
Towards Integration of Adaptability and Non-Intrusive
Runtime Verification in Avionic Systems

∗

José Rufino
jmrufino@ciencias.ulisboa.pt

LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

ABSTRACT
Unmanned autonomous systems (UAS) avionics call for ad-
vanced computing system architectures fulfilling strict size,
weight and power consumption (SWaP) requisites, decreas-
ing the vehicle cost and ensuring the safety and timeliness of
the system. The AIR (ARINC 653 in Space Real-Time Op-
erating System) architecture defines a partitioned environ-
ment for the development and execution of aerospace appli-
cations, following the notion of time and space partitioning
(TSP), preserving application timing and safety requisites.

The plan for a UAS mission may vary with the passage of
time, according to its mode/phase of operation, and the
vehicle may be exposed to unpredictable (environmental)
events and failures, calling for the advanced adaptability and
reconfigurability features included in the AIR architecture.
This paper explores the potential of non-intrusive runtime
verification (RV) mechanisms, currently being included in
AIR, to improve system safety and to decrease the com-
putational cost of timeliness adaptability and of the corre-
sponding overhead on the system.

Categories and Subject Descriptors
C.4 [Computer System Organisation]: [Fault tolerance];
C.3 [Special-Purpose and Application Based Systems]:
Real-time and embedded systems; D.4.7 [Operating sys-

tems]: Organization and Design—Real-time systems and
embedded systems

Keywords
dependability, timeliness, adaptability, runtime verification,
time and space partitioning, integrated modular avionics.

∗This work was partially supported by FCT, through project
PTDC/EEI-SCR/3200/2012 (READAPT) and through LaSIGE
Strategic Project PEst-OE/EEI/UI0408/2014. This work inte-
grates the activities of COST Action IC1402 - Runtime Verifica-
tion beyond Monitoring (ARVI).

EWiLi’15, October 8th, 2015, Amsterdam, The Netherlands.
Copyright retained by the authors.

1. INTRODUCTION AND MOTIVATION
Avionic systems have strict safety and timeliness require-
ments as well as strong size, weight and power consumption
(SWaP) constraints. Modern unmanned autonomous sys-
tems (UAS) avionics follow the civil aviation trend of tran-
sitioning from federated architectures to Integrated Modular
Avionics (IMA) [1] and resort to the use of partitioning.

Partitioned architectures implement the logical separation
of applications in criticality domains, named partitions, and
allow hosting both avionic and payload functions in the same
computational infrastructure, thus fulfilling both SWaP and
safety/timeliness requirements [24]. The notion of temporal
and spatial partitioning (TSP) implies that the execution of
functions in one partition does not affect other partitions’
timeliness and that separated addressing spaces are assigned
to different partitions [21]. The design and development of
AIR (ARINC 653 in Space Real-Time Operating System)
has been motivated by the interest in applying TSP concepts
to the aerospace domain [20].

Usually, an UAS mission goes through multiple phases (e.g.,
launch, flight, approach, exploration). Adaptation to chang-
ing temporal requirements throughout all the mission phases
is of great importance for a mission’s survival [23]. The de-
sign of AIR Technology already includes mechanisms of sup-
port for adaptation and reconfiguration. Nevertheless, given
the high complexity of UAS functions, modern avionic sys-
tems may largely benefit from the verification in runtime
that the system/mission specification is being fulfilled or
that some deviation has just occurred.

This paper addresses how fundamental timeliness adapta-
tion mechanisms can be combined with advanced runtime
verification (RV) capabilities in time- and space-partitioned
systems. To reduce the temporal overhead of such mech-
anisms in the operation of onboard systems an innovative
non-intrusive design approach is followed.

The paper is organized as follows. Section 2 introduces the
AIR architecture for TSP systems. Section 3 details the AIR
adaptability and reconfigurability capabilities. Section 4 de-
scribes the non-intrusive RV features being introduced in the
AIR architecture and Section 5 describes how to integrate
them with AIR system adaptability and reconfigurability.
Section 6 describes the related work and, finally, Section 7
issues concluding remarks and future research directions.

