in a design synthesis environment,
based on our approach to goal structuring.

Conclusions

We have described some adaptations of classical hazard and
safety analysis techniques to handle software intensive systems.
We have also considered the possibilities of automating design
analysis and synthesis, taking into account the need to satisfy
multiple goals simultaneously. The techniques we have
discussed fit into the overall process as illustrated in figure 4,
where we have elided the strategies to show the relationship of
the design to the top-level goals.

The techniques we have described can be applied manually, or
with simple tool support to modest-sized designs. We have
applied SHARD, FPTN and our hierarchical software FTAs to
a number of case studies derived from real systems. We have
found the techniques practical and have, in some cases, found
significant flaws in designs, e.g. failure modes that the
designers had overlooked. Our ideas on software ZHA remain
hypothetical, although we believe that they will prove relevant
as safety-critical systems become more complex.

We have also applied the design analysis and synthesis
approach to medium-scale applications consisting of a few tens
of tasks on 16 processors as part of the SPIRITS project. The
approach based on simulated annealing works reasonably well
when dealing with timing alone, but becomes very
computationally expensive when addressing safety, especially
vastly different design idioms. More effective techniques such
as genetic algorithms, are needed if this approach is to prove
practical.

Other groups have carried out work on adapting safety analysis
techniques to software, and the work of Leveson and Taylor is
of particular historical significance. However, we are not aware
of any other work which has provided such an extensive set of
safety analysis techniques for software based systems, nor made
so much progress in showing how to integrate them into the
design process.

Whilst much remains to be dome, we believe that we have
identified a fruitful line of research and we aim to use the
Safety Argument Manager (SAM) currently under development
to draw together these strands of work, with the aim of further
proving their effectiveness.

Acknowledgements

The authors would like to thank their colleagues (notably Ken
Tindell, Neil Audsley, Rob Davis, Alan Burns and Andy
Wellings) in the Real Time Systems research group whose
work provided the underlying theory for the task allocations
discussed earlier in the paper. Stephen Wilson of the ASAM-II

project has also provided many useful comments and much
advice.

Much of the work described in this paper has originated on the
SSAP (Software Safety Assessment Procedures), ASAM-II (A
Safety Argument Manager), SPIRITS and DCSC (Dependable
Computing Systems Centre) projects at York and we extend our
thanks to our industrial partners in these projects, most notably
various operating companies within British Aerospace.

Contact Addresses

The authors can be contacted at the following address:

High Integrity Systems Engineering Group,
Department of Computer Science,
University of York,
Heslington,
York,
Y01 5DD,
United Kingdon.

Their electronic mail addresses are pete (Peter Fenelon), jam
(John McDermid), mark (Mark Nicholson) and djp (David
Pumfrey) @minster.york.ac.uk.

References

[1] ARP926, “Design Analysis Procedure For Failure
Modes, Effects and Criticality Analysis (FMECA),”

Safety Goal Performance Goal

Alternate
Designs

Mechanisms

SHARD,
FPTN, etc

Possible
solutions

Timing
Resource Usage

Software FTA
FMEA

Reliability
Safety Case

Evidence

Zonal techniques

Iteration N of design process

Iteration N+1 of
design process

Figure 4

Society of Automotive Engineers (SAE), Detroit, USA
(15th September 1967).

[2] Audsley, N., A. Burns, M. Richardson, K. Tindell and
A.J. Wellings, “Applying New Scheduling Theory to
Static Priority Pre-emptive Scheduling,” Software
Enginnering Journal (Sept 1993) pp.284-292.

[3] Bennett, P. A., “Safety,” in Software Engineer's
Reference Book, ed. John A. McDermid (1991).

[4] Bishop, P. G., “Dependability Of Critical Computer
Systems 3,” Elsevier Applied Science (1990).

[5] Bondavalli, A. and L. Simoncini, “Failure
Classification With Respect To Detection,” in Volume
2: First Year Report, Task B: Specification and Design
for Dependability, ESPRIT BRA Project 3092:
Predictably Dependable Computer Systems (1990).

[6] Burns, A., M. Nicholson, K. Tindell and N. Zhang,
“Allocating and Scheduling Hard Real-Time Tasks On A
Point-To-Point Distributed System”, in Proceedings of
the Workshop On Parallel and Distributed Real Time
Systems, (April 13-15 1993).

[7] Burns, D. J., and R M Pitblado, “A Modified Hazop
Methodology For Safety Critical System Assessment,”
in Proceedings of the First Safety Critical Systems
Symposium, Springer-Verlag (1993).

[8] Chudleigh, M., “Hazard Analysis Using Hazop: A Case
Study,”, pp.99-108 in Safecomp 93: Proceedings of the
12th International Conference On Computer Safety,
Reliability and Security, ed. J. Gorski (1993).

[9] CISHEC, “A Guide To Hazard And Operability
Studies,” The Chemical Industry Safety and Health
Council of the Chemical Industries Association Ltd.
(1977).

[10] Dugan, J. B. and M. A. Boyd, “Fault Trees & Markov
Models for Reliability Analysis of Fault-Tolerant
Digital Systems,” Reliability Engineering & System
Safety 39 (1993) pp.291-307.

