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Towards Life-Long Autonomy of Mobile Robots Through

Feature-Based Change Detection

Erik Derner1,2,3, Clara Gomez3, Alejandra C. Hernandez3, Ramon Barber3, and Robert Babuška1,4

Abstract— Autonomous mobile robots are becoming increas-
ingly important in many industrial and domestic environments.
Dealing with unforeseen situations is a difficult problem that
must be tackled in order to move closer to the ultimate
goal of life-long autonomy. In computer vision-based methods
employed on mobile robots, such as localization or navigation,
one of the major issues is the dynamics of the scenes. The
autonomous operation of the robot may become unreliable if
the changes that are common in dynamic environments are
not detected and managed. Moving chairs, opening and closing
doors or windows, replacing objects on the desks and other
changes make many conventional methods fail. To deal with
that, we present a novel method for change detection based
on the similarity of local visual features. The core idea of
the algorithm is to distinguish important stable regions of
the scene from the regions that are changing. To evaluate the
change detection algorithm, we have designed a simple visual
localization framework based on feature matching and we
have performed a series of real-world localization experiments.
The results have shown that the change detection method
substantially improves the accuracy of the robot localization,
compared to using the baseline localization method without
change detection.

Index Terms— Life-long autonomy, change detection, mobile
robots, localization, place detection, computer vision in robotics.

I. INTRODUCTION

Mobile robots have become a key component for many

tasks in the robotics domain, such as object manipulation and

transportation, human-robot collaboration, or surveillance.

Deployment of autonomous mobile robots in industrial and

domestic environments poses a difficult challenge due to the

dynamics of the environments. These challenges give a rise

to the development of advanced methods that will be able to

deal with changes occurring in the environment to perform

tasks such as robot localization and navigation precisely and
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reliably. Novel approaches and suitable environment repre-

sentations are being sought to allow for life-long autonomy

of mobile robots in highly dynamic environments.

In this work, we present a novel approach for change

detection based on local feature descriptors. The robot

continuously monitors its environment and detects changes

that have occurred. Upon detection of a change, the robot

updates its representation of the environment to incorporate

the information about the change. The key point consists in

automatically learning the persistent regions of each scene,

which remain unchanged over a long period of time.

The type of changes that we mainly consider in our work

comprise moving chairs and items on tables, altering the

picture on computer or TV screens, changing the contents

of whiteboards and notice boards, opening or closing doors,

adjusting blinds in the windows, etc. These changes occur

every day in various industrial, domestic and office environ-

ments. Fig. 1 shows examples of such changes.

Fig. 1. Examples of changes that can be detected by the proposed algo-
rithm. Such changes may confuse methods assuming static environments.

The concept of change detection introduced in our method

can be used for robot localization and navigation, place

detection, etc. It allows the robot to recognize its surround-

ings more reliably and therefore perform these tasks more

precisely.

The paper is organized as follows. The related research

in the field of change detection is presented in Section II.

A baseline visual localization framework is introduced in

Section III and the proposed change detection method is

presented in Section IV together with its incorporation to

the localization framework. The experimental evaluation is

described in Section V and Section VI concludes the paper.
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II. RELATED WORK

Dynamic environments and changes in the environment

have been perceived as a challenge in most robotic navigation

contexts. In order to perform stable localization and path-

planning, robots must take into account these changes [1].

Change detection has attracted the interest of many authors

recently and different approaches have been proposed.

Most change detection algorithms are based on object

detection and tracking in long-term operation [2], [3], [4],

[5]. In [2] a robot patrols an indoor environment and detects

movable objects by change detection and temporal reason-

ing. Their objective is to determine how many movable

objects are there in the environment and track their position.

The Rao-Blackwellized particle filter and the expectation-

maximization algorithm are used to track the objects and

learn the parameters of environment dynamics. In [3] a

service robot is deployed in different indoor environments

and a hierarchical map of the environment is maintained

that takes into account the changes in object positions by

comparing current object detections to mapped ones. In [5]

the change detection problem is treated through reasoning

about observations. Observations are classified considering

long-term features, short-term features, and dynamic fea-

tures, which correspond to mapped static objects, unmapped

static objects, and unmapped dynamic objects respectively.

Short-term features produce local adjustments to the belief

about the trajectory of the robot, while long-term features

generate global adjustments.

