
Acta Polytechnica Hungarica Vol. 11, No. 3, 2014

 – 5 –

Towards Introducing Execution Tracing to

Software Product Quality Frameworks

Tamás Galli, Francisco Chiclana, Jenny Carter, Helge Janicke

Centre for Computational Intelligence, Faculty of Technology, De Montfort

University, The Gateway, Leicester, LE1 9BH, United Kingdom

p10553741@myemail.dmu.ac.uk, chiclana@dmu.ac.uk, jennyc@dmu.ac.uk,

heljanic@dmu.ac.uk

Abstract: Execution tracing and logging significantly influence the time spent on localizing

software errors; consequently, they have essential impact on maintainability. Moreover, in

certain situations these tools are the best suited instruments to analyse the behaviour of

distributed, multithreaded or embedded applications. In spite of this, software product

quality frameworks do not include execution tracing or logging as a quality property. In

this paper we examine the extension possibilities of the present software product quality

frameworks to accommodate execution tracing. In addition, the scope of the investigation

includes facilities of the frameworks to address the uncertainty involved in quality

measurements.

Keywords: quality frameworks; execution tracing; logging; uncertainty

1 Introduction

Execution tracing and logging are frequently used as synonyms in software

technology; however, the first one rather serves the software developers to

localize errors in applications, while the second one contributes to administration

tasks to check the state of software systems [12], [20], [28], [30], [35]. In the

scope of this paper we also use the two phrases as synonyms.

Execution tracing dumps the data about the program state and the path of

execution for developers for offline analysis, which helps to investigate error

scenarios and follow changes in the state of the application. Thus, execution

tracing and logging belong to dynamic analysis techniques i.e. testing,

investigating live systems, which are integral parts of the maintenance activities.

Dynamic analysis techniques can be applied only if the software is built and

executable in contrast to static analysis techniques. However, both methods are

applied to achieve the same goal of diagnosing errors, with each technique having

its own particular advantages [5], [8], [11], [41].

mailto:p10553741@myemail.dmu.ac.uk
mailto:chiclana@dmu.ac.uk
mailto:jennyc@dmu.ac.uk
mailto:heljanic@dmu.ac.uk

T. Galli et al. Towards Introducing Execution Tracing to Software Product Quality Frameworks

 – 6 –

Spillner, Linz, Schaeffer in [37] make distinction between two types of software

maintenance: (1) corrective maintenance, the purpose of which is eliminating

errors in the software and (2) adaptive maintenance to change the software

according to new requirements. Both kinds of maintenance necessitate analysis

methods to find errors but this activity dominates in corrective maintenance. The

proportion of maintenance costs in the whole software life-cycle amounts to a

large part [1], [25], [26], thus decreasing the time devoted to localizing errors can

therefore decrease the maintenance costs.

The increasing size and complexity of software systems makes localizing software

errors more difficult. This difficulty is aggravated by the enormous number of

software and hardware combinations. Adding execution tracing to key places of

the application can drastically reduce the time spent with debugging [3].

Utilizing a debugger is time consuming and does not offer adequate solution

 if performance problems have to be resolved because debugging the

source code considerably changes the environment from point of view of

execution performance. Moreover, performance is sensitive to external

workload, configuration parameters, underlying hardware and software

components [3].

 in case of real-time, embedded systems as it might be harmful or

impossible to reproduce the error e.g. in control applications [39].

 in the case of concurrency, as it changes the race conditions for parallel

running execution threads or processes. In addition, multi-core systems

also need to be considered which may even have multiple clock domains

[39].

A wide survey on concurrency [10], for which 10% of all Microsoft employees

from development, test, and program management were selected, also supports

that analysing concurrency faults makes up a significant part of their correction

costs. 66% of the respondents had to deal with concurrency issues. The

reproduction of these issues was classified in a five categorical scale ranging from

easy to very hard. 72.9% of all responses classified reproduction of concurrency

issues in the two most difficult categories. Moreover, the respondents stated that

the severity of these issues, qualifying on an ordinal scale with four categories

ranging from least severe to most severe, belongs to the top two: most severe, and

severe. In addition, 65% of the respondents expressed the future expectation that

the concurrency issues would be more problematic.

Laddad states in [27] that execution tracing is the only adequate tool to help with

the analysis of run-time errors in the case of distributed systems and multithreaded

applications. In the case of embedded applications, which have no user interface,

by means of tracing the developer or system maintainer can answer questions such

as what the application is doing [39].

Acta Polytechnica Hungarica Vol. 11, No. 3, 2014

 – 7 –

Diagnosing regression test errors and finding root causes implicate major

difficulties. Fault localizations can be grouped in three categories [32]: (1)

dynamic dependence analysis of the failing program execution, (2) comparison of

the failing program execution with a set of error free executions, (3) comparison

of the failing program execution with a program execution which does not

manifest the error in analysis. Variants (2) and (3) are based on execution tracing.

An experiment conducted by Karahasanovic and Thomas [21] categorized the

difficulties related to the maintainability of object-oriented applications. Program

logic was ranked the first in the source of difficulties. Understanding the program

logic belongs to the category of software specific knowledge which can greatly be

enhanced by execution tracing, offering a basis for trace visualization and

program comprehension [36].

Tracing, logging or constraint checks represent significant parts of the source code

of applications. Spinczyk, Urban and Lehmann [38] state that the ratio of code

lines related to monitoring activities such as tracing, logging reached

approximately 25% in their measurements of commercial applications. This ratio

shows that a significant amount of source code is written to deal with execution

tracing, which in itself is an important quality factor. However, execution tracing

does not need to be tightly coupled to the application code and can be localized in

separate modules [27], [31], [40].

