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Abstract

This paper introduces an approach for enabling exist-

ing multi-view stereo methods to operate on extremely large

unstructured photo collections. The main idea is to decom-

pose the collection into a set of overlapping sets of photos

that can be processed in parallel, and to merge the result-

ing reconstructions. This overlapping clustering problem

is formulated as a constrained optimization and solved it-

eratively. The merging algorithm, designed to be parallel

and out-of-core, incorporates robust filtering steps to elim-

inate low-quality reconstructions and enforce global visi-

bility constraints. The approach has been tested on several

large datasets downloaded from Flickr.com, including one

with over ten thousand images, yielding a 3D reconstruc-

tion with nearly thirty million points.

1. Introduction

The state of the art in 3D reconstruction from images has

undergone a revolution in the last few years. Coupled with

the explosion of imagery available online and advances in

computing, we have the opportunity to run reconstruction

algorithms at massive scale. Indeed, we can now attempt to

reconstruct the entire world, i.e., every building, landscape,

and (static) object that can be photographed.

The most important technological ingredients towards

this goal are already in place. Matching algorithms (e.g.,

SIFT [17]) provide accurate correspondences, structure-

from-motion (SFM) algorithms use these correspondences

to estimate precise camera pose, and multi-view-stereo

(MVS) methods take images with pose as input and produce

dense 3D models with accuracy nearly on par with laser

scanners [22]. Indeed, this type of pipeline has already been

demonstrated by a few research groups [11, 12, 14, 19],

with impressive results.

To reconstruct everything, one key challenge is scala-

bility.1 In particular, how can we devise reconstruction al-

gorithms that operate at Internet-scale, i.e., on the millions

of images available on Internet sites such as Flickr.com?

1There are other challenges such as handling complex BRDFs and

lighting variations, which we do not address in this paper.

Figure 1. Our dense reconstruction of Piazza San Marco (Venice)

from 13, 703 images with 27,707,825 reconstructed MVS points

(further upsampled x9 for high quality point-based rendering).

Given recent progress on Internet-scale matching and SFM

(notably Agarwal et al.’s Rome-in-a-day project [1]), we fo-

cus our efforts in this paper on the last stage of the pipeline,

i.e., Internet-scale MVS.

MVS algorithms are based on the idea of correlating

measurements from several images at once to derive 3D

surface information. Many MVS algorithms aim at recon-

structing a global 3D model by using all the images avail-

able simultaneously [9, 13, 20, 24]. Such an approach is not

feasible as the number of images grows. Instead, it becomes

important to select the right subset of images, and to cluster

them into manageable pieces.

We propose a novel view selection and clustering scheme

that allows a wide class of MVS algorithms to scale up to

massive photo sets. Combined with a new merging method

that robustly filters out low-quality or erroneous points, we

demonstrate our approach running for thousands of images

of large sites and one entire city. Our system is the first to

demonstrate an unstructured MVS approach at city-scale.

We propose an overlapping view clustering problem [2],

in which the goal is to decompose the set of input images

into clusters that have small overlap. Overlap is important

for the MVS problem, as a strict partition would undersam-

ple surfaces near cluster boundaries. Once clustered, we

apply a state-of-the-art MVS algorithm to reconstruct dense

3D points, and then merge the resulting reconstructions into
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a single dense point-based model. Robust filtering algo-

rithms are introduced to handle reconstruction errors and

the vast variations in reconstruction quality that occur be-

tween distant and nearby views of objects in Internet photo

collections. The filters are designed to be out-of-core and

parallel, in order to process a large number of MVS points

efficiently. We show visualizations of models containing

tens of millions of points (see Figure 1).

1.1. Related Work

Scalability has rarely been a consideration in prior MVS

algorithms, as prior datasets have been either relatively

small [22] or highly structured (e.g., a video sequence

which can be decomposed into short time intervals [19]).

Nevertheless, some algorithms lend themselves naturally

to parallelization. In particular, several algorithms operate

by solving for a depth map for each image, using a local

neighborhood of nearby images, and then merge the result-

ing reconstructions [11, 12, 18, 19]. Each depth map can

be computed independently and in parallel. However, the

depth maps tend to be noisy and highly redundant, leading

to wasted computational effort. Therefore, these algorithms

typically require additional post-processing steps to clean

up and merge the depth maps.

