
Towards Lifelong Visual Maps

Kurt Konolige and James Bowman

Willow Garage

Menlo Park, CA

konolige,jamesb@willowgarage.com

Abstract— The typical SLAM mapping system assumes a
static environment and constructs a map that is then used
without regard for ongoing changes. Most SLAM systems, such
as FastSLAM, also require a single connected run to create
a map. In this paper we present a system of visual mapping,
using only input from a stereo camera, that continually updates
an optimized metric map in large indoor spaces with movable
objects: people, furniture, partitions, etc. The system can be
stopped and restarted at arbitrary disconnected points, is
robust to occlusion and localization failures, and efficiently
maintains alternative views of a dynamic environment. It
operates completely online at a 30 Hz frame rate.

I. INTRODUCTION

A mobile robot existing in a space over a period of time

has to deal with a changing environment. Some of these

changes are ephemeral and can be filtered, such as moving

people. Others are more permanent: objects like furniture

are moved, posters change, doors open and close, and more

infrequently, walls are torn down or built. The typical SLAM

mapping system assumes a static environment and constructs

a map, usually in a single continuous run. This map is then

enshrined as the ground truth, and used without regard for

ongoing changes, with the hope that a robust localization

filter will be sufficient for navigation and other tasks.

In this paper we propose to end these limitations by

focusing on the idea of a lifelong map. A lifelong map system

must deal with at least three phenomena:

1) Incremental mapping. The system should be able

to add new sections on to its map at any point, that

is, it should be continuously localize and mapping. It

should be able to wake up anywhere, even outside the

current map, and connect itself to the map when it

is encountered. It should continually check for loop

closures and optimize them. It should work online.

2) Dynamic environment. When the world changes, the

system should repair its map to reflect the changes.

The system should maintain a balance between re-

membering past environments (to deal with short-term

occlusions) and efficient map storage.

3) Localization and odometry failure. Typically a robot

will fail to localize if its sensors are blocked or

degraded in some way. The system should recover from

these errors by relocalizing in the map when it gets the

chance.

These principles have been explored independently in

many research papers (see Section II on related work). But

they have not yet been articulated as a coherent set of rules

for a practical robotic system to exist in a dynamic environ-

ment. No current mapping and localization system adheres

to all of them, and it is not obvious that combining current

techniques would lead to a consistent realtime system.

Lifelong mapping as a concept is independent of the

sensor suite. But just as laser sensors helped to solve a

static SLAM problem that was difficult for sonars, so new

techniques in visual place recognition (PR) can help with the

difficult parts of lifelong mapping: loop closure and robust

relocalization. Visual sensors have much more data, and are

better at distinguishing scenes from a single snapshot – 2D

laser scans are more ambiguous, making loop closure and

relocalization a harder task.

The high information content in individual views also

allows visual maps to more easily encode conflicting infor-

mation that arises from dynamic environments. For example,

two snapshots of a doorway, one with it open and one closed,

could exist in a visual map. These views can be matched

independently to a current view, and the best one chosen.

In contrast, laser maps use a set of scans in a local area to

construct a map, making them harder to dynamically update

or represent alternative scenes.

In this paper we build on our recent work in online

visual mapping using PR [19], and extend it to include

incremental map stitching and repair, relocalization, and view

deletion, which is critical to maintaining the efficiency of the

map. The paper presents two main contributions: first, an

overall system for performing lifelong mapping that satisfies

the above criteria; and second, a view deletion model that

maximizes the ability of the map to recognize situations that

have occurred in the past and are likely to occur again.

This model is based on clustering similar views, keeping

exemplars of past clusters while allowing new information

to be added. Experiments demonstrate that the lifelong map

system is able to cope with map construction over many

separate runs at different times, recovers from occlusion and

other localization errors, and efficiently incorporates changes

in an online manner.

II. RELATED WORK

Work on mapping dynamic environments with laser-based

systems has concentrated on two areas: ephemeral objects

such as moving people that are distractors to an otherwise

static map, and longer-term but less frequent changes to ge-

ometry such as displaced furniture. The former are dealt with

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 1156

using probabilistic filters to identify range measurements not

consistent with a static model [11], [15], or by tracking

moving objects [20], [29]. With visual maps, the problem

of ephemeral objects is largely bypassed with geometric

consistency of view matching, which rejects independently-

moving objects [1].