All the above indicate that execution tracing and logging have essential impacts

on the analysability of software systems. In certain cases these tools are inevitable

to localize errors or investigate software behaviour. Nevertheless, present software

product quality frameworks do not exhibit any property to describe execution

tracing but they usually offer the potential to be extended. In this paper we analyze

such extension points and articulate concrete possibilities for extension in the

context of the current investigation. Software product quality frameworks form

complete models to support the description and assessment of the quality of

software products. As research shows [23], conformance with process quality

models does not guarantee good-quality software products, motivating the

application of software product quality frameworks in synergy with process

quality models.

In addition, measuring software product quality is difficult. Some quality measure

elements are easier to measure than others even if the quality measure element is

well defined [33]. All of the software product quality frameworks reviewed

(Section 2) include the description of qualitative properties in a quantitative

manner and quality measure elements which cannot be measured directly but only

derived from the observation of the behaviour of software developers,

maintainers, operators and users. This condition introduces uncertainty in software

product quality frameworks, which has recently been admitted and accepted by

defining the subjective measurement method category in ISO/IEC 25021:2007:

T. Galli et al. Towards Introducing Execution Tracing to Software Product Quality Frameworks

 – 8 –

"Subjective measurement method - Subjective measurements are

those where quantification is influenced by human judgement.

Subjective measures are used when no formal objective procedures of

measurement can be applied. The value of the quality measure

element is influenced by human judgement as an evaluator. Therefore

it is necessary to interpret the results with respect to the number of

evaluators and statistical methods used for the measurement result

calculation. Both should be stated while presenting the measurement

results."

Manifestations of uncertainty can be classified into three broad categories: (1)

objective uncertainty that refers to the future, (2) subjective uncertainty that refers

to the future, and (3) subjective uncertainty that does not refer to the future but

helps to categorize elements [6], [24]. Category 1 is modelled by the classical

probability theory, while category 2 is considered as an application area of

Bayesian statistics. Category (3) on the other hand, is modelled and studied under

the name of fuzzy logic. Thus, we also aim to examine in the scope of the research

how far the current quality frameworks can ensure the link to quality measures

described by means of fuzzy logic to consider the above subjective uncertainty.

The authors have already presented a pilot study on modelling execution tracing

quality by type-1 fuzzy logic [9].

Summarising the above, the main contributions of the paper, which will be

elaborated in detail in the following sections, refer to: (1) the need for execution

tracing quality to be appropriately implemented within software product quality

frameworks; (2) the significant differences between the current software product

quality frameworks to allow such implementation; (3) the ability of the ISO/IEC

software product quality frameworks to provide mathematical computations to

define metrics and measures, which can be exploited in capturing and

implementing subjective uncertainty within their quality models; and finally, (4)

the outline of metrics and a measure for execution tracing quality for both the

ISO/IEC 9126-1 and ISO/IEC 25010 software product quality frameworks.

The rest of this paper is structured as follows: Section 2 introduces the software

product quality frameworks. Section 3 demonstrates the extension facilities of

these frameworks, while section 4 presents a discussion on the particular changes

in the frameworks required to encompass execution tracing and finally the last

section closes with the conclusions.

2 Software Product Quality Frameworks

The analysis of quality frameworks was conducted, using IEEE, ACM and

EBSCO databases, to discover existing alternatives or predecessors to describe

software product quality. The investigation focused on software product quality

Acta Polytechnica Hungarica Vol. 11, No. 3, 2014

 – 9 –

models, which describe the whole set of software product quality; therefore we

refer to them by the term software product quality frameworks.

In the current frameworks [13], [14], [23], [29], if the traceability property is

present it refers to requirement traceability, i.e. how requirements can be followed

during the development of the software. Some quality metrics and measures

defined in ISO/IEC 9126-2:2003, ISO/IEC 9126-3:2003 and in ISO/IEC

25021:2007 show overlapping and similarities to execution tracing but their

definitions are ambiguous and difficult to approach from a practical point of view:

e.g. calculating the ratio of the number of diagnostic functions and the number of

necessary diagnostic functions. Such metrics are associated with the Internal and

External Analysability sub-characteristic of the characteristic Maintainability: (1)

Activity Recording, (2) Readiness of Diagnostic Functions, (3) Audit Trail

Capability, (4) Diagnostic Function Support, (5) Failure Analysis Capability, (6)

Failure Analysis Efficiency, (7) Status Monitoring Capability [17], [18]. This

means that the existing frameworks do not consider execution tracing as an aspect

of software quality.

2.1. Early Frameworks

Early software product quality frameworks appeared in the second half of the

1970’s to assess quality and show the way for improvements in software products

[2], [29]. These frameworks had a significant influence on the recent software

product quality frameworks published by the ISO standards. They kept the

hierarchic nature abstraction of quality.

2.1.1. Software Product Quality Model of Boehm, Brown and Lipow

The first complete model to assess software product quality was developed by

Boehm, Brown, and Lipow [2]. They established a set of quality properties, which

they call characteristics, and one or more metrics to each of them. They defined

the notion of metric as (1) a quantitative measure that describes the degree to

which the software product possesses the given characteristic, and (2) the overall

software quality must be able to be described by the function of the values of the

metrics.

