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ABSTRACT

We describe procedures and experimental results using speech from
diverse source languages to build an ASR system for a single tar-
get language. This work is intended to improve ASR in languages
for which large amounts of training data are not available. We
have developed both knowledge based and automatic methods to
map phonetic units from the source languages to the target lan-
guage. We employed HMM adaptation techniques and Discrimi-
native Model Combination to combine acoustic models from the
individual source languages for recognition of speech in the tar-
get language. Experiments are described in which Czech Broad-
cast News is transcribed using acoustic models trained from small
amounts of Czech read speech augmented by English, Spanish,
Russian, and Mandarin acoustic models.

1. INTRODUCTION

Language independent acoustic modeling was one of the topics
studied at the 1999 Johns Hopkins University Language Engineer-
ing Workshop hosted by the Center for Language and Speech Pro-
cessing. Our work was motivated by the need for speech recog-
nition in languages beyond the well-studied languages of Europe,
Asia, and the Americas. The statistical techniques used for speech
and language modeling require relatively large amounts of mono-
lingual speech and text as training data. In the ‘resource-rich’ lan-
guages which have such corpora, these statistical methods have
been shown to work quite well. However, if only small amounts of
training data are available in a language, these monolingual tech-
niques are less effective. Our goal was to address this problem
by developing techniques that reduce the amount of data needed
to model resource-poor languages by borrowing data and models
from resource-rich languages.

While in our studies we used multiple languages simultane-
ously, our goal was not to build a ‘multilingual’ ASR system ca-
pable of recognizing several languages equally well. We intended
instead to develop a good monolingual system for a specified tar-
get language by borrowing data and models from other languages.
This is called ‘language independent acoustic modeling’ to suggest
a similarity in nature to speaker independent modeling. In the cur-
rent state-of-the-art, speaker independent models are first trained
from multiple speakers and then adapted to a specific speaker ei-
ther before or during recognition. Analogously, language indepen-
dent modeling is a methodology that combines speech and models
from multiple source languages and transforms them for recogni-
tion in a specific target language.

As mentioned above, acoustic training data is only one re-
source needed for statistical ASR. However, we have assumed that
language models, pronunciations, and appropriate acoustic pro-
cessing are available for the target language, and that only tran-
scribed acoustic training data is in short supply. This is not a com-
pletely unrealistic scenario, however, in that dictionaries with pro-
nunciations are available for many languages, as are on-line news-
papers and other text. However, we stress that we address here
only one aspect of language independent modeling.

We have developed methods to share data and acoustic models
between languages. Underlying these methods are ‘phone map-
pings’ that describe the similarity of sounds in two different lan-
guages. We obtain these phone mappings using both knowledge-
based and automatic methods. The knowledge-based methods rely
only on acoustic-phonetic phonetic categorizations of the individ-
ual languages and as such can be used if no data at all is available
in the target language. The automatic methods derive phone map-
pings using small amounts of acoustic data in the target language.
By either approach we can borrow models from several languages
simultaneously to cover the phone inventory of the target language.
The automatic methods allow additional refinement by borrowing
models sub-phonetically at the HMM-state level. This can be es-
pecially valuable if the target language contains phones not found
in any of the source languages since these techniques are free to
assemble a new phone model from component states of different
source language phone models.

While both the automatic and knowledge-based phone map-
pings can be used without modification to construct recognizers
in the target language by borrowing acoustic models from the var-
ious source languages, HMM adaptation techniques can also be
used to improve the systems using the small amount of target lan-
guage adaptation data we assume is available. As a further re-
finement, we obtained the best recognition performance not from
individually adapted source language acoustic models but by us-
ing Discriminative Model Combination (DMC) to combine mod-
els from several languages simultaneously. This combination can
be done at the sentence or sub-word level, with better performance
obtained using phone-level combinations. We note in particular
that DMC makes effective use of source language acoustic models
that by themselves do not perform well in transcribing the target
language.