Many of the best performing MVS algorithms instead

reconstruct a global 3D model directly from the input im-

ages [9, 13, 20, 24]. Global methods can avoid redun-

dant computations and often do not require a clean-up post-

process, but scale poorly. One exception is Jancosek et al.

[14] who achieve scalability by designing the algorithm out-

of-core. However, this is a sequential algorithm. In contrast,

we seek an out-of-core algorithm that is also parallelizable.

With depth-map based MVS algorithms, several authors

have succeeded in large-scale MVS reconstructions [18,

19]. Pollefeys et al. [19] present a real-time MVS sys-

tem for long image sequences. They estimate a depth map

for each input image, reduce noise by fusing nearby depth

maps, and merge the resulting depth maps into a single

mesh model. Micusik et al. [18] propose a piece-wise

planar depth map computation algorithm with very similar

clean-up and merging steps. However, both methods have

been tested only on highly structured, street-view datasets

obtained by a video camera mounted on a moving van, and

not the unstructured photo collections that we consider in

this paper, which pose additional challenges.

Besides scalability, variation in reconstruction quality is

another challenge in handling large unorganized image col-

lections, as surfaces may be imaged from both close up and

far away. Goesele et al. [12] proposed the first MVS method

applied to Internet photo collections, which handles varia-

tion in image sampling resolutions by selecting images with

the most compatible resolution. Gallup et al. [10] select

images at different baselines and image resolutions to con-
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Figure 2. Our view clustering algorithm takes images {Ii}, SFM

points {Pj}, and their associated visibility information {Vj}, then

produces overlapping image clusters {Ck}.

trol depth accuracy. Both of these methods handle variation

by selecting images prior to reconstruction. These tech-

niques may be used in conjunction with the methods pro-

posed here, but the major difference in our work is that we

also handle the variation in a post-processing step, when

merging reconstructions. We note that some prior depth

map merging algorithms take into account estimates of un-

certainty, e.g., by taking weighted combinations of depth

samples to recover a mesh [4, 25]. While such approaches

can handle noise variation, we find they do not perform well

for large Internet photo collections, where resolution varia-

tion is a major factor, because combining high and low reso-

lution geometries in the standard ways will tend to attenuate

high resolution detail. We instead propose a simple merg-

ing strategy that filters out low resolution geometry, which

we have found to be robust and well-tailored to recovering

a point-based model as output.

The rest of the paper is organized as follows. The view-

clustering algorithm is explained in Section 2, and details

of the MVS point merging and rendering are given in Sec-

tion 3. Experimental results are provided in Section 4 and

we conclude the paper in Section 5. Our implementation of

the proposed view-clustering algorithm is available at [6].

2. View Clustering

We assume that our input images {Ii} have been pro-

cessed by an SFM algorithm to yield camera poses and a

sparse set of 3D points {Pj}, each of which is visible in a

set of images denoted by Vj . We treat these SFM points as

sparse samples of the dense reconstruction that MVS will

produce. As such, they can be used as a basis for view clus-

tering. More specifically, the goal of view clustering is to

find (an unknown number of) overlapping image clusters

{Ck} such that each cluster is of manageable size, and each

SFM point can be accurately reconstructed by at least one

of the clusters (see Figure 2).

2.1. Problem Formulation

The clustering formulation is designed to satisfy the fol-

lowing three constraints: (1) redundant images are excluded

from the clusters (compactness), (2) each cluster is small

enough for an MVS reconstruction (size constraint); and



(3) MVS reconstructions from these clusters result in min-

imal loss of content and detail compared to that obtainable

by processing the full image set (coverage). Compactness

is important for computational efficiency but also to im-

prove accuracy, as Internet photo collections often contain

hundreds or thousands of photos acquired from nearly the

same viewpoint, and a cluster consisting entirely of near-

duplicate views will yield a noisy reconstruction due to in-

sufficient baseline.

