
Towards Interpretable Deep Metric Learning with Structural Matching

Wenliang Zhao1,2,3*, Yongming Rao1,2,3*, Ziyi Wang1,2,3, Jiwen Lu1,2,3†, Jie Zhou1,2,3

1Department of Automation, Tsinghua University, China
2State Key Lab of Intelligent Technologies and Systems, China

3Beijing National Research Center for Information Science and Technology, China

zhaowl20@mails.tsinghua.edu.cn; raoyongming95@gmail.com;

wziyi20@mails.tsinghua.edu.cn; {lujiwen, jzhou}@tsinghua.edu.cn

Abstract

How do the neural networks distinguish two images? It

is of critical importance to understand the matching mech-

anism of deep models for developing reliable intelligent

systems for many risky visual applications such as surveil-

lance and access control. However, most existing deep met-

ric learning methods match the images by comparing fea-

ture vectors, which ignores the spatial structure of images

and thus lacks interpretability. In this paper, we present

a deep interpretable metric learning (DIML) method for

more transparent embedding learning. Unlike conventional

metric learning methods based on feature vector compari-

son, we propose a structural matching strategy that explic-

itly aligns the spatial embeddings by computing an optimal

matching flow between feature maps of the two images. Our

method enables deep models to learn metrics in a more

human-friendly way, where the similarity of two images can

be decomposed to several part-wise similarities and their

contributions to the overall similarity. Our method is model-

agnostic, which can be applied to off-the-shelf backbone net-

works and metric learning methods. We evaluate our method

on three major benchmarks of deep metric learning includ-

ing CUB200-2011, Cars196, and Stanford Online Products,

and achieve substantial improvements over popular metric

learning methods with better interpretability. Code is avail-

able at https://github.com/wl-zhao/DIML.

1. Introduction

Visual similarity plays an important role in a range of

vision tasks including image retrieval [33], person identifi-

cation [4] and image clustering [30]. Recent advances in

learning visual similarity are mostly driven by Deep Metric

Learning (DML), which leverages deep neural networks to

*Equal contribution.
†Corresponding author.

C
N
N

C
N
N

CC

marginal distributionfeature maps

image pair

Optimal

Transport

s= 0.449
s = 0.59

s = 0.12

Figure 1: The main idea of the proposed deep interpretable

metric learning (DIML) method. Unlike most existing deep

metric learning methods match the images by comparing

feature vectors, we propose a structural matching strategy

that explicitly aligns the spatial embeddings by computing

an optimal matching flow between feature maps of the two

images to improve the interpretability of visual similarity.

learn an embedding space where the embedding similarity

in this space can meaningfully reflect the semantic similarity

between samples. A variety of deep metric learning methods

have been proposed and have shown strong superiority in

learning accurate and generalizable visual similarities on var-

ious tasks [7, 42, 16]. Despite the great progress in learning

discriminative embeddings, deep metric learning methods

with better interpretability have drawn limited attention from

the community. Understanding the underlying matching

mechanism of deep metric learning models is of critical im-

portance for developing reliable intelligent systems for many

risky visual applications such as surveillance [34] and access

control [21].

To improve the transparency of deep visual models, many

efforts have been made recently by either explaining the ex-

isting models [52, 31, 1, 2] or modifying models to achieve

better interpretability [48, 49]. For example, visual attri-

bution methods leverage correlation or gradient to find the

important regions that have high contributions to the final

prediction. [48] and [49] propose to add part constraints

ar
X

iv
:2

10
8.

05
88

9v
1

 [
cs

.C
V

]
 1

2
A

ug
 2

02
1

https://github.com/wl-zhao/DIML

and tree structures to construct interpretable CNN models

respectively. However, these methods are only designed for

explaining the reasoning process of how the output of a deep

model is produced and did not consider the interaction be-

tween samples. Although they achieve promising results on

image classification [52, 2], visual question answering [31],

and image generation [1], they cannot explain how visual

similarity is composed. Therefore, how to improve the inter-

pretability of deep metric learning methods is still an open

problem that has barely been visited in previous works.

In this paper, we present a deep interpretable metric learn-

ing (DIML) framework as a first step towards more trans-

parent embedding learning. Different from most existing

deep metric learning methods that match the images by di-

rectly comparing feature vectors, we propose to leverage

the spatial structure of images during matching to improve

interpretability, as illustrated in Figure 1. More specifically,

we measure the similarity of two images by computing an

optimal matching flow between the feature maps using the

optimal transport theory such that the similarity can be de-

composed into several part-wise similarities with different

contributions to the overall similarity. Our framework con-

sists of three key components: 1) Structural Similarity

(SS). Unlike most existing deep metric learning methods

that match the images by comparing feature vectors, we pro-

pose a new similarity/distance metric by measuring the sim-

ilarity of corresponding parts in the feature maps based on

the optimal matching flow; 2) Spatial Cross-Correlation

(CC). To handle the view variance in the image retrieval

problem, we propose to use spatial cross-correlation as the

initial marginal distribution to compute the optimal trans-

port plan; 3) Multi-scale Matching (MM). We also devise

a multi-scale matching strategy to better incorporate exist-

ing metric learning methods and enable us to adaptively

adjust the extra computational cost in large-scale search

problems. Since our method is model-agnostic and our con-

tribution is orthogonal to previous deep metric learning meth-

ods on architectures [14], objective functions [33, 16] and

sampling strategies [44, 51], our method can be applied to

off-the-shelf backbone networks and metric learning meth-

ods even without training. Extensive experimental study on

three major benchmarks of deep metric learning including

CUB200-2011 [40], Cars196 [17] and Stanford Online Prod-

ucts (SOP) [24] shows that our method enables us to achieve

more interpretable metric learning while substantially im-

proving various metric learning methods with or without

re-training the models.

2. Related Work

Deep Metric Learning. Deep metric learning (DML) has

drawn increasing attention recently and become one of the

primary framework for a range of vision tasks including

image retrieval [33, 16], image clustering [30], person re-

identification [4, 27, 3] and face recognition [37, 7, 26].

Previous works on deep metric learning commonly focus

on learning more accurate and robust embeddings to better

reflect the semantic relations among samples. To achieve

this goal, a variety of deep metric learning approaches

are proposed to improve the architectures [45, 14], objec-

tive functions [10, 30, 5, 24, 33, 16] and sampling strate-

gies [44, 9, 20, 51, 28]. Different from these works, there is

a line of deep metric learning research on developing more

effective distance or similarity metrics. Except for the com-

monly used ℓp distance and cosine similarity, signal-to-noise

ratio (SNR) [46] and hyperbolic geodesic distance [15] have

also proven to be effective to reflect the semantic relation-

ships among samples. However, these deep metric learning

methods only consider the distance or similarity between

feature vectors, which ignores the spatial structure of images

and thus lacks interpretability. In this work, we propose to

measure the similarity of two images by explicitly leveraging

the spatial structures of images such that more accurate and

interpretable similarity of two samples can be obtained.