Figure 1: AIR architecture for TSP systems

2. AIR TECHNOLOGY FOR TSP SYSTEMS
The AIR Technology evolved from a proof of feasibility for
adding ARINC 653 functional support to the Real-Time Ex-
ecutive for Multiprocessor Systems (RTEMS) to a multi-OS
(operating system) TSP architecture [20]. The AIR modular
design aims at high levels of flexibility, hardware- and OS-
independence, easy integration and independent component
verification, validation and certification.

2.1 System architecture
The AIR modular architecture is pictured in Figure 1. The
AIR Partition Management Kernel (PMK) is the basis of
a core software layer, enforcing robust TSP properties and
hosting crucial functionality such as partition scheduling and
dispatching, low-level interrupt management, and interpar-
tition communication support. Temporal partitioning en-
sures that the real-time requisites of the different functions
executing in each partition are guaranteed. Spatial parti-
tioning relies on having dedicated addressing spaces for the
functions executing on different partitions.

Each partition can host a different OS (the partition operat-
ing system, POS), which in turn can be either a real-time op-
erating system (RTOS) or a generic non-real-time one. The
AIR POS Adaptation Layer (PAL) encapsulates the POS
of each partition, providing an adequate POS-independent
interface to the surrounding components.

The Portable Application Executive (APEX) interface [22]
provides a standard programming interface derived from the
ARINC 653 specification [1], with the possibility of being
subsetted and/or adding specific functional extensions for
certain partitions [19].

The organization of vehicle functions in different partitions
requires interpartition communication facilities, since a func-
tion hosted in a partition may need to exchange information
with other partitions. Interpartition communication consists
of the authorized transfer of information between partitions
without violating neither spatial separation constrains nor
information security properties [21, 20, 5].

2.2 Two-level scheduling
The AIR technology employs a two-level scheduling scheme,
as illustrated in Figure 2. The first level corresponds to par-
tition scheduling and the second level to process scheduling.
Partitions are scheduled on a cyclic basis, through the parti-
tion scheduling and dispatching components (Figure 2), ac-

150 190

First hierarchy level
Partition Scheduler

20 60

0 20 60 130

Major Time Frame (MTF)

Second hierarchy level
Process Scheduler

τ2,1 τ2,2 τ2,1 τ2,3

Tasks (processes)
 in partition P2

Partition P1 Partition P2 Partition P3

Native POS
Process Scheduler

Process τ1,1

Process τ1,3

Process τ1,2

Process τ1,4

Partition P3

PMK

Partition P1 . . .

Native POS
Process Scheduler

Native POS
Process Scheduler

Process τ3,1 Process τ3,2

Process τ3,3

Partition P2

Process τ2,1 Process τ2,2

Process τ2,3

. . .

Process Deadline Violation Monitoring

Mode-based Schedules

Partition Dispatcher

Partition Scheduler

AIR PAL

Schedule_id

Schedule
ChangeActions

Schedule

Schedule_id

Schedule
ChangeActions

Schedule

Schedule_id

Schedule
ChangeActions

Schedule

Partition Scheduling Tables
PST

Mode-based selection PST1

(Active)

PST2

(Inactive)

PST3

(Inactive)

Figure 2: Two-level hierarchical scheduling with

partition scheduling featuring mode-based schedules

cording to a partition scheduling table (PST) repeating over
a major time frame (MTF). The PST assigns execution time
windows to partitions. Inside each partition’s time windows,
its processes compete for processing resources according to
the POS’s native process scheduler.

2.3 Health monitoring and error handling
The AIR architecture incorporates Health Monitor (HM)
functions that aim to contain faults within their domains of
occurrence and to provide the corresponding error handling
capabilities. Support to these functions is spread throughout
virtually all of the AIR architectural components.

