
PHOTOGRAMMETR IC  ENGINEER ING &  REMOTE  SENS ING F e b r u a r y ฀ 2 0 1 3 175

Towards Integration of GLAS into a National  
Fuel Mapping Program

Birgit Peterson, Kurtis Nelson, and Bruce Wylie

Abstract
Comprehensive canopy structure and fuel data are critical 
for understanding and modeling wildland fire. The LANDFIRE 
project produces such data nationwide based on a collection 
of field observations, Landsat imagery, and other geospatial 
data. Where field data are not available, alternate strategies 
are being investigated. In this study, vegetation structure data 
available from GLAS were used to fill this data gap for the 
Yukon Flats Ecoregion of interior Alaska. The GLAS-derived 
structure and fuel layers and the original LANDFIRE layers 
were subsequently used as inputs into a fire behavior model 
to determine what effect the revised inputs would have on 
the model outputs. The outputs showed that inclusion of the 
GLAS data enabled better landscape-level characterization of 
vegetation structure and therefore enabled a broader wildland 
fire modeling capability. The results of this work underscore 
how GLAS data can be incorporated into LANDFIRE canopy 
structure and fuel mapping.

Introduction 
Wildland fire has significant impacts on ecosystems and 
human populations. Accurate assessments of canopy fuel, 
among other parameters, are needed to understand fire behav-
ior and predict fire occurrences. A major source of spatial 
canopy fuel data for the US is the LANDFIRE, or Landscape 
Fire and Resource Management Planning Tools, program, 
a collaborative effort of the US Department of Interior, US 
Forest Service, and other partners. LANDFIRE consists of over 
20 geospatial layers (see www.landfire.gov for complete list 
and descriptions) and aspatial databases describing potential 
and existing vegetation type, existing vegetation structure, 
surface and canopy fuel, and fire regimes, including histori-
cal fire frequency and severity and vegetation departure from 
reference conditions (Rollins, 2009). LANDFIRE data products 
are mapped at a 30 m spatial resolution and continuous data 
coverage is provided for all 50 states.

LANDFIRE canopy fuel layers include estimates of forest 
canopy height (CH), forest canopy cover (CC), canopy base 
height (CBH) and canopy bulk density (CBD; Reeves et al., 
2009). CH is the average height of forested vegetation within a 
pixel. CC is the percentage of the ground obscured by forested 
vegetation. CBH is the lowest height within the canopy at 
which sufficient fuel exists to propagate fire vertically into the 
canopy, as determined by a threshold based on field obser-
vations (Reinhardt et al., 2006). CBD is the mass of  available 
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canopy fuel per unit of canopy volume. These variables are 
used to represent the structure of canopy fuel in fire risk, fire 
behavior, and fire effects models. 

Traditionally, fuel parameters are obtained through field 
observations of vegetation structure providing detailed tree-
level inventory data. While providing accurate descriptions 
of fuel conditions, collecting such data is resource intensive 
and costly, especially for remote areas. Furthermore, reliance 
on disparate field data collections, using non-standardized 
protocols, complicates the production of nationally consistent 
maps. In contrast, remote sensing provides consistent, compre-
hensive data over large areas and can be easily integrated with 
other spatial data to create fuel maps. For example, Keane et al. 
(2000) derived the necessary layers for fire behavior modeling 
in the Gila National Forest, New Mexico using a combination 
of Landsat-5 Thematic Mapper (TM) imagery, field data, terrain 
modeling, and ancillary data. Rollins et al. (2004) combined 
field data, Landsat TM imagery, aerial photos, ecosystems simu-
lation, and biophysical gradient modeling to map fuel and fire 
regimes in Montana. Falkowski et al. (2005) used Advanced 
Spaceborne Thermal Emission and Reflection Radiometer data 
and gradient modeling to produce spatial surface and canopy 
fuel inputs for fire behavior modeling in Idaho.

More recently, lidar has been used to quantify vegetation 
canopy structure (Dubayah and Drake, 2000; Lefsky et al., 
2002), and is particularly useful for mapping fuel (Andersen 
et al., 2005; Erdody and Moskal, 2010; Morsdorf et al., 2004; 
Popescu and Zhao, 2008; Riaño et al., 2004; Vauhkonen, 
2010). While these previous studies used airborne, discrete-
return lidar data, recent work has shown the applicability 
of spaceborne Geoscience Laser Altimeter System (GLAS) 
large-footprint (nominally ~65 m diameter), waveform data 
for estimating forest canopy structure. Pang et al. (2008) 
compared estimates of observed crown area weighted height 
values from data collected at sites throughout the western US 
to GLAS-derived metrics. They achieved an R2 of 0.69 with a 
root mean square error of 6.2 m. Nelson et al. (2009) estimated 
timber volume in Siberia using GLAS and Moderate Resolution 
Imaging Spectroradiometer data, with error bounds of 
611.8 m3/ha in low slope and 612.4 m3/ha in high slope 
conditions. Sun et al. (2008) compared height indexes derived 
from the Laser Vegetation Imaging Sensor (LVIS) and GLAS, 
which have been shown to be correlated with canopy struc-
ture characteristics. For example, Drake et al. (2002) found 
that the 50th percentile height of cumulative energy (H50) was 
correlated with biomass. Sun et al. (2008) attained R2 values 
of up to 0.77 between LVIS- and GLAS-derived H50 metrics.