Other works directly detect changes and correspondences

between robot views or images [6], [7], [8], [9], [10], [11],

[12]. Full RGB-D views are used in [6] to build a map

of the robot world. Changes between successive views are

computed to discover the objects (moved areas) and learn

them. Similarly, in [8], a Truncated Signed Distance Function

(TSDF) grid and 3D reconstructions of the environment are

maintained. New observations are aligned with previous ones

and included in the new reconstruction. The new reconstruc-

tion is compared to the previous one in order to identify

dynamic clusters between both reconstructions. Image views

are used in [9] to detect changes using Gaussian Mixture

Models (GMMs). As GMMs have long computational times,

Vertical Surface Normal Histograms provide main plane

areas which are discarded in the search of changes. Change

detection is accomplished as the difference in the Gaussians

generated for two images. Pointclouds from a LiDAR are

compared to an octree-based occupancy map in [10] to obtain

a set of changes. Change candidates are computed with

the Mahalanobis distance and filtered to eliminate outliers.

Authors in [11] proposed a 2D LiDAR-based framework

for long-term indoor localization on prior floor plans. The

system combines graph-based mapping techniques and Bayes

filtering to detect significant changes in the environment.

They use an ICP-based scan matching to determine the

probability that a LiDAR scan related to a trajectory pose

corresponds to the currently observable environment. This

probability is used to improve the trajectory estimation

through the update of the previous nodes. In [12] a method

for life-long visual localization using binary sequences from

images is proposed. It is assumed the idea of using sequences

of images instead of single images for recognizing places.

Features are extracted using global LDP descriptors to obtain

the binary codes of each image. These binary descriptors are

efficiently matched by computing the Hamming distance.

Change detection has also been broadly studied for out-

door environments [13], [14], [15]. Structural change detec-

tion from street view images is performed in [13]. Multisen-

sor fusion SLAM, deep deconvolution networks and fast 3D

reconstruction are used to determine the changing regions be-

tween pairs of images. In [14], a Bayesian filter is proposed

to model feature persistence of road and traffic elements.

Single-feature and neighbouring-feature information are used

to detect changes in feature-based maps and estimate feature

persistence. Big effort has been also made to overcome

seasonal changes for outdoor environment navigation [16],

[17], [18], [19]. In [16], HOG features and deep convo-

lutional networks are used to compare and match the new

acquired image with a database of images independently of

the weather and seasonal conditions. The approach presented

in [17] compares different variants of SIFT and SURF feature

detectors in the frame of an appearance-based topological lo-

calization on panoramic images capturing seasonal changes.

Many algorithms need computationally demanding learn-

ing processes or the maintenance of heavy map reconstruc-

tions to perform change detection. On the contrary, the ap-

proach proposed in this paper relies on local feature detection

and matching, which allows to run in real time on low-cost

hardware platforms. While a lot of related methods deal with

seasonal changes, we focus on changes that typically occur

in indoor environments.

III. VISUAL LOCALIZATION FRAMEWORK

The change detection method proposed in this paper can

be used for localization or place detection with various

algorithms based on local features. In this section, we present

a simple visual localization framework that will serve as a

baseline and that will be later extended with the proposed

change detection method.

An overview of the method is presented in Fig. 2. For now,

we assume that the change detection module is not present

and we introduce the baseline localization framework.

At first, a robot equipped with a camera builds a dis-

crete representation of the environment in the form of a

visual database, where images are stored together with

their location coordinates. Note that a robot featuring a

self-localization capability in a static environment needs to

be employed to build the map (visual database). Standard

methods based on wheel encoders and laser rangefinder

readings can be applied to perform this task.

In the life-long deployment, the robot continuously local-

izes itself in the environment using feature matching against

the previously built visual database. The matching procedure

will be described in detail in Section III-B.



Fig. 2. Overview of the visual localization framework. The long-term
localization uses a previously built visual database. Query images from
the robot are matched against the visual database and the closest match
determines the position of the robot. The change detection module monitors
the changes in the matched images and updates the visual database when
it detects a difference.

A. Building the Visual Database

First, we need to create the visual database that will serve

as a reference for localization. A mobile robot equipped

with a camera and using a standard localization method

moves around the environment and records images and their

locations. The visual database consists of individual records

ri, indexed by i ∈ {1, . . . ,N}, which have the following

structure:

• a grayscale image Ii, captured by the camera mounted

on the robot,

• a set of descriptors Di of the points of interest Pi

detected in image Ii, where Pi = {p1
i , p2

i , . . . , p
mi
i } and

Di = {d1
i ,d

2
i , ...,d

mi
i },

• the coordinates ci = (xi,yi,ϕi) representing the location

(pose) of the robot.

