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Industrial Networks (INs) are widespread environments where heterogeneous devices collaborate to control and monitor physical
processes. Some of the controlled processes belong to Critical Infrastructures (CIs), and, as such, IN protection is an active research
	eld. Among di
erent types of security solutions, IN Anomaly Detection Systems (ADSs) have received wide attention from the
scienti	c community. While INs have grown in size and in complexity, requiring the development of novel, Big Data solutions for
data processing, INADSs have not evolved at the same pace. In parallel, the development of BigData frameworks such asHadoop or
Spark has led the way for applying Big Data Analytics to the 	eld of cyber-security, mainly focusing on the Information Technology
(IT) domain. However, due to the particularities of INs, it is not feasible to directly apply IT security mechanisms in INs, as IN
ADSs face unique characteristics. In this work we introduce three main contributions. First, we survey the area of Big Data ADSs
that could be applicable to INs and compare the surveyed works. Second, we develop a novel taxonomy to classify existing IN-
based ADSs. And, 	nally, we present a discussion of open problems in the 	eld of Big Data ADSs for INs that can lead to further
development.

1. Introduction

Industrial Networks (INs) refer to the networked envi-
ronments where specialized, heterogeneous interconnected
components, known collectively as Industrial Control Sys-
tems (ICSs), automate, control, and monitor physical pro-
cesses. As such, they are responsible for running a wide range
of physical processes, in di
erent industrial sectors and in
Critical Infrastructures (CIs) [1]. �e European Council [2]
de	nes a CI as “an asset, system or part thereof (. . .) which
is essential for the maintenance of vital societal functions,
health, safety, security, economic or social well-being of
people, and the disruption or destruction of which would
have a signi	cant impact (. . .) as a result of the failure to
maintain those functions.” Examples of CIs include power
generation and transport, water distribution, water waste
treatment, and transportation systems.

�erefore, the correct functioning of CIs has a vital
importance. Miller and Rowe [3] surveyed previous security
incidents that a
ected CIs. Nowadays, there are two main
speci	c concerns about the impact of IN related attacks:

(1) Successful attacks against INs may have an impact on
the physical process the IN is monitoring, potentially
leading to safety-threatening scenarios. Examples of
such incidents include Aurora [4], Stuxnet [5], the
Maroochywater breach [6], and theGerman steelmill
incident [7].

(2) �e proliferation of ICS-speci	c malware for con-
ducting espionage: the aim of these pieces of malware
is to gather information about the controlled process
and/or company running it. �e purpose can be
twofold: stealing con	dential information about the
process (e.g., recipe for manufacturing a product) or
to gather information to conduct attacks against a
third party. Examples of such malware include Duqu
[8] and Dragon�y [9].

As a consequence, the critical or con	dential nature of some
of the controlled processes and the potential impact of service
malfunction, IN security is an active research 	eld. As such,
IN protection has received wide attention from both industry
and the scienti	c community. Among the di
erent 	elds of
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IN security research, IntrusionDetection Systems (IDSs) and,
particularly, Anomaly Detection Systems (ADSs) have an
important role and there are many proposals in this direction
[10–12].

Alternatively, since the birth of distributed computing
frameworks such as MapReduce [13] and distributed 	le-
systems such as the Hadoop File System (HDFS) [14], a new
computing paradigm known as Big Data Analytics (BDA)
has emerged. Big Data refers to the set of information that
is too complex to process by traditional IT mechanisms
within an acceptable scope [15]. Although no total consensus
exists, this data complexity is generally expressed in at least
three qualities: the amount of data (volume), data generation
and transmission pace (velocity), and diversity of data, both
structured and unstructured (variety) [16]. More recently,
a fourth quality is also widely mentioned: the ability to
search for valuable information on Big Data (veracity) [15].
However, the term Big Data has transcended the type of
information and it is also used to refer to set ofmethodologies
and mechanisms developed to work with this type of data.
BDA aims to extract valuable knowledge from Big Data by
analyzing or modeling it in a scalable manner.

Among the multiple applications BDA has, Cárdenas et
al. [19] and Everett [20] discussed its potential for intrusion
detection research.�ey conclude that using BDA can lead to
more e�cient IDSs. However, both works center on regular
Information Technology (IT) networks and do not examine
its applicability to INs. In this work, we analyze di
erent
existing Big Data ADSs that can be used in INs and extract
insight from them in order to identify some possible future
research areas.

Our contributions can be summarized as follows:

(i) A literature review of Big Data ADSs that can be
applied to INs.

(ii) A novel taxonomy to classify IN-based ADSs.

(iii) A discussion of open problems in existing IN-orient-
ed, large-scale, heterogeneous ADS research.

�e rest of the paper is organized as follows. Section 2
introduces INs, ADSs, and Big Data Security Mechanisms.
Section 3 presents the taxonomy used for ADS classi	cation.
Section 4 analyzes the most relevant proposals applicable to
IN intrusion detection. Section 5 discusses the proposals and
evaluates their suitability for their usage in INs. Section 6
points to someopen research areas that have not been covered
by previous approaches. Finally, Section 7 draws the 	nal
conclusions.

2. Background

In this section we provide the necessary background to
support our argumentation.

2.1. Industrial Networks. Since the invention of the Pro-
grammable Logic Controller (PLC) in the 1960s, INs have
evolved signi	cantly from the initial primitive propri-
etary and isolated environments to the complex, standard
interconnected networks that are today. Traditionally, INs
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Figure 1: Example of a simple industrial network.

were isolated environments where communication was con-
ducted through proprietary network protocols with limited
or nonexistent interaction with external networks. How-
ever, since the 1990s, pushed by the increasing demand
for location-independent access to network resources, INs
became progressively interconnected with external networks
such as the companies’ internal IT network and even the
Internet [21, 43].

On the one hand, this increased network standardiza-
tion led to the start of using standard network protocols
(TCP/IP) and commercial-o
-the-shelf (COTS) so�ware,
laying behind proprietary, ad hoc hardware and so�ware
solutions [1]. On the other hand, this merge signi	cantly
increased the attack surface of INs, as it exposed them
to simple remote attacks and exploitation by using known
vulnerabilities of COTS so�ware. Traditional isolation and
obscure characteristics that INs had relied on for security did
no longer exist.

Figure 1 shows the network architecture of a simple IN.
INs have a vertical architecture. At the bottom lays the
physical process that is being controlled.�e physical process
has a set of sensors and actuators that are used to gather
information about the state of the process and to perform
actions on it. �ese sensors and actuators are connected
to 	eld controllers, normally PLCs, through buses or direct
connections in the so-called 	eld network. Field controllers
are the workhorse of INs. �ey read process data from the
	eld sensors and, based on their stored control algorithm,
send orders to the actuators to interact with the process,
generally trying to keep process variables’ values around a
set of certain setpoints. Nevertheless, except for the simplest
installations, 	eld controllers are not enough to conduct all
the required tasks. Consequently, additional devices, called
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Table 1: Di
erences between industrial and IT networks [21, 22].