Explainable & Interpretable Vision Models. Recent

years have witnessed remarkable progress in various com-

puter vision tasks driven by the success of deep learn-

ing [18, 12, 19]. Despite the impressive discriminative

power, the interpretability is often viewed as an Achilles’

heel of deep models. Improving the explainability and inter-

pretability of deep models has attracted increasing attention

in recent years. Existing works can be roughly divided into

two groups: 1) explaining existing models through visu-

alization and diagnosis of deep representations; 2) modi-

fying deep models to learn disentangled and interpretable

representations. For example, Zhou et al. [52] proposes a

method named Class Activation Mapping (CAM), which

identifies discriminative regions in feature maps of CNNs

by analyzing the effects on the final classification results.

Grad-CAM [31] improves the method by combining both

the input features and the gradients of a model’s layer. Apart

from these methods focusing on explaining and analyzing

trained models, interpretable vision models are developed

by revising the architectures or training procedure of conven-

tional deep models. Zhang et al. [48] design interpretable

CNNs by enforcing each filter in a high-level convolutional

layer represents a specific object part. [49] combine the

CNNs and decision tree to inherit the advantages of the two

types of models to construct power yet interpretable image

classification models. However, these methods only explain

the reasoning process of how the output of a deep model

is produced and did not consider the interaction between

samples. Therefore, they cannot analyze and explain how

the similarity of the two samples is composed. Recently,

Williford et al. [43] present a study on explainable face

recognition, which uses image editing techniques to gener-

C
N
N

C
N
N

CC

marginal distributions

embedded

feature maps
image pair

s= 0.449
s = 0.59

s = 0.12

Optimal

Transport

optimal transport plan

𝑻
∗

×

similarity matrix

𝑺

HW

=

overall similarity = 0.45

𝑺

Figure 2: The overall pipeline of our deep interpretable metric learning (DIML) framework. The feature maps extracted from

the backbone CNN model are further fed into the cross-correlation module (CC) to compute the marginal distributions that

represent the weights of each location. The optimal transport plan then is obtained using the marginal distributions and the

similarity matrix. Our framework decomposes the visual similarity to part-wise similarities and their contributions, which

enable us to interpret and analyze how a deep model distinguishes two images.

ate a new dataset to evaluate what regions contribute to face

matching. Their benchmark requires prior knowledge on

face structures and thus is hard to generalize to other image

matching problems. Different from these works, we propose

to study a new and more generic problem of interpretable

deep metric learning and provide a basic solution.

3. Approach

3.1. Preliminaries: Deep Metric Learning

Deep metric learning aims to find a distance metric pa-

rameterized by deep neural networks to map the input image

feature pairs to a distance in R that reflects the semantic

similarity of the two images defined by labels. Formally,

given a set of images X = {xk}Nk=1 and the corresponding

labels Y = {yk}Nk=1, deep metric learning introduces the

deep neural networks f : X → Φ ⊂ R
C to map an image

to a feature φk = f(xk), where the semantic patterns of the

input image are extracted. The mainstreams of deep metric

learning aim to learn Mahalanobis distance metrics d(·, ·),
which can be formulated as:

d(xk, xl) = ‖Mf(xk)−Mf(xl)‖2 = ‖g(φk)− g(φl)‖2,

where g(φk) =Mφk := ψk ∈ Ψ is an parametrized linear

projection from the feature space Φ to an embedding space

Ψ ⊂ R
D. Following the configuration in the backbone

networks like ResNet [12] and Inception [35], f can be

decomposed into f = GAP ◦f1, where f1 extracts a feature

map ωk = f1(x
k) ∈ R

H×W×C and GAP is the global

average pooling. The GAP operation abstracts the feature

maps into vectors so as to enable fast similarity calculation.

However, the abstraction on deep features also loses the

spatial structures of the images during the embedding pro-

cess, which makes most deep metric learning methods lack

interpretability—deep models can tell us whether the two im-

ages are similar but cannot show us the reason. Since it is of

importance to understand the matching mechanism in many

risky visual applications, developing a more interpretable

deep metric learning method becomes a critical research

topic but it has barely been visited in previous works.

3.2. Structural Matching via Optimal Transport

To exploit the spatial structures in images for more in-

terpretable deep metric learning, we devise a new structural

matching scheme to compute feature similarity based on

optimal transport theory [39].

Our core algorithm is adopted from the optimal transport

theory, which aims to seek the minimal cost transport plan

between two distributions. Given a source distribution µs and

a target distribution µt that are defined on probability space

U and V respectively, the minimal cost transport plan can be

obtain by minimizing the Wasserstein distance between the

two distributions:

π∗ = arg inf
π∈Π(µs,µt)

∫

U×V

c(u, v)dπ(u, v), (1)

where π∗ is the optimal transport plan, Π(µs, µt) is the joint

probability distribution with marginals µs and µt, and c :
U × V → R

+ is the cost function of transportation.

Different from the above generic formulation, here we

only need to consider the discrete distribution matching for

image feature maps. Consider two feature maps ωs, ωt ∈
R

H×W×C obtained by a backbone (e.g. ResNet50 [12]). We

first use the projection layer g to map each element in the

feature maps ωk
i into an embedding space of dimension D

individually1:

zsi = g(ωs
i) ∈ R

D, ztj = g(ωt
j) ∈ R

D. (2)

1For the sake of simplicity, we use a single subscript i ∈ [1, HW] to

index the spatial location. For pre-trained metric learning models, we can

directly apply the original projection layer on the elements in the feature

maps. Thus, our method does not need any modifications on the parameters.

The cost of transporting one unit of mass from i to j is:

Ci,j = c(i, j) := d(zsi , z
t
j), (3)

where we use the distance metric d(·, ·) for two vectors

(e.g., Euclid distance or cosine distance) as the transport

cost function c. In this discrete case, the transport plan π
matching the two distributions also becomes discrete. Given

the two corresponding discrete distributions µs and µt, the

original optimal transport problem is equivalent to:

T ∗ = argmin
T≥0

tr(CT⊤),

subject to T1 = µs, T⊤
1 = µt.

(4)

T ∗ is the optimal matching flow between these two distribu-

tions, which can be also viewed as the structural matching

plan of the two images. T ∗
i,j is the amount of mass that needs

to move from i to j in order to reach an overall minimum

cost, which represents the contribution of location pair (i, j)
to the overall matching.

To efficiently solve the optimization problem in (4), we

adopt the Sinkhorn divergence algorithm [6] by introducing

an entropic regularizer to enable fast training and inference.

More details about the algorithm can be found in Supple-

mentary Material. Note that the iterative algorithm is fully

differentiable, which can be easily implemented by using the

automatic differentiation library like PyTorch [25] and di-

rectly apply the matching process to any deep metric learning

pipelines.

Discussions. Some closely related works of the proposed

structural matching scheme include EMD metric learn-

ing [50] and Wasserstein embedding learning [8]. However,

different from our method, they usually focus on learning bet-

ter embeddings for set inputs, which can be naturally solved

by the Wasserstein distance metric learning framework. Here

our main contribution is not the matching algorithm itself

but the introduction of structural matching for learning more

interpretable visual similarity.