A robust feature detector and descriptor needs to be

employed to detect points of interest and calculate their

compact representation. We have chosen Speeded-Up Ro-

bust Features (SURF) [20], however, other transformation-

invariant features could be used too.

B. Correspondence-Based Localization

Using the previously created visual database, the robot can

be deployed and localize itself using the real-time feed of

images from its camera that we refer to as the query images.

The following steps are performed to localize the robot:

1) Capture a grayscale image Iq – the query image.

2) Run the SURF detector and descriptor on the query

image. The set of descriptors on the query image Iq is

denoted as Dq = {d1
q ,d

2
q , . . . ,d

mq
q }.

3) Match the set of descriptors Dq found in the query

image against the sets of descriptors Di stored with

the database records ri.

4) Report the location of the robot as the location ci∗

stored with the database record ri∗ , which achieved

the highest ratio of correspondences pq,i∗/mi∗ among

all records ri in the database.

The index i∗ of the database record ri∗ with the highest ratio

of correspondences pq,i∗/mi∗ is determined by the following

equation:

i∗ = argmax
i

(

pq,i

mi

)

, (1)

where pq,i is the number of tentative correspondences be-

tween the query image and the database image Ii found by

the matching algorithm and mi = |Di|, i.e., mi is the number

of descriptors stored with the database record ri. It means that

we are searching for a database record which will have the

largest portion of its descriptors matched with the descriptors

found in the query image.

IV. CHANGE DETECTION METHOD

We propose a method for change detection that improves

the life-long autonomy of mobile robots through maintaining

an accurate and up-to-date representation of the environment.

The essence of the method consists in learning the scene

regions that are stable, distinguishing them from areas that

are changing. This task is performed through change detec-

tion and results in a representation robust to changes in the

environment. In the following text, we present the change

detection method and we show how it is incorporated in the

baseline localization framework.

A. Detecting Changes

The change detection algorithm is based on comparison of

feature descriptors. We define a similarity measure between

two descriptors d and d′ as their Euclidean distance:

s(d,d′) =
∣

∣

∣

∣d −d′
∣

∣

∣

∣

2
. (2)

Note that the lower is the similarity measure, the more

similar are the two features.

The outline of the change detection algorithm is as fol-

lows:

1) Based on the pairs of tentative correspondences found

by the matching algorithm, use MSAC [21]to estimate

the transformation between the query image Iq and the

best-match database image Ii∗ .

2) Transform the positions of the points of interest Pi∗

in the best-match database image Ii∗ to the coordinate

frame of the query image Iq, yielding a set of trans-

formed points of interest P̄i∗ .

3) Calculate the SURF descriptors D̄i∗ =
{d̄1

i∗ , d̄
2
i∗ , . . . , d̄

mi∗

i∗ } of the transformed points of

interest P̄i∗ in the query image Iq.



4) Calculate the similarity measure s j between the SURF

descriptors d
j
i∗ corresponding to the points of interest

p
j
i∗ in the database image Ii∗ and the SURF descriptors

d̄
j
i∗ of their projections p̄

j
i∗ in the query image Iq.

5) For all j ∈ {1, . . . ,mi∗}, if the similarity measure s j is

larger than a given threshold θ, the descriptor d
j
i∗ and

the corresponding point of interest p
j
i∗ is removed from

the database record.

The change detection is therefore based on computing the

similarity measure between the descriptors d
j
i∗ calculated

on the best-match database image Ii∗ and their transformed

counterparts d̄
j
i∗ calculated on the query image Iq. Note

that this is different from using the points of interest Pq

and their descriptors Dq detected in the query image for

comparison. As the transformed points of interest from the

best-match database image and their descriptors are used

instead, the algorithm becomes more robust to the precision

and repeatability shortcomings of the feature detector.

The similarity measure (2) is adapted to the following

form:

s j =
∣

∣

∣

∣

∣

∣
d

j
i∗ − d̄

j
i∗

∣

∣

∣

∣

∣

∣

2
, where j ∈ {1, . . . ,mi∗} . (3)

The set of descriptors Di∗ and the respective set of points

of interest Pi∗ is then updated by removing the elements with

the similarity measure above the threshold θ:

D′
i∗ = Di∗ \

{

d
j
i∗ : s j > θ ∀ j ∈ {1, . . . ,mi∗}

}

, (4)

P′
i∗ = Pi∗ \

{

p
j
i∗ : s j > θ ∀ j ∈ {1, . . . ,mi∗}

}

. (5)

The updated sets D′
i∗ and P′

i∗ replace the original sets Di∗

and Pi∗ in the database record ri∗ .