F e b r u a r y ฀ 2 0 1 3  PHOTOGRAMMETR IC  ENGINEER ING &  REMOTE  SENS ING176

area, with a central transect running nominally north-south 
through the center of the plot (Figure 2). Three subplots, each 
14 m long 3 2 m wide, were centered along the main transect 
16 m apart. Vegetation sampling was conducted within these 
subplots. Diameter at breast height (DBH) and species were 
recorded for each tree .2 m tall within the subplots. Basal 
diameter and species were recorded for all trees 1 to 2 m tall 
and all shrubs .1 m tall. For each 2 m segment along the 
central transect, within each subplot, the height, height to live 
crown, and crown radius were measured for the tree (.2 m 
tall) closest to the segment midpoint. CBD estimates were cal-
culated using the FuelCalc program (Reinhardt et al., 2006), 
which uses the inventory data (e.g., height, DBH) and a set of 
species-based allometric equations to calculate plot- or stand-
level estimates of CBD. While widely used, FuelCalc is limited 
by several factors, including a lack of allometric equations for 
all species and the assumption that vegetation material is dis-
tributed evenly within each tree crown. CBD was not estimated 
for six plots in pure willow, alder, or aspen stands because 
canopy fire propagation through broadleaf canopies is rare in 
boreal forests (Van Wagner, 1977).

Airborne Lidar

An airborne lidar survey was conducted in the summer of 
2009 for a 2,605 km2 subarea of the YFE (Figure 1). The data 
were collected by Aero-Metric, Inc. with an airborne Optec 
ALTM Gemini and have a horizontal accuracy of 1.15 m, with a 
nominal point spacing of 2.3 m and a vertical positional accu-
racy of 0.10 m. The raw data were processed and delivered as 
bare-earth and first-return digital surface models.

GLAS

The GLAS GLA01 (waveform data) and GLA14 (land/canopy 
elevation data and footprint locations) products were obtained 
from the L3f acquisition (release 31) for the entire YFE. The 

Data from airborne systems often enable very detailed, 
high-resolution descriptions of vegetation structure, how-
ever they are neither nationally consistent nor contiguous. In 
contrast, between 2003 and 2009, GLAS sampled data globally, 
though at discrete points along disparate tracks, with 172 m 
along-track spacing between footprint centers. Therefore, 
while the vegetation structure data obtained from the GLAS 
waveforms are consistent, they are not spatially continuous, 
requiring modeling between sampled points. This can be 
accomplished by integrating remotely sensed imagery and 
ancillary data layers with the GLAS data to model vegetation 
structure continuously over large areas.

While some vegetation structure and fuel parameters can 
be directly inferred from lidar data, others must be modeled, 
often using empirical approaches such as regression against 
metrics derived from field observations (Dubayah and Drake, 
2000). The derivation of vegetation structure parameters from 
airborne lidar data, most notably canopy height, has become 
commonplace. The utility of GLAS data has also been success-
fully demonstrated for estimating canopy height in a variety of 
biomes (Lefsky et al., 2007; Los et al., 2011; Selkowitz et al., 
2012) and has also been used recently to estimate other fuel-
related parameters (García et al., 2012; Neuenschwander et al., 
2008). The results of these previous studies advance the inves-
tigation of large scale mapping initiatives utilizing vegetation 
structure estimates from lidar. This paper seeks to expand 
on previous work using lidar for estimating canopy fuel over 
large areas and integrating different lidar data sources.

Objective
The objective of this study is to demonstrate a method for 
deriving a consistent, nationally-available, three-dimensional 
vegetation structure dataset for informing high quality canopy 
fuel maps. Specifically, lidar data collected at different scales 
are leveraged to prototype regional-to-national scale canopy 
fuel mapping methods for a study area in interior Alaska. 
By linking canopy fuel parameters derived from airborne 
lidar data and GLAS, the utility of GLAS data for obtaining the 
desired vegetation structure characteristics is demonstrated. 
Finally, the impact of using lidar-derived canopy fuel data 
on wildland fire modeling results is highlighted by compar-
ing simulated fire behavior using LANDFIRE and lidar-derived 
canopy fuel inputs.