3.3. Deep Interpretable Metric Learning

In Section 3.2, we have already shown how to calculate

the distance between two distributions using the optimal

transport. In this section, we describe how to perform struc-

tural matching in metric learning. Specifically, our method

consists of three components: 1) we use optimal transport

to calculate the structural similarity (SS) of two images; 2)

we propose to calculate the spatial cross-correlation (CC) to

initialize the marginal distributions in Equation (1); 3) we

propose multi-scale matching (MM) to improve the metric

and reduce the computation cost.

Structural Similarity (SS). Given the marginal distribu-

tions µs and µt (which we will discuss in detail later) and

the cost matrix C, we can then obtain the optimal transport

T ∗ by solving (4). Once we have T ∗, we can define the

structural similarity of two feature maps zs, zt ∈ R
HW×D

as follows:

sstruct(z
s, zt) =

∑

1≤i,j≤HW

s(zsi , z
t
j)T

∗
i,j , (5)

where s(·, ·) is a function to calculate the similarity between

two vectors. Our structural similarity enables us to investi-

gate the composition of the overall similarity, thus we can

easily decompose the similarity and understand how the

similarity between different locations in the two images con-

tribute to the overall similarity. Similarly, given any distance

function d(·, ·), we can also derive our structural distance:

dstruct(z
s, zt) =

∑

1≤i,j≤HW

d(zsi , z
t
j)T

∗
i,j , (6)

Cross-Correlation (CC). Another important part is the def-

inition of the marginal distributions µs and µt. One trivial

solution is to initialize them with uniform distributions, i.e.,

µs
i = µt

i =
1

HW
, ∀1 ≤ i ≤ HW, (7)

which indicates similarity of each location has the identical

weight to the overall similarity. In the structural matching

algorithm, the marginal distributions should characterize the

importance of each spatial location. Simply using uniform

distributions implies that we want to match all the features

with equal importance, which is not desired in some cases.

For example, some image contains background information

that may be less useful for matching thus we want to im-

pose lower weights on the background. Another common

circumstance is when we want to match two images with dif-

ferent views (e.g., the first image contains the whole object

and the second one only contains a part of it), and similarly

we only need to focus on the certain part of the first image

and treat the rest as background. To find the areas that are

most related to the similarity, we propose to calculate the

cross-correlation between the two images as the marginal

distributions for the matching algorithm. Specifically, we

first perform global average pooling to zs, zt and obtain the

global feature z̄s, z̄t. We then slide the global feature of one

image on the feature map of the other image and calculate

point-wise correlation at each spatial location. Formally, the

cross-correlation is calculated as:

αs
i =

〈z̄s, zti 〉

‖z̄s‖‖zti‖
, αt

i =
〈z̄t, zsi 〉

‖z̄t‖‖zsi‖
, (8)

where 〈·, ·, 〉 is the dot product and αk
i ∈ [−1, 1]. After

obtaining the cross-correlation, we can use αk
i to reflect

the importance of zki in the matching problem. To further

reduce the effects of low correlation regions, we discard

the negative value of αk
i and normalize it to obtain the final

marginal distributions:

γki = max(0, αk
i), µ

k
i =

1
∑

i′ γ
k
i′

γki

∀1 ≤ i ≤ HW, k ∈ {s, t}.

(9)

Once we have the marginal distributions µ(k), we can then

apply the structural matching algorithm in Section 3.2 to

calculate the similarity between two images. We will show

in Section 4.3 that cross-correlation is an indispensable com-

ponent to improve the power of DIML.

Multi-scale Matching (MM). Although DIML can capture

the structural similarity of two images and can provide re-

sults easily understood by humans, it requires more com-

putation (O(H2W 2)) to solve the optimal transport prob-

lem. In the application of image retrieval, there are usu-

ally a great number of images in the gallery. Given an

image as an anchor, calculate the structural similarity be-

tween the anchor and all the images in the gallery is in-

efficient. To reduce the computational cost, we propose

a multi-scale matching method for image retrieval. Let

za ∈ R
H×W×D be the feature map of the anchor image

and zk ∈ R
H×W×D, k = 1, . . . , N be the feature maps of

all the images in the gallery. In the first scale (1 × 1), we

compute the global feature using global average pooling to

get z̄a, z̄k ∈ R
D, and calculate cosine similarity between z̄a

and each z̄k as conventional DML methods. We can then

define a truncation number K and select the images with

top-K similarity score and denote the indices of them as IK
to further enhance the similarity with our method. In the

second scale (H ×W), we calculate the structural similarity

between za and each zk, k ∈ IK . Since K is fixed, the

extra computational cost of DIML can be controlled. By

multi-scale matching, we can filter out the obvious dissimi-

lar samples (1× 1 scale, cosine similarity) and focus on the

hard ones (H ×W scale, structural similarity). Combining

the similarity at two scales can also capture both semantic

and spatial information, which is also helpful to improve

retrieval precision. We will show later in Section 4.3 that a

small K can yield a significant performance boost.

3.4. Implementation

One of the major advantages of DIML is that we can

apply DIML to any pre-train model to improve performance

with no need of training. Besides, we can also incorporate

DIML into the training objective. In this section, we will

describe how to use DIML in these two scenarios.

Testing. Given a pre-trained model, we first calculate the

feature maps ωs, ωt ∈ R
H×W×C (before the global pooling

layer) of the image pair xs, xt. We can then use the algorithm

describe in Section 3.3 to compute the structural similarity.

However, HW may be sometimes large in practice (e.g., for

ResNet50 [12], H = W = 7). Therefore, we can use ROI

Align [11] to pool the feature maps to R
H′×W ′×C , where

H ′ < H and W ′ < W . With smaller feature maps, we

can then calculate the structural similarity with a relatively

lower computational cost. In our implementation, we use

H ′ = W ′ = G and we found G = 4 can achieve good

trade-off between cost and performance.

Training. We can also combining DIML and existing metric

learning methods to facilitate training. We now use Margin

loss [44] as an example to show how to incorporate DIML

into the training objective. The Margin loss [44] is defined

as

Lmargin(k, l) =
(

σ + (−1)I(yk 6=yl) (Dk,l − β)
)

+
, (10)

where σ and β are learnable parameters, and Dkl is used to

measure the distance between image k and l:

Dk,l =
1

2

(

dstruct(z
k, zl) + d(z̄k, z̄l)

)

(11)

For the implementation details of other metric learning meth-

ods, please refer to the Supplementary Material.

4. Experiments

To evaluate the performance of our proposed DIML,

we conduct experiments on three widely used datasets

in the image retrieval research field: CUB200-2011 [40],

Cars196 [17], and Standard Online Products (SOP) [24].

4.1. Experiment Setups

Datasets. We evaluate our method under a zero-shot image

retrieval setting, where the training set and test set contain im-

age classes with no intersection. We follow the training/test

set splits in previous works [23, 29]:

• CUB200-2011 [40] contains 11,788 images of birds

from 200 species. The first 100 classes (5,864 images)

are used for training, while other 100 classes (5,924

images) are kept for testing.