Dealing with longer-term changes is a difficult problem,

and relatively little work has been done. Burgard et al. [5]

learn distinct configurations of laser-generated local maps –

for example, with a door open and closed. They use fuzzy

k-means to cluster similar configurations of local occupancy

grids. They extend particle-filter localization to include the

configuration that is most consistent with the current laser

scan. Our approach is similar in spirit, but clustering is done

by a view matching measure in a small neighborhood, and

is on a much finer scale. We also concentrate on efficiency

in keeping as few views as possible to represent different

scenes.

Another approach with similarities to ours is the long-

term mapping work of Biber and Duckett [4]. They sample

local laser maps at different time scales, and merge the

samples in each set to create maps with short and long-

term elements. The best map for localization is chosen

by its consistency with current readings. They have shown

improved localization using their updated maps over time

scales of weeks.

Both these methods rely on good localization to maintain

their dynamic maps. They create an initial static map, and

cannot tolerate localization failures: there is no way to

incorporate large new sections into the map. In contrast, our

method explicitly deals with localization failure, incremental

map additions, and large map changes.

A related and robust area of research is topological visual

mapping, usually using omnidirectional cameras ([26], [27],

[12] among many). As with laser mapping, there have been

few attempts to deal with changing environments. Dayoub

and Duckett [9] develop a system that gradually moves

stable appearance features to a long-term memory, which

adapts over time to a changing environment. They choose

to adapt the set of features from many views, which is a

visual analog to the Biber and Ducket time-scale approach;

they report increased localization performance over a static

map. Andreasson et al. [3] also provide a robust method

for global place recognition in scenes subject to change over

long periods of time, but without modifying the initial views.

Both these methods assume the map positions are known,

while we continuously build and optimize a metric map of

views.

For place recognition, we rely on the hierarchical vocab-

ulary trees proposed by Nistér and Stewénius [21]; other

methods include approximate nearest neighbor [23] and

various methods for improving the response or efficiency

of the tree [8], [16], [17]. Callmer et al. [6], Eade and

Drummond [10], Williams et al. [28], and Fraundorfer et al.

[12] all use vocabulary tree methods to perform fast place

recognition and close loops or recover from localization

failures.

III. BACKGROUND: VIEW-BASED MAPS

A. FrameSLAM and Skeleton Graphs

The view map system, which derives from our work on

FrameSLAM [2], [18], [19], is most simply explained as a

set of nonlinear constraints among camera views, represented

as nodes and edges (see Figures 6 and 7 for sample graphs).

Constraints are input to the graph from two processes, visual

odometry (VO) and place recognition (PR). Both rely on

geometric matching of stereo views to find relative pose

relationships. The poses are in full 3D, that is, 6 degrees

of freedom, although for simplicity planar projections are

shown in the figures of this paper.

VO and PR differ only in their search method and features.

VO uses FAST features [22] and SAD correlation, continu-

ously matching the current frame of the video stream against

the last keyframe, until a given distance has transpired or

the match becomes too weak. This produces a stream of

keyframes at a spaced distance, which become the backbone

of the constraint graph, or skeleton. PR functions opportunis-

tically, trying to find any other views that match the current

keyframe, using random tree signatures [7] for viewpoint

independence. This is much more difficult, especially in

systems with large loops. Finally, an optimization process

finds the best placement of the nodes in the skeleton.

For two views ci and cj with a known relative pose, the

constraint between them is

∆zij = ci ⊖ cj , with covariance Λ−1 (1)

where ⊖ is the inverse motion composition operator – in

other words, cj’s position in ci’s frame; we abbreviate the

constraint as cij . The covariance expresses the strength of the

constraint, and arises from the geometric matching step that

generates the constraint. In our case, we match two stereo

frames using a RANSAC process with 3 random points to

generate a relative pose hypothesis. The hypothesis with the

most inliers is refined in a final nonlinear estimation, which

also yields a covariance estimate. In cases where there are

too few inliers, the match is rejected; the threshold varies for

VO (usually 30) and PR (usually 80).