They came to the conclusion in their study that establishing a single overall metric

for software product quality would implicate more difficulties than benefits

because many of the major individual quality characteristics are conflicting;

moreover, the metrics they associate to the quality characteristics are incomplete

measures of the quality characteristics. Therefore, they developed a hierarchical

model. The hierarchy comprises of eleven high-level characteristics representing

different aspects of software product quality [2]: (1) understandability, (2)

completeness, (3) conciseness, (4) portability, (5) consistency, (6) maintainability,

(7) testability, (8) usability, (9) reliability, (10) structuredness, and (11) efficiency.

T. Galli et al. Towards Introducing Execution Tracing to Software Product Quality Frameworks

 – 10 –

The model is language-independent and independent of programming paradigms,

however many metrics were tested on the structured language Fortran. Additional

metrics to the published ones can easily be defined and the model offers

possibilities for tailoring.

2.1.2. Software Product Quality Model of McCall, Richards and Walters

McCall, Richards, and Walters published a different framework [29] to Boehm’s

model [2] to assess software product quality. The authors describe a global view

of software product quality as a combination of three distinct activities: (1)

product operation, (2) product revision, and (3) product transition i.e. the

description considers also process related properties. The objective of their

investigation was to provide a concept to acquisition managers to specify and

measure quality in a quantitative manner in software products related to air force

applications.

They established a set of software quality properties that describe the overall

quality of the software product and they named these properties factors. The

quality factors they associated with criteria. Criteria are attributes of the software

or software development process by which the factors can be judged and defined.

A criterion can have sub-criteria in a hierarchical manner and one criterion may

affect more quality factors. The criteria are coupled with metrics that make

possible the measurement of the criteria or sub-criteria. The separation between

properties that would also qualify for being both criterion and factor the authors

made the decision: user-oriented properties are quality factors while software-

oriented are criteria.

Quality farctors:

(1) Product operation: (a) correctness, (b) reliability, (c) efficiency, (d) integrity,

(e) usability; (2) Product revision: (a) maintainability, (b) testability, (c)

flexibility; (3) Transition: (a) portability, (b) reusability, (c) interoperability;

The authors also investigated the impact of the quality factors on each other, i.e. if

a particular factor is present with a high degree of quality what quality is expected

for the other factors. Beside the positive relationships, there exist also negative

ones between some quality factors. In those cases finding a compromise is crucial,

e.g. integrity and interoperability conflict with each other, which means that the

more interoperable the system is the more difficult it is to keep its integrity.

Similarly to the previous framework, this model is language-independent because

its metrics are language independent and independent of programming paradigms.

It leaves room for extension and tailoring.

Acta Polytechnica Hungarica Vol. 11, No. 3, 2014

 – 11 –

2.2. Recent Frameworks

Recent software product quality frameworks appeared after 1990. They can be

divided into three categories on the basis of their philosophy [7], [13], [14], [22]:

(1) hierarchic models of the ISO/IEC standards which are strongly influenced by

the early frameworks, (2) adaptations of the ISO/IEC standards, and (3) the non-

hierarchic framework of Dromey. Their presentation follows in historical order.

2.2.1. Software Product Quality Model of ISO/IEC 9126 Standard Family

The quality model of the ISO/IEC 9126 standard family comprises of a hierarchic

model for software product quality and quality in use. The first version of the

standard was issued in 1991 which was superseded by the next version issued in

2001 [14]. The description of software evaluation was moved from the second

version to the multipart standard ISO/IEC 14598 [15]. The standard ISO/IEC

25010:2011 [13] revised the quality models described by the ISO/IEC 9126

standard family.

Terminology:

 Quality characteristics: high-level quality properties which are located at

the top of the hierarchy. In the terminology of ISO/IEC 14598 standard

family they are called attributes.

 Sub-characteristics: Quality characteristics which are located somewhere

in the hierarchy but not at the top-level. Sub-characteristics are always

assigned to a higher level characteristic or sub-characteristic.

 Quality metrics: Definition of the measurement method of quality

properties including the definition of the measurement scale. Quality

metrics are assigned to sub-characteristics or characteristics.

 Internal quality metrics: Metrics whose inputs are formed by the intrinsic

properties of the software product.

 External quality metrics: Metrics which cannot be measured directly but

only derived how the software relates to its environment.

 Quality of use: The user’s view of quality.

Concepts:

The standard ISO/IEC 9126-1:2001 defines three basic views of the quality: (1)

internal view, (2) external view, (3) user’s view. Internal view of the quality

means the quality measured by the internal quality metrics. This reflects the

quality of the source code or documentation. It is very useful if the software

product is not developed as far as it could be tested. The external view of the

quality is measured by the external metrics. It shows how the product relates to its

environment. The user’s view of the quality is illustrated by the quality in use

reflected by the quality in use metrics.

T. Galli et al. Towards Introducing Execution Tracing to Software Product Quality Frameworks

 – 12 –

Internal and external metrics either need to be in cause-effect relationships or they

need to correlate with each other. This is called predictive validity i.e. from the

measurement by the internal metrics conclusions can be drawn relation to the

external metrics and external quality of the software.

The software product quality model introduces six high-level characteristics: (1)

functionality, (2) reliability, (3) usability, (4) efficiency, (5) maintainability, (6)

portability. In addition to their sub-characteristics, each of these characteristics has

an internal and external variant to form an internal and external model.

The quality in use model has four high-level characteristics without sub-

characteristics: (1) effectiveness, (2) productivity, (3) safety, (4) satisfaction.

External metrics need to have predictive validity for the quality in use metrics.

The model is language-independent and independent of programming paradigms.

2.2.2. Software Product Quality Model of Dromey

Software does not directly display quality properties but it shows product

properties, which contribute to the quality properties in a positive or negative way.