• Cars196 [17] contains 16,185 images of cars from 196

classes. We use the first 98 classes (8,054 images) for

training and leave the rest 98 classes (8,131 images) for

testing.

• SOP [24] contains 120,053 images from 22,634 classes.

We use the first 11,318 classes (59,551 images) for

training and other 11,316 (60,502 images) for testing.

A Fair Evaluation Protocol. Although there are many pre-

vious metric learning methods, [23] pointed out that the

improvements over time are not significant, due to the unfair

comparisons of different methods. Therefore, we try our best

to provide fair results by implementing all the methods under

the same evaluation protocol. For all the baseline methods,

we use ResNet-50 [12] pre-trained on ImageNet [18] as the

backbone. We freeze the BatchNorm layers during training

and modify the output channel of the last linear layer to

a fixed embedding dimension D. We use embedding size

D = 128 and other implementation settings following [29]

for most experiments unless otherwise noted.

Evaluation Metrics. Most previous works use Recall@K,

Normalized Mutual Information, and F1 score as accuracy

metrics. However, as is pointed by [23], NMI and F1 scores

sometimes give us wrong pictures of the embedding space.

To this end, we adopt the evaluation metrics used in [23]:

Precision@1, R-Precision, and MAP@R. For the formal

definition of the metrics, see Supplementary Material.

Implementation. It is also worth noting that our proposed

DIML does not require any training. Therefore, we aim to

prove that our method can improve the performance given

any trained model as the baseline. Therefore, we perform

experiments on a wide range of loss functions (Margin [44],

Arcface [7], etc.) and sampling methods (Distance [44], N-

Pair [33], etc.) to prove the effectiveness and the generaliza-

tion ability of our method. For most of the baseline methods,

we follow the implementation from [29].

4.2. Main Results

We first evaluate our method by applying DIML to a wide

range of metric learning methods. We measure the perfor-

mance using the evaluation metrics aforementioned: Preci-

sion@1 (P@1), R-Precision (RP) and MAP@R (M@R), and

the results2 are shown in Table 1. For all the experiments,

we set the truncation number K = 100 and feature map

size G = 4. We observe that our method can improve the

performance for all the models on all the three benchmarks,

without any extra training. Especially, we find on Cars196

dataset, the performances of all the methods are enhanced

profoundly after equipped with our DIML.

4.3. Ablation Study and Analysis

In this section, we will evaluate our DIML in various

settings and provide detailed analyses through experiments

and visualization.

Effects of different components. The DIML consists

of three components: structural similarity (SS), cross-

correlation (CC), and multi-scale matching (MM). We will

analyze the effect of each one, as is shown in Table 2. We

start with two baseline methods Margin [44] and Multi-

Similarity [42], and add the three components gradually.

First, we adopt structural similarity instead of standard co-

sine similarity (where we use uniform distribution in Equa-

tion (7) for µs and µt). We find that SS can improve the

2For more results, please refer to the Supplementary Material.

Table 1: Applying DIML to various deep metric learning

methods. Experimental results show that our method can

improve the performance of all the methods consistently.

Method
CUB200-2011 Cars196 SOP

P@1 RP M@R P@1 RP M@R P@1 RP M@R

Contrasitive [10] 61.77 34.25 23.24 67.45 30.01 18.61 73.27 40.92 37.5

+ DIML 64.43 35.16 24.29 73.35 30.76 20.13 74.47 41.58 38.29

Triplet-R [30] 58.34 32.00 20.93 62.73 26.95 15.24 66.60 33.62 30.26

+ DIML 60.60 32.63 21.74 67.92 27.65 16.72 68.73 35.04 31.79

Triplet-S [30] 59.28 32.77 21.79 67.00 30.0 18.23 73.67 40.45 37.14

+ DIML 62.85 33.87 23.04 72.06 30.89 20.04 75.14 41.68 38.42

Triplet-H [29] 61.39 33.21 22.15 71.76 32.53 20.83 73.28 39.98 36.56

+ DIML 62.02 33.50 22.49 74.75 32.94 21.76 73.62 40.14 36.79

Triplet-D [44] 61.99 33.92 22.90 73.07 32.18 20.81 77.34 44.25 40.80

+ DIML 63.40 34.49 23.59 77.31 33.05 22.61 77.81 44.82 41.39

NPair [33] 60.30 33.53 22.27 69.52 32.24 20.25 76.47 43.48 39.94

+ DIML 62.17 34.02 22.85 74.65 32.91 21.67 76.86 43.87 40.38

Angular [41] 61.36 34.17 23.00 70.93 32.97 21.31 73.79 41.42 37.90

+ DIML 63.77 35.09 24.06 74.72 33.80 22.83 74.91 42.17 38.73

GenLifted [13] 58.27 32.86 21.83 66.88 30.96 19.00 74.84 42.28 38.66

+ DIML 61.07 33.82 22.98 72.95 31.93 20.88 75.92 43.08 39.55

ProxyNCA [22] 62.76 35.05 24.03 71.05 31.62 20.55 74.70 41.32 37.96

+ DIML 64.75 36.02 25.10 74.86 32.43 22.00 76.17 42.65 39.36

Histogram [38] 59.96 33.07 22.15 69.49 31.62 19.76 71.15 38.06 34.70

+ DIML 62.69 33.80 23.00 74.50 32.36 21.26 72.06 38.57 35.30

Quadruplet [5] 61.53 34.05 22.93 69.64 31.40 19.67 77.02 44.27 40.88

+ DIML 62.80 34.65 23.62 75.66 32.35 21.69 78.08 45.16 41.79

SNR [46] 62.00 34.72 23.59 72.95 32.72 21.28 77.82 44.98 41.51

+ DIML 64.55 35.25 24.27 77.57 33.54 23.02 78.50 45.65 42.24

Softmax [47] 61.06 32.7 21.55 72.61 31.17 19.88 77.02 43.47 40.25

+ DIML 63.30 33.71 22.64 76.39 32.06 21.49 78.17 44.62 41.43

Margin [44] 62.47 34.12 23.14 72.18 32.00 20.82 78.39 45.64 42.34

+ DIML 65.16 35.37 24.51 76.62 32.85 22.48 79.26 46.44 43.19

Arcface [7] 61.39 33.70 22.4 73.37 31.90 20.52 77.55 44.44 41.07

+ DIML 64.72 34.88 23.72 77.24 32.88 22.34 78.52 45.45 42.10

MS [42] 62.56 32.74 21.99 74.81 32.72 21.60 77.90 44.97 41.54

+ DIML 64.89 33.99 23.34 78.44 33.57 23.31 78.53 45.59 42.22

ProxyAnchor [16] 65.24 35.81 24.87 82.36 36.00 25.85 79.10 46.31 42.91

+ DIML 66.46 36.49 25.58 86.13 37.90 28.11 79.22 46.43 43.04

performance on all the datasets except for SOP (as is high-

lighted by underline). It is mainly because that the SS algo-

rithm aims to match every part of a source image to a target

image. However, the views vary a lot in SOP dataset, which

hinders the application of SS. Second, we show that multi-

scale matching can make use of the semantic information

and improve the performance on all three datasets. Finally,

we replace the uniform distribution with the one calculated

by cross-correlation. We find the marginal distributions ob-

tained in this way are helpful to explore the important area

of the images and can further improve the performance.