Given a constraint graph, the optimal position of the

nodes is a nonlinear optimization problem of minimizing∑
ij ∆z⊤ijΛ∆zij ; a standard solution is to use preconditioned

conjugate gradient [2], [14]. For realtime operation, it is

more convenient to run an incremental relaxation step, and

the recent work of Grisetti et al. [13] on stochastic gradient

descent provides an efficient method of this kind, called Toro,

which we use for the experiments. Toro has an incremental

mode that allows amortizing the cost of optimization over

many view insertions.

Because Toro accepts only a connected graph, we have

used the concept of a weak link to connect a disjoint sequence

to the main graph. A weak link has a very high covariance so

as not to interfere with the rest of the graph, and is deleted as

soon as a normal connection is made via place recognition.

1157

B. Deleting Views

View deletion is the process of removing a view from the

skeleton graph, while preserving connections in the graph.

We show this process here for a simple chain. Let c0, c1

and c2 be three views, with constraints c01 and c12. We can

construct a constraint c02 that represents the relative pose

and covariance between c0 and c2. The construction is:

∆z02 = ∆z01 ⊕ ∆z12, (2)

Γ−1

02
= J1Γ

−1

01
JT

1
+ J2Γ

−1

12
JT

2
. (3)

J1 and J2 are the jacobians of the transformation z02

with respect to c1 and c2, respectively. The pose difference

is constructed by compounding the two intermediate pose

differences, and the covariances Γ are rotated and summed

appropriately via the Jacobians (see [24]).

Under the assumption of independence and linearity, this

formula is exact, and the node c1 can be deleted if it is only

desired to retain the relation between c0 and c2; otherwise

it is approximately correct when c0 and c2 are separated by

∆z02. We use view deletion extensively in Section V to get

rid of unnecessary views and keep the graph small.

C. Place Recognition

The place recognition problem (matching one image to

a database of images) has received recent attention in the

vision community [17], [21], [23]. We have implemented a

place recognition scheme based on the vocabulary trees of

Nistér and Stewénius [21] which has good performance for

both inserting and retrieving images. Features are described

with a compact version of random-tree signatures [7], [19],

which are efficient to compute and match, and have good

performance under view change.

For a given reference image, the vocabulary tree generates

an ordered set of matches. We pick the top N candidates

(where N is ∼ 15) and subject them to a geometric consis-

tency check. In previous work [19], we found experimentally

and theoretically that a match count of 30 features or greater

produces no false positives.1 We also found, in test cases,

that the vocabulary tree produced at least one good match in

the top 15 candidates for 97% of matchable reference views.

For any given reference view, we expect almost 60% of the

correct matches to appear in the top 15 results. Figure 1

shows the recognition rate for an actual map (Figure 6), as

a function of distance and angle to a view. Within a 0.5m

radius, the place recognition algorithm gives very high recall

when the angle is 10 degrees or less.

IV. LIFELONG VISUAL MAPPING

In the introduction, we presented the three principles of

lifelong mapping, which can be summarized as:

• Continual, incremental mapping and loop closing.

• Map repair to reflect a changing environment.

1Visual aliasing, e.g., the same large poster in two locations, could
produce false positives, although we haven’t yet found such a case in many
hundreds of thousands of matches. Filters based on positional information
could be used in these cases.

Fig. 1. Recognition rate. The plot shows the proportion of recognized
poses for varying pose angle and pose distance. The poses are taken from
the final map in Figure 6.

• Recovery from localization failure.

Here we show how a lifelong map can be created and

maintained using the techniques of the view map skeleton.

The most interesting and difficult part is deciding when to

delete views from the map.

A. System-Level Algorithm

We assume that the robot stores a skeleton map M that

represents its current global map. Every time the robot wakes

up, it runs the following algorithm for visual mapping.

Lifelong Mapping

Input: skeleton view map M

Output: updated map M

1) On wakeup, initialize the current keyframe Kc

and insert a weak link between Kc and the last

encountered map keyframe.

2) Get new stereo frame S

3) Perform VO to get the relative pose Kc ↔ S

4) VO failure?

a) Add weak link from S to Kc

b) If previous S was a VO failure, delete it

c) Continue at step (2)

5) Switch keyframes?

a) Kc ⇐ S

b) Add skeleton node?

i) M ⇐ M ∪ {S}
ii) Place recognition for S?