More concretely, our objective is to minimize the total

number of images
∑

k |Ck| in the output clusters, subject to

the following two constraints. The first is an upper bound

on the size of each cluster so that an MVS algorithm can be

used for each cluster independently: ∀k, |Ck| ≤ α. α is de-

termined by computational resources, particularly memory

limitations.

The second encourages the coverage of the final MVS

reconstructions as follows. We say an SFM point Pj is cov-

ered if it is sufficiently well reconstructed by the cameras

in at least one cluster Ck. To quantify this notion of “well-

reconstructed,” we introduce a function f(P, C) that mea-

sures the expected reconstruction accuracy achieved at a 3D

location P by a set of images C. This function depends on

the camera baselines and pixel sampling rates (see the Ap-

pendix for our definition of f ). We say that Pj is covered if

its reconstruction accuracy in at least one of the clusters Ck

is at least λ times f(Pj , Vj), which is the expected accuracy

obtained when using all of Pj’s visible images Vj :

Pj is covered if max
k

f(Pj , Ck ∩ Vj) ≥ λf(Pj , Vj),

where λ = 0.7 in our experiments. The coverage constraint

is that for each set of SFM points visible in one image, the

ratio of covered points must be at least δ (also set to 0.7, in

our experiments). Note that we enforce this coverage ratio

on each image, instead of on the entire reconstruction, to

encourage good spatial coverage and uniformity.

In summary, our overlapping clustering formulation is

defined as follows:

Minimize
∑

k

|Ck| subject to (compactness)

• ∀k |Ck| ≤ α, (size)

• ∀i
{# of covered points in Ii}

{# of points in Ii}
≥ δ. (coverage)

There are a couple of points worth noting about this for-

mulation. First, the minimization causes redundant images

to be discarded, whenever constraints can be achieved with

a smaller set of images. Second, the proposed formulation

automatically allows overlapping clusters. Finally, the for-

mulation implicitly incorporates image quality factors (e.g.,

sensor noise, blur, poor exposure), as poor quality images

have fewer SFM points, and are thus more costly to include

with the coverage constraint.

1. SFM filter - merge SFM points

2. Image selection - remove redundant images

Yes

No

3. Cluster division - enforce size constraint

4. Image addition - enforce coverage

Finish
Is size constraint

satisfied?

Figure 3. View clustering algorithm consists of four steps, where

the last two steps are iterated until all the constraints are satisfied.

2.2. View Clustering Algorithm

Solving the proposed clustering problem is challenging,

because the constraints are not in a form readily handled by

existing methods like k-means, normalized cuts [16, 23],

etc. Before presenting our algorithm, we first introduce

some neighborhood relations for images and SFM points.

A pair of images Il and Im are defined to be neighbors if

there exists an SFM point that is visible in both images.

Similarly, a pair of image sets are neighbors if there exists

a pair of images (one from each set) that are neighbors. Fi-

nally, a pair of SFM points Pj and Pk are defined to be

neighbors if 1) they have similar visibility, that is, their vis-

ible image sets Vj and Vk are neighbors according to the

above definition, and 2) the projected locations of Pj and

Pk are within τ1 pixels in every image in (Vj ∪ Vk), where

τ1 = 64 is used.

Figure 3 provides an overview of our approach, which

consists of four steps. The first two steps are pre-processing,

while the last two steps are repeated in an iterative loop.

1. SFM filter – merging SFM points: Having accurate

measures of point visibility is key to the success of our view

clustering procedure. Undetected or unmatched image fea-

tures lead to errors in the point visibility estimates Vj (typ-

ically in the form of missing images). We obtain more reli-

able visibility estimates by aggregating visibility data over

a local neighborhood, and merging points in that neighbor-

hood. The position of the merged point is the average of its

neighbors, while the visibility becomes the union. This step

also significantly reduces the number of SFM points and

improves running time of the remaining three steps. Specif-

ically, starting from a set of SFM points, we randomly select

one point, merge it with its neighbors, output the merged

point, and remove both the point and its neighbors from

the input set. We repeat the procedure until the input set

is empty. The set of merged points becomes the new point

set, which, with some abuse of notation, is also denoted as

{Pj}.2 See Figure 4 for a sample output of this step.