Effects of truncation number. To show how the truncation

number K affect our DIML, we test our method on Mar-

gin [44] and Multi-Similarity [42] with K increasing from

0 to 500 (Figure 3). Note that K = 0 means no structural

similarity is used, which is identical to the baseline. We find

that even a small K will bring considerable improvement on

the performance (especially for the P@1 metric). Generally,

the retrieval accuracy grows with K increasing and saturates

Table 2: Effects of the three components in our DIML:

Structural Similarity (SS), Multi-scale Matching (MM) and

Cross Correlation (CC). We show that our method can en-

hance the performance of the baseline methods by combining

the three components together.

Baseline
Components CUB200-2011 Cars196 SOP

SS MM CC P@1 M@R P@1 M@R P@1 M@R

Margin [44]

62.47 23.14 72.18 20.82 78.39 42.34

✓ 63.64 22.52 74.86 21.24 77.30 41.02

✓ ✓ 64.96 23.87 76.02 22.02 78.53 42.45

✓ ✓ ✓ 65.16 24.51 76.62 22.48 79.26 43.19

MS [42]

62.56 21.99 74.81 21.60 77.90 41.54

✓ 63.52 21.66 75.63 21.10 75.81 39.38

✓ ✓ 64.40 22.83 77.39 22.77 77.87 41.55

✓ ✓ ✓ 64.89 23.34 78.44 23.31 78.53 42.22

0 10 50 100 500
62.5

63.0

63.5

64.0

64.5

65.0

P@
1

CUB-200

Margin
MS

0 10 50 100 500
72.0

73.0

74.0

75.0

76.0

77.0

78.0

Cars196

Margin
MS

0 10 50 100 500

78.0

78.2

78.4

78.6

78.8

79.0

79.2

SOP

Margin
MS

0 10 50 100 500
K

22.0

22.5

23.0

23.5

24.0

24.5

M
AP

@
R

Margin
MS

0 10 50 100 500
K

21.0

21.5

22.0

22.5

23.0

23.5
Margin
MS

0 10 50 100 500
K

41.5

41.8

42.0

42.2

42.5

42.8

43.0

43.2

Margin
MS

Figure 3: Comparisons of different truncation number.

We test for different truncation number K ranging from 0 to

500. Experimental results show that a small K can already

bring considerable performance improvement.

Margin MS
60.0

61.0

62.0

63.0

64.0

65.0

66.0

67.0
CUB-200

G = 1
G = 2
G = 4
G = 7

Margin MS
70.0

72.0

74.0

76.0

78.0

80.0

Cars196
G = 1
G = 2
G = 4
G = 7

Margin MS
77.0

77.5

78.0

78.5

79.0

79.5

80.0
SOP

G = 1
G = 2
G = 4
G = 7

Figure 4: Effects of the size of feature map. Generally,

the performance of our DIML is better with higher G.

DIML with G = 4 yields good results within relatively

low computational costs.

before K reaches 100. This phenomenon indicates that with

a fixed and relatively small K, we can already enjoy a signif-

icant performance boost with constant extra computational

cost and no extra training cost.

Effects of feature map size. We then perform an ablation

study on the feature map size G. In our experiments, we use

ResNet50 [12] as our backbone, and the size of the feature

map before the pooling layer is 7 × 7. Hence, we need to

pool the feature map to a smaller one (G × G) to reduce

computational complexity. Specifically, we let G ≤ 7 and

evaluate for the cases where G = 1, 2, 4, 7. The results are

shown in Table 4 and we observe that the performance of

Table 3: Effects of training. Our method can substantially

improve the baseline model with or without training.

Baseline
Setting CUB200-2011 Cars196 SOP

test train P@1 M@R P@1 M@R P@1 M@R

Margin [44]

62.47 23.14 72.18 20.82 78.39 42.34

✓ 65.16 24.54 76.65 22.95 79.26 43.19

✓ ✓ 65.36 24.90 75.61 22.34 78.81 42.89

MS [42]

62.56 21.99 74.81 21.60 77.90 41.54

✓ 64.89 23.38 78.50 23.81 78.53 42.23

✓ ✓ 65.72 24.37 78.90 23.80 79.00 42.96

Table 4: Effects of embedding size. Our DIML is robust to

the changing of the embedding size D and can improve the

performance of the baseline methods consistently.

D Method
CUB200-2011 Cars196

P@1 RP M@R P@1 RP M@R

64

Margin 59.39 32.59 21.53 69.31 30.98 19.67

Margin [44] + DIML 62.98 33.88 22.95 74.44 31.96 21.60

MS [42] 58.52 31.35 20.23 71.67 30.90 19.57

MS + DIML 61.73 32.61 21.62 76.94 31.95 21.72

ProxyAnchor [16] 62.56 34.61 23.45 78.08 34.35 23.95

ProxyAnchor + DIML 65.01 35.53 24.40 83.11 36.49 26.55

512

Margin [44] 64.92 35.94 24.92 73.68 32.03 21.09

Margin + DIML 66.91 36.82 25.89 76.67 32.62 22.20

MS [42] 65.92 35.14 24.17 76.85 33.93 22.78

MS + DIML 68.15 36.04 25.14 79.74 34.68 24.01

ProxyAnchor[16] 67.30 37.40 26.38 84.75 37.56 27.66

ProxyAnchor + DIML 67.93 37.92 26.88 87.01 39.03 29.39

our method is better with larger G in general. We can also

find G = 4 is a good trade-off between performance and

computational complexity.

Effects of training. Besides the default setting where we

use DIML to test on any pre-trained model, we can also in-

corporate the structural similarity into the training objectives

(see Section 3.4 for details). In Table 3, we compare the

performance in three scenarios: (1) without DIML testing

or training (same as baseline) (2) with DIML testing only

(2) with DIML testing and training. The results are listed

in Table 3. We find that for most cases, using DIML to test

a pre-trained model can already improve the baseline by a

significant margin. Besides, it is also useful sometimes to

apply DIML in the training stage.