Industrial networks IT networks

Primary function Control of physical equipment Data processing and transfer

Applicable domain
Manufacturing, processing and utility

distribution
Corporate and home environments

Hierarchy
Deep, functionally separated hierarchies

with many protocols and physical standards
Shallow, integrated hierarchies with uniform
protocol and physical standard utilization

Failure severity High Low

Reliability required High Moderate

Round trip times 250�s–10ms 50+ms

Determinism High Low

Data composition
Small packets of periodic and aperiodic

tra�c
Large, aperiodic packets

Temporal consistency Required Not required

Operating environment
Hostile conditions, o�en featuring high

levels of dust, heat and vibration
Clean environments, o�en speci	cally

intended for sensitive equipment

System lifetime Some tens of years Some years

Average node complexity Low (simple devices, sensors, actuators) High (large servers/	le systems/databases)

Primary security requirement Availability Con	dentiality

supervisory devices, are necessary. �ese devices usually
run on normal IT-based hardware and so�ware. Examples
include control servers, Human Machine Interfaces (HMIs),
and engineering stations. Control servers store process data
and, optionally, implement second-level control logic, usually
involving data from di
erent 	eld controllers. HMIs are the
graphical user interfaces operators used to interact with the
process. Critical processes aremonitored by human operators
24/7. Process engineers use engineering stations to develop
and test new applications regarding control logic.

INs can be further divided according to di
erent layers.
According to the de	nition by Genge et al. [44], on the one
hand, there is the physical layer, composed of the actuators
and sensors that directly interact with the physical process.
On the other hand, there is the cyber layer, composed of all
the IT devices and so�ware which acquire the data, elaborate
low level process strategies, and deliver the commands to the
physical layer. Field controllers act as the bridge between both
layers, as they read 	eld data and send local commands to the
actuators, but they also forward 	eld information to the cyber
layer components while executing commands they receive
from the supervisory devices.

Hence, ICSs can be considered a subset of Cyber Physical
Systems, as they are able to process and communicate data
while also interacting with their physical environment.

�ere are di
erent types of INs, such as Supervisory
Control and Data Acquisition (SCADA), Distributed Con-
trol Systems (DCSs), and Process Control Systems (PCS).
However, di
erences are getting blurred, and they can o�en
be considered as a single entity when designing security
solutions [1, 22].

Although they share a common part of technology stack,
INs are inherently di
erent to commercial IT networks.
Table 1 shows a summary of the main di
erences between
both network types. �e main di
erence resides in the
purpose of each of the networks: whereas, in IT, the purpose

is the transfer and processing of data, in the case of INs the
main objective is to control a physical process.

Additionally, security requirements in IT networks and
INs di
er in importance. �ere are three main security
requirements that information systems or networksmust ful-
	l in order to be considered secure: con	dentiality, integrity,
and availability [45, 46]. Dzung et al. [47] describe the
requirements and relate them to INs.

Con�dentiality. Prevention of information disclosure to
unauthorized persons or systems: in the case of INs, this is
relevant with respect to both domain speci	c information,
such as product recipes or plant performance and planning
data, and the secrets speci	c to the security mechanisms
themselves, such as passwords and encryption keys.

Integrity. Prevention of undetected modi	cation of informa-
tion by unauthorized persons or systems: in INs, this applies
to information such as product recipes, sensor values, or
control commands. Violation of integrity may cause safety
issues; that is, equipment or people may be harmed.

Availability. It refers to ensuring that unauthorized persons or
systems cannot deny access or use to authorized users. In INs,
it refers to all the devices of the plant, like control systems,
safety systems, operatorworkstations, and so on, aswell as the
communication systems between these elements and to the
outside world. Violation of availability, also known as Denial
of Service (DoS), may not only cause economic damage but
may also a
ect safety issues as operators may lose the ability
to monitor and control the process.

On the one hand, IT networks, which are designed
to store and transmit information, lean to keep the data
con	dential and information integrity and availability play
a lesser role. On the other hand, in INs, availability is
paramount, as losing control of a process or disrupting it
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can cause signi	cant economic losses and, in the case of
specially safety-critical INs, such asCIs, the consequences can
be signi	cantly more severe and potentially catastrophic [3].

�ese requirement di
erencesmean that evenwhen tech-
nically possible, blindly applying IT-based security mech-
anisms or procedures in industrial environments might
lead to process malfunction or potentially safety-threatening
scenarios, as they have been designed with di
erent goals
in mind. For instance, running antivirus so�ware on PLCs
might compromise the PLC’s ability to perform real-time
operations on a process, or conducting a penetration test can
lead to dangerous scenarios [48].

However, these traits can also be leveraged to build
security mechanisms for INs that would be impractical to use
in IT networks. For instance, the deterministic nature of INs
and its periodic tra�c between di
erent hosts makes them
suitable candidates for using Anomaly Detection Systems
[10].

2.2. AnomalyDetection Systems. AnomalyDetection Systems
(ADSs) are a subset of Intrusion Detection Systems (IDSs)
[49]. IDSs are security mechanisms that monitor network
and/or system activities to detect suspicious events. IDSs are
classi	ed according to twomain criteria: the detectionmech-
anism they use (signature detection or anomaly detection)
and their source of information (where they collect the events
to analyze).

Signature-based IDSs compare monitored data to a
databasewith knownmalicious patterns (signature database).
If there is a match, an alert is raised, as the activity has
been identi	ed as suspicious. �eir e�ciency is directly
related to the completeness and accuracy of the signature
database they are working with, as attacks will go undetected
if their signature is not available. Among their operational
characteristics, they have a low number of false positives
but they are unable to detect unknown attacks. ADSs, on
the other hand, identify malicious patterns by measuring
their deviation from normal activity. ADSs build a model
of the normal behavior of the process (through automated
learning or manual speci	cations) and detect deviations with
respect to themodel [21].ManyADSs are built usingmachine
learning methods [50]. As opposed to signature-based IDSs,
ADSs are able to detect unknown attacks, but they o�en yield
a higher number of false positives.

Regarding the source of information, IDSs traditionally
have been classi	ed into two main categories: network-level
and host-level IDSs. Network-based IDSs monitor network
tra�c to detect suspicious activity (suspicious connections,
malicious packet payloads, etc.), while host-based IDSs
monitor local data stored in a device (system logs, 	le
integrity, etc.). In the case of INs, the limited processing ability
of industrial devices has limited the deployment of host-
based ICSs [21]. �erefore, when considering IN IDSs, the
source of information criterion can be set based on the IN
layer they use to gather information from the cyber-level or
the physical layer. Cyber-level IDSs are similar to their IT
counterparts as they generally monitor network-level data.
Physical-level IDSs monitor the physical quantities of the
process (pressures, temperatures, currents, etc.) in order to

detect intrusions. Physical properties of the process are con-
stantly monitored, o�en polling data every few milliseconds
in the case of critical variables, which with large, continuous
processes can lead to a scenario where it is necessary to use
Big Data Analytics (BDA), covered in Section 1, in order to
process 	eld and control data. �is is further con	rmed by
proposals that, outside the 	eld of security research, point
to this need and propose several BDA solutions focused on
industrial applications, such as process monitoring [51–54],
maintenance [55], fault detection [56], and fault diagnosis
[57, 58].