Dromey argued that the previously published software product quality models

adequately addressed these particularities. He proposed a model where the main

focused was on the product properties, which he calls quality-carrying properties,

and on the relationship between product and quality properties in a non-hierarchic

manner [7].

Terminology:

 Quality attribute: high-level quality property

 Structural form: programming language constructs

 Quality-carrying properties: binary-value variables which determine the

quality

As quality attributes Dromey identified the six high-level quality characteristics of

the ISO/IEC 9126:1991 standard and extended this set with the attribute

reusability [7].

Concepts:

The model makes possible the specification and analysis of the relationships

between quality attributes, quality-carrying properties, and structural forms. The

bottom-up approach facilitates for developers to specify or investigate which

quality-carrying properties be associated to the structural forms of a particular

application. The top-down approach facilitates for designers to specify the quality

requirements and attributes the software needs to satisfy and identify the quality-

carrying properties for the structural forms to fulfil the quality needs [7].

Acta Polytechnica Hungarica Vol. 11, No. 3, 2014

 – 13 –

Quality is depicted by the relations: (1) between quality-carrying properties and

quality attributes; (2) between quality-carrying properties and structural forms.

Dromey also proposes profiles for both relations. Quality-carrying properties and

structural forms have precedence rules in such profiles. If the precedence rules are

kept, the model is able to classify software quality defects.

The basic mechanism of the model can be formalized as (1) if each quality-

carrying property of a structural form is satisfied, then that structural form will

have no quality defect; (2) if a quality-carrying property of a structural form is

violated, then it will contribute a quality defect to the software.

The definition of the model is language dependent in contrast to the previously

presented software product quality frameworks because it uses programming

language level constructs as structural forms and their properties as quality-

carrying properties. It was prepared for supporting the procedural programming

paradigm. However, the concepts can also be extended for other programming

paradigms and different artefacts, including program documentation.

2.2.3. Software Product Quality Model of Kim and Lee

Kim and Lee [22] derived a model from the product quality model of the ISO/IEC

9126:2001. The authors determined the relative importance of the six high-level

characteristics of the ISO standard from the point of view of the objectives of the

project under examination. The order of the relative importance of the six

characteristics was computed by applying the Analytic Hierarchy Process [34].

Those characteristics were kept for further investigation, the relative importance

of which exceeded a defined threshold. In their case study they found three such

attributes in the particular context: (1) reliability, (2) maintainability, and (3)

portability.

They identified internal metrics for static code analysis and assigned these metrics

to the three high-level characteristics of the ISO/IEC 9126:2001 model by

considering the opinions of experts [22]. The metrics have directly been assigned

to the high-level characteristics. Consequently, no intermediate level in the

hierarchy with sub-characteristics was defined, i.e. the three characteristics formed

categories rather than hierarchies.

The authors also presented the evaluation of a software component to illustrate the

use of their model [22]. The critical places for improvement were identified in the

component analysed. After performing amendments of the identified quality

defects, the evaluation was carried out again, which verified the impact of the

corrections.

2.2.4. Software Product Quality Model of the ISO/IEC 25010 Standard

The ISO/IEC 25000 standard family supersedes the ISO/IEC 9126 and ISO/IEC

14598 standard families. ISO/IEC 25010:2011 [13] defines a new quality in use

model and a new software product quality model combining the internal and

T. Galli et al. Towards Introducing Execution Tracing to Software Product Quality Frameworks

 – 14 –

external models of the ISO/IEC 9126 standard family. However, it keeps the

concepts laid down by the previous ISO/IEC 9126-1:2001 standard [13].

Terminology:

 Definition of internal, external view of quality and quality in use are

taken over from the predecessor ISO/IEC 9126-1:2001 standard [14] but

the internal and external software product quality models were combined

to one software product quality model.

 Quality Measure Element (QME): measurable property of quality defined

in ISO/IEC 25021:2007 [16].

 Quality Measure (QM): quality measure elements and a measurement

function to calculate with. It is similar to the term metric in the ISO/IEC

9126-1:2001 standard. Initial list of quality measures was taken over

from ISO/IEC TR 9126-2:2003 [17], ISO/IEC TR 9126-3:2003 [18] and

ISO/IEC TR 9126-4:2004 [19].

 Quality attribute: low-level quality property, in contrast to the ISO/IEC

14598 standard family where the term attribute is used for the high-level

quality properties of the ISO/IEC 9126 family.

Concepts:

The software product quality model introduces slight changes in the naming of the

six high-level characteristics of the ISO/IEC 9126-1:2001 standard and adds two

further high-level characteristics to the previous model: security, compatibility.

The whole list of high-level quality characteristics: (1) functional suitability, (2)

performance efficiency, (3) compatibility, (4) usability, (5) reliability, (6) security,

(7) maintainability, (8) portability. In addition, the sub-characteristics were

partially modified.

The quality in use model defines one additional high-level characteristic to the

previous characteristics defined in ISO/IEC 9126-1:2001 and performs slight

changes in the naming. The present high-level characteristics of the quality in use

model: (1) effectiveness, (2) efficiency, (3) satisfaction, (3) freedom from risk, (4)

context coverage. The new model also defined sub-characteristics which were not

part of the previous quality in use model.

The new model description emphasizes the necessity of tailoring the model to the

specific objectives of projects.

The new members of the ISO/IEC 25000 standard family: ISO/IEC 25022, 25023,

25024 are expected to be issued in the future. These standards will suspend the

validity of the previous technical reports that define internal, external and quality

in use metrics: ISO/IEC TR 9126-2, 9126-3, 9126-4.