A) Add PR links to M

B) Remove any weak links

C) Check for view deletion using Kc

D) Incrementally optimize M

6) If not shut down, continue from step (2)

This algorithm uses techniques from Section III to main-

tain the global view map; the one addition is view deletion in

line 5C, which is explained further below. In general form,

1158

Fig. 2. Sequence stitching. The robot traverses the first sequence (red),
then is transported 5m and restarted (green). After continuing a short time,
a correct view match inserts the new trajectory into the map.

the algorithm is very simple. Waking up, the robot is lost,

and inserts a weak link to keep the map connected. Then

it processes stereo frames at 30 Hz, using VO to connect

each frame to the last. If there is a failure, it proceeds as

with wakeup, putting in a weak link. Otherwise, it tests for

a keyframe addition, which happens if the match score falls

below a threshold, or the robot has moved a certain amount

(usually 0.3m or 10 degrees). On keyframe addition, a further

check is made on whether to add a skeleton view, which is the

same test as for keypoint switching, with a further constraint

of at least 15 frames (0.5 seconds) between skeleton views.

If a skeleton view is added, it checks all views in the graph

for matches, and adds any links it finds, removing the now-

unnecessary weak link. The view deletion algorithm is run

on Kc (see Section V) to thin out crowded skeleton views.

Finally, the graph is incrementally optimized, and the process

repeats until the robot shuts down.

B. Map Stitching

Loop closure, recovery from VO failure, and global

localization on wakeup are handled by a uniform place-

recognition mechanism. To illustrate, consider two small

sequences that overlap somewhere along their length. These

can represent any of the three scenarios above. In Figure

2, the first sequence in red ends in a VO failure or robot

shutdown. The second sequence (green) starts some 5m

away, without any a priori knowledge of its relation to the

first. The weak link (dotted line) connects the last view of

the red sequence with the first view of the green sequence, to

maintain a connected graph. After traveling along the green

sequence, PR makes matches to the first sequence. Optimiza-

tion then brings the sequences into correct alignment, and the

weak link can be deleted.

C. Computation and Storage

The Lifelong Mapping algorithm can be run online using

a single processor core. The time spent in view integration

is broken down by category in Figure 3. VO takes 11 ms

average per frame; there are a maximum of two skeletons

views added per second, leaving at least 330 ms to process

Fig. 3. Timing for view integration per view during integration of the last
sequence of Figure 6.

each one. Averages for for adding to and searching the

vocabulary tree are 25 ms, and for the geometry check, 65

ms. Optimization by Toro in incremental mode uses less than

10 ms per view.

Storage for each skeleton view consumes 60KB (average

300 features at 200 bytes for the descriptor); we can easily

accommodate 50K views in memory (3GB). With a 50m x

50m building, assume that the robot’s trajectories are spread

over, say, 33% of the building’s area; then the maximum

density of views in the map is 50 per square meter, more

than adequate for good recognition. 2

V. FORGETTING VIEWS

A robot running continuously in a closed environment will

eventually accumulate enough images in its graph to stress

its computational abilities. Pruning the graph is essential to

long-term viability. The question is how to prune it in a

“reasonable” way, that is, what criteria guide the deletion of

views? If the environment were static, a reasonable choice

is reconstruction quality, which was successfully developed

in the Photo Tourism project [25]. With a dynamic map, we

want to maximize the chance that a given view in the map

will be used in recognizing the pose of the robot via a new

view.

A. Visual Environment Types

Consider a stereo camera at a fixed position capturing

images at intervals throughout a period of time. Figure

4 shows the matching evolution for different persistence

classes. In a completely static scene, a view will continue

to match all view that come after it. In a static scene with

some small changes (e.g., dishes or chairs being moved),

there will be a slow degradation of the matching score over

time, stabilizing to the score for features in the static areas.

If there is a large, abrupt change (e.g., a large poster moved),

then there is a large falloff in the matching score. There are

2We are experimenting with just saving the vocabulary word index for
each feature as in [12], which would increase the limit to 500K views, and
a density of 500 per square meter.

1159

Fig. 4. View environments. On the left, a schematic of view responses over
time. Every bar represents how well a view matches subsequent views at the
same position for the given environment type. On the right, the clusters that
are induced by the environment (see Section V-D). The red circled cluster
is from the original view, which does not survive in the Ephemeral case.

changes that repeat, like a door opening and closing, that

lead to occasional spikes in the response graph. Finally, a

common occurrence is an ephemeral view, caused by almost

complete occlusion by a dynamic object such as a person

– this view matches nothing subsequently. An environment

could have a mixture of these types, for example, occlusion

can occur with any of them.