2. Image selection – removing redundant images: Start-

2An even better approach would be to re-detect and match new image

features to improve visibility information as in [8]. However, this algo-

rithm would be significantly more expensive.
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Figure 4. Top: The first step of our algorithm is to merge SFM

points to enrich visibility information (SFM filter). Bottom: Sam-

ple results of our view clustering algorithm. View points belonging

to extracted clusters are illustrated in different colors.

ing with the full image set, we test each image and remove it

if the coverage constraint still holds after the removal. The

removal test is performed for all the images enumerated in

increasing order of image resolution (# of pixels), so that

low-resolution images are removed first. Note that images

are permanently discarded in this step to speed up the fol-

lowing main optimization steps.

3. Cluster division – enforcing the size constraint: Next,

we enforce the size constraint by splitting clusters, while ig-

noring coverage. More concretely, we divide an image clus-

ter into smaller components if it violates the size constraint.

The division of a cluster is performed by the Normalized-

Cuts algorithm [23] on a visibility graph, where nodes

are images. The edge weight elm between an image pair

(Il, Im) measures how much Il and Im together contribute

to MVS reconstruction at relevant SFM points: elm =
∑

Pj∈Θlm

f(Pj ,{Il,Im})
f(Pj ,Vj)

, where Θlm denotes a set of SFM

points visible in both Il and Im. Intuitively, images with

high MVS contribution have high edge weights among them

and are less likely to be cut. The division of a cluster repeats

until the size constraint is satisfied for all the clusters.

4. Image addition – enforcing coverage: The coverage

constraint may have been violated in step 3, and we now add

images to each cluster in order to cover more SFM points

and reestablish coverage. In this step, we first construct a

list of possible actions, where each action measures the ef-

fectiveness of adding an image to a cluster to increase cov-

erage. More concretely, for each uncovered SFM point Pj ,

let Ck = argmaxCl
f(Pj , Cl) be the cluster with the max-

imum reconstruction accuracy. Then, for Pj , we create an

action {(I → Ck), g} that adds image I(∈ Vj , /∈ Ck) to

Ck, where g measures the effectiveness and is defined as

f(Pj , Ck ∪ {I}) − f(Pj , Ck). Note that we only consider

actions that add images to Ck instead of every cluster that

could cover Pj for computational efficiency. Since actions

with the same image and cluster are generated from multi-

ple SFM points, we merge such actions while summing up

the measured effectiveness g. Actions in the list are sorted

in a decreasing order of their effectiveness.

Having constructed an action list, one approach would

be to take the action with the highest score, then recompute

the list again, which is computationally too expensive. In-

stead, we consider actions whose scores are more than 0.7
times the highest score in the list, then repeat taking an ac-

tion from the top of the list. Since an action may change

the effectiveness of other similar actions, after taking one

action, we remove any conflicting ones from the list, where

two actions {(I → C), g}, {(I ′ → C ′), g′} are conflicting

if I and I ′ are neighbors. The list construction and image

addition repeat until the coverage constraint is satisfied.

After the image addition, the size constraint may be vi-

olated, and the last two steps are repeated until both con-

straints are satisfied.

We note that the size and coverage constraints are not

difficult to satisfy; indeed, an extreme solution is to creat-

ing a small cluster for each SFM point with sufficient base-

line/resolution. In this extreme case, the resulting clusters

will likely contain many duplicates and therefore have a

poor compactness score. Typically, our approach of split-

ting clusters then adding a few images (usually at bound-

aries) tends to rapidly and easily satisfy the constraints

while achieving reasonable (though not optimal) compact-

ness scores; it terminates in a couple of iterations in all of

our experiments. While our approach is not globally op-

timal, we note that achieving optimal compactness is not

critical for our application.