Effects of embedding size. Our proposed DIML is also

robust across different embedding sizes. Apart from the

results in Table 1 where D = 128, we perform experiments

with D = 64/512 for Margin [44], Multi-Similarity [42]

and Proxy Anchor [16] and the results are summarized in

Table 4. We demonstrate that our method can boost the

performance of the three methods consistently no matter

how the embedding size D varies.

similarity: 0.191→ 0.414 similarity: 0.114→ 0.336

similarity: 0.217→ 0.440 similarity: 0.073→ 0.470

27.4 × 0.640

0.00 × 0.063

18.5 × 0.277

3.44 × 0.088

38.5 × 0.708

3.86 × 0.155

37.9 × 0.588

0.00 × 0.013

58.0 × 0.601

0.00 × 0.005

similarity: 0.112→ 0.328

0.00 × 0.018

36.4 × 0.516

similarity: 0.121→ 0.321

24.1 × 0.528

0.00 × 0.065

similarity: 0.153→ 0.365

33.5 × 0.483

0.00 × 0.081

similarity: 0.110→ 0.418

similarity: 0.295→ 0.505

0.00 × 0.067

22.3 × 0.648

Figure 5: Visualization. We use heatmaps to show the marginal distributions obtained by cross-correlation (CC). We

also illustrate two most representative part-wise similarity and their contributions to the overall similarity in the form of

[G4T ∗
i,j] × [Si,j], where G is the grid size, T ∗

i,j and Si,j are the matching flow and similarity between location i and j
respectively. We also show the overall similarity changes after applying our method to the baseline model (cosine similarity→
structural similarity). All image pairs are positive pairs.

4.4. Visualization

To better understand how our method works, we pro-

vide some visualizations for CUB200-2011 [40] in Figure 5,

where each pair of images is from the same category. First,

we visualize the marginal distributions µs and µt (calculated

by cross-correlation) through heatmaps and find that they

can focus on some discriminative parts in the images (e.g.,

head, foot, etc.). Second, we show the optimal transport

flow T ∗
i,j and the similarity Si,j = s(zsi , z

t
j) for some pair

of spatial location (i, j). Since the sum of the values in T ∗

equals 1 and each T ∗
i,j is relatively small, we use a re-scaled

version T̂ ∗
i,j = G4T ∗

i,j such that an uniform transport flow

yields T̂ ∗
i,j = 1, ∀i, j. We draw arrows between the loca-

tion pairs that make a large (or small) contribution to the

final structural similarity in red (or blue). The formula along

with an arrow takes the form of T̂ ∗
i,j × Sij . We observe that

our method can match similar parts and assign a higher T ∗
i,j

to the pair while enforcing lower T ∗
i,j to the parts that are

less informative to determine the similarity between the two

images. Finally, we demonstrate that by re-weighting the

similarity matrix S with the optimal transport matrix T ∗, our

proposed structural similarity (shown in bold text) is higher

than the standard cosine similarity (shown in light text) by a

large margin.

5. Conclusion

In this paper, we have presented the deep interpretable

metric learning (DIML) method for more transparent embed-

ding learning. We proposed a structural matching strategy

that explicitly aligns the spatial embeddings by computing an

optimal matching flow between feature maps of the two im-

ages. We evaluated our method on three major benchmarks

of deep metric learning including CUB200-2011, Cars196

and Stanford Online Products, and achieved substantial im-

provements over popular metric learning methods with better

interpretability. Our method enables deep models to learn

metrics in a more human-friendly way, which can be used to

inspect and understand the visual similarity of any two sam-

ples or applied to any deep metric learning methods with the

proposed multi-scale matching strategy to improve image

retrieval performance with controllable cost.

Acknowledgements

This work was supported in part by the National Natural

Science Foundation of China under Grant 61822603, Grant

U1813218, and Grant U1713214, in part by a grant from the

Beijing Academy of Artificial Intelligence (BAAI), and in

part by a grant from the Institute for Guo Qiang, Tsinghua

University.

A. Implementation of DIML

A.1. The Sinkhorn Algorithm

The Sinkhorn algorithm [6] modifies the original optimal

transport problem (Eq.4) into the following one:

T ∗ = argmin
T≥0

tr(CT⊤) + λtr
(

T (log(T)− 11
⊤)⊤

)

,

subject to T1 = µs, T⊤
1 = µt,

(12)

where λ is a non-negative regularization parameter. By

adding the entropic regularizer, the Equation (12) becomes

a convex problem, which can be solved with Sinkhorn-

Knopp algorithm [32]. Starting from an initial matrix

K = exp(−C/λ), the problem can be solved by iteratively

projecting onto the marginal constraints until convergence:

a← µs/Kb, b← µt/K⊤
a. (13)

After converged, we can obtain the optimal transport plan:

T ∗ = diag(a)Kdiag(b). (14)

A.2. Testing

In all of our experiments, we use ResNet50 [12] as our

backbone. Therefore, the size of the feature map before the

pooling layer is 7 × 7. To reduce computational costs, we

first use ROI Align [11] to pool the feature map toG×G and

G = 4 in most of our experiments unless otherwise noted.

According to the multi-scale matching algorithm, for each

image as a query, we first sort the images in the gallery using

the standard cosine similarity to obtain the indices of top-K
candidates IK (we useK = 100 in most of the experiments).

We then calculate the proposed structural similarity of all

the images in IK . To combine both global and structural

information, we use the sum of the cosine similarity and the

structural similarity for the top-K images to compute their

ranks. The regularization parameter λ in Equation (6) is set

to 0.05.

A.3. Training

Incorporating DIML into the training objectives is quite

straightforward. Generally, the loss functions in metric learn-

ing can be roughly categorized into distance-based meth-

ods (e.g., Contrastive [10], Triplet [9], Margin [44]) and

similarity-based methods (e.g., Multi-Similarity [42], Arc-

face [7], N-Pair [33]) For distance-based methods, we re-

place the original distance function d with the average of

d and our structural distance dstruct; For similarity-based

methods, we replace the original similarity function s with

the average of s and our structural similarity sstruct. In this

section, we will use several loss functions as examples to

demonstrate how to apply DIML during training.

Margin [44] The Margin loss [44] is defined as

Lmargin(k, l) =
(

σ + (−1)I(y
k 6=yl) (Dk,l − β)

)

+
, (15)

where σ and β are learnable parameters, and Dkl is used to

measure the distance between image k and l:

Dk,l =
1

2

(

dstruct(z
k, zl) + d(z̄k, z̄l)

)

, (16)

where d is Euclid distance and dstruct is derived from d using

Equation (10).

Multi-Similarity [42] The original Multi-Similarity is de-

fined as:

s∗(k, l) =

s (k, l) , s (k, l) > minp∈Pk
s (k, p)− ǫ

s (k, l) , s (k, l) < maxn∈Nk
s (k, n) + ǫ

0, otherwise

,

(17)

LMS =
1

B

∑

k∈B

1

α
log

1 +
∑

p∈Pk

exp (−α (s∗ (k, p)− λ))

+
1

β
log

[

1 +
∑

n∈Nk

exp (β (s∗ (k, n)− λ))

]]

,

(18)

where s(k, l) = s(ψk, ψl) is the cosine similarity of the

embeddings ψk, ψl of the two images. To utilize DIML, we

can replace s with

s(k, l)←
1

2

(

s(z̄k, z̄l) + sstruct(z
k, zl)

)

. (19)

Note that in our notation both ψk and z̄k represent the same

embedding in R
D.