Most IN ADSs work on the cyber layer (see surveys
[10–12]). Physical-level ADSs can be divided into two main
groups: ADSs where it is necessary to model the physical
process [59, 60] or ADSs that do not need a speci	c model
for the physical process [61, 62]. Few proposals combine data
from both levels [63, 64].

2.3. Big Data Security Mechanisms. Modern and complex IT
networks create and process vast amounts of data contin-
uously. Analysis of the created data for security purposes
is a daunting task, and, before the advent of Big Data
processing tools, data was normally sampled or only subsets
of it were analyzed (e.g., only metadata). Since MapReduce
[13] was introduced, several Big Data frameworks have been
proposed, which allow the processing of large, heterogeneous
datasets.

Traditionally, Big Data frameworks have been divided
into two main groups, according to the nature of the data
they work with. On the one hand, there are batch processing
technologies that work with data at rest and are usually used
when doing Exploratory Data Analysis (EDA). Examples of
technologies that use this approach would include Hadoop
[65] and Disco [66]. On the other hand, there are stream
processing technologies that are designed to work with
�owing data. Gorawski et al. [67] reviewed di
erent Big Data
streaming proposals.

However, hybrid tools such as Apache Spark [68] or
Apache Flink [69] are able to work on both streaming and
resting data. Spark uses microbatches to process incoming
data while Flink does batch processing as a special case of
stream processing.

Extracting insight from the large amount of information
that could be leveraged for security event detection (e.g., logs,
network �ows, or packets) in a network can be considered a
Big Data problem [19, 20]. Consequently, di
erent types of
Big Data Security Mechanisms have been proposed:

(i) Intrusion detection (see survey [70]).

(ii) Botnet detection ([71–74]).

(iii) Malware detection ([75–78]) and analysis ([79, 80]).

(iv) Distributed Denial of Service (DDoS) detection ([81–
85]).

(v) Spam detection ([86–88]).

On a related note, other resources have been developed
that even if they are not securitymechanisms per se, they have
been designed to handle large volumes of network data and,
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Figure 2: A taxonomy for Anomaly Detection Systems in Industrial Networks.

thus, can be useful in building security mechanisms on top of
them:

(i) Frameworks for analyzing network �ows ([89, 90]).

(ii) Frameworks for analyzing network packets ([91, 92]).

(iii) Frameworks for analyzing logs ([93, 94]).

However, in this paper we will limit the scope to Big Data
ADSs that could potentially be applicable to the industrial
domain.

3. Taxonomy

In this section, we describe the taxonomy or classi	cation
method that will be used in Section 4 for existing large-scale
industrial ADSs. Figure 2 shows the created taxonomy tree.
When classifying IDSs in general, two main criteria are used:
the detectionmethod and the scope of the IDS [10, 21, 49, 95].
We can apply these criteria to build an IN ADS classi	cation
method.

3.1. Detection Method. �e main criterion to classify IDSs
resides in the detection method. While the di
erence
between signature-based IDSs andADSs was already covered
in Section 2.2, ADSs can be further classi	ed based on their
detection technique. According toAxelsson [95] andMitchell
and Chen [10] ADS detection techniques belong in two
categories:

(1) Self-learning or behavior-based ADSs: the ADS
detects anomalous features that are distinct from
normal system behavior. Normal system behavior
can be retrieved in an unsupervised (e.g., clustering
historical data) or in a semisupervised manner (e.g.,
collection of training, generally attack-free, data).

(2) Programmed or behavior-speci	cation-based ADSs:
using expert knowledge, a human de	nes legitimate
behaviors and implements them on the ADS. �e
ADS detects anomalies by detecting deviations from
the speci	ed behavior.

3.2. Scope. Apart from the detection method, the other main
criterion for IDS and ADSs is their scope, that is, the source
and nature of the data used for audit. In IT ADSs, there
are two main types of ADSs depending on the data they
use.

(1) Network ADSs: ADSs monitor a network without
focusing on individual hosts. �e most prominent
data sources for these ADSs are network �ows and
packets.

(2) Host ADSs: the ADS monitors data from an individ-
ual host to check anomalies. Examples of host data
include logs, 	les, or system calls.

While this split was conceived for IT-based ADSs, this
classi	cation has also held for IN ADSs [10, 21, 96]. And
indeed, most IN ADS proposals can be classi	ed in one
of the two above categories. Nevertheless, due to the cyber
physical nature of INs, this classi	cation is not complete
enough, as it only tackles the cyber part of INs, while not
considering the physical dimension of INs that handles 	eld
data. Field datamainly consists of sensor signals that monitor
physical quantities (temperature, pressure, etc.) although
other process-based variables (counters, setpoint values, etc.)
might be present.�ere are several examples of IN ADSs that
leverage 	eld-level data [59–62]. �is data can come from
logs on a control server, direct process measurements, and
simulated data or can be scattered across di
erent hosts or
devices. �erefore, ADS proposes that leverage process data
for anomaly detection do not 	t well in the above classi	ca-
tion. Consequently, we have created a novel taxonomy where
the physical dimension of IN ADSs is taken into account as a
proper data source. �is taxonomy can be leveraged to clas-
sify IN ADSs, both conventional and Big Data proposals, as it
encompasses more data sources and types that are present in
INs than previous presented taxonomies that do not acknowl-
edge the existence of ADSs based on the physical layer of
INs.
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4. Anomaly Detection Systems

In this section, we survey existing Big Data ADSs that could
be used in INs. Proposals are divided according to the
taxonomy described in Section 3.

4.1. Cyber-Level ADSs

4.1.1. Cyber-Level, Self-Learning ADSs. �e proposal of Xu
et al. [42] is an ADS based on host log mining. System
logs are 	rst parsed to provide a uni	ed data-structure from
di
erent log formats, by getting log format templates from
the application source code. �en, they build features from
the extracted log data, focusing on state ratio vector (a vector
representing a set of state variables on a time window) and
the message count vector (a vector representing a set of
related logs with di
erent message types) features. �ese
vector features are later mined using an algorithm based on
Principal Component Analysis (PCA) for anomaly detection.
�e results are 	nally visualized in a decision tree to aid
operators to 	nd the root cause of an anomaly.�e analysis is
carried out in a Hadoop cluster to increase computing speed.

Yen et al. [23] introduce Beehive, a large scale log mining
tool that uses Hive [97] to detect suspicious activities in
corporate networks. For that purpose, Beehive mines logs
coming from di
erent sources and, specially, web proxy logs.
Beehive clusters log data and identi	es misbehaving hosts as
cluster outliers, as they show a unique behavioral pattern.
�e clustering is done by an adapted version of the �-means
algorithm. �e incidents related to the outliers were labeled
manually by using other system logs and showed that many
of these outliers were not detected by traditional security
mechanisms.