(a) (b)

Fig. 3. A database image (a) and a query image with one object missing
on the third shelf from the top (b). The crosses represent points of interest
in both images. Tentative correspondences found by the matching algorithm
are shown in green. Cyan circles show the transformations of the points of
interest from the database image to the query image. Magenta circles show
points of interest that were identified as a change.

Fig. 3 shows an example of a scene on which we can

illustrate the principle of the change detection algorithm.

An item, e.g. a toolbox, has been removed from one of

the shelves after building the visual database. The change

detection algorithm transforms the points of interest from the

database image to the query image and calculates their SURF

descriptors. They are then compared to the corresponding

SURF descriptors in the database image. Since the descrip-

tors in the region of the toolbox have the similarity measure

above the threshold, they are removed, together with the

respective points of interest, from the respective sets linked to

the database image. Note that as a by-product, some unstable

features may be removed as well.

B. Life-Long Operation

The localization framework presented in Section III can be

now extended by the change detection module. An overview

of the life-long localization is shown in Fig. 2. In the life-

long operation, the robot continuously localizes itself in the

environment and maintains its visual database up to date by

incorporating changes detected in the environment.

An important condition that makes the change detection

method efficient is that wrong matches (localization failures)

need to be avoided as much as possible, because incorporat-

ing false positive changes in wrong matches decreases the

quality of the visual database. To avoid this, we introduce

two conditions that serve as a confidence criterion: a spatial

and a temporal condition.

The spatial condition calculates the mean Euclidean dis-

tance ms (in the (x,y)-space of the robot) between the best

match and the ns successive most similar matches of the

query image with the images in the visual database (starting

with the second-most similar match) and compares it with a

reference mean of distances mr. The reference mean mr is

calculated as the mean Euclidean distance of the best match

and nr closest database records in the (x,y)-space, where

the best match itself is excluded from this set. Typically, the

number of closest reference points nr is set to be several

times larger (e.g. 5×) than ns. If the mean distance of the

most similar matches ms is larger than the reference mean

distance mr, the confidence criterion is not met. Note that

the reference means mr can be pre-calculated offline for all

database records for efficiency.

The temporal condition checks if the distance between

the current location and the previous location is smaller

than a given threshold δ. It takes into account the physical

limitations of the robot and discards unreliable matches in

cases when the robot appears to have moved further than it

possibly could. The temporal condition is tested only if the

spatial condition was met both for the current and for the

previous image, which allows for recovery after a localization

failure.

Only if both conditions are met, the change detection

module is run and the visual database is updated. This

way, the chance of incorporating false positive changes on

wrongly matched images is minimized.

The presented approach allows for localization in unstruc-

tured dynamic environments even in cases when standard

localization methods based on a static map would fail. Note

that the amount of changes between the moment of building

the visual database and the current state of the environment

can be large. The method can deal with such changes

thanks to the adaptation to gradually emerging changes by

continuously updating the visual database.



V. EXPERIMENTS

We have chosen the popular robotic platform TurtleBot 2

to validate our method. The robot is equipped with a camera

Asus Xtion PRO LIVE, which provides RGB and depth

images. However, only grayscale images are used in our

method. We have used an extension attached to the top of

the TurtleBot in order to fix the camera at a higher position,

as can be seen in Fig. 4. The position of the robot is captured

through odometry based on wheel encoders.

Fig. 4. Mobile robot TurtleBot 2 equipped with a camera used in the
experiments.

A. Environments

Due to the lack of publicly available data sets capturing

dynamic environments, which would be well suited for the

type of changes that we focus on in this paper, we have

created three data sets in different environments at the

Carlos III University in Madrid. The data sets in each of

the environments – Lab, Classroom, and Hall – consist of

multiple sequences. The sequences have been recorded on

different days and at different times of the day, capturing

various changes in the environment (moving chairs and items

on the desks, changing the picture on computer screens,

opening and closing window blinds, etc.). The trajectories

and examples of images for each environment are shown

in Fig. 5. The number of images and the length of the

trajectories for each of the sequences are given in Table I.