3. MVS Filtering and Rendering

Having extracted image clusters, Patch-based MVS soft-

ware (PMVS) by Furukawa et al. [7] is used to reconstruct

3D points for each cluster independently. Any MVS algo-

rithm could be used, but we chose PMVS, which is publicly

available. In this section, we propose two filters that are

used in merging reconstructed points to handle reconstruc-

tion errors and variations in reconstruction quality (see Fig-

ures 5 and 6). Our filtering algorithms are designed to be

out-of-core and operate in parallel to handle a large number

of MVS points efficiently. We now describe the two fil-

tering algorithms, discuss their scalability, and explain how

merged MVS points are rendered.

3.1. Quality Filter

The same surface region may be reconstructed in mul-

tiple clusters with varying reconstruction quality: nearby

clusters produce dense, accurate points, while distant clus-

ters produce sparse, noisy points. We want to filter out the

latter, which is realized by the following quality filter. Let

Pj and Vj denote an MVS point and its visibility informa-

tion estimated by the MVS algorithm, respectively. Sup-
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Figure 5. Quality and visibility filters are used in merging MVS reconstructions, where both filters are designed to be out-of-core as well as

parallel. Left: MVS point P is tested against the filters. Right: Pseudo codes, where loops highlighted in blue can be executed in parallel.

pose Pj has been reconstructed from cluster Ck (a refer-

ence cluster). We first collect MVS points {Qm} and their

associated visibility information {Vm} from all the clusters

1) that have compatible normals with Pj , i.e., angle dif-

ference being less than 90◦; and 2) whose projected loca-

tions are within τ2 pixels from that of Pj in every image

in Vj (τ2 = 8 in our experiments). From the collected

MVS points, we compute a histogram {Hl}, where Hl is

the sum of reconstruction accuracies f(Qm, Vm) associated

with MVS points reconstructed from Cl. Since a cluster

with accurate and dense points should have a significantly

larger value than the others, Pj is filtered out if the cor-

responding histogram value Hk is less than half the max-

imum: Hk < 0.5 maxl Hl. We repeat this procedure by

examining each reference cluster in turn, which can be exe-

cuted in parallel.

3.2. Visibility Filter

The visibility filter enforces consistency in visibility in-

formation associated with MVS points over the entire re-

construction. The filter is, in fact, very similar to the one

used in PMVS [7, 9]. The difference is that PMVS enforces

the intra-cluster consistency inside each cluster, while our

filter enforces inter-cluster visibility consistency over an en-

tire reconstruction by comparing PMVS outputs from all the

clusters. More concretely, for each MVS point, we count

the number of times it conflicts with reconstructions from

other clusters. The point is filtered out if the conflict count

is more than three. Conflict counts are computed as follows.

Let Θk denote a set of MVS points reconstructed from

cluster Ck (a reference cluster). We construct depths maps

for images in Ck by projecting Θk into their visible images.

Depth maps also store reconstruction accuracies associated

with MVS points.3 We compute the conflict count of each

MVS point P in non-reference clusters as the number of

depth maps in Ck that conflict with P . P is defined to con-

flict with a depth map if P is closer to the camera than the

3PMVS recovers a point for every abutting set of 2 × 2 pixels in our

setting, and depth maps are computed at half resolution. For an image

belonging to multiple clusters, multiple depth maps are computed.

Before MVS Filters After MVS Filters

Figure 6. MVS points reconstructed from three view clusters be-

fore and after the MVS filters for St Peter’s Basilica. Before the

filtering, MVS points have large overlaps. Each cluster has its

own 3D space, highlighted in color rectangles, where reconstruc-

tions become the most accurate over all the clusters. Points outside

such a space are mostly removed by our filters.

depth map by a small margin, and the reconstruction ac-

curacy of P is less than half the value stored in the depth

map. Note that we repeat this procedure by changing the

reference cluster one by one, which can again be executed

in parallel. The conflict count of the same MVS point is

computed multiple times from different executions of this

step, and their sum is tested against the threshold.