These models are language-independent and independent of programming

paradigms.

Acta Polytechnica Hungarica Vol. 11, No. 3, 2014

 – 15 –

3 Towards Extending Present Quality Frameworks

The software product quality frameworks presented in the previous section show

two basic approaches for describing software product quality: (1) the hierarchic

approach depicted by the ISO/IEC 9126 and ISO/IEC 25000 standard families

which have their roots in the early models; and (2) the non-hierarchic approach

described by Dromey. The other frameworks tailor the first approach or its

predecessors to the specific context of use. All the frameworks presented are the

result of empirical research, which offers possibilities for changes and tailoring.

For this reason we will investigate the extensibility of the ISO/IEC 9126, ISO/IEC

25010 quality frameworks and the framework defined by Dromey.

This investigation includes (1) where the description of execution tracing quality

could be placed in the existing models and (2) what methods the complete

frameworks offer to describe execution tracing quality including the reflection of

subjective uncertainty. Nevertheless, the property illustrating execution tracing

quality also needs to be able to express the quality of execution tracing as a

standalone model without the frameworks presented.

3.1. ISO/IEC 9126 Framework

The standard allows adaptations of the software product quality model defined in

the scope of the ISO/IEC 9126 standard family. The model definition in ISO/IEC

9126-1:2001 is superseded by ISO/IEC 25010:2011 but the model and the quality

metrics are not superseded until ISO/IEC 25022 and 25023 are issued. Therefore

we include this model in our investigation.

Following the concepts and terminology of the present software product quality

framework the following steps are necessary for extension:

 Defining which characteristics and sub-characteristics can locate the

execution tracing related quality description.

 Defining one or more internal and external metrics related to the quality

property of execution tracing. The internal and external metrics have to

correlate and the internal metrics need to have predictive validity towards

the external metrics.

Extension Method

Execution tracing quality significantly influences the effort needed for error

analysis. This identifies by its nature a property which belongs to maintainability

or any of its sub-characteristics.

The high-level characteristic maintainability comprises of five sub-characteristics:

(1) analysability, (2) changeability, (3) stability, (4) testability, (5) maintainability

compliance. With regard to the goal of execution tracing the sub-characteristic

T. Galli et al. Towards Introducing Execution Tracing to Software Product Quality Frameworks

 – 16 –

analysability offers a logical point to link to because it encompasses all metrics

which describe how the software or its behaviour can be analysed.

After finding the location in the hierarchy, the metrics need to be defined. As the

description of execution tracing quality needs to be able to describe the quality of

execution tracing as a standalone model, it is not recommended to define more

metrics because it would create a dependency on the ISO product quality

framework. If a new metric is introduced, the execution tracing quality model can

easily be linked to the ISO framework without developing dependencies on it. For

this reason we define an internal metric and an external metric keeping the naming

conventions of the standard: (1) Internal Execution Tracing Capability Metric and

(2) External Execution Tracing Capability Metric.

Figure 1

Extending ISO/IEC 9126 with Execution Tracing Capability

The definition of the metric also requires identification of the inputs and the

method how the metric can be calculated from these inputs. The inputs of the

metrics are called quality measure elements according to the terminology of the

standard ISO/IEC 25021:2007.

Benefits

The expected benefit of this extension is to consider execution tracing quality

when the complete software product quality is assessed. In addition, the subjective

uncertainty of the inputs i.e. the quality measure elements of the metrics, can also

be reflected by the mathematical calculations, which can involve fuzzy logic.

No detrimental effects of this extension on the framework are known. The

standard also encourages tailoring the software product quality model to specific

needs of projects. Consequently, the extension is in accordance with the

philosophy of the ISO/IEC 9126 standard family.

Acta Polytechnica Hungarica Vol. 11, No. 3, 2014

 – 17 –

Existing Extension Results

Carvallo and Franch [4] point out that software evaluation is necessary from a

technical point of view but their examination shows that non-technical factors

related to licensing and supplier characteristics are even more important in case of

commercial off-the-shelf (COTS) products. The authors propose to extend the

ISO/IEC 9126 standard family to include non-technical factors in a uniform way.

In the proposal the authors keep the hierarchical structure of the standard and

define three high-level characteristics: (1) supplier, (2) costs, (3) product, which

they decompose in fifteen sub-characteristics, which on the third level of the

hierarchy are even further decomposed resulting in more than two hundred non-

technical quality properties. They validated the extension of the model on

different projects in the telecommunication industry on which they provide a brief

summary in [4].

3.2. ISO/IEC 25010 Framework

The software product quality framework defined in ISO/IEC 25010:2011 revised

the software product quality framework of ISO/IEC 9126-1:2001 as described

before. The new standard kept the philosophy of the previous model. The changes

in the model hierarchy do not affect the node analysability below maintainability.

Thus, the extension point does not change in comparison to the ISO/IEC 9126-1

framework.

Nevertheless, combination of the internal and external software product quality

models in ISO/IEC 25010:2011 needs to be considered. As ISO/IEC 25022 and

25023 are not issued to supersede ISO/IEC 9126-2:2003 and 9126-3:2003, the

separation of internal and external quality views is also a viable option.

Extension Method

The extension possibilities described for ISO/IEC 9126-1:2001 can be used with

the revised software product quality model this new standard introduced. The

measures Internal Execution Tracing Capability and External Execution Tracing

Capability were merged into a single Execution Tracing Capability measure to

comply with the combined internal and external model and consequently it

possesses both internal and external quality measure elements.