TABLE I

PROPERTIES OF THE IMAGE SEQUENCES USED IN THE EXPERIMENTS.

Data set Sequence Images Length

Lab

L-DB (database) 41 10.0 m
L-Q1 (query) 89 10.5 m
L-Q2 (query) 85 10.2 m
L-Q3 (query) 84 9.7 m
L-Q4 (query) 103 10.0 m

Classroom

C-DB (database) 57 14.1 m
C-Q1 (query) 113 14.2 m
C-Q2 (query) 106 13.9 m
C-Q3 (query) 103 14.0 m

Hall

H-DB (database) 58 22.5 m
H-Q1 (query) 58 7.1 m
H-Q2 (query) 57 6.9 m
H-Q3 (query) 59 6.9 m
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(c) Hall environment

Fig. 5. Examples of images (left) and trajectories (right) from the
environments used in the experiments.

B. Experimental Setup

At first, we have constructed visual databases L-DB, C-DB

and H-DB for the environments Lab, Classroom, and Hall,

respectively. The playback of the recorded query sequences

served as a stream of query images in real time. Each query

image was matched with the most similar image in the visual

database and the coordinates associated with the most similar

database image were returned as the pose of the robot. If the

conditions for confidence (as described in Section IV-B) were

met, the record of the best match in the visual database was

updated with the detected changes.

In all experiments, we have used the following default con-

figuration. The similarity threshold for change detection was

set to θ = 0.5. With regards to the confidence criterion, the

number of closest samples ns was set to 2 and the number of

reference samples nr = 10. The temporal difference tolerance

was set to δ = 0.5 m. We have empirically evaluated that the

default values work well for all tested scenarios. However,

they may be adjusted for improved performance on data sets

with substantially different properties.

C. Results

We have executed a cascade of subsequent runs of the life-

long localization algorithm on query sequences from all three

environments. We have compared the root-mean-squared

(RMS) localization errors on query sequences matched

against the original visual databases and against visual



databases that have been updated by executing localization

with change detection on one of the query sequences. The

results are summarized in Table II, where ‘–’ in the ‘Updated

on’ column means that the original visual database was used,

i.e., without any updates made based on the changes observed

in the environment.

The RMS localization errors are shown in Table II. The

TABLE II

LOCALIZATION RMS ERRORS ON DIFFERENT QUERY SEQUENCES.

SEQUENCES EVALUATED ON A DATABASE UPDATED WITH CHANGES

DETECTED IN A PREVIOUS SEQUENCE ARE DISPLAYED IN BOLD.

Visual Updated Query Localization
database on sequence RMS error

L-DB – L-Q2 0.56 m
L-DB L-Q1 L-Q2 0.35 m

L-DB – L-Q3 0.52 m
L-DB L-Q1 L-Q3 0.26 m

L-DB – L-Q4 0.66 m
L-DB L-Q1 L-Q4 0.49 m

C-DB – C-Q3 0.63 m
C-DB C-Q1 C-Q3 0.54 m

C-DB C-Q2 C-Q3 0.42 m

H-DB – H-Q2 0.64 m
H-DB H-Q1 H-Q2 0.54 m

H-DB – H-Q3 0.91 m
H-DB H-Q1 H-Q3 0.54 m

results show that the change detection algorithm leads to

an improved localization accuracy. Employing the change

detection yields an average improvement of 38 % on the

query sequences from the Lab environment, 24 % for the

Classroom environment and 28 % for the Hall environment.

The processing time of a single query image is 200–

300 ms on a standard laptop1 for all experiments.

VI. CONCLUSIONS

We have proposed a method for change detection based

on comparison of local visual features and we have shown

how the change detection method can be incorporated into

a simple localization framework. We have introduced two

conditions that evaluate the confidence of a correct localiza-

tion. This way, we avoid decreasing the quality of the visual

database by introducing changes from wrongly matched

images. The experimental evaluation has shown that updating

the representation of the environment with the information

about the changes leads to a considerably more accurate

localization.

In the future work, we plan to extend the method to

make it more robust, e.g. by adding features for objects

newly present in the scene and introducing feature weights to

distinguish between short-term and long-term changes. We

will also compare our method with alternative state-of-the-art

approaches used for localization.

A possible line of future research would be to incorporate

the semantic information into the change detection algorithm,

e.g. by applying an object detection method to determine the

changes in the scenes based on object occurence.

1CPU Intel Core i7-4610M (2 cores @ 3.0 GHz), 16 GB RAM
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