Study Area
The study area is located in the Yukon Flats Ecoregion (YFE; 
Gallant et al., 1995) of interior Alaska and encompasses 
approximately 33,400 km2 (Figure 1). Much of the vegetation 
is comprised of short-statured boreal forest. Common tree 
species are black spruce (Picea mariana), white spruce (Picea 
glauca), Alaska birch (Betula neoalaskana), poplar (Populus 
sp.), alder (Alnus sp.), and willow (Salix sp.), with shrubs 
dominating the understory. Ground cover includes various 
moss, sphagnum, lichen, and graminoid species. Dominant 
forest type varies over relatively small scales (10s to 100s of 
meters), making the vegetated landscape heterogeneous and 
complex. The terrain of the YFE is flat, with 95 percent of 
the area at <3˚ slope as indicated by the National Elevation 
Dataset. Slopes increase to the south as the region transitions 
into the White Mountains. 

Data

Field Data

A total of 24 field plots were sampled at two sites during 
the summer of 2010. Each plot represented a 90 m 3 90 m 

Figure 1. Map of the YFE study area. Extent of the 
airborne lidar is shown in gray. GLAS footprints for 
campaign L3f are indicated by the black dots. Field plots 
are located within the area mapped by the airborne lidar 
but are not co-located with GLAS footprints.
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bare-earth returns were in the 3 m window, the CBH value was 
zero. While CBH in this case could be understory vegetation 
and not actual tree branches, the vertical separation of ground 
and vegetation was the important factor.

CBD is not directly measurable either in the field or from 
lidar. The methods used to derive CBD are explained in detail 
in Peterson and Nelson (2011) and are summarized here. For 
each field plot, the maximum, mean, and minimum HAG val-
ues were calculated. Additionally, the lidar point clouds were 
gridded at 10 m. Within each grid cell the ratio of canopy 
returns above six height thresholds (at 1 m, 2 m, 3m, 4 m, 5 m, 
6 m above ground) to the total number of canopy returns was 
calculated to provide a measure of changing vertical canopy 
density. The maximum threshold was set to 6 m because 
only one plot had a mean HAG height .7 m. From the grid 
cells intersecting the field plots, the maximum, minimum, 
and mean of these ratios were calculated to derive plot-level 
values. These HAG and ratio-derived values were then used 
as independent variables, while the FuelCalc-based estimates 
of CBD were used as dependent variables in a stepwise linear 
regression to identify a model for estimating CBD for all field 
plots. The model developed in Peterson and Nelson (2011) 
was then applied to the entire set of airborne lidar data where 
the National Land Cover Database 2001 Land Cover data 
(NLCD; Selkowitz and Stehman, 2011) indicated evergreen or 
mixed forest.

GLAS

Canopy Height
Deriving CH from the GLAS data involved three steps: (a) iden-
tifying the signal beginning and signal end in the waveform, 
(b) identifying the ground and canopy top within the signal, 
and (c) differencing the canopy top and ground to derive CH 
(Figure 3). The waveform signal is identified by applying 
a threshold based on background noise values (Pang et al., 
2008). Different noise/signal thresholds were calculated by 
adding multiples of the background noise standard deviation 
to the mean background noise values provided in the GLA01 
product. Any portion of the waveform above a given thresh-
old value was assumed to be signal. Canopy top was simply 
inferred as the first return above a given threshold. Because 
vegetation canopies in the YFE tend to be relatively open and 
the terrain is very flat, the strongest peak in the waveform can 
reasonably be assumed to be the ground. Ground was also 
derived using the method described by Sun et al. (2008), for 
finding the lowest peak within the signal of the waveform. 
Multiple estimates of CH were calculated for each waveform 
using combinations of the different noise/signal thresholds 
and ground finding procedures. Each estimate was compared 
with the HAG layer, because of a lack of coincident field data. 
For each GLAS footprint coincident with airborne lidar, a 
subset area was delineated by a 15 m radius around each foot-
print center. While the radius of the GLAS footprint is consid-
erably larger, the laser energy is greatest at the footprint center 
and decreases at further distances, therefore GLAS waveforms 
are most representative of the footprint centers (Rosette et al., 
2010). A circular area with a radius of 15 m around the foot-
print center encompasses only 12 percent of the footprint area 
but receives 50 percent of the incident laser energy (Nelson 
et al., 2009). The maximum HAG value was calculated for each 
subset, and the CH estimate having the highest correlation 
with this value was used for further modeling and mapping.

Canopy Cover 
CC was estimated from the GLAS waveform following the 
approach described in Hyde et al. (2005), in which the return 
waveform is separated into ground and canopy energy com-
ponents, and the relationship between the canopy energy and 

GLA01 product consists of the raw GLAS waveform and statis-
tics about the mean and standard deviation of the background 
noise. Included in the GLA14 product is a set of metrics 
describing Gaussian curves fit to the waveform, includ-
ing number of peaks, width, center, and amplitude of each 
Gaussian (Harding and Carabajal, 2005). The L3f acquisition 
occurred between 24 May and 26 June 2006. There are 7,432 
GLAS footprints within the YFE study area, with 639 of these 
falling within the subset area surveyed by the airborne lidar.