We present below a necessarily brief description of our exper-
iments. Our web site www.clsp.jhu.edu/ws99/projects/asrcontains
complete documentation of our work, some of the language data
and models used, and a more extensive bibliography of prior work
in language independent and multilingual acoustic modeling.



2. MULTILINGUAL TRAINING AND TEST SETS

As part of our research program we established an experimental
framework for language independent acoustic modeling. Since
this problem has not been widely studied, we were not able to use
previously defined training and test sets. We therefore began by
investigating ASR performance to find an appropriate ‘operating
point’ for our experiments.

We chose Czech language Voice of America (VOA) broadcasts
as our test domain since news broadcasts contain a variety of dif-
ferent types of speech and are relatively easy to obtain. We chose
Czech since we have ongoing projects [2] from which we could
borrow resources. We also felt that studying Czech as a rapid-
porting task was realistic since, unlike Spanish or Mandarin, there
is fairly little knowledge of existing Czech ASR to influence our
work. Our final test set consisted of one week of news broadcasts,
although due to evolution of our experiments, not all the numbers
reported below are directly comparable; see our web site for more
detailed reporting.

As our out-of-domain acoustic training data, we used broad-
cast news recordings in English, Spanish, and Mandarin obtained
from the Linguistic Data Consortium. We also used read Rus-
sian speech collected at West Point for computer aided foreign lan-
guage instruction and read Czech speech from the Charles Univer-
sity Corpus of Financial News (CUCFN). All speech was down-
sampled to 16KHz as needed. The acoustic models were trained
from mel-frequency, cepstral data using HTK [6]. Unless other-
wise noted, the source language acoustic models were monophone
systems to simplify cross-language mapping; full system descrip-
tions are on our web site.

We built our initial Czech broadcast news system from a ten
hour Czech VOA acoustic training set using techniques known to
work well in other languages and domains. The language model
and pronouncing dictionary were taken from our previous work [2].
After obtaining the performance of this well-trained system, we re-
duced drastically the size of the acoustic training set and retrained
new, impoverished acoustic models. Given our past experience and
the reported experience of others, we expected that training a sys-
tem using approximately one hour of acoustic training data would
yield an ASR system that performed substantially worse than the
initial, well-trained 10 hour system. We would then attempt to
improve this impoverished system by borrowing from other lan-
guages. However, as Table 1 shows, performance on Czech VOA
is relatively good despite large variations in training set size and
model complexity. This behavior appears to be due to the ex-
tremely regular and careful speech used by Czech VOA announc-
ers and not due to a preponderance of speech by individual news
anchors or other obvious similarities between training and test sets.
We note that we observed similar behavior in experiments with
Spanish VOA broadcasts.

From these results we concluded that the Czech VOA speech

Training Data Model type WER (%)
12.8 hour 12 mixture, cross-word triphone 27.1
10.0 hour 20 mixture, monophone 27.6
1.0 hour 8 mixture, monophone 30.2
0.5 hour 20 mixture, monophone 31.3

Table 1: Training and Testing on Czech VOA Broadcasts.

Training Set CUCFN VOA
1.0 hr VOA 66.1% 28.8%

1.0 hr CUCFN 47.3% 35.7%

Table 2: WER in Training and Testing on Czech VOA Broadcasts
and CUCFN Read Speech Using 20 Mixture Monophone Models.

was too self-similar to be used as both training and test data. We
therefore investigated a cross-domain training scenario in which a
small amount of read speech from the CUCFN corpus would serve
as the Czech language training data. After comparing performance
across the mono-lingual Czech read and broadcast domains (Ta-
ble 2), we decided to fix the 1.0 hour CUCFN read speech training
set as the Czech language acoustic training set and to attempt to
improve performance on the Czech VOA test data by borrowing
from English, Mandarin, Spanish and Russian. This provides a re-
alistic and interesting training scenario that involves cross-domain
as well as multilingual factors.