Special attention needs to be paid to the definition of the inputs of execution

tracing quality and the description of the computation by which the quality of

execution tracing can be computed. Definitions of new quality measures and

quality measure elements are formalised and defined in the standard ISO/IEC

25021:2007.

T. Galli et al. Towards Introducing Execution Tracing to Software Product Quality Frameworks

 – 18 –

Figure 2

Extending ISO/IEC 25010 with Execution Tracing Capability

Benefits

As with the previously discussed ISO/IEC 9126-1:2001 extension, the primarily

expected benefit is to consider execution tracing quality when the complete

software product quality is assessed. The subjective uncertainty of the quality

measure elements of the defined quality measures can also be reflected by

mathematical calculations including fuzzy logic.

In comparison to extending the ISO/IEC 9126-1:2001 framework, a further

advantage is to reduce the dependency on the ISO-framework to one measure

which needs to be linked to it, thus supporting the standalone application of the

quality model describing execution tracing.

No detrimental effects of this extension on the framework are known. The

standard also declares that tailoring the software product quality model of

ISO/IEC 25010 to specific needs of projects is a must i.e. tailoring is more

emphasised in the revised standard than in its predecessor. Consequently, the

extension is in accordance with the philosophy of the standards.

Existing Extension Results

No extension attempts of ISO/IEC 25010 were found in the literature.

3.3. Dromey’s Framework

For each section the terminology of the model in question is used. Dromey's

model applies the word attribute in a different way to the ISO/IEC 9126 and

ISO/IEC 25000 standard families.

Dromey handles three primary sets of entities in his framework without

introducing hierarchies. The relationships of these sets depict the quality

requirements and the criteria for assessment. The set of high-level quality

attributes contains maintainability which definitely illustrates the category to

which execution tracing quality needs to be assigned. Therefore the set of high-

Acta Polytechnica Hungarica Vol. 11, No. 3, 2014

 – 19 –

level quality attributes need to undergo no changes. Consequently, extension

possibilities for sets of quality-carrying properties and structural forms need to be

examined.

Extension Method

Because all the structural forms define programming language-level constructs in

the original description, higher-level structural forms are also necessary to include

entities on component-level or application-level. New quality-carrying properties

need to be introduced in the framework to describe the input variables of

execution tracing in a binary manner to show whether the property is present in

the application under investigation or not.

Execution tracing related quality-carrying properties can be linked to the new

structural forms and to the high-level attribute maintainability in order to establish

relationships. Then following the bottom-up approach introduced in the model

description, the optimal relationships for each structural form need to be defined

which guarantee the good quality; moreover, to support the top-down approach

the optimal relationships need to be defined between the quality attributes and the

quality-carrying properties. These profiles give a measure that can be compared to

the actual software under investigation to diagnose quality defects or to set quality

targets.

The original definition of the framework only considers the procedural

programming paradigm, which has to be kept otherwise the present model needs

to be reworked significantly to create new quality-carrying properties. The

model’s basic principles also facilitate the accommodation to other programming

paradigms with the introduction of new quality-carrying properties and structural

forms to define new relationships.

Benefits

As with the ISO/IEC 9126-1:2001 extension, the primarily expected benefit is to

consider execution tracing quality when the complete software product quality is

assessed.

As detrimental effect the high number of new relationships between the necessary

quality-carrying properties and structural form needs to be mentioned, if not only

programming language level assessment is necessary. On the other hand, the

model supports the procedural programming paradigm only, so extension to

further programming paradigms would implicate additional quality-carrying

properties which would result in additional relationships between the quality

attributes, structural forms and quality-carrying properties. The high number of

possible relationships which should be processed during quality assessment can

make the model unmanageable.

Existing Extension Results

No extension attempts of Dromey’s framework were found in the literature.

T. Galli et al. Towards Introducing Execution Tracing to Software Product Quality Frameworks

 – 20 –

4 Discussion

The frameworks investigated in the previous section allow extensions to include

execution tracing quality but their implementations differ significantly.

Dromey's model only describes code-level constructs and their quality considering

the procedural programming paradigm. The principle of the model, however, can

also be applied for higher-level constructs and additional programming paradigms.

From the point of view of execution tracing, procedural programming does not

cause difficulties although the usability of the model would significantly be

reduced if no other programming paradigms could be represented. To encompass

additional programming paradigms and higher-level artefacts, Dromey’s model

requires considerable amounts of new quality-carrying properties and new

structural forms. The high number of elements in both sets enhances the number

of combinations through which relationships need to be expressed. Consequently,

the execution tracing quality can be described at the cost of introducing more

complexity in the model. In addition, the direct assignment of binary quality-

carrying properties to high-level attributes leaves no room to uncertainty

computations.

In contrast, ISO/IEC 9126 and 25010 offer an extension possibility and a sub-

characteristic to which the description of execution tracing can be linked:

maintainability and its analysability sub-characteristic. Linking is simple and

requires considerably less effort than incorporating the illustrated changes in

Dromey's model. Moreover, the quality measure or metric definitions complying

with the standards allow the use of mathematical functions, by which subjective

uncertainty computation can also be implemented.

If execution tracing quality were to be described by means of Dromey’s

framework, then it could not be used as an independent model because the

framework requires a specific implementation. On the contrary, linking the

description of execution tracing quality to the ISO/IEC software product quality

frameworks facilitates its existence as an independent model.

ISO/IEC product quality models are more widespread than Dromey’s model and

they are known to a larger audience, as evidenced by the high number of

publications relating to these standards, moreover by the models based on the

ISO/IEC framework presented in the previous chapter. In addition, execution

tracing quality can be encompassed with significantly less effort in the ISO/IEC

standards than in Dromey’s model.