The HM plays an important role in achieving system safety
given it prevents/mitigates ill-effects of process and/or par-
tition level errors in the remaining partitions. The action
to be performed in the event of an error is defined by the
application programmer through an appropriate error han-
dler. This may comprise adaptability features such as the
redefinition of timing and control parameters or the issue
of a different schedule request. If no handler is provided, a
response action defined by the partition’s HM ARINC 653
configuration table is executed, as shown in Figure 3.

System level? EH defined? EH running?

Action defined?

Default Action

EH: event
handler

traps

others

Interrupt

no yes

noyes yes

no

yes

no

Exception!

AIR PMK/POS interrupt handling

AIR Health Monitor

Activate (event-driven)POS Process

Application

Shutdown

Ignore

Restart

Figure 3: Health monitoring

The design of AIR allows HM handlers to simply replace
existing exception handlers or to be added to existing ones,
in pre- and/or post-processing modes.

3. ADAPTABILITY
The adaptation to changing environmental or operating con-
ditions is crucial for unmanned space and aerial missions
survivability, which can be significantly improved through
software reconfigurability, as studied in [23].

The design of AIR integrates special-purpose mechanisms
to address specific adaptation requirements, thoroughly de-
scribed in [7] and summarised next.

3.1 Mode-based schedules
Timing requirements may change according to a mission’s
phase since certain functions should only execute during cer-
tain phases. The original ARINC 653 notion of a single fixed
PST [1], defined offline, is limited in terms of timeliness
adaptability, as well as safety and fault-tolerance control,
and surely contributes to some degree of resource utilization
waste. To address this primary limitation, the AIR design
incorporates the notion of mode-based partition schedules,
inspired by the optional service defined within the scope of
ARINC 653 Part 2 specification [2].

Instead of one fixed PST, the system can be configured with
multiple PSTs, which may differ in terms of the MTF du-
ration, of which partitions are scheduled, and of how much
processor time is assigned to them, as shown in Figure 2.
The system can then switch between these PSTs; selection
of the active PST is performed through a service call issued
by an authorized and/or dedicated partition. To avoid vio-
lating temporal requirements, a PST switch request is only
effectively granted at the end of the ongoing MTF.

Hosting multiple PSTs aboard autonomous vehicles opens
room for the (self-)adaptability of unmanned missions, in
function of passage of time and of changing environmen-
tal and operational conditions. Pre-generation of differ-
ent partition schedules can be aided by a tool that applies
rules and formulas to the temporal requirements of pro-
cesses/partitions, taking into account the functions’ needs in
different anticipated conditions [20, 8]. Unforeseeable con-
ditions can be handled thorough the mechanisms for remote
update of PSTs and onboard software described in [19].

3.2 Process deadline violation monitoring
During runtime execution, it may be the case that a process
exceeds its deadline. In the AIR architecture, the PAL com-
ponent monitors, at each POS clock tick, if some process in
the active partition has violated its deadline (Figure 2). In
addition, it is also possible that a process exceeds its dead-
line while the partition in which it executes is inactive. This
violation will only be detected when the partition is being
dispatched, just before the PAL component invokes the POS
process scheduler, as shown in the diagram of Figure 2.

The use of offline tools that verify the fulfilment of tim-
ing requirements [20, 8], should rule out deadline violations
due to faulty system planning (e.g., time windows not sat-
isfying the partitions’ timing requirements). However, such
tools cannot cope with process deadline violations caused by
a runtime malfunction, by transient overload (e. g., due to
abnormally high event occurrence rates), or by the underes-
timation of a process’s worst case execution time (WCET)
at system configuration and integration time.

4. MECHANISMS FOR NON-INTRUSIVE

RUNTIME VERIFICATION
Runtime verification (RV) obtains and analyses data from
the execution of a system to detect and possibly react to
behaviours, either satisfying or violating the system speci-
fication. RV implies that small components, which are not
part of the functional system, acting as observers, are added
to monitor and assess the state of the system in runtime.