Landsat Mosaic

Six Landsat-5 TM scenes acquired between 21 August and 
01 September 2008 were converted to at sensor reflectance 
and brightness temperature. The scenes were mosaicked and 
clipped to the YFE boundary. Path scene edges were smoothed 
using a linear regression technique to match  adjacent paths 
(Ji et al., 2012).

Methods

Airborne Lidar

CH, CC, and CBH were derived directly from the lidar point 
cloud. Height above ground (HAG), representing CH, was 
derived from the airborne lidar data by differencing the high-
est first-return value with the mean value of the bare-earth 
elevation at a 3 3 3 m grid size. A 3 m grid size was chosen 
because it nested well within the 30 m resolution of the 
LANDFIRE data, allowed for approximation of most tree crowns, 
yet still retained substantial vertical information based on 
the nominal point spacing of the survey (1 point per 2.3 m). 
Canopy cover was calculated, as defined by McGaughey 
(2010), as the ratio of lidar returns reflected from above a 
given height (in this case 3 m), divided by the total number of 
returns for each 3 m pixel. CBH was estimated by calculating 
the difference between the lowest non-bare-earth  classified 
return and the bare-earth return per 3 m pixel. If only 

Figure 2. Schematic showing the layout of the central 
transect and subplots of the field sampling design.
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used as separate estimates of CBH. In the second method, the 
10th, 20th, 30th, 40th, and 50th percentiles of cumulative energy 
(Figure 3) were used as estimates of CBH. The best method 
for estimating CBH was identified by comparison with CBH 
derived from the airborne lidar data.

Canopy Bulk Density 
Percentile heights of cumulative waveform energy (Sun et al., 
2008), canopy depth, and total waveform energy (Peterson 
et al., 2007) were derived from the GLAS waveforms. These, 
plus the Gaussian metrics and GLAS-derived CH, were used 
as independent variables in a regression analysis. CBD values 
from the airborne lidar-based map were extracted for each 
GLAS footprint and used as dependent variables in the regres-
sion. A stepwise linear regression procedure was used to 
identify a model for estimating CBD, which was applied to the 
rest of the GLAS footprints in the YFE to estimate CBD for those 
locations.

Extrapolation to YFE 

Because the GLAS data are sampled at discrete locations, a 
regression-tree approach was used to extrapolate GLAS-based 
CH, CC, CBH, and CBD estimates to the entire YFE by incorporat-
ing Landsat TM imagery and ancillary data. Classification and 
regression trees have been widely utilized for ecological data 
analysis and classifying remotely sensed imagery because of 
their ability to model non-linear, complex relationships, yet 
are relatively simple to implement (De’ath and Fabricius, 2000; 
Lawrence and Wright, 2001; Yang et al., 2003). The seven 
Landsat TM spectral bands, elevation, slope, aspect, and NLCD 
land cover values were used as independent variables. The 
values for each of these layers were extracted at each GLAS 
footprint center. For CH, CC, and CBH, the GLAS-derived estimates 
that were best correlated with the airborne lidar estimates were 

the total energy of the waveform is assumed to be correlated 
with CC. Ground cover and other low-lying vegetation can 
become convolved with the leading edge of the of the ground 
energy peak, which is otherwise assumed to be symmetrical. 
Therefore, to obtain a “pure” total ground energy return value, 
the energy of the trailing half of the ground energy peak, 
which does not include vegetation signal, was doubled. This 
ground energy value was subtracted from the total energy in 
the entire waveform return signal to identify the total canopy 
energy component. The canopy energy was divided by the 
total energy resulting in the CC estimate. Hyde et al. (2005) 
adjusted the ground energy value to account for lower reflect-
ance of the ground surface as opposed to vegetation. Here, 
no adjustment was made to the ground energy total because 
low, dense ground cover obscured most of the bare ground. 
As with CH, multiple methods were used to estimate CC using 
different noise thresholds and ground finding procedures, and 
the resulting estimates were compared with the airborne lidar 
CC to select the method used for further mapping.

Canopy Base Height
Two methods were used to identify CBH using GLAS waveform 
metrics. The first method used the Gaussian metrics identified 
in the Data Section and illustrated in Figure 3. For waveforms 
delineated by more than one Gaussian, the lowest Gaussian 
was assumed to be the ground return. The second lowest 
Gaussian was assumed to be influenced by the vegetation 
structure of the lower part of the canopy, and therefore, the 
center and standard deviation values of the second Gaussian 
were used to derive CBH. A set of metrics was calculated to 
estimate CBH by multiplying the standard deviation of the 
 second Gaussian by four simple coefficients (0.1, 0.25, 0.5, 
and 1), and the products were subtracted from the Gaussian 
center to test which metric was most correlated with CBH 
derived from the airborne data. The resulting values were 

(a) (b)

Figure 3. Metrics derived from GLAS waveforms: (a) Example GLAS waveform from the YFE. Canopy top 
was defined as the first signal above the background noise threshold. The ground was defined as the 
midpoint of the last waveform peak above the background noise threshold, here the strongest return. The 
thick black line shows the cumulative energy profile; and (b) Gaussians fit to the waveform. The lowest 
Gaussian was assumed to correspond to ground, while the second lowest Gaussian was assumed to be 
influenced by the lower portions of the vegetation canopy.
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and used as the dependent variable in the regression tree 
modeling.