Conclusion

Execution tracing is an important property that needs to be considered in quality

frameworks to truly reflect the overall view of software product quality. Dromey's

model allows extensions to include execution tracing quality although it requires

significant changes in the present model. The model's philosophy does not support

Acta Polytechnica Hungarica Vol. 11, No. 3, 2014

 – 21 –

mathematical operations on quality-carrying properties and, therefore

implementing subjective uncertainty computations is infeasible at present.

Software product quality frameworks of the ISO/IEC standards allow extensions

and have a defined method to do so. Moreover, they also offer a natural linking

point for execution tracing quality with the analysability sub-characteristic of

maintainability. They can also allow mathematical computations that make the

implementation of subjective uncertainty computations possible.

In conclusion, execution tracing quality should be linked to the software product

quality framework of the ISO/IEC 25010 standard with the observation of the

rules for defining quality measures and quality measure elements. This would

facilitate the consideration of execution tracing quality when the whole software

product quality is assessed; furthermore, it would ensure a framework for

incorporating the impacts of subjective uncertainty resulting from the quality

measurement process.

In summary, the findings of the paper include: (1) execution tracing quality should

be reflected by the software product quality frameworks, (2) the current software

product quality frameworks offer the possibility for extension but with

significantly different efforts, (3) the ISO/IEC software product quality

frameworks facilitate mathematical computations for defining measures or

metrics, which allow to capture and implement subjective uncertainty and (4)

metrics and a measure for execution tracing quality are outlined for the ISO/IEC

9126-1 and the ISO/IEC 25010 software product quality frameworks.

References

[1] Banker, R. D., and S. Slaughter. “A Field Study of Scale Economies in

Software Maintenance.” Management Science 43, No. 12 (1997): 1709-

1725

[2] Boehm, B. W., J. R. Brown, and M. Lipow. “Quantitative Evaluation of

Software Quality.” Proceedings of the 2
nd

 International Conference on

Software Engineering. 1976

[3] Buch, I., and R. Park. “Improve Debugging and Performance Tuning with

ETW.” MSDN Magazine, [Online], [Accessed: 01.01.2012], Avaliable

from: http://msdn.microsoft.com/en-us/magazine/cc163437.aspx, 2007

[4] Carvallo, J., and X. Franch. “Extending the ISO/IEC 9126-1 Quality Model

with Non-Technical Factors for COTS Components Selection.”

Proceedings of the 2006 International Workshop on Software Quality.

2006. 9-14

[5] Csallner, C., and Y. Smaragdakis. “DSD-Crasher: A Hybrid Analysis Tool

for Bug Finding.” ACM Transactions on Software Engineering and

Methodology (TOSEM). 2008

T. Galli et al. Towards Introducing Execution Tracing to Software Product Quality Frameworks

 – 22 –

[6] Csernyak, L., G. Horvath, J. Horvath, S. Lorincz, S Molnar, and A Stern.

Matematika a Kozgazdasagi Alapkepzes Szamara (Translated Title:

Mathematics for the Bachelor Curricula in Economics, Probability

Theory). Budapest: Nemzeti Tankonyvkiado, 2007

[7] Dromey, R. “A Model for Software Product Quality.” IEEE Transactions

on Software Engineering. 1995, 146-162

[8] Ernst, M. D. “Static and Dynamic Analysis: Synergy and Duality.” In

Proceedings ICSE Workshop on Dynamic Analysis, 2003: 24-27

[9] Galli, Tamas, Francisco Chiclana, Jenny Carter, and Helge Janicke.

“Modelling Execution Tracing Quality by Means of Type-1 Fuzzy Logic.”

Acta Polytechnica Hungarica, Vol. 10, No. 8, 2013: 49-67

[10] Godefroid, P., and N. Nagappan. Concurrency at Microsoft – An

Exploratory Survey, [Online], 2007, [Accessed: 24.01.2012.], Available

from: http://research.microsoft.com/en-

us/um/people/pg/public_psfiles/ec2.pdf. Microsoft Research

[11] Hovemeyer, D., and W. Pugh. “Finding Bugs Is Easy.” OOPSLA: Object-

Oriented Programming, Systems, Languages & Applications, [Online],

[Accessed: 14.02.2012], Available from:

http://www.cs.nyu.edu/~lharris/papers/findbugsPaper.pdf. 2004

[12] IBM. “Understanding Execution Traces, [Online], [Accessed: 05.02.2013],

Available from:

http://pic.dhe.ibm.com/infocenter/brdotnet/v7r1/index.jsp?topic=%2Fcom.i

bm.websphere.ilog.brdotnet.doc%2FContent%2FBusiness_Rules%2FDocu

mentation%2F_pubskel%2FRules_for_DotN.”

[13] International Organization for Sandardization. “ISO/IEC 25010:2011,

Systems and software engineering -- Systems and software Quality

Requirements and Evaluation (SQuaRE) -- System and software quality

models.” 2011

[14] International Organization for Sandardization. “ISO/IEC 9126-1:2001,

Software engineering -- Product quality -- Part 1: Quality model.” 2001

[15] International Organization for Standardization. “ISO/IEC 14598:1999,

Information technology -- Software product evaluation -- Part 1: General

overview.” 1999

[16] International Organization for Standardization. “ISO/IEC 25021:2007,

Systems and software engineering -- Systems and software Quality

Requirements and Evaluation (SQuaRE) -- Quality measure elements.”