Ratner and Kelly [38] conduct a case study of network
tra�c anomalies in a corporate network. For this end, they
extract packet metadata from a set of captured packets, and
they perform speci	c queries in the gathered data to detect
attacks, mainly IP scans. In order to process the large dataset,
they use Apache Hadoop. �ey 	nd a large number of IP
scans and conclude that roughly half of the packets arriving
from external IP addresses are anomalous. �ose anomalies
were found by comparing each packet’s IP metadata to the
average values for each day.

�erdphapiyanak and Piromsopa [98] expose an anomaly
detection system based on host log analysis. First, the system
parses log data and later clusters it by using �-means. Once
the clusters are formed, the authors extractmajor characteris-
tics from the clusters to examine di
erences and similarities.
Minor clusters with important di
erences when compared
to others are �agged as anomalous. While the system has
been tested with ApacheWeb Server logs, the authors address
aggregating logs fromdi
erent network agents in future steps.
Log parsing and clustering are performed in aHadoop cluster.

Camacho et al. [17] use a PCA-based solution to detect
anomalies in computer networks. �e work�ow of the
approach can be seen in Figure 3. �e anomaly detection
is accomplished in two separate phases: a model building
phase, where the ADS is tuned based on training data,
and a monitoring phase, where the ADS analyzes incoming

Preprocess
incoming data

Do new observations
consistently
exceed previously
set limits?

Transform data
according to model
built on training

Continue
normal
operation

Flag an

anomaly

YesNo

Preprocess

training data

Build PCA model

Discard data outliers
based on EDA

Model building phase

Monitoring phase

statistics of
incoming data

Calculate T
2 and SPE

statistics for each
training observation

Calculate T
2 and SPE

on di�erent
confidence levels

Set T2 and SPE limits

Figure 3: Anomaly Detection System proposed by Camacho et al.
[17], based on Principal Component Analysis (PCA).

data and determines it as anomalous or legitimate based
on the model built during the previous phase. In the 	rst
phase, incoming data (generally, IDS and Firewall logs) is
preprocessed and converted into feature vectors. Later, this
data is used to create a PCA model, where the original
features are transformed into a new variable subspace. �e
dimensionality reduction helps to visually inspect the data
and to identify outliers in it. �ese outliers can be considered
as anomalies or attacks in training data, so this preliminary
step cleans the data and allows building a more e
ective
model, without requiring a completely attack-free initial
dataset. �e PCA model can also be used to create two dif-
ferent statistics that are widely used for process monitoring:

Hotelling’s �2 [99], comprising the leverages of the PCA
model, and the ��� [100], involving the residuals of the
model. �e proposed approach calculates the statistics for
each of the observations in the training set and, based on it,
calculates a control limit based on an arbitrary con	dence
level, where a given percentage of the training observations
should be below the control limit. Once the control limits
have been set, the training phase has ended and the ADS
is now prepared to work in the monitoring phase. In this
phase, incoming data is preprocessed and transformed using
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the previously created PCA model and it calculates the �2
and ��� values for each incoming observation. If several
consecutive observations surpass either of the set control
limits (the necessary number of out-of-bounds observations
depends on the con	dence level), an anomaly is �agged. �e
process can be parallelized using hierarchical PCA and the
workload shared through several slaves.�e ability of PCA to
work with high dimensional data ensures that the approach
can be extended to a wide range of incoming data.

Hashdoop [31] is a MapReduce-based framework de-
signed to run Anomaly Detection Systems in a distributed
manner. It does not provide enhanced anomaly detection
capacity to the original ADS but it speeds up its execution.
First, it splits and hashes network tra�c, preserving tra�c
structures. Later, each of the hashed tra�c subsets is analyzed
by an instance of the ADS to detect anomalies. Finally, the
generated information about the subsets is summarized in
a single output report. Results show that processing time is
reduced when using Hashdoop-powered ADS compared to
their single-node counterparts.

Marchal et al. [35] propose an intrusion detection system
that uses honeypot data to detect similar intrusions in
networks. First, it collects Domain Name System (DNS)
replies, HTTP packets, and IP �ow records from the network,
along with honeypot data. Based on the collected data,
three di
erent scores are computed in order to quantify
the maliciousness of the recorded DNS, HTTP, and �ow
communications. �is quanti	cation uses other gathered or
publicly available data such as domain blacklists or the data
compiled by the in-house honeypot. When one of these
maliciousness indices reaches a certain threshold, a �ag is
raised to inform about the anomaly.�e authors test di
erent
data-intensive frameworks that are designed to work with
potentially very large data volumes. According to their tests,
Apache Spark and its subproject, Shark, are faster than
Hadoop, Hive, or Pig. However, several concerns arise with
this mechanism: the performance of the proposed system
is directly related to the performance of the honeypot. If
an attacker does not interact with the honeypot and their
domain is not explicitly blacklisted, the mechanism will not
be able to raise an alert, even in the case of known attacks.

MATATABI [36] is a threat analysis platform that stores
data from di
erent sources (DNS captures and querylog,
Network �ows, and spam email) in a Hadoop cluster and
organizes it in Hive [97] tables. Later, di
erent modules
query this data via a Javascript Object Notation (JSON)
Application Programming Interface (API). Although the
exact implementation details of each of the analysis modules
are vague, each module queries the stored data looking for
anomalous patterns, such as hosts receiving or sending a
large number of packets, speci	c port scans by counting
the number of packets to a speci	c port number, or botnet
activity through abnormal DNS activity. While the gathered
data is varied, themodules are designed to query a single type
of data. If suspicious activity is detected, it is in the operator’s
hand to query other types of data to 	nd additional evidence
of the attack.

TADOOP [40] is a network �owADS that implements an
extension of the Tsallis Entropy [101] for anomaly detection,

dubbedDTE-FP (Dual �Tsallis Entropy for �ow Feature with
Properties). In short, TADOOP gathers network �ows and
computes a pair of � values aiming to accentuate high and
low probability feature distributions, usually linked to tra�c
anomalies. TADOOP is based on four main modules. (i) �e
Tra	c Collector gathers network �ow packets and decodes
them. (ii) �e Entropy Calculation Module extracts �ow
features from each �ow and it computes the DTE-FP � values
for each �ow feature distribution. (iii) �e Semiautomatic
Training Module is responsible for setting optimal � pair
detection thresholds for each of the distributions. �e crite-
rion is keeping false positive rate below an arbitrary maximal
threshold. (iv)�eDetectionmodule calculates entropy values
for all the �ows in a given time window and compares them
to the thresholds computed by the training module to detect
anomalies. TADOOPusesHadoop for storing and processing
historical �owdata. TADOOP is evaluated using the �owdata
of a university network.