The usage of reconfigurable logic supporting versatile plat-
form designs (e.g., soft-processors) enables innovative ap-
proaches to RV [17], herein explored in the context of TSP
systems. An enhanced AIR architecture makes use of an
AIR Observer (AO) featuring: non-intrusiveness, meaning
system operation is not adversely affected and code instru-
mentation with RV probes is not required; configurable, be-
ing able to accommodate different event observations.

Observer

Configuration

Bus
Interfaces

System Clock

B
us

es

Mgmt.
Interface

Time Base
currentTicks

Figure 4: AIR Observer architecture

The AO is plugged to the platform where the AIR software
components execute, and comprises the modules depicted in
Figure 4: Bus Interfaces, capturing all physical bus activity,
such as bus transfers or interrupts; Management Interface,
enabling AO configuration; Configuration, storing the pat-
terns of the events to be detected; Observer, detecting events
of interest based on the registered configurations.

Though RV concepts can be applied to both time and space
partitioning, this paper is restricted to temporal issues. Thus,
it is assumed that a robust time base1 accounts for, in
the AO hardware (Figure 4), the number of POS-level clock
ticks elapsed so far, to which AIR components have access,
through the read only currentT icks variable/register.

5. INTEGRATING ADAPTABILITY AND

NON-INTRUSIVE RUNTIME VERIFI-

CATION
The integration of RV features in the AIR architecture uses
a dual approach, as follows:

• operation enforced in hardware, either totally or with
some degree of assistance from software components,
being the runtime verification actions performed in
software;

• operation achieved through the execution of software
components, with runtime verification actions enforced
in hardware.

5.1 Mode-based schedules
In the generic and highly flexible AIR architecture design
presented in [20], the handling of mode-based schedules is
entirely integrated within a software-based AIR Partition
Scheduler, as illustrated in the diagram of Figure 2.

In a hardware-assisted approach, partition scheduling switch
decisions from the AO hardware are complemented with
software RV and partition switch actions: when a partition

1The design and engineering AIR robust timers is out of the
scope of this paper. It will be addressed in a future work.

Algorithm 1 AIR Partition Scheduler with Runtime Veri-
fication featuring adaptation through mode-based schedules

1: ✄ Entered upon exception: partition preemption point detected
2: ✄ Runtime verification actions
3: if schedulescurrentSchedule .tabletableIterator .tick 6=

(currentTicks − lastScheduleSwitch) mod
schedulescurrentSchedule .mtf then

4: HealthMonitor(activePartition)

5: else ✄ Partition switch actions
6: if currentSchedule 6= nextSchedule ∧

(currentTicks − lastScheduleSwitch) mod
schedulescurrentSchedule .mtf = 0 then

7: currentSchedule ← nextSchedule

8: lastScheduleSwitch ← currentTicks

9: tableIterator ← 0
10: end if
11: heirPartition←

schedulescurrentSchedule .tabletableIterator .partition

12: tableIterator ← (tableIterator + 1) mod
schedulescurrentSchedule .numberPartitionPreemptionPoints

13: end if

is dispatched, the absolute value (in POS-level clock ticks)
of its partition preemption point is inserted in the AO con-
figuration; when this instant is reached, an AO’s hardware
exception triggers the execution of Algorithm 1.

The RV actions ofAlgorithm 1 check, from the active PST,
if the current instant is a partition preemption point (line 3).
If that is not the case, a severe system level error has oc-
curred and the HM is notified (line 4) to handle the situation.
The remaining lines (6-12) implement the partition switch
actions of [20], checking (line 6) if there is a pending schedul-
ing switch to be applied and the current instant is the end
of the MTF. If these conditions apply, a different PST will
be used henceforth (line 7). The processing resources are
assigned to the heir partition, obtained (line 11) from the
PST in use, until the next partition preemption point. The
AIR Partition Scheduler is set (line 12) to access the heir
partition parameters.