ProxyNCA [22] It is also worth mentioning there are

slight difference when applying DIML to proxy-based meth-

ods during training. Taking ProxyNCA [22] as example, the

original objective is

Lproxy = −
1

B

∑

k∈B

log

exp
(

−d
(

ψk, ηy
k
)

∑

c∈C\{yk} exp (−d (ψ
k, ηc)

 ,

(20)

where d is Euclid distance and ηc ∈ R
D is the proxy for

the c-th class. To use DIML, we need to use proxies with

the size R
H×W×D, denoted as {ρc, c ∈ C}. Then, we can

replace the d(ψk, ηc) with

d(ψk, ηc)←
1

2

(

d(ψk, ηc) + dstruct(z
k, ρc)

)

, (21)

where we also note that GAP(ρc) = ηc.

Table 5: Comparisons of different truncation numbers. We test for different truncation number K ranging from 0 to 500.

Experimental results show that a small K can already bring considerable performance improvement.

Baseline K
CUB-200 Cars196 SOP

P@1 RP M@R P@1 RP M@R P@1 RP M@R

Margin[44]

0 62.47 34.12 23.14 72.18 32.00 20.82 78.39 45.64 42.34

10 65.16 34.56 23.87 76.65 32.52 21.72 79.26 46.44 43.20

50 65.16 35.43 24.54 76.65 33.64 22.83 79.26 46.44 43.19

100 65.16 35.48 24.54 76.65 33.93 22.95 79.26 46.44 43.19

500 65.16 35.48 24.54 76.65 33.93 22.95 79.26 46.44 43.19

Multi-Similarity[42]

0 62.56 32.74 21.99 74.81 32.72 21.60 77.90 44.97 41.54

10 64.89 33.21 22.73 78.50 33.26 22.50 78.53 45.60 42.24

50 64.89 34.04 23.37 78.50 34.46 23.72 78.53 45.60 42.23

100 64.89 34.12 23.38 78.50 34.70 23.81 78.53 45.60 42.23

500 64.89 34.12 23.38 78.50 34.70 23.81 78.53 45.60 42.23

B. Experimental Details

B.1. Evaluation Metrics

We implement the same evaluation metrics as [23], in-

cluding Precision at 1 (P@1), R-Precision (RP), and Mean

Average Precision at R (MAP@R).

P@1 is also known as Recall@1 in metric learning. Given

a sample xq and feature encoder φ(·), the set of k nearest

neighbors of xq is calculated as the precision of k nearest

neighbors:

N k
q = argmin

N⊂Xtest,|N |=k

∑

xf∈N

de(φ(x
q), φ(xf)) (22)

where de(·, ·) is the euclidean distance. Then P@k can be

measured as

P@k =
1

|Xtest|

∑

xq∈Xtest

1

k

∑

xi∈Nk
q

{

1, yi = yq,

0, otherwise
, (23)

where yi is the class label of sample xi. We only report P@1

in our experiments, i.e. k = 1.

R-precision is defined in [23]. Specifically, for each sam-

ple xq, let R be the number of images that are the same

class with xq and R-precision is simply defined as P@R (see

Equation 23). However, R-precision does not consider the

ranking of correct retrievals, so it is not informative enough.

To tackle this problem, [23] introduced Mean Average Pre-

cision at R.

MAP@R is similar to mean average precision, but limit the

number of nearest neighbors to R. So it replaces precision in

MAP calculation with R-precision:

MAP@R =
1

R

R
∑

i=1

P (i), (24)

where

P (i) =

{

P@i, if the i-th retrieval is correct;

0, otherwise.
(25)

MAP@R is more informative than P@1 and it can be

computed directly from the embedding space without clus-

tering as post-processing.

B.2. Experimental Setups

For most of the baseline methods, we follow the imple-

mentation and the hyper-parameters in [36]. For Proxy An-

chor [16], we use their original implementation but set the

hyper-parameters as [36] (batch size 112, embedding size

128, etc.). Besides various loss functions, we also experi-

ment with different sampling methods. In Table 1 of the

original paper, we use suffixes to represent the sampling

methods (-R: Random; -D: Distance [44]; -S Semihard [30];

-H: Softhard [29]).

C. Detailed Results

In the original paper, we have demonstrated the effects of

truncation number K and feature map size G using charts.

In this section, we provide the original numerical results that

were used to plot those charts in Table 5 and Table 6.

References

[1] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou,

Joshua B Tenenbaum, William T Freeman, and Antonio Tor-

ralba. Gan dissection: Visualizing and understanding genera-

tive adversarial networks. ICLR, 2019. 1, 2

[2] Hila Chefer, Shir Gur, and Lior Wolf. Transformer inter-

pretability beyond attention visualization. CVPR, 2021. 1,

2

Table 6: Effects of the size of feature map. Generally, the performance of our DIMLis better with higher G. DIML with

G = 4 yields good results within relatively low computational costs.

Baseline G
CUB-200 Cars196 SOP

P@1 RP M@R P@1 RP M@R P@1 RP M@R

Margin[44]

1 62.47 34.12 23.14 72.18 32.00 20.82 78.39 45.64 42.34

2 64.15 34.79 23.83 75.04 32.59 21.85 79.06 46.29 43.03

4 65.16 35.48 24.54 76.65 33.93 22.95 79.26 46.44 43.19

7 65.58 35.58 24.79 76.96 32.93 22.66 79.59 46.83 43.62

Multi-Similarity [42]

1 62.56 32.74 21.99 74.81 32.72 21.60 77.90 44.97 41.54

2 63.77 33.33 22.60 77.45 33.25 22.60 78.39 45.56 42.15

4 64.89 34.12 23.38 78.50 34.70 23.81 78.53 45.60 42.23

7 65.45 34.15 23.55 78.93 33.64 23.50 78.76 45.90 42.57

[3] Guangyi Chen, Yongming Rao, Jiwen Lu, and Jie Zhou. Tem-

poral coherence or temporal motion: Which is more critical

for video-based person re-identification? In ECCV, pages

660–676, 2020. 2

[4] Weihua Chen, Xiaotang Chen, Jianguo Zhang, and Kaiqi

Huang. Beyond triplet loss: a deep quadruplet network for

person re-identification. In CVPR, pages 403–412, 2017. 1, 2

[5] Weihua Chen, Xiaotang Chen, Jianguo Zhang, and Kaiqi

Huang. Beyond triplet loss: a deep quadruplet network for

person re-identification. In CVPR, pages 403–412, 2017. 2, 6

[6] Marco Cuturi. Sinkhorn distances: lightspeed computation of

optimal transport. In NIPS, volume 2, page 4, 2013. 4, 9

[7] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou.

Arcface: Additive angular margin loss for deep face recogni-

tion. In CVPR, pages 4690–4699, 2019. 1, 2, 6, 9

[8] Charlie Frogner, Farzaneh Mirzazadeh, and Justin Solomon.