Gonçalves et al. [29] present an approach for detecting
misbehaving hosts by mining server log data. In the 	rst
phase, they extract features from DHCP, authentication, and
	rewall logs, and for each host a feature vector is created.
�ese vectors are later clustered using the Expectation-
Maximization (EM) algorithm which are later used to build
a classi	cation model. Smaller clusters in the set correspond
to anomalous host behavior. In the second phase, once the
classi	cation model is built, incoming data is clustered in a
similar way as in the 	rst phase; however, these newly created
clusters are classi	ed with the previously created model in
order to detect if they are anomalous. While the feature
extraction from the log data is done in Hadoop, clustering
and classi	cation of the data are carried out with the Weka
[102] data mining tool.

Dromard et al. [25] extend the UNADA [103] ADS
to detect anomalies in Big Data network environments.
UNADA is a three-step unsupervised ADS. (i) Flow Change
Detection. Flows gathered in a given time window are
aggregated on di
erent levels de	ned by network masks. For
each level, UNADA computes a simple metric or feature of
the aggregated �ows: number of bytes, number of packets,
number of IP �ows, and so on.�en, when a new set of �ows
is gathered, these metrics are recomputed for the new �ow
and compared to the previous set. If there is a change in the
values, the time window is �agged and further computed.
(ii) Clustering. In this phase, UNADA clusters the feature
vectors from the previously �agged �ow sets using DBSCAN
[104]. Network �ow feature vectors can have numerous
variables andDBSCANdoes not performwell inmultivariate
environments. In order to overcome this issue, UNADA splits
the feature space into smaller, two-dimensional subspaces
and computes DBSCAN independently on each of them. (iii)
Evidence Accumulation. In the last phase, data from each of
the subspaces is aggregated to identify anomalies. In each
subspace, independently, data points that do not belong to
a cluster are �agged as anomalous and UNADA records
the distance to the nearest cluster centroid. A dissimilarity
vector is built with the accumulated abnormality scores for
each �ow across all subspaces. To ease anomaly detection,
dissimilarity vectors are later sorted and a threshold is de	ned
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to 	nally �ag �ows as anomalous. �e authors evaluate
the performance of UNADA over Apache Spark [68] to
compute the ADS over the network data gathered on a
core network of an Internet Service Provider. Results show
that the approach is able to detect �ow anomalies while
speeding up execution time in regard to the original UNADA
proposal.

�e proposal of Rathore et al. [37] is a �ow ADS built on
four layers. (i) Tra	c capturing. �e tra�c is captured from
the network and forwarded to the next layer. (ii) Filtration
and load balancing. �is layer checks whether the �ow has
been previously registered as a legitimate or anomalous in
a database. If it has not, data is forwarded to the next layer.
(iii) Hadoop layer. �is layer extracts the features from the
gathered data. It uses Apache Spark [68] on top of Hadoop
for faster computation. (iv) Decision Server. �e extracted
features are classi	ed as legitimate or anomalous sets by a
set of classi	ers implemented in Weka. �e authors use the
well-known intrusion detection NSL-KDD dataset for result
evaluation and conclude that the C4.5 and REPTree are the
best performing classi	ers for this task.

Wang et al. [41] propose a continuous, real-time �owADS
based on Apache Storm. For this end, they combine three
di
erent detection methods: (i) Network �ows: �ey count
the number of �ows in a small enough time slot that allows
online processing. A�erwards, they compute the standard
deviation and mean of this count and calculate a con	dence
interval based on them. Later, they performa set of operations
over the �ows involving hashing into groups and calculating
Intergroup Flow Entropy [105]. In all steps, the system checks
that the observations are inside the con	dence interval;
otherwise an alarm is raised. (ii) Intuitive Methods based on
Tra�c Volume: �e system applies the same approach as in
network �ows but taking into account the number of packets
in a time window instead the number of �ows. (iii) Least-
Mean-Square-based detection: �e system uses a Least-
Mean-Square-based (LMS) 	ltering method that aims to
	nd inconsistencies between the intergroup �ow and packet
entropies, which should be strongly correlated. LMS also
operates in an online manner. �ey evaluate the approach by
replaying a capture of an Internet backbonewhile introducing
in parallel two types of anomalies that were not present in
the capture: an attack involving a large number of small
network �ows and an attack involving a small number of large
�ows.

Gupta and Kulariya [28] compare a set of feature extrac-
tion and classi	cation algorithms for anomaly detection.
�ey benchmark the di
erent approaches using the popular
intrusion detection KDD’99 and NSL-KDD datasets and
the algorithms implemented in Spark’s MLlib library. �ey
evaluate correlation based feature selection and hypothesis
based feature selection for feature extraction. For classi	ca-
tion they measure the performance of Näıve Bayes, Logis-
tic Regression, Support Vector Machines, Random Forests,
and Gradient Boosted Decision Trees. �ey conclude that
hypothesis based feature selection helps to achieve a better
classi	cation score. Among the classi	ers, Random Forests
andGradient BoostedDecision Trees yield better results than
the rest.

4.1.2. Cyber-Level, ProgrammedADSs. �eworkpresented by
Giura and Wang [27] uses large-scale distributed computing
to detect APTs. First, they model the APT using an Attack
Pyramid, a multiplane extension of an attack tree [106, 107]
where the top of the pyramid represents the asset to be
protected. �e planes of the pyramid represent di
erent
environments where attack events can be recorded (e.g., user
plane, application plane, and physical plane). �e detection
method groups all potential security events from di
erent
planes and maps the relevant events that are related to
a speci	c attack context. �is context information is later
leveraged to detect a security incident if some indicators
surpass a set of user-de	ned thresholds. �e method uses
MapReduce to consider all the possible events and related
contexts.

Bumgardner and Marek’s approach [24] consists in a
hybrid network analysis system that uses both stream and
batch processing, capable of detecting some network anoma-
lies. First, it uses a set of probes that collect network tra�c
to build and send network �ows to the speci	ed processing
unit. �en, the created �ows are stream processed through
Storm to enrich it with additional data (e.g., known state of
the internal network) and anomalies are detected based on
previously de	ned event detection rules (bot activity, network
scans). Once the �ows have been processed, they are stored in
a HBase table, a column oriented database, to perform EDA
to get further insight that it is not explicitly stated in each
of the �ows. �is batch data processing is executed on top
of Hadoop. �e main drawback of Bumgardner and Marek’s
approach is that the system’s anomaly detection capability is
directly related to the capability of describing network events
or anomalies using rules when doing stream processing.

Iturbe et al. [33] propose a visual �ow monitoring system
for INs based on whitelisting and chord diagrams. In their
approach, they detect �ow-based anomalies (forbidden con-
nections,missing hosts, etc.) based on a previously created set
of whitelists.�ese whitelists can be created through network
learning or established by a human operator. �e proposed
system’s scalability is achieved through a distributed search
server where data from di
erent networks is sent to store
it. Later, a visual application queries the relevant �ow data
and compares it to the corresponding whitelist. Based on the
comparison, a chord diagram is built depicting the legitimate
and anomalous �ows.