This hardware/software co-design allows to maintain some
degree of AIR architectural flexibility with advantages in
terms of improved safety and timeliness. This is particularly
useful for running AIR in platforms integrating processor
cores (e.g., dual-core ARM) and FPGA logic [10].

The partition switch actions are followed by the execution
of the AIR Partition Dispatcher specified in Algorithm 2.
Two significant differences from [20] do exist: suppression
of specific elapsed clock ticks setting, which are no longer
required because the partition dispatcher is always invoked
after a partition switch; insertion of the next partition pre-
emption point in the AO configuration (line 6). The remain-
ing actions in Algorithm 2 are related to saving and restoring
the execution context (lines 2 and 7) and evaluation of the
elapsed clock ticks (line 4). Line 8 enforces the execution
of pending actions the first time after a PST change the
partition is executed [20].

Compared with the equivalent specification in [20], the de-
sign of Algorithm 3 was greatly simplified since all the ac-
tions concerning process deadline violation monitoring were
removed. The needed actions are now restricted to the sig-
nalling of the elapsed clock ticks (line 2) and to the instan-
tiation of the POS native process scheduler (line 4).

Algorithm 2 AIR Partition Dispatcher

1: ✄ Entered from the AIR Partition Scheduler after partition switch
actions

2: SaveContext(activePartition.context)
3: activePartition.lastTick ← currentTicks − 1
4: elapsedTicks ← currentTicks − heirPartition.lastTick

5: activePartition ← heirPartition

6: ReplacePreemptionPoint(heirPartition.tick)

7: RestoreContext(heirPartition.context)
8: PendingScheduleChangeAction(heirPartition)

Algorithm 3 AIR PAL – pre POS process scheduler

1: ✄ Executed immediately after AIR Partition Dispatcher and
at every POS-level clock tick

2: PAL ClockTickAnnounce(elapsedTicks)
3: elapsedTicks = 1

4: POS ProcessScheduler()

5.2 Process deadline violation monitoring
Process deadline violation monitoring, a RV action, was
made non-intrusive in the AIR hardware-assisted design.
Each process issues, when required, system calls through the
APEX interface. For those listed in Table 1, AIR PAL en-
capsulation provides the registering of the process’ deadline
in the AO (updating the process’ entry, or creating a new
one, if not configured yet) or its unregistering (removing
the process’ entry from the AO configuration). If a process’
deadline instant is reached, the AO detects the timeliness
violation and issues a hardware exception that once caught
activates the process level event handler defined by the ap-
plication programmer, as illustrated in Figure 3. The APEX
primitive RAISE APPLICATION ERROR is used for that
purpose, with PAL encapsulating a software-based RV ac-
tion confirming the process deadline violation.

Table 1: APEX primitives needing access to the AO

to support process deadline violation monitoring

Primitive Short description

Need to register/update deadline in the AO

[DELAYED]START Start a process [with a given delay]

PERIODIC WAIT Suspend execution of a (periodic)
process until the next release point

REPLENISH Postpone a process’s deadline time

Need to unregister deadline from the AO

STOP[SELF] Stop a process [itself]

The occurrence of process-/partition-level errors may be sig-
nalled through interpartition communication to a (system
partition) process performing a Fault Detection, Isolation
and Recovery (FDIR) function. A system-wide reconfigura-
bility logic should be included in FDIR [7, 20].

5.3 Analysis and discussion
Critical software, namely that developed to go aboard an
aerial or space vehicle, goes through a strict process of ver-
ification, validation and certification.

Code complexity affects the effort required for that process,
being one relevant metric for code complexity its size, in
lines of source code. Towards the usage of standardized ac-
counting methods one employ the logical source lines of code
(logical SLOC) metric of the Unified CodeCount tool [15].

The C implementation of fundamental AIR software compo-
nents is assessed in Table 2, which shows its logical SLOC
count along with the entity instantiating the component,
and implicitly, the instantiation frequency.