3.3. Scalability

MVS reconstruction and filtering are the most computa-

tionally expensive and memory intensive parts of our sys-

tem. Here, we focus on memory complexity, which is the

more critical factor for scalability.4

The memory expense of the MVS reconstruction step

depends on the choice of the core MVS algorithm, but is

not an issue with our system, because the number of im-

4Memory consumption is more critical for MVS, because PMVS (and

some other MVS algorithms [12]) can utilize SFM visibility information

to restrict sets of images to be matched instead of exhaustively trying every

possible pair. Therefore, running-time of such algorithms is more or less

linear in the amount of surface area to be reconstructed, while memory

limitation is an unavoidable issue.



ages in each cluster is upper-bounded by the constant α.

We now discuss the average case memory requirements of

the MVS filtering algorithms as the worst-case analysis is

difficult. Let NP , NI and NM denote the average numbers

of pixels per image, images per cluster, and reconstructed

MVS points per cluster, respectively. NC denotes the num-

ber of extracted image clusters. The amount of memory

required for the quality and visibility filters are 2NM and

2NM + NP NI , respectively, because 1) MVS points from

at most two clusters need to be stored at any instant in

both filters, and 2) the visibility filter needs to store depth

maps for only one cluster at a time. Note that the total

amount of data processed by the two filters are NMNC and

NMNC + NP NINC , respectively, which will not fit into

memory for very large datasets.

3.4. Rendering

Having reconstructed MVS points, we associate a color

with each point by taking the average of pixel colors at its

image projections in the visible images. QSplat [21] is used

to visualize 3D colored points with small modifications and

enhancements as described in the supplementary material,

including 3×3 upsampling of MVS points to improve point-

based rendering quality.

4. Experimental Results

The proposed algorithm is implemented in C++ and a

PC with Dual Xeon 2.27 GHz processors is used for the

experiments. We thank Agarwal et al. [1] for providing us

with the datasets and SFM outputs. We use Graclus [5, 16]

for Normalized Cuts, PMVS [7] for the core MVS recon-

struction, and QSplat [21] for the final visualization. Our

view clustering algorithm has several parameters. We use

the same set of parameters for all the datasets: α = 150,

β = 4, λ = 0.7 and δ = 0.7 (see the Appendix for the

definition of β).

Sample input images and final renderings of the recon-

structed point models are shown in Figures 1 and 7. The

Dubrovnik dataset, with more than 6,000 images, covers an

entire old city. Piazza San Marco is our largest dataset, with

nearly 14, 000 images. Table 1 provides some statistics, i.e.,

the number of input images, the number of images after im-

age selection and the total number of images in the final

clusters (including multiple counting of images appearing

in multiple clusters). Note that the image selection discards

nearly 90% of the images for Trevi Fountain, whose scene

geometry is relatively simple and view configurations have

high overlap. The bottom of the table lists the running time

of the three steps of our system. The MVS reconstruction

and filtering steps can be parallelized, so we provide run-

ning time for both serial and parallel executions (assuming

one node per cluster), with the latter numbers inside paren-

Table 1. Statistics. See text for details.
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Figure 8. For each pair, the left and right figures show recon-

structed MVS points from mutually exclusive clusters and over-

lapping clusters found by the proposed algorithm.

theses. Note that we simulate the parallel execution with a

set of processes run serially on a single node in our exper-

iments, with timings recorded for each process, and their

maximum being the running time of the parallel execution

for each step. The quality filter typically takes five to tens

time longer than the visibility filter. Note that the numbers

of points in the final rendering are nine times the numbers

of points after the MVS filters, due to upsampling (supple-

mentary material), yielding nearly 130,000,000 points for

Dubrovnik and 250,000,000 points for Piazza San Marco.

Figure 8 illustrates the importance of the overlapping

clustering formulation. Reconstructions from mutually ex-

clusive clusters (without the image addition step) suffer

from holes and possible loss of accuracy.

To compare our approach against previous work, we use

a state-of-the-art depth-map based MVS algorithm by Goe-

sele et al. [12], which is designed for Internet community

photo collections, to process one of our datasets (using soft-

ware provided by the authors). Their depth map estimation

itself is scalable and parallelizable, while their chosen mesh

extraction step (Poisson-based depth map merging [15]) is

not.5 We ran their algorithm on St. Peter’s Basilica with an

entire image set (1275 images) as well as images reduced by

our image selection algorithm (298 images) (see Figure 9).