Canopy Base Height 
Initial comparisons between airborne lidar-derived and GLAS-
derived CBH estimates using all 639 footprints showed a very 
weak relationship (r ,0.1). Applying the same filters as for CC 
above and eliminating footprints where airborne lidar-based 
CBH estimates were anomalous (,0 and .10 m) reduced the 
total number of footprints used in the comparison to 31. The 
strongest relationship was between the maximum airborne 
lidar-derived CBH value and the 30th percentile  cumulative 
energy GLAS metric (r = 0.50, RMSD = 2.02 m). The 30th 
 percentile height metric was calculated for all GLAS waveforms 
and, applying the data filters as above, used as the dependent 
variable in the regression tree modeling.

Canopy Bulk Density
The results of the various modeling steps for CBD can be found 
in Peterson and Nelson (2011) and are summarized here. The 
final regression model relating the field data and the air-
borne lidar metrics had an adjusted R2 of 0.67, and a residual 
standard error (RSE) of 0.05 kg m23 and was used to generate 
the airborne lidar-derived map of CBD. This map was used 
to obtain the dependent variable for predicting CBD from the 
GLAS metrics. The best modeling results were obtained after 
using the same slope, land cover, and single Gaussian filters 
as above, plus where the standard deviation of the mapped 
CBD value within a 60 m radius of a footprint center was 
>0.05 kg m23. The GLAS footprints were then split into two sets 
based on NLCD forest class: evergreen forest or mixed ever-
green/deciduous forest. The evergreen forest model (N = 30) 
had an adjusted R2 of 0.46 and an RSE of 0.03 kg m23, and the 
final mixed stands model (N = 29) had an adjusted R2 of 0.72 
and an RSE of 0.06 kg m23. For the regression tree modeling, 
all GLAS footprint locations throughout the YFE that passed the 
filters were separated into forest classes based on NLCD forest 
type and the appropriate regression model was applied to esti-
mate CBD. These estimates were then used as the dependent 
variable values in the regression tree modeling.

Comparison of Fuel Maps

CH was binned into two height classes with a break at 10 m to 
match LANDFIRE. The GLAS-derived CH had 78 percent of pixels 
mapped in the shorter height class compared to 71 percent 
of the LANDFIRE pixels. CC was binned into three classes: low 
(,25 %), medium (>25 % and ,60 %), and high (>60%). 
The GLAS-derived CC had 89 percent of pixels mapped in the 
25 to 60 percent bin, with 10 percent of pixels in the lowest 
class and less than 1 percent in the highest class. The LANDFIRE 
CC had 53 percent of pixels in the middle class with nearly 
equal amounts in the higher and lower classes. GLAS-derived 
CBH was slightly lower on average than the LANDFIRE CBH at 
1.7 m compared to 2.4 m and had lower variance with stand-
ard deviation of 0.9 m and 3.2 m. CBD was higher using GLAS 
data than LANDFIRE, a trend also observed in the field data.

Fire Modeling Results

Comparing the two FlamMap runs showed a higher incidence 
of active crown fire using the GLAS-derived canopy fuel layers 
than when using the LANDFIRE layers, as shown in the CFA 
output in Figure 4. The area contained in each CFA class using 
each of the two canopy fuel layers is shown in Table 1. The 
ROS was higher on average using the LANDFIRE fuel, ranging 
from 1 to 39 m min21 with a mean of 17, though the range of 
values was greater using the GLAS-derived canopy fuel, where 
ROS was between 1 and 85 m min21 with a mean of 14. FL was 

used as dependent variables for the modeling and mapping. 
For CBD, the GLAS metrics utilized in the final regression model 
were calculated for all waveforms and used to derive CBD which 
was used as the dependent variable in the regression tree mod-
eling. Cubist (http://www.rulequest.com) was used to develop 
the regression trees, which were then applied to the geospa-
tial datasets to map CH, CC, CBH, and CBD. Cubist is utilized by 
LANDFIRE, and other projects, for large area mapping because 
it is an efficient and reasonably accurate tool for generating 
regression trees (Homer et al., 2012; Reeves et al., 2009). NLCD 
land cover was used to assign appropriate CBD values to hard-
wood forest and/or non-forested pixels.