Most AIR software components have linear complexity, O(1):
accesses to multielement structures are made by index, be-
ing independent of the number and position of the elements.
The exception concern process deadline verification in the
software-based approach, which in the worst case wields
O(n), being n the number of processes in the partition.

Similar considerations apply to timing issues. The AIR ob-
server and the non-intrusive hardware-assisted approach has
reduced the number and code complexity of software compo-
nents in the path of POS-level clock tick processing. This is
specially true for Algorithm 3 and its software-based coun-
terpart code complexity and worst case timing, though in the
normal and most frequent case where no process deadlines
occur, both components exhibit similar execution times.

Comparing the normalised processing time overheads of AIR
Partition Scheduler and Dispatcher (TSD), in the software-
based and hardware-assisted approaches, along a full nor-
malised MTF period (TMTF):

υ =
TSD Soft − TSD Hard

TMTF

(1)

≈
TSD Soft

Ttick

−
TSD Hard

TMTF

. nppp (2)

where, nppp is the number of partition preemption points in
the MTF and Ttick is the normalised POS-level clock tick.
The normalisation of timing parameters in Figure 5 take
the experimental values TSD Soft=150 ns and Ttick =1 ms
as references, making TSD Hard ≈ TSD Soft for hardware-
assisted and TSD Hard = 0 for a full hardware implementa-
tion of the AIR Partition Scheduler/Dispatcher.

The difference to software-based processing overheads (υ)
in function of MTF duration is represented in Figure 5.
For the full hardware implementation, that difference is in-
dependent from the MTF value being, in any case, up-
per bounded by the TSD Soft/Ttick ratio, which typically
have quite small values due to the efficient coding of AIR
Partition Scheduler and Dispatcher components. For the
hardware-assisted approach the processing overhead differ-
ence is smaller, dependent on the number/frequency of parti-
tion preemption points and only asymptotically approaches
the TSD Soft/Ttick limit.

Though POS-level hardware-assisted mechanisms are also
deemed to benefit partition/process scheduling timeliness
and jitter, those issues have not been addressed so far.

6. RELATED WORK
To the best of our knowledge, contemporary approaches
to flexible scheduling in TSP systems are restricted to the
mode-based scheduling feature of the commercial Wind River
VxWorks 653 product [27]. Previous research on other TSP
solutions [9] and works on scheduling analysis for avionic
systems [14, 11] do not foresee mechanisms for timeliness
adaptation. Alternatives to TSP/IMA are compared in [12],

0,00000

0,00002

0,00004

0,00006

0,00008

0,00010

0,00012

0,00014

0,00016

10 30 50 70 90 110 130 150 170 190P
ro

ce
ss

in
g

 o
v

e
rh

e
a

d
 d

if
fe

re
n

ce
 (

v
)

TMTF (time units)

Parameters: nppp = 6; TSD = 0,00015 time units; Ttick = 1 time unit

Full hardware AIR Partition Scheduler/Dispatcher

Hardware-assisted AIR Partition Scheduler/Dispatcher

Figure 5: Analysis of AIR Partition Scheduler and

Dispatcher processing overheads

which includes recommendations for adaptation of IMA-like
architectures. Some results on reconfigurable IMA [4] and
UAS adaptive and reconfigurable control [25] do exist.

A hardware/software co-design approach and the concept of
system observer is present in the Simplex Architecture [3].
Emergence of non-intrusive runtime verification techniques
for embedded systems in general is addressed in [26, 18],
while its applicability to complex safety-critical systems is
presented in [13]. However, no previous work have applied
such techniques to the realm of TSP systems.

7. CONCLUSION
This paper addressed fundamental mechanisms providing
support for adaptive and self-adaptive behaviour to appli-
cations based on the AIR architecture for time- and space-
partitioned systems. The usage of hybrid platforms com-
bining processor cores and programmable logic makes ad-
vantageous the use of a hardware-assisted design comple-
mented with some simple software-based components. The
computational cost of such components decreases and the
non-intrusive runtime verification of the system enables im-
provements in both safety and timeliness properties.