2007

[17] International Organization for Standardization. “ISO/IEC TR 9126-2:2003,

Software engineering -- Product quality -- Part 2: External metrics.” 2003

Acta Polytechnica Hungarica Vol. 11, No. 3, 2014

 – 23 –

[18] International Organization for Standardization. “ISO/IEC TR 9126-3:2003,

.” Software engineering -- Product quality -- Part 3: Internal metrics, 2003

[19] International Organization for Standardization. “ISO/IEC TR 9126-4:2004,

Software engineering -- Product quality -- Part 4: Quality in use metrics.”

2004

[20] Kahn, A. Simulation of Message Passing Programs, [Online]

http://may.cs.ucla.edu/projects/sesame/publications/sundeep_diss_html/nod

e43.html, University of California. 1997

[21] Karahasanovic, A., and R. Thomas. “Difficulties Experienced by Students

in Maintaining Object-oriented Systems: An Empirical Study.”

Proceedings of the 9
th

 Australasian Conference on Computing Education,

2007: 81-87

[22] Kim, C., and K. Lee. “Software Quality Model for Consumer Electronics

Product.” Proceedings of the 9
th

 International Conference on Quality

Software. 2008, 390-395

[23] Kitchenham, B., and S. Pfleeger. “Software Quality: the Elusive Target.”

(IEEE Software) 13, No. 1 (1996): 12-21

[24] Klir, G. J., U. H. St.Clair, and B. Yuan. Fuzzy Set Theory Fundations and

Applications. Prentice Hall Ptr, 1997

[25] Koskinen, J. Software Maintenance Costs. [Online], 2010, [Accessed:

23.01.2012], Available from: http://users.jyu.fi/~koskinen/smcosts.htm

[26] Krishnan, M. S., T. Mukhopadhyay, and C. H. Kriebel. “A Decision Model

for Software Maintenance.” Information Systems Research 15, No. 4

(2004): 396-412

[27] Laddad, R. AspectJ in Action. Manning, MEAP, Second Edition, 2009

[28] Martin, A. “Debugger, Real-Time Trace, Logic Analyser, Long-Term

Trace ETMv3, [Online], [Accessed: 05.02.2013], Available from:

http://www.lauterbach.com/publications/long_term_trace_etmv3.pdf,

Lauterbach GmbH.” 2009

[29] McCall, J. A., P. K. Richards, and G. F. Walters. Factors in Software

Quality, Concept and Definitions of Software Quality. Technical Report,

RADC-TR-77-369, Rome Air Development Center, Air Force System

Command, Griffis Air Force Base, New York 13441, [Online], [Accessed:

21.10.2011], Available from: http://handle.dtic.mil/100.2/ADA049014,

1977

[30] Microsoft Co. “Tracing WMI Activity (Windows), [Online], [Accessed:

05.02.2013], Available from: http://msdn.microsoft.com/en-

us/library/windows/desktop/aa826686%28v=vs.85%29.aspx.” 2012

T. Galli et al. Towards Introducing Execution Tracing to Software Product Quality Frameworks

 – 24 –

[31] Panda, D., R. Rahman, and D. Lane. EJB 3 in Action. Manning Publications

Co., 2007

[32] Qu, D., A. Roychoudhury, Z. Lang, and K. Vaswani. Darwin: An Approach

for Debugging Evolving Programs. Microsoft Research, [Online], 2009,

[Accessed: 24.01.2012], Availavle from:

http://research.microsoft.com/apps/pubs/default.aspx?id=80898

[33] Research Triangle Institute. RTI Project Number 7007.011, The Economic

Impacts of Inadequate Infrastructure for Software Testing. National

Institute of Standards and Technology, U.S Department of Commerce,

Technology Administration, National Institute of Standards and

Technology, U.S Department of Commerce, Technology Administration,

[Online], 2002, [Accessed: 20.01.2012], Avaliable from:

http://www.nist.gov/director/planning/upload/report02-3.pdf, 2002

[34] Saaty, T. L. The Analytic Hierarchy Process. New York: McGraw-Hill,

1980

[35] SAP. “Using the Technical Trace and Log, [Online], [Accessed:

05.02.2013], Available from:

http://help.sap.com/saphelp_nwpi71/helpdata/en/3a/63e540aa827e7fe10000

000a1550b0/content.htm.”

[36] Shi, Z. “Visualizing Execution Traces, Master Thesis.” [Online],

[Accessed: 17.05.2011], Available from:

http://www.mcs.vuw.ac.nz/comp/graduates/archives/mcompsc/reports/2004

/Zhenyu-Shi-final-report.pdf, 2005

[37] Spillner, A., T. Linz, and H. Schaefer. Software Testing Foundations. Santa

Barbara, CA: Rockey Nook Inc., 2007

[38] Spinczyk, O., D. Lehmann, and M. Urban. “AspectC++: an AOP Extension

for C++.” Software Developers Journal, 2005: 68-74

[39] Uzelac, V., A. Milenkovic, M. Burtscher, and M. Milenkovic. “Real-time

Unobtrusive Program Execution Trace Compression Using Branch

Predictor Events.” CASES 2010 Proceedings of the 2010 international

conference on Compilers, Architectures and Synthesis for Embedded

Systems, ISBN: 978-1-60558-903-9, 2010

[40] Winterfeldt, D. Spring by Example. Spring Tutorial, [Online], [Accessed:

19.12.2012], Available from:

http://www.springbyexample.org/examples/aspectj-ltw-spring-config.html

[41] Young, M. “Symbiosis of Static Analysis and Program Testing.” In Proc.

6
th

 International Conference on Fundamental Approaches to Software

Engineering, 2003: 1-5