4.2. Physical-Level ADSs. Hadžiosmanović et al. [30] present
a log mining approach to detect process-related threats
from legitimate users’ unintentional mistakes. �ey identify
unusual events in log data to detect these threats. In order
to extract the unusual events from the potentially large
log data, they 	rst use a FP-growth algorithm to count
matching log entries. Later, unusual events are de	ned as
the ones whose number of occurrences is below of a user-
set, absolute threshold. FP-growth algorithms do not use
candidate generation and, thus, are able to e
ectively count
occurrences in two data scans.

Difallah et al. [26] propose a scalable ADS for Water
Distribution Networks. Speci	cally, they use Local Indicators
of Spatial Association (LISA) [108] as a metric for anomaly
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detection, by extending the metric to consider temporal
associations. In the proposal, wireless sensors send process
data to a set of base stations that perform part of the
anomaly detection process by computing a limited set of LISA
calculations on the streaming data they receive. �us, it uses
a distributed approach for a 	rst phase of anomaly detection.
Later, data is sent to a central Array Database Management
System (ADBMS).�e ADBMS allows global analytics of the
distribution network as a whole. Evaluation of the proposal
is done using Apache Storm for the stream processing in
the base stations and SciDB [109] as the ADBMS, analyzing
data from a simulated environment created a�er the Water
Distribution Network of a medium-sized city.

Hurst et al. [32] introduce a Big Data classi	cation system
for anomaly detection on CIs.�ey extract process data from
a simulated nuclear power plant and extract relevant features
from it, by selecting a number of variables that best describe
the overall system behavior. However, this feature extraction
relies on expert knowledge to identify the subset of variables
that are most suitable. Moreover, the needed features will
vary between di
erent types of processes, even di
erent
installations, and, thus, the approach is process-dependent.
�ey do not specify the used criteria for feature selection.
A�er feature extraction, they perform anomaly detection
using 	ve di
erent classi	ers by splitting the gathered data
into two halves for the training and testing.�ey demonstrate
that increasing both dataset size and the number of features
used for anomaly detection yields better classi	cation results.
�ey do not specify the framework they used for this large-
scale classi	cation.

Kiss et al.’s system [34] is designed to detect 	eld-level
anomalies in Industrial Networks. By leveraging the 	eld data
that sensors and actuators periodically send, they classify
normal and abnormal operation cases. To this end, 	eld
parameters are used to build feature vectors that are later
clustered using �-means to identify operation states and
anomalous states of the physical process. In order to deal with
the growing 	eld data, the system uses Hadoop to create the
di
erent clusters. As the vectors to be clustered are built using
	eld data, these feature vectors depend on process nature.
Furthermore, in case of complex physical processes, building
the features and identifying di
erent operation states can be
a challenging problem that can complicate the deployment of
the proposal.

Wallace et al. [18] propose a Smart Grid ADS by mining
PhasorMeasurement Unit (PMU) data.�e overview of their
proposal is depicted in Figure 4. �e system 	rst models
normal grid operation by measuring voltage deviation from
each of the PMUs and creating a cumulative probability
distribution to represent the likelihood for a signal to have
a given voltage deviation. A�er the distribution function
has been created, the likelihood of a given divergence of
two voltage signals can be estimated. �e system evaluates
this calculated likelihood in order to classify an incoming
observation as anomalous or legitimate. In detail, the sys-
tem calculates the voltage deviation from two consecutive
signals and then, using the probability distribution function
constructed with the historical data, establishes an event as
anomalous if this deviation is unlikely to happen. �at is,

Is this voltage
deviation likely to
happen according
to prob. function?

Continue
normal
operation

Flag an
anomaly

YesNo

Incoming observation

Calculate voltage
deviation from
previous observation

Observed probability
distribution of
historical voltage
deviation data

Figure 4: Flowchart of the Smart Grid anomaly detection procedure
proposed by Wallace et al. [18].

consecutive signals with high discrepancies in voltage values
are more unlikely to arise, and, therefore, when they happen
they can be classi	ed as anomalous situations in the grid.
A�er an anomaly has been �agged, further analysis of the
data can explain the nature of the anomaly. �is anomaly
identi	cation is carried out by a classi	cation decision tree
algorithm that infers the type of anomaly based on three
hand-coded events, developed with expert knowledge. �e
evaluation is done using real PMU data of an electrical grid
and using Apache Spark for data computation.

5. Discussion

In this section, we discuss the proposals presented in Sec-
tion 4, pointing to the advantages and disadvantages of the
proposals, stressing their applicability to INs.

Table 2 shows a comparison of the presented works,
according to di
erent criteria:

(i) Domain refers to the network type the proposal has
been de	ned to work in: IT or IN.

(ii) Granularity: Axelsson [95] de	nes granularity of data
processing as a “category that contrasts systems that
process data continuouslywith those that process data
in batches at a regular interval.”

(iii) Time of detection: Axelsson [95] de	nes this category
by de	ning the two main groups that compose it:
systems that give results in real-time or near real-
time and those that process data with some delay
(nonreal). �ough related to the previous category,
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Table 2: Comparison of the surveyed works.

Name Ref. Domain Granul.
Time of
detect.

Sources Main Detect. technique

Beehive [23] IT Batch Nonreal Proxy logs �-means

Bumgardner and
Marek

[24] IT Both Real Network �ows Established thresholds

Camacho et al. [17] IT Both Nonreal Firewall & IDS logs PCA

Dromard et al. [25] IT Batch Nonreal Network �ows DBSCAN

Difallah et al. [26] IN Both Real Process data LISA

Giura and Wang [27] IT Batch Nonreal Network and application data �reshold establishing

Gupta and Kulariya [28] IT Batch Nonreal Network captures
Several feature extraction and

classi	cation algorithms

Gonçalves et al. [29] IT Batch Nonreal
DHCP, Authentication and

Firewall logs
EM

Hadžiosmanović et
al.

[30] IN Batch Nonreal SCADA logs FP-Graph

Hashdoop [31] IT Batch Nonreal
Network tra�c (textual

format)
None

Hurst et al. [32] IN Batch Nonreal Process data Multiple classi	cation algs.

Iturbe et al. [33] IN Batch Nonreal Network �ows Whitelisting

Kiss et al. [34] IN Batch Nonreal Process data �-means

Marchal et al. [35] IT Batch Nonreal
Honeypot, DNS, HTTP and

Network �ow data
�reshold establishing

MATATABI [36] IT Batch Nonreal
DNS records, Network �ows,

Spam email
Multiple

Rathore et al. [37] IT Batch Nonreal Network �ows C4.5, RepTree

Ratner and Kelly [38] IT Batch Nonreal Network packets Manual data querying

�erdphapiyanak
and Piromsopa

[39] IT Batch Nonreal Network logs �-means

TADOOP [40] IT Batch Nonreal Network �ows DTE-FP

Wallace et al. [18] IN Continuous Real Process data
Cumulative Probability

Distribution

Wang et al. [41] IT Continuous Real Network �ows Intergroup entropy, LMS

Xu et al. [42] IT Batch Nonreal Console logs PCA

they do not overlap, as some real-time systems might
process microbatches, thus giving real-time or almost
real-time performance.