Non-intrusive runtime verification is a relevant contribution
with respect to verification, validation and certification ef-
forts of TSP systems that will be extended in future research.
Additional works aim to taking advantage of multicore plat-
forms in AIR [6], which include adaptation/reconfiguration
features and, in the near future, RV capabilities.

8. REFERENCES
[1] AEEC (Airlines Electronic Engineering Committee).

Avionics Application Software Standard Interface,
Part 1 - Required Services, Mar. 2006.

[2] AEEC (Airlines Electronic Engineering Committee).
Avionics Application Software Standard Interface,
Part 2 - Extended Services, Dec. 2008.

[3] S. Bak, D. Chivukula, O. Adekunle, M. Sun,
M. Caccamo, and L. Sha. The System-level Simplex
Architecture for improved real-time embedded system
safety. In 15th IEEE Real-Time and Embedded Tech.
and Applications Symposium, pages 99–107, Apr. 2009.

[4] P. Bieber, E. Noulard, C. Pagetti, T. Planche, and
F. Vialard. Preliminary design of future reconfigurable
IMA platforms. In Second Int. Workshop on Adaptive

Table 2: Logical SLOC metrics and instantiation entities for fundamental AIR software components

Software-based approach Hardware-assisted approach

Logical SLOC Instantiation Logical SLOC Instantiation

AIR Partition Scheduler a 13 POS-level clock tick - -

AIR RV Partition Scheduler b - - 12 partition preemption point

AIR Dispatcher c 10 POS-level clock tick 8 partition preemption point

AIR PAL – register deadline 34 APEX call 4 APEX call

AIR PAL – unregister deadline 12 APEX call 6 APEX call

AIR PAL – Pre POS Process Scheduler d 16 POS-level clock tick 4 POS-level clock tick

POS-level clock tick ISR >190 e POS-level clock tick >190 POS-level clock tick

a
Specified and analysed in [20, 7]

b
Specified in Algorithm 1

c
Specified in Algorithm 2

d
Specified in Algorithm 3; software-based approach specified and analysed in [20, 7]

e
RTEMS 4.9 [16] C code only; plus >182 assembly instructions in the POS-level clock interrupt service routine (ISR)

and Reconfigurable Embedded Systems, pages 21–24,
Grenoble, France, Oct. 2009.

[5] J. Carraca, R. C. Pinto, J. P. Craveiro, and J. Rufino.
Information security in time- and space-partitioned
architectures for aerospace systems. In Proc. 6th
Simpósio de Informática (INForum 2014), pages
457–472, Porto, Portugal, Sept. 2014.

[6] J. P. Craveiro. Real-Time Scheduling in Multicore
Time- and Space-Partitioned Architectures. PhD
thesis, Universidade de Lisboa, Portugal, Aug. 2013.

[7] J. P. Craveiro and J. Rufino. Adaptability support in
time- and space-partitioned aerospace systems. In
Proc. 2nd Int. Conf. on Adaptive and Self-adaptive
Systems and Applic., Lisbon, Portugal, Nov. 2010.

[8] J. P. Craveiro and J. Rufino. Schedulability analysis in
partitioned systems for aerospace avionics. In Proc.
15th IEEE Int. Conf. on Emerging Technologies and
Factory Automation, Bilbao, Spain, Sept. 2010.

[9] A. Crespo, I. Ripoll, and M. Masmano. Partitioned
embedded architecture based on hypervisor: the
XtratuM approach. In Proc. 8th European Dependable
Computing Conf., Valencia, Spain, Apr. 2010.

[10] DILIGENT. ZYBO Reference Manual, Feb. 2014.

[11] A. Easwaran, I. Lee, O. Sokolsky, and S. Vestal. A
compositional scheduling framework for digital
avionics systems. In Proc. 15th IEEE Int. Conf.
Embedded Real-Time Computing Systems and
Applications, Beijing, China, Aug. 2009.