Learning embeddings into entropic wasserstein spaces. ICLR,

2019. 4

[9] Weifeng Ge. Deep metric learning with hierarchical triplet

loss. In ECCV, pages 269–285, 2018. 2, 9

[10] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimension-

ality reduction by learning an invariant mapping. In CVPR,

volume 2, pages 1735–1742, 2006. 2, 6, 9

[11] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-

shick. Mask r-cnn. In ICCV, 2017. 5, 9

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR, pages

770–778, 2016. 2, 3, 5, 6, 7, 9

[13] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In

defense of the triplet loss for person re-identification. arXiv

preprint arXiv:1703.07737, 2017. 6

[14] Pierre Jacob, David Picard, Aymeric Histace, and Edouard

Klein. Metric learning with horde: High-order regularizer for

deep embeddings. In ICCV, pages 6539–6548, 2019. 2

[15] Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova,

Ivan Oseledets, and Victor Lempitsky. Hyperbolic image

embeddings. In CVPR, pages 6418–6428, 2020. 2

[16] Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak.

Proxy anchor loss for deep metric learning. In CVPR, pages

3238–3247, 2020. 1, 2, 6, 7, 10

[17] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.

3d object representations for fine-grained categorization. In

ICCVW, pages 554–561, 2013. 2, 5

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-

agenet classification with deep convolutional neural networks.

In NIPS, pages 1097–1105, 2012. 2, 6

[19] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep

learning. Nature, 521(7553):436–444, 2015. 2

[20] Xudong Lin, Yueqi Duan, Qiyuan Dong, Jiwen Lu, and Jie

Zhou. Deep variational metric learning. In ECCV, pages

689–704, 2018. 2

[21] Iacopo Masi, Yue Wu, Tal Hassner, and Prem Natarajan. Deep

face recognition: A survey. In SIBGRAPI, pages 471–478.

IEEE, 2018. 1

[22] Yair Movshovitz-Attias, Alexander Toshev, Thomas K Leung,

Sergey Ioffe, and Saurabh Singh. No fuss distance metric

learning using proxies. In ICCV, pages 360–368, 2017. 6, 9

[23] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. A metric

learning reality check. In ECCV, pages 681–699. Springer,

2020. 5, 6, 10

[24] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio

Savarese. Deep metric learning via lifted structured feature

embedding. In CVPR, pages 4004–4012, 2016. 2, 5

[25] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zem-

ing Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:

An imperative style, high-performance deep learning library.

NeurIPS, 2019. 4

[26] Yongming Rao, Jiwen Lu, and Jie Zhou. Attention-aware

deep reinforcement learning for video face recognition. In

ICCV, pages 3931–3940, 2017. 2

[27] Yongming Rao, Jiwen Lu, and Jie Zhou. Learning discrimi-

native aggregation network for video-based face recognition

and person re-identification. IJCV, 127(6):701–718, 2019. 2

[28] Karsten Roth, Timo Milbich, and Bjorn Ommer. Pads: Policy-

adapted sampling for visual similarity learning. In CVPR,

pages 6568–6577, 2020. 2

[29] Karsten Roth, Timo Milbich, Samarth Sinha, Prateek Gupta,

Bjorn Ommer, and Joseph Paul Cohen. Revisiting train-

ing strategies and generalization performance in deep metric

learning. In ICML, pages 8242–8252. PMLR, 2020. 5, 6, 10

[30] Florian Schroff, Dmitry Kalenichenko, and James Philbin.

Facenet: A unified embedding for face recognition and clus-

tering. In CVPR, pages 815–823, 2015. 1, 2, 6, 10

[31] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,

Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-

cam: Visual explanations from deep networks via gradient-

based localization. In ICCV, pages 618–626, 2017. 1, 2

[32] Richard Sinkhorn. Diagonal equivalence to matrices with pre-

scribed row and column sums. The American Mathematical

Monthly, 74(4):402–405, 1967. 9

[33] Kihyuk Sohn. Improved deep metric learning with multi-class

n-pair loss objective. In NeurIPS, pages 1857–1865, 2016. 1,

2, 6, 9

[34] G Sreenu and MA Saleem Durai. Intelligent video surveil-

lance: a review through deep learning techniques for crowd

analysis. Journal of Big Data, 6(1):1–27, 2019. 1

[35] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In CVPR, pages 1–9, 2015. 3

[36] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception ar-

chitecture for computer vision. In CVPR, pages 2818–2826,

2016. 10

[37] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior

Wolf. Deepface: Closing the gap to human-level performance

in face verification. In CVPR, pages 1701–1708, 2014. 2

[38] Evgeniya Ustinova and Victor S. Lempitsky. Learning deep

embeddings with histogram loss. In Daniel D. Lee, Masashi

Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman

Garnett, editors, NeurIPS, pages 4170–4178, 2016. 6

[39] Cédric Villani. Optimal transport: old and new, volume 338.

Springer Science & Business Media, 2008. 3

[40] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona,

and Serge Belongie. The caltech-ucsd birds-200-2011 dataset.

2011. 2, 5, 8

[41] Jian Wang, Feng Zhou, Shilei Wen, Xiao Liu, and Yuanqing

Lin. Deep metric learning with angular loss. In ICCV, pages

2593–2601, 2017. 6

[42] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and

Matthew R Scott. Multi-similarity loss with general pair

weighting for deep metric learning. In CVPR, pages 5022–

5030, 2019. 1, 6, 7, 9, 10, 11

[43] Jonathan R Williford, Brandon B May, and Jeffrey Byrne.

Explainable face recognition. In ECCV, pages 248–263.

Springer, 2020. 2

[44] Chao-Yuan Wu, R Manmatha, Alexander J Smola, and Philipp

Krahenbuhl. Sampling matters in deep embedding learning.

In ICCV, pages 2840–2848, 2017. 2, 5, 6, 7, 9, 10, 11

[45] Hong Xuan, Richard Souvenir, and Robert Pless. Deep ran-

domized ensembles for metric learning. In ECCV, pages

723–734, 2018. 2

[46] Tongtong Yuan, Weihong Deng, Jian Tang, Yinan Tang, and

Binghui Chen. Signal-to-noise ratio: A robust distance metric

for deep metric learning. In CVPR, pages 4815–4824, 2019.

2, 6

[47] Andrew Zhai and Hao-Yu Wu. Classification is a strong

baseline for deep metric learning. In BMVC, page 91. BMVA

Press, 2019. 6

[48] Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. In-

terpretable convolutional neural networks. In CVPR, pages

8827–8836, 2018. 1, 2

[49] Quanshi Zhang, Yu Yang, Haotian Ma, and Ying Nian Wu.

Interpreting cnns via decision trees. In CVPR, pages 6261–

6270, 2019. 1, 2

[50] Zizhao Zhang, Yubo Zhang, Xibin Zhao, and Yue Gao. Emd

metric learning. In AAAI, volume 32, 2018. 4

[51] Wenzhao Zheng, Zhaodong Chen, Jiwen Lu, and Jie Zhou.

Hardness-aware deep metric learning. In CVPR, pages 72–81,

2019. 2

[52] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and

Antonio Torralba. Learning deep features for discriminative

localization. In CVPR, pages 2921–2929, 2016. 1, 2