These experiments with Czech VOA are reported as a cau-
tionary note to emphasize that language is just one characteristic
of speech and that other conditions, such as speaking style, are
significant factors in ASR performance. It is therefore critically
important to obtain diverse training and test sets for multilingual
experiments. It is also important that results of limited domain
experiments, such as training and testing with data from the same
news programs, be interpreted cautiously since performance may
not carry over to more diverse domains.

3. KNOWLEDGE-BASED PHONE MAPPINGS

In some applications, it is highly desirable to develop speech recog-
nition systems without any acoustic training data. In such situa-
tions, borrowing models from other languages for which speech
recognition technology is well-developed is an attractive idea. The
approaches presented here are referred to as knowledge-based be-
cause they exploit linguistic knowledge of the languages and their
phoneme inventories, and because they have not been retrained on
any target language acoustic data.

Our initial experiments involved simple mappings in which
phones from the Czech target language were mapped to their near-
est neighbor in a single source language using a similarity mea-
sure based on feature-based descriptions of the phones. This is a
manual procedure that leverages extensive knowledge of acoustic
phonetics [3]. Our approach involved first describing the phones in
both the source and target languages in terms of their articulatory
positions, a process that leads to a description of the sounds using
the International Phonetic Alphabet (IPA) [4].

The advantage of this approach is that all languages can, in
theory, be represented within the same system. We determined
the proximity of a sound in the target language to a sound in the
source language using this representation, and developed an as-
sociated symbol-to-symbol mapping. While it was possible to
achieve reasonable mappings for each language, there are signif-
icant variations in the level of detail used in the source language
phonetic inventories. Spanish, for example, only used 25 phones,
while Russian used 44 phones. We used these mappings to ob-
tain baseline performance using acoustic models from the source
languages derived from these mappings. The procedure was quite
simple: represent each phone symbol in the Czech lexicon using
a corresponding source language phone located from these map-



Source Language : Czech VOA WER (%)
Russian : 60.8 Spanish : 71.7
English : 75.5 Mandarin : 88.7

Table 3: Performance Using Knowledge Based Phone Mappings.

pings. The performance of systems constructed in this manner is
given in Table 3. Overall, we observe that performance is poor - in
the range of 80%WER. It was a great surprise to observe that the
Russian acoustic models, though they were trained on read speech,
were a close match to the VOA data, especially considering the dif-
ferences in microphones, speaking style, and speaking rates. We
also observed from these experiments that performance for English
and Spanish was comparable, and performance for Mandarin lags
the other systems.

It was evident from the construction of the mappings that a
single source language did not provide optimal coverage of Czech.
Therefore, it was natural to explore a mapping that involved phones
from all source languages based on proximity in the IPA table.
Since Russian was clearly acoustically closer to Czech than any
of the other source languages, we excluded Russian from the set
of source languages for this experiment, so that it would not mask
any trends in our knowledge-based systems. Though we achieved
modest improvements in performance (1.6% absolute WER), we
did not achieve performance comparable to data-driven mapping
methods discussed next.

Our next attempt to understand deficiencies in the knowledge-
based system was to explore a series of experiments in which the
recognition system was allowed to chose the best combination of
phones at runtime. First, we explored a parallel pronunciation ap-
proach [5] in which each item in the lexicon was represented as
a sequence of phones from a single language implemented using
pronunciation networks. Unfortunately, this approach resulted in
slightly degraded performance even though we had hoped that the
additional degrees of freedom would offset any systematic acous-
tic bias between the two domains. We next tried a multiphone
approach that allowed the recognition system to mix and match
phones from all source languages as an attempt to let the recog-
nizer find the best realization of a phone, rather than fixing this
based on a priori linguistic knowledge. We found minor improve-
ment in performance over the parallel pronunciation system, as ex-
pected. However, overall performance is still below the best mono-
lingual system, and far below the Russian monolingual system.
In these experiments we have observed that, though the overall
WER is high, performance at the phone-level appears to be quite
good. The alignments are plausible, and a majority of the words
are only partially misrecognized. Since Czech is an inflected lan-
guage, this analysis raised some concerns that our language mod-
eling approach was not optimal. For example, a morphologically-
based approach might be better if the majority of the errors occur
on endings rather than stems - it could be the case that performance
at a morphological level is good, and hence the system would be
usable for information extraction tasks.