[12] B. Ford, P. Bull, A. Grigg, L. Guan, and I. Phillips.
Adaptive architectures for future highly dependable,
real-time systems. In Proc. 7th Ann. Conf. on Systems
Engineering Research, Loughborough, UK, Apr. 2009.

[13] A. Kane. Runtime Monitoring for Safety-Critical
Embedded Systems. PhD thesis, Carnegie Mellon
University, USA, Feb. 2015.

[14] Y. Lee, D. Kim, M. Younis, and J. Zhou. Partition
scheduling in APEX runtime environment for
embedded avionics software. In Proc. 5th Int. Conf. on
Real-Time Computing Systems and Applications,
pages 103–109, Hiroshima, Japan, 1998.

[15] V. Nguyen, S. Deeds-Rubin, T. Tan, and B. Boehm. A
SLOC counting standard. In The 22nd Int. Ann.

Forum on COCOMO and Systems/Software Cost
Modelling, Los Angeles, USA, 2007.

[16] On-Line Applications Research Corporation. RTEMS
C User’s Guide, 4.9.4 edition, 2010.

[17] R. C. Pinto and J. Rufino. Towards non-invasive
run-time verification of real-time systems. In 26th
Euromicro Conf. on Real-Time Systems - WIP
Session, pages 25–28, Madrid, Spain, July 2014.

[18] T. Reinbacher, M. Fugger, and J. Brauer. Runtime
verification of embedded real-time systems. Formal
Methods in System Design, 24(3):203–239, 2014.

[19] J. Rosa, J. P. Craveiro, and J. Rufino. Safe online
reconfiguration of time- and space-partitioned systems.
In Proc. 9th IEEE Int. Conf. on Industrial Informatics
(INDIN 2011), Caparica, Lisbon, Portugal, July 2011.

[20] J. Rufino, J. Craveiro, and P. Verissimo. Architecting
robustness and timeliness in a new generation of
aerospace systems. In A. Casimiro, R. de Lemos, and
C. Gacek, editors, Architecting Dependable Systems
VII, volume 6420 of LNCS. Springer, 2010.

[21] J. Rushby. Partitioning in avionics architectures:
Requirements, mechanisms and assurance. Technical
Report NASA CR-1999-209347, SRI International,
California, USA, June 1999.

[22] S. Santos, J. Rufino, T. Schoofs, C. Tatibana, and
J. Windsor. A portable ARINC 653 standard
interface. In Proc. 27th Digital Avionics Systems
Conf., St. Paul, MN, USA, Oct. 2008.

[23] M. Tafazoli. A study of on-orbit spacecraft failures.
Acta Astronautica, 64(2-3):195–205, 2009.

[24] TSP Working Group. Avionics time and space
partitioning user needs. Technical Note
TEC-SW/09-247/JW, ESA, Aug. 2009.

[25] B. Vanek. Future trends in UAS avionics. In Proc.
10th Int. Symp. of Hungarian Researchers on
Computational Intelligence and Informatics,
Budapest, Hungary, Nov. 2009.

[26] C. Watterson and D. Heffernan. Runtime verification
and monitoring of embedded systems. Software, IET,
1(5):172–179, October 2007.

[27] Wind River. Wind River VxWorks 653 Platform 2.4
and 2.5, 2015. Retrieved Jun 29, 2015.

	1 Introduction and Motivation
	2 AIR Technology for TSP systems
	2.1 System architecture
	2.2 Two-level scheduling
	2.3 Health monitoring and error handling

	3 Adaptability
	3.1 Mode-based schedules
	3.2 Process deadline violation monitoring

	4 Mechanisms for Non-intrusive Runtime Verification
	5 Integrating Adaptability and Non-intrusive Runtime Verification
	5.1 Mode-based schedules
	5.2 Process deadline violation monitoring
	5.3 Analysis and discussion

	6 Related Work
	7 Conclusion
	8 References