(iv) Source of information refers to the type of input data
the ADS collects and audits for anomaly detection.

(v) Main detection technique refers to the main tech-
nique the ADS leverages to detect anomalies in the
gathered information.

As Table 2 shows, most of the proposals are both batch
and in non-real-time.Moreover, a similar set of proposals use
a single type of data input as the source for audit information.
�us, it can be stated that the majority of these proposals
focus on handling large, resting data volumes for anomaly
detection (one of the	 Big Data dimensions) while the other
dimensions (mainly velocity and variety) are not as relevant.

Table 3 shows theBigData adoption level of the proposals,
by listing the following metrics:

(i) Locus of data collection (LDC): Axelsson [95] notes
that “audit data can be collected from many di
erent

sources in a distributed fashion, or from a single point
using the centralised approach.”

(ii) Locus of data processing (LDP): similarly, Axelsson
states that “audit data can either be processed in a
central location, or is collected and collated from
many di
erent sources in a distributed fashion.”

(iii) Underlying solution lists the underlying Big Data
technology the ADS uses for Big Data computing.

(iv) Evaluation environment shows the nature of the
evaluation data used to test the performance of the
ADS.

Table 3 shows that most of the proposals use distributed
computing for data processing. However, distributed data
collection, where data from di
erent sources is analyzed, is
not aswidespread.Hadoop and Spark are themost prominent
BigData frameworks that are used for anomaly detection. It is
worthmentioning that, in some proposals, although Big Data
mechanisms are used, they are only used in a part of the data
pipeline. For instance, they use the Big Data tools for feature
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Table 3: Big Data comparison of the surveyed works.

Name Ref. LDC LDP Solution Eval. environ.

Beehive [23] Dist. Dist. Hadoop, Hive Operational network

Bumgardner and Marek [24] Dist. Dist. Storm, HBase, Hadoop Operational network

Camacho et al. [17] Dist. Unknown Custom Public dataset

Dromard et al. [25] Dist. Dist. Spark Operational network

Difallah et al. [26] Dist. Dist. Storm Simulated process data

Giura and Wang [27] Dist. Dist. Hadoop Operational network

Gupta and Kulariya [28] Cent. Dist. Spark Public dataset

Gonçalves et al. [29] Dist. Dist. Hadoop, Weka Operational network

Hadžiosmanović et al. [30] Cent. Cent. Custom Operational network

Hashdoop [31] Cent. Dist. Hadoop Public dataset

Hurst et al. [32] Cent. Unknown Custom Simulated process data

Iturbe et al. [33] Cent. Dist. Elasticsearch Operational network

Kiss et al. [34] Cent. Dist. Hadoop Simulated process data

Marchal et al. [35] Dist. Dist. Hadoop, Hive, Pig, Spark Operational network

MATATABI [36] Dist. Dist. Hive Operational network

Rathore et al. [37] Cent. Dist. Spark, Weka Public Dataset

Ratner and Kelly [38] Cent. Dist. Hadoop Operational network

�erdphapiyanak and Piromsopa [39] Cent. Dist. Hadoop, Mahout Public Dataset

TADOOP [40] Cent. Dist. Hadoop Operational network

Wallace et al. [18] Dist. Dist. Spark Operational network

Wang et al. [41] Dist. Dist. Storm Operational network

Xu et al. [42] Cent. Dist. Hadoop Operational network

Table 4: Suitability of IT-based solutions for their use in INs.

Name Ref. OSI layer IN interoperability Self-security

Beehive [23] 7 Low Medium

Bumgardner and Marek [24] 3, 4 Medium Medium

Camacho et al. [17] 3, 4, 7 Medium Unknown

Dromard et al. [25] 3, 4 Medium Medium

Giura and Wang [27] 3, 4, 7 Medium Medium

Gupta and Kulariya [28] 3, 4, 7 Medium Medium

Gonçalves et al. [29] 3, 4, 7 Low Medium

Hashdoop [31] Packet captures Dependent on implementation Medium

Marchal et al. [35] 3, 4, 7 Medium Medium

MATATABI [36] 3, 4, 7 Medium Medium

Rathore et al. [37] 3, 4 Medium Medium

Ratner and Kelly [38] Packet captures Medium Medium

�erdphapiyanak and Piromsopa [39] 3, 4, 7 Medium Medium

TADOOP [40] 3, 4 Medium Medium

Wang et al. [41] 3, 4 Medium Medium

Xu et al. [42] 7 Medium Medium

extraction, while once the features have been extracted into a
smaller feature dataset, other conventional tools are used for
the data classi	cation.

Table 4 summarizes the suitability of the IT-based solu-
tions to be used in INs. For that end, it de	nes the following
metrics:

(i) OSI layer refers to the corresponding layer of the
Open Systems Interconnection (OSI) model the

network data belongs to. In the case of logs, it shows
the layer of the network application that created the
logs.

(ii) IN interoperability refers to the performance of run-
ning the IT ADS, out-of-the-box in an industrial
environment. Low interoperability means that the
ADS would not be usable. Medium means that the
ADS is expected to runon INs and to detect anomalies
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to some extent. High means that the ADS is also
tailored to work in IN environments.

(iii) Response type categorizes the ADSs in two cate-
gories, not related to the detection mechanism, but
to their response when an anomaly is �agged. Passive
responses consist of logging and sending alerts, with-
out interacting with the tra�c, while active responses
try to tackle the source of the intrusion or anomaly.
Active response mechanisms are o�en referred to as
Intrusion Prevention Systems (IPSs). In this paper,
all surveyed works have passive responses. �e usage
of active responses that 	t well into the availability
constraints of INs is still an undeveloped 	eld [10].

(iv) Self-security: Zhu and Sastry [96] de	ne self-security
as “whether the proposed ADS itself is secure in the
sense it will fail-safe.” Availability is an important
concern in INs. As such, redundant and fail-safe
mechanisms are widespread in INs.

As Table 4 lists, most proposals, especially the ones
that work with network �ows, are able to work in INs, as,
nowadays, IT networks and the cyber layer of IT networks
share the same network stack at the OSI 3 and 4 layers
(Network and Transport) and similar network infrastructure
coexists in both types of networks (e.g., 	rewalls). However,
even if technically possible, it is yet to be seen how they would
perform.

It is worth mentioning that even if not listed in Table 4,
the Time of Detection feature (covered in Table 2) becomes a
relevant aspect of the ADSs when measuring their suitability
for INs, as their real-time nature requires fast detection to
raise alerts as fast as possible and to perform mitigation
actions if necessary [10].

Furthermore, although Big Data ADSs listed were not
designed for the availability constraints of INs, the usage of
distributed 	le-systems for data storage and the distributed
nature of Big Data processing give most solutions a relative
defense against faults, as shown by the self-security 	eld.
However, this distributed approach might not be enough
when considering the high availability requirements that ICSs
and INs have and additional measures might be necessary to
improve the availability of theADS, but still, itmakes BigData
ADSs better candidates in this aspect than their conventional
counterparts.