5Poisson-based merging can be run out-of-core [3], but not in parallel.
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Figure 7. A sample input image is shown at the top for each dataset, followed by final renderings of the reconstructed point model.

As noted in the introduction, depth map MVS reconstruc-

tions tend to be noisy, and mesh extraction software [15]

is essential for filtering out the noise. Goesele’s method

benefits from our image selection step, as the surface qual-

ity and execution time both improve (342 minutes with

image selection, 640 minutes without, on a single node);

this result indicates that the image selection step is useful

for other MVS algorithms, not just PMVS. Figure 9 also

shows shaded renderings of our point model and a surface

mesh extracted by the same meshing software [15]. While

the shaded point rendering is much noisier than the shaded

mesh rendering (due to noisy normal estimates by PMVS),

the colored point renderings yield high quality image-based

rendering visualizations, as seen in Figures 1 and 7.

Our last experiment is to observe the running time of our

system with different values of α (the upper bound on the

cluster size) on both serial and parallel executions (the right

of Figure 9). As α decreases, the number of view clus-

ters increases, as does the amount of overlap, leading to

some redundant effort and very slow serial execution. In

contrast, the parallel execution becomes faster due to dis-

tributed computation. One interesting observation, how-

ever, is that when α becomes too small (when α = 30),

parallel execution becomes slower, likely due to excessive

overlap, resulting in many redundant MVS points that are

reconstructed and then processed by the MVS filters.

5. Conclusion

We have developed a novel MVS system for very large

unorganized photo collections. Our system is the first to

demonstrate an unorganized MVS reconstruction at city-

scale. A key technical contribution is in the view cluster-

ing algorithm, which divides an image set into overlapping

view clusters, after which an MVS algorithm can be used

to reconstruct each cluster in parallel. We have also pre-

sented MVS filtering algorithms to handle quality variations

and to enforce inter-cluster consistency constraints over the

entire reconstruction; these algorithms are designed to run

out-of-core and in parallel for scalability. Finally, using a

point-based rendering algorithm, we demonstrate visualiz-

ing large architectural settings, automatically reconstructed

from online photo collections.
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Appendix A: Measuring MVS Accuracy

f(P, C) measures the MVS reconstruction accuracy at

a 3D location P achieved by a set of images C. Two ge-

ometric factors are taken into account: baselines and pixel

sampling rates. We first define an MVS reconstruction ac-

curacy for a pair of images (Il, Im) at P :

f ′(P, Il, Im) = g(∠IlPIm) · min (1/r(P, Il), 1/r(P, Im)) .

A baseline is measured by the angle ∠IlPIm between two

viewing rays emanating from P towards the two camera

centers. We apply a Gaussian function to the angle: g(x) =

exp
(

− (x−20)2

2σ2
x

)

, whose peak is at 20◦. We set σx = 5◦

for x < 20◦ and σx = 15◦ for x > 20◦. The pixel sam-

pling rate of image Il at P is defined as 1/r(P, Il), where

r(P, I) is the diameter of a sphere centered at P whose pro-

jected diameter equals one pixel in I . Finally, an accuracy

measure f(P, C) for a set of images C is defined as

f(P, C) = max
p∈T(C)

∑

Il,Im∈p

f ′(P, Il, Im). (1)

T(C) denotes a set of every combination of β images in C,

where β is set to min(4, |C|) in our experiments. For each

combination, an accuracy is evaluated as a sum of pairwise

functions f ′, and the maximum over all the combinations

is set to f(P, C). We choose this function because many

MVS algorithms, including PMVS, which is used in our

experiments, use only a few images in reconstructing each

point (or surface region) for computational efficiency.

The evaluation of (1) can be very expensive for a large

image set C. Instead of exhaustively testing every combi-

nation, we greedily construct a set of β images that approx-

imately maximizes the score as follows. After initializing

C by a pair of images that has the highest pairwise score f ′,

we greedily add an image to C that maximizes f(P, C) one

by one (See [12] for a similar technique used for speed up).