[11] Dugan, J. B., S.J. Bavuso and M.A. Boyd. “Modelling
Advanced Fault-Tolerant Systems With HARP”, 1991
Annual Reliability and Maintainability Symposium
(1991).

[12] Earthy, J. V., “Hazard and Operability Study As An
Approach To Software Safety Assessment,” Proceedings
of the IEE Colloquium on Hazard Analysis (11
November 1992) pp.5-1 em 5-3.

[13] Ezhilchelvan, P. D. and S. K. Shrivastava, “A
Characterisation of Faults in Systems,” Technical
Report 206, University of Newcastle upon Tyne,
Computing Laboratory (Sept 85).

[14] Fenelon, Peter and John A McDermid, “An Integrated
Toolset For Software Safety Analysis,” Journal Of
Systems and Software (July 1993).

[15] Forder, Justin, Christopher P. Higgins, John A.
McDermid and Graham Storrs, “SAM — A Tool To
Support The Construction, Review and Evolution Of
Safety Arguments,” in Directions In Safety-Critical
Systems: Proceedings Of The Safety-Critical Systems
Symposium, Bristol 1993, ed. F. Redmill and T.
Anderson, Springer-Verlag (1993).

[16] Forsyth, C. H., “Implementation of the Worst-Case
Execution Analyser,” Hard Real-time Operating System
Kernel Study Task 8, volume E, York Software
Engineering Ltd., UK (1992)

[17] Geist. R. and K. Trivedi, “Reliability Estimation of
Fault-tolerant Systems: Tools and Techniques,”
Computer 23(7) (July 1990) pp.52-61.

[18] Glover, F., E. Taillard and D. deWarra, “A User's
Guide to Tabu Search,” Annals of OR 41 (1993) pp.3-
28.

[20] Goldberg, D. E., “Genetic Algorithms in Search,
Optimization and Machine Learning,” Addison-Wesley
(1989).

[20] JIMCOM, “The Official Handbook of Mascot,” Joint
IECCA and MUF Committee on Mascot (1977).

[21] Kirkpatrick, S., C. D. Gelatt and M. P. Vecchi,
“Optimization By Simulated Annealing,” Science 220
(1983) pp.671-680.

[22] Kletz, T., “HAZOP and HAZAN: Identifying and
Assessing Process Industry Standards (3rd Edition),”
Institution of Chemical Engineers (1992).

[23] Leveson, N. G. and P.R. Harvey, “Analyzing software
safety,” IEEE Transactions on Software Engineering
vol.SE-9, no.5 (Sept. 1983) pp.569-79. IEEE Trans.
Softw. Eng. (USA).

[24] Leveson, N. G., “Software Safety - What, Why And
How?,” ACM Computing Surveys 16(2) (June 1986)
pp.125-164.

[25] Mahfoud, S. W. and D. E. Goldberg, “Parallel
Recombinative Simulated Annealing: A Genetic
Algorithm”,ILLiGAL report 92002 (1993).

[26] McDermid, J. A., A. Coombes and P. Morris,
“Causality as a means for the expression of
requirements for safety critical systems,” in Compass
'94 (1994 to appear).

[27] Nicholson, Mark, T. Manning, A. Burns, M. Nicholson,
K. Tindell and N. Zhang, “Safety and Failure Modes
Analysis — Allocating and Scheduling Hard Real-time
Tasks on a Point-to-Point Distributed System“,
Proceedings of the Workshop on Parallel and
Distributed Real-Time Systems (April 13-15 1993).

[28] Parnas, D. L. and P. C. Clements, “A Rational Design
Process: How And Why To Fake It,” IEEE Transactions
On Software Engineering SE-12 (1986).

[29] Raheja, Dev, “Software System Failure Mode And
Effects Analysis (SSFMEA) — A Tool For Reliability
Growth,” Proceedings of the International Symposium
on Reliability and Maintainability (1990) pp.IX-1 - IX-
7.

[30] RTCA, “Software Considerations in Airborne Systems
and Equipment,” Document No. RTCA/DO178A, Radio
Technical Commission For Aeronautics, USA (1984).

[31] Simpson, H. R., “A Data Interaction Architecture
(DIA) for Real-Time Embedded Multi-Processor
Systems” Computing Techniques In Guided Flight
conference, RAe (19 April 1990).

[32] Simpson, H. R., “Four-slot Fully Asynchronous
Communication Mechanism,” IEE Proceedings on

Computers and Digital Techniques 137 (January 1990)
pp.17-30.

[33] Taylor, J. R., “Fault Tree and Cause Consequence
Analysis for Control Software Validation,” Riso-M-
2326, Riso National Laboratory, DK-4000 Roskilde,
Denmark (Jan 1982).

[34] Veseley, W. E., “Fault Tree Handbook,” Division of the
System Safety Office of Nuclear Reactor Regulation,
US Nuclear Regulatory Commission, Washington DC
(1981).

[35] Villemeur,A.,“Reliability,Availability, Maintainability
and Safety Assessment” (1991).

[36] Zhang, N., A. Burns and M. Nicholson, “Pipelined
Processors and Worst Case Execution Times,” Real-
Time Systems 5 (Oct. 1993) pp.319-343.