4. AUTOMATIC GENERATION OF PHONE AND STATE
LEVEL ACOUSTIC MAPPINGS ACROSS LANGUAGES

We developed a general methodology to derive cross-languagemap-
pings automatically both at phonetic and sub-phonetic levels. We

call our approach the Confusion Matrix approach to finding cross-
lingual mappings. These confusion matrices are tables of acoustic
similarity between phones across languages. They are obtained
by first performing a mono-lingual phonetic labeling of the tar-
get language acoustic data using the target language phone set -
this can be done manually or via forced-alignment using HMMs;
we use the latter approach. Phonetic recognition of this data is
then performed using acoustic models from each of the source
languages; for this we used simple, unweighted, phone-loop rec-
ognizers. This yields multiple phonetic segmentations of the target
language acoustic data in the source language phone inventories.

Once a criterion for co-occurrence between two phonetic la-
belings of the acoustic segments is defined (e.g., a minimum num-
ber of overlapping frames, etc.), we can arrange the phones of the
source language and target language into a matrix that contains the
counts of co-occurrences between the ����� and

� ��� phones of the
source and target languages, respectively, in the � ��� �
	 entry of the
matrix. This matrix of co-occurrences is the confusion matrix.

After the confusion matrix between the phones of two lan-
guages is obtained, we derive mappings from this matrix. Given a
source phone (in the � ��� row), we would like to select the phone
in the target language that best matches it (i.e., choose the best
matching

� ��� column). To do this we can simply choose the col-
umn with the highest count. A better method takes into account
the number of times the

� ��� source language phone was hypothe-
sized by dividing the counts of the bin � ��� ��	 by the accumulated
counts of the column

�
.

We extended this technique to the state level, motivated by
our intuition that some phones seemed hard to match from one
language to another. To obtain the subphonetic mapping, we broke
each HMM in the source and target language into its conforming
states and derived an HMM from each of these states. Using these
new, sub-phone HMMs we constructed a new confusion matrix.
As expected, we found that some of these hard-to-match target
language phones were modeled by assembling new models from
phonetic subunits from other languages.

We described above how we established the best mapping for
each phone/state of the target language. We found out that when
many states and phones from various languages were competing
to represent any given target model, several models seemed to
give high counts and thus be close candidates for a reasonable
match. We explored the possibility of including several of these
best matching candidates by combining the Gaussian models in
their mixtures after weighting them accordingly. We established
the weights used in this state combination in proportion to the nor-
malized number of counts corresponding to the map.

Table 4 shows recognition experiments we conducted using
mappings derived from confusion matrices. For comparison in
this experiment, monophone Czech models trained on 1 hour of
Czech give 38% WER. When mappings are obtained using the
phone-level confusion matrix approach, the word error rate drops
below 70%. State-level mappings further reduce the error rate of
the English mappings. Better results are obtained when multiple
source languages are included (English, Spanish and Mandarin),
and state mappings are obtained for both state-to-state mapping
and best three states to a single Czech state (the 3-state method).
The best result is below 55% WER. The 3-state methods reported
differ in the presence (54.4%) or absence (55.8%) of count nor-
malization of the columns in the confusion matrix.



Source(s)/Method WER Source(s)/Method WER
EN/Phone 68.3 SP/Phone 68.7
EN/State 64.8 SP/State 70.0
MA/State 79.7 EN+SP+MA/State 62.3

EN+SP+MA/3-State 55.8 EN+SP+MA/3-State 54.4

Table 4: WER(%) Using Automatic Phone Mappings.