Fire Modeling 

To assess the impact of mapping canopy fuel using lidar data, 
GLAS-derived layers were used to conduct a fire behavior anal-
ysis and the resulting outputs were compared with the results 
using LANDFIRE layers for the same analysis. The FlamMap 
(Finney, 2006) fire behavior modeling system was used to 
simulate fire behavior over the YFE. First, FlamMap was run 
using unmodified LANDFIRE data and averaged weather condi-
tions from a nearby weather station. Then, the four canopy 
fuel layers were replaced with the GLAS-derived versions 
and the model was re-run, keeping the rest of the input data 
and conditions constant. Each FlamMap run produced flame 
length (FL), rate of spread (ROS), and crown fire activity (CFA) 
output layers. FL and ROS are continuous outputs measured 
in meters and meters per minute respectively. The CFA layer 
separates the landscape into unburned (water, barren, etc.), 
surface fire only, passive crown fire (individual tree torching), 
and active crown fire (fire spreading from tree crown to tree 
crown) classes.

Results

Comparison of Airborne Lidar- and GLAS-derived Fuel Metrics 

Canopy Height 
Initial comparisons between HAG and GLAS CH resulted in 
weak correlations, therefore a series of filters were applied 
to the dataset to strengthen the relationship. Footprints were 
eliminated that were located on slopes .3˚, were located in 
non-forested areas (according to NLCD), or had a background 
noise standard deviation .1.6, resulting in 385 remaining 
footprints. The correlations improved with the strongest 
between the maximum HAG value and the GLAS-derived CH 
estimate using the four standard deviation noise threshold 
and the maximum peak as the ground location (r = 0.64, root 
mean square difference (RMSD) = 3.2 m). These parameters 
were then used to calculate CH for the full set of GLAS wave-
forms in the YFE, applying the same data filters as above, and 
the resultant values were used as the dependent variable in 
the regression tree modeling.

Canopy Cover 
Correlations between the airborne lidar-derived and GLAS-
derived CC using all 639 footprints were very weak (r ,0.1). 
Applying the same data filters as above, plus eliminating 
waveforms characterized by a single Gaussian and footprints 
with ,75 percent forest cover according to the NLCD land 
cover classification, indicating cover type homogeneity, 
reduced the number of footprints used in the comparison to 
152. The strongest relationship was between the maximum 
airborne lidar-derived CC and the GLAS-derived CC using the 
5 standard deviation noise threshold and defining the strong-
est peak as the ground return (r = 0.61, RMSD = 21.75%). 
This method for estimating CC was then applied to all of the 
GLAS waveforms, applying the same data filters listed above, 
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a 3 m error is significant relative to the total height of the 
 canopy. Even so, incorporating GLAS would provide themati-
cally continuous height estimates, allowing for finer catego-
ries than the current LANDFIRE CH layers, and provide height 
estimates where field data are sparse, resulting in a wider 
range of ecological and biophysical conditions being repre-
sented in the regression tree model.

Canopy Cover

As yet, few studies have used GLAS data for deriving CC. 
Neuenschwander et al. (2008) explained 74 percent of the 
variability between ratios of GLAS canopy to ground energy 
and percent woody cover estimated from airborne lidar in 
central Texas. Garcia et al. (2012) reported R2 values of up to 
0.89 between GLAS and airborne lidar derived CC estimates 
using various methods in eastern Texas. In addition, Hyde 
et al. (2005) reported an R2 of 0.81 between field and LVIS-
derived estimates of CC in a Sierra Nevada forest of California. 
In the present study, the range of CC values from the field data 
is similar to that predicted from GLAS, indicating that the GLAS 
estimates are reasonable. The utility of the GLAS-derived CC 
estimates will need to be explored beyond the flat terrain, 
open forest conditions of interior Alaska before being applied 
to other areas. Comparisons with field observed or airborne 
lidar derived CC in denser forest stands, more mountainous 
conditions, and/or different surface reflectances will need to 
be undertaken before using these metrics to inform a national 
mapping effort. The full range of potential CC values (0 to 
100%) would need to be included in an analysis, as both 
extremely open and closed canopies will pose challenges to 
the derivation of CC. For mapping large areas, passive optical 
data such as Landsat imagery are commonly used for esti-
mating CC by applying empirical models (Cohen et al., 2003; 
Huang et al., 2001). 

However, training data are needed to establish meaning-
ful relationships between the Landsat observations and actual 
CC. The results reported here indicate that GLAS-derived CC 
could potentially be used as training data for areas lacking 
field data for modeling. In addition, GLAS data can support 
mapping CC continuously, rather than large thematic bins as 
in the LANDFIRE data.

lower using LANDFIRE layers, ranging from 1 to 21 m with a 
mean of 9, compared to 1 to 63 m with a mean of 10 when 
using the GLAS-derived fuel.