6. Future Research Lines

�ere are several open research lines in the area of Big Data
ADSs for INs. We categorize them based on the di
erent Big
Data dimensions.

6.1. Dealing with Volume. Most surveyed BigData ADSs have
dealt with large volumes of data, and in many cases it has
been the main focus of the Big Data ADS. Indeed, some of
the surveyed works go no further than applying conventional
algorithms and approaches using Big Data mechanisms.

�erefore, the volume requirement for Big Data ADSs
can be considered as partially ful	lled. However, there is still
room for improvement that can lead to further research:

(i) No large-scale cyber-level ADSs for IN speci	c proto-
cols: some IT counterparts deal with application-level
data (7th OSI layer) but no proposals exist for INs.
While lower OSI level proposals exist and could be
applied to INs, these kind of mechanisms have been
more studied and attackers expect related defensive
measures [10]. �erefore, it is necessary to develop
large-scale ADSs that will gather information from
IN speci	c protocols, opening the way of analyzing
packet payload information.

(ii) Big data IN storage: though process data has
been traditionally stored in historian servers, novel
approaches for the storage of IN related data are
necessary: not only process readings, but wider types
of data (network traces, process readings, alerts, etc.).
�is can help not only with anomaly detection but
also for other 	elds of research regarding INs and Big
Data.

6.2. Dealing with Velocity. As stated in Section 5, the vast
majority of the proposals are neither continuous nor real-
time. �is presents the issue that the mentioned approaches
are only capable of 	nding anomalies over historical data, and
when new data arrives, a new, larger version of the original
dataset that contains the new data is computed again in order
to 	nd anomalies. In some of the proposals historical data
is divided in time bins and only data corresponding to an
speci	c time bin is executed.

However, this is an impractical approach for a realistic
ADS, more so in INs where, as previously stated, real-time
detection is an important aspect. It is necessary to develop
streaming models where incoming data is treated on arrival
in order to detect anomalies. An issue regarding streaming
models is that it is not possible to perform Exploratory Data
Analysis (EDA) on them. EDA and the building of several
models require data at rest, so relationships between di
erent
observations can be de	ned. Similarly, most streaming mod-
els need well-de	ned models for acting on incoming data.

A solution to this problem might lay in building hybrid
models based on a two-phase approach where (i) a model
is de	ned based on gathered historical data at rest. (ii) A�er
building a model, this model is applied to compute incoming
streaming data. INs have the advantage over IT networks that
they aremore static anddeterministic by nature, so two-phase
ADSs seem a viable solution, as once an ADS model is built,
it will seldom require an update.

It is necessary tomention that, to encourage and compare
di
erent contributions in the area of real-time ADSs for INs,
it is necessary to create and use a set of metrics where latency
should be taken into account [10].

6.3. Dealing with Variety. ICSs are multivariate and het-
erogeneous by nature; they deal with very diverse types of
data, both at the network level (packets, �ows, logs, etc.)
and, notably, at the 	eld level where they keep track of a
large number of di
erent physical quantities simultaneously.
However, existing large-scale ADSs do not leverage data
from both levels and instead focus on a single or few data
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sources for anomaly detection.�is issue is extensible tomost
conventional ADSs as well, as only a few proposals deal with
both process-level and network-level data [63, 64] to detect
anomalies.

Moreover, IN networks are also heterogeneous in the
sense that various technologies coexist at a network and
	eld level. INs are multivendor environments, where devices
might be powered by di
erent technologies and communi-
cate using di
erent protocols. �is requires the development
of di
erent tools to extract data from devices belonging to
di
erent vendors. In addition, many of these devices might
be limited in terms of computation, so, in order to avoid
latencies and availability issues, it is necessary to extract ICS
data out of the devices themselves in an unobtrusive manner,
where it can later be computed in a cluster using a dis-
tributed computing framework, separate from the critical IN
sections.

In this sense, analyzing and aggregating information
sources from di
erent levels can aid in the detection of
complex attacks directed against INs [110]. BDA gives the
opportunity to use this heterogeneous data and leverage it in
a uni	ed manner to detect anomalies. In this direction, the
work of Camacho et al. [17, 111] gives promising insight. �e
usage of multivariate algorithms, such as PCA, can help to
build amodel where parametrized cyber and process data can
be used to build a single ADS that leverages data from both
levels. PCA-based techniques scale well horizontally and are
used in 	elds such as genomics where they are used to handle
massively dimensional data.

6.4. Dealing with Veracity. From our point of view, Big Data
veracity for anomaly detection is not only related to correctly
�agging a relevant anomaly on a large dataset, but also to
communicating and alerting the anomaly correctly, instead
of overwhelming the operator with too much alert noise.
In a related note, we believe that properly testing di
erent
Big Data ADSs on neutral, relevant environments such as
using public datasets is also ensuring the veracity of ADSs in
Big Data. �erefore, we can identify the following research
areas:

(i) Closing the semantic gap: Sommer and Paxson [112]
de	ne the semantic gap as the lack of actionable
reports for the network operator. In other words,
the ADS does not provide su�cient diagnosis infor-
mation to aid decision making for the operator. In
INs, it is necessary for an operator to know what
is the cause for an anomaly, as successful attacks
or serious disturbances could have potentially catas-
trophic outcomes. BDA can help to provide useful
information about the cause of the anomaly. Big Data
visualization techniques or Visual Analytics might
play a signi	cant role in this matter.

(ii) Necessity to have realistic, large-scale datasets: few
datasets exist for anomaly detection evaluation in INs
and existing datasets [113] are too small to evaluate Big
Data ADSs. �erefore, it is necessary to have public,
realistic, large-scale IN datasets that would allow the
evaluation of the ADS performance independently.

(iii) Integration of honeypots: when trying to 	nd anoma-
lies in Big Data, it is important to keep the value
of false positives and false negatives low. �e task of
	nding anomalies is equivalent to 	nding a needle
in a haystack. Trusted data sources can help in this
endeavor. Honeypots can constitute such a trusted
information source, as by de	nition they do not yield
any false positives [114]. �e 	eld of IN-oriented
honeypots is still maturing, though a few approaches
have been proposed [114, 115], but the possibility of
feeding and correlating IN honeypot data to a Big
Data IN ADS, in a similar fashion as Marchal et al.
[35], opens the way to a new 	eld of research.

7. Conclusions

We have presented a survey paper comprising three main
contributions: (i) a review of current proposals of Big Data
ADSs that can be applied to INs, (ii) a novel taxonomy
to classify existing IN-based ADSs, and (iii) a collection
of possible future research areas in the 	eld of large-scale,
heterogeneous, and real-time ADSs for INs.

Big Data anomaly detection in Industrial Networks is still
a developing 	eld. Few proposals exist for INs exclusively, but
some IT-based solutions show that it is possible to have sim-
ilar counterparts on INs. Nevertheless, while most proposals
focus on large-volume solutions for anomaly detection, other
aspects, such as dealing with data with high velocity or
variety, are still largely untackled. We 	nally have o
ered
some future research work areas regarding these open issues.
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