5. ACOUSTIC ADAPTATION

Despite the substantial differences between the quality of phone
mappings obtained by knowledge-based and automatic state-level
phone mappings, adaptation using MLLR and MAP 1 on the 1.0
hour of Czech read speech largely compensates for these differ-
ences, as shown in Table 5. Furthermore, while performance im-
proves significantly, the adapted systems do not individually im-
prove over the monolingual Czech systems.

Source Mixtures / Type Unadapted MLLR+MAP
MA 10 hr. 20 /monophone 88.7 63.0
SP 10 hr. 20 / monophone 71.6 50.9
RU 3 hr. 20 / monophone 60.8 45.3
EN 10 hr. 20 / monophone 75.7 47.2
EN 10 hr. 8 / triphone 35.1
EN 72 hr. 12 / triphone 32.7
CZ 1 hr. 20 / monophone 33.4
CZ 1 hr. 6 / triphone 30.7

Table 5: Adaptation WER(%) of Systems with Varying Complex-
ities and Amounts of Source Language Training Data

6. DISCRIMINATIVE MODEL COMBINATION OF
MULTIPLE SOURCE LANGUAGE ACOUSTIC MODELS

Discriminative model combination [1] aims at an optimal integra-
tion of all available acoustic and language models into one log-
linear posterior probability distribution. The coefficients of the
log-linear combination are estimated on training samples using
discriminative methods to obtain an optimal classifier. For exam-
ple, a multilingual combination at the sentence level of scores from
Czech, Spanish, and Mandarin acoustic models has the following
form for a sentence hypothesis � given the acoustic data �
�������
	�� � � 	����	�����	�� ����� � 	������������� ����� � 	��������� ��� ����� � 	

where
� 	�� � � 	 is the Czech language model likelihood,

� 	�� ����� � 	 ,�!��� ����� � 	 , ����� ����� � 	 are the Czech, Spanish, and Mandarin acous-
tic model likelihoods. The parameters

�
are optimized to minimize

WER on a held-out set of Czech data.
Although the results are not reported in detail here, we find

that DMC rescoring at the sentence level does not improve over
the monolingual Czech performance. However, performance can
be improved by applying DMC at the phoneme-class level. For
example, the acoustic likelihood

� 	�� ����� �
	 can be separated by the

1References and procedures are in the HTK documentation [6].

Acoustic Scores and Phonetic Classes WER(%)
N-Best oracle 19.8

first best (baseline) 34.0"�#%$��&�#%$��'(#%$�)"(���*�&+���*�',���
31.8�-	��-���	��-.��#%$*)�!���/.��0%1
29.2�
	����"�	����&�	����'(	��2�"�#%$*�&�#%$�' #%$ �" ��� �& ��� �' ��� �" 0%1 �& 0%1 �' 0%1
28.9

Table 6: DMC Rescoring of 1000-best Lists. The combination
uses knowledge based mappings, the Czech language model, and
the Czech, Spanish, Russian, and English vowel, consonant and
silence models

contribution of vowels, consonants, and silence models. Parame-
ters can then be introduced to define a posterior distribution based
on these language-specific phonetic classes:� ��� � 	�� � �
	34� 	��65 7 " 	�� ����� ��	89� 	���5 : & 	�� ����� ��	84� 	���5 ; ' 	�� ����� ��	=<

From the results in Table 6 we conclude that the structur-
ing into phoneme classes improves performance over combina-
tion at the sentence level. Furthermore, combination of multilin-
gual phoneme-class models performs better than the monolingual
Czech systems, even when the monolingual systems are optimized
using DMC.

7. CONCLUSION

We have presented a methodology for language independent acous-
tic modeling. We found that both knowledge-based and automatic
methods can be used to derive cross-lingual phonetic mappings.
Model adaptation and discriminative model combination can then
be used to further improve and merge systems from diverse lan-
guages. Additional experiments, particularly in language adaptive
training, can be found on our web site.
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