Discussion

Canopy Height

Previous studies have used various characteristics of the 
GLAS waveform to determine the ground location needed for 
estimating CH (Lee et al., 2011; Lefsky et al., 2007; Los et al., 
2011). This study indicates that for the simple, open structure 
of the forests in the YFE, the strongest waveform peak appears 
to be a good indicator of ground. For forests beyond the YFE, 
this observation will need to be tested, especially in moun-
tainous areas and where denser canopies make detection of 
the ground more difficult because less energy reaches the 
ground. The GLAS-derived CH underestimated height relative 
to the CH derived from the airborne lidar data. This under-
estimation may be attributed in part to geolocational error 
and higher HAG values occurring at the fringe of each 15 m 
radius subset, where illumination energy is lower (Nelson 
et al., 2009). Furthermore, the GLAS data were collected in the 
late-spring and early-summer when the vegetation of boreal 
Alaska is typically not yet full leaf-on, and greater penetration 
of the lidar energy into the canopy can be expected, in con-
trast the airborne lidar were collected in mid to late summer. 
The RMSD of 3.2 m falls within the range reported in previous 
studies. However, in the short statured forest of boreal Alaska, 

TABLE 1. AREA BURNED BY FIRE TYPE USING LANDFIRE- AND 

GLAS-DERIVED CANOPY FUEL 

 LANDFIRE canopy fuel GLAS-derived canopy fuel

  % of   % of  
Fire Type Area (ha) burned area Area (ha) burned area

Surface 1,774,107 57% 1,291,037 42%
Passive Crown 1,018,688 33% 899,202 29%
Active Crown 302,576 10% 908,920 29%

(a) (b)

Figure 4. CFA outputs from FlamMap showing the areas that were unburned, and those that burned with 
surface and crown fires between two runs using (a) LANDFIRE-derived, and (b) GLAS-derived canopy fuel 
inputs.
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reporting an R2 of 0.78. In the present study, splitting the GLAS 
footprints by forest type resulted in an R2 of 0. 61 for ever-
green forests and an R2 of 0.72 for mixed forests. This split 
likely resulted in a stronger relationship between the GLAS-
based estimates of CBD and the field-based estimates because 
CBD was not calculated for hardwood species. Therefore, two 
waveforms may be described by similar metrics, but one fall-
ing in an evergreen stand will have a much higher CBD associ-
ated with it than one falling into a mixed stand with a large 
percentage of hardwoods. 

Comparisons of Canopy Fuel Maps

A formal accuracy assessment of the canopy fuel maps is 
not available at this time due to lack of available field data. 
However, other studies have found common limitations of 
the LANDFIRE canopy fuel layers including CBH and CC values 
being too high, and CBD values being too low (e.g., Krasnow 
et al., 2009). As shown in the results, these issues appear to 
be mitigated in the GLAS-derived layers. LANDFIRE field data 
in many parts of Alaska were very sparse, especially for 
structural data. Additionally, much of the available structural 
data were collected through aerial surveys and classified into 
broad classes rather than continuous estimates of forest height 
and canopy cover. These broad classes obscure much of the 
spatial variability present on the landscape. LANDFIRE maps 
of CBH and CBD also relied on expert opinion of expected fire 
behavior under historic weather conditions, with the canopy 
fuel values modified to reflect the expert’s approximations. 
The GLAS-based canopy fuel maps, with the exception of CBD, 
are also not directly related to field observations. However, 
because lidar is inherently sensitive to vegetation structure, 
there is high confidence in the estimates derived from lidar 
and, consequently, the maps extrapolated from these esti-
mates. Moreover, because of the spatial distribution of GLAS 
footprints throughout the YFE, the study area is well repre-
sented by GLAS data, so more of the spatial variability of the 
landscape is captured in the canopy fuel maps.

FlamMap Modeling

The outputs of the FlamMap modeling analyses indicate 
significant differences between the model runs using dif-
ferent sources of canopy fuel data. Many of the differences 
can be attributed to the thematic resolution of the canopy 
fuel layers. Specifically, the continuous fuel layers derived 
from GLAS capture more of the spatial detail of the landscape 
than the binned LANDFIRE layers, and therefore the FlamMap 
outputs show much more spatial detail as well. It is not 
possible to validate the actual values of the fire behavior 
model outputs for a given pixel, because the model runs were 
entirely theoretical, based on historical but arbitrary weather 
conditions. However, significant differences existed between 
model runs and the spatial patterns in the output tended to 
better represent the features on the landscape using the GLAS-
derived canopy fuel. This leads to the conclusion that the 
GLAS-derived fuel layers enable a more detailed fire behavior 
analysis and that the current operational fire behavior mod-
eling systems are sensitive to the more detailed canopy fuel 
information. The outputs of these models are used for both 
strategic planning and tactical incident response to make 
resource management decisions with significant impacts to 
communities, ecosystems, and agency budgets. Therefore, it is 
advantageous to incorporate the best available data and meth-
ods into developing the inputs for fire models, to ensure the 
best resource management decision making. The availability 
of nationwide, consistent, three-dimensional geospatial data 
will allow future canopy fuel data to be more detailed and 
higher quality than those available using imagery alone.

Canopy Base Height

CBH represents a critical canopy characteristic in fire behavior 
modeling, being a factor in determining the transition from 
surface to crown fire. However, CBH can be difficult to esti-
mate, and is not directly measurable in the field. Therefore, 
the ability to consistently estimate CBH using lidar is very 
appealing. Previous studies using airborne lidar have had 
varied success in estimating CBH as compared to field-based 
estimates. Andersen et al. (2005) achieved an R2 of 0.77 
deriving plot-level CBH for stands consisting primarily of 
Douglas-fir (Pseudotsuga menziesii) and western hemlock 
(Tsuga heterophylla), in Washington state. Popescu and Zhao 
(2008) used a tree delineation algorithm to analyze airborne 
lidar data and predict CBH. R2 values varied from 0.49 to 0.80 
depending on species and lidar characteristics used for the 
estimation. Vauhkonen (2010) used high density airborne 
lidar to estimate CBH with R2 values ranging between 0.71 
to 0.84 depending on lidar metrics used for model building. 
Peterson et al. (2007) used LVIS data to estimate CBH for a Sierra 
Nevadan forest, with an R2 of 0.59. The use of GLAS data for 
deriving CBH, as presented here, is novel. To achieve a mean-
ingful relationship between the airborne lidar- and GLAS-based 
CBH estimates, severe filtering of the GLAS data was required. 
However, the volume of GLAS data available over large areas 
allows such filtering while still leaves sufficient footprints to 
use for modeling.

A particular challenge to deriving CBH from waveform 
lidar data is separating low vegetation from the ground return. 
The strong ground signals commonly observed in the GLAS 
waveforms for the YFE make this somewhat easier. This will 
become more difficult in areas of steeper terrain as the ground 
pulse spreads and in denser canopy areas as the ground pulse 
is weakened. The percentiles of waveform energy were better 
indicators of CBH than the Gaussian-based estimators, indi-
cating that these might be more sensitive to the bulk density 
threshold needed to carry fire from the surface into the can-
opy. However, as underscored by the strict filtering needed to 
obtain meaningful correlations between the GLAS and airborne 
lidar derived CBH estimates; this work is still exploratory. 
Better field data representing the lower portion of the canopy 
and understory vegetation and co-located with GLAS footprints 
would allow a better examination of how the waveform shape 
relates to the canopy structure and, therefore, better demarca-
tion of the CBH threshold in the waveform.

Canopy Bulk Density 

The regression model relating the airborne lidar and field-
based CBD explains nearly 70 percent of the variability in the 
data set. This is lower than those reported by Andersen et al. 
(2005; R2 = 0.84) and Erdody and Moskal (2010; R2 = 0.83). 
The results reported by Riaño et al. (2004) varied consider-
ably depending on which method was used to identify lidar 
canopy returns and the regression equation used to predict 
CBD (R2 up to 0.80). Several factors likely affected these 
results: (a) the FuelCalc CBD allometries were not available for 
some boreal species, (b) the field data are not representative of 
the full range of CBD values present within the YFE, and (c) the 
dominant vegetation type in the YFE changes across relatively 
small spatial scales (10s to 100s of meters), leading to within-
plot variability. The studies listed above conducted their work 
using data collected in relatively homogenous plots, which 
simplifies both the calculation of field-based CBD and the deri-
vation of lidar metrics.

The results of the GLAS-based CBD prediction are com-
parable to previous work by Peterson et al. (2007) using LVIS 
data to derive CBD in the mixed conifer forests of the Sierra 
Nevada, who reported an R2 of 0.71. Garćia et al. (2012) 
derived CBD from GLAS data in forested areas of eastern Texas, 
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Conclusions
Currently, GLAS is integral to any regional or national lidar-
based mapping of vegetation canopy structure as it repre-
sents the only data set consistently available at those scales. 
Multiple applications require consistent nationwide three-
dimensional canopy data. As more studies demonstrate the 
utility of GLAS data for vegetation structure derivation over 
a variety of forest and topographic conditions it becomes 
apparent that programs such as LANDFIRE will greatly benefit 
from including these data. The decommissioning of GLAS in 
2010 has presented a challenge to continuing these large-area 
lidar assessments of canopy structure required by LANDFIRE 
and similar programs. While a follow-on mission is expected 
to be launched in the near future, it is still important for users 
of such data to continue to foster the creation of a compre-
hensive, high-quality national three-dimensional lidar dataset 
suitable for landscape mapping. For large portions of the 
nation, high quality data regarding forest structure continue 
to be sparse; yet such data are becoming more essential to the 
characterization of fire behavior and the informing of other 
resource management objectives.
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