Our main idea is similar to the environment-learning

strategy of [5], which attempts to learn distinct configurations

of laser-generated local maps – for example, with a door open

and closed. In our case, we want to learn clusters of views

that represent a similar and persistent visual environment.

B. View Clustering

To cluster views based on their recognition environment,

the obvious score is the inlier match percentage. Let v and v′

be two views, m the minimum count of their two feature sets,

and m̃ the number of inliers in their match. The closeness

of the two views is defined as

c(v, v′) ≡
m

m̃
− 1. (4)

The closeness measure is zero if two views match exactly,

and increases to infinity when there are no matching features.

Note that closeness is not a distance measure, since it does

not obey the triangle inequality (informally, two images may

be close to a third image, but not close to each other).

The closeness measure defines the graph of the skeleton

set, where an edge between two views exists if c(v, v′) < τ

for some match threshold τ . For a set S of views, a cluster

of S is any maximal connected subset of S.

In deleting a view v from a cluster S, it is important to

retain the connectedness of edges coming into a cluster. If

there is an edge (v, a) from an external node a that has no

other link to the cluster, then a new link is formed from a

to a node v′ of the cluster that is connected to v, using the

technique of Section III-B. If the cluster is a singleton, then

all pairs of nodes a, b linked to v are connected.

C. Metric Neighborhood

While running, the robot’s views in the skeleton will

seldom fall on exactly the same pose. Thus, to cluster views,

we need to define a view neighborhood ηd, ηφ over which

to delete redundant views. The size of the neighborhood is

dependent on the scale of the application and the statistics of

the match data. In large outdoor maps it may be sufficient to

have a view every 10m or so; for close-up reconstruction of

a desktop we may want views every 10cm. For the typical

indoor environments of this paper, the data of Figure 1

suggest that ηd = 0.5m is a reasonable neighborhood, and

we use this in the experiments of Section VI.

The view angle ηφ is also important in defining the neigh-

borhood, since matching views must have an overlapping

FOV. Again, the data suggest a neighborhood value of ηφ =
10o.

The skeleton graph induces a global 3D metric on its

nodes, but the metric is not necessarily globally accurate:

as the graph distance between nodes increases, so does their

relative uncertainty. The best way to see this is to note that a

large loop could cause two nodes at the beginning and end of

the loop to be near each other in the graph global pose, but

not in ground truth, if the uncertainty of the links connecting

the nodes is high. So, we search just the local graph around

a view to find views that are within its neighborhood.

D. An LRU Algorithm

Within a metric neighborhood consisting of a set S of

views, we want to do the following:

• limit the number of views to a maximum of κ;

• preserve diversity of views;

• preferentially remove older, unmatched views.

The main idea of the following view deletion algorithm is

to use clusters of S to indicate redundant views, and try to

preserve single exemplars from as large a number of clusters

as possible, using a least-recently used (LRU) algorithm.

LRU View Deletion

Input: set of n ≤ κ views vi in a neighborhood, a new

view v, a view limit κ, and a view match threshold τ .

Output: updated set of views of size ≤ κ.

• Add v to the graph

• If c(v, vi) > τ for all vi (no match), set the

timestamp of v to -1 (oldest timestamp)

• While n > κ do

– If any cluster has more than one exemplar,

delete the oldest exemplar among these clusters

– Else delete the oldest exemplar

E. Analysis

This algorithm obviously preserves the sparsity of views

in a neighborhood, keeping it at or below κ. To preserve

exemplar diversity, the algorithm will keep adding views

until κ is reached. Thereafter, it will add new (unmatched)

views at the expense of thinning out all the clusters, until

some cluster must be deleted. Then it chooses the oldest

1160

Fig. 5. Representative scenes from the large office loop, showing matched features in green. Note blurring, people, cluttered texture, nearly blank walls.

Fig. 6. Trajectories from robot runs through an indoor environment. Left: four typical trajectories shown without correction. Right: the complete lifelong
map, using multiple trajectories. The map has 1228 views and 3826 connecting links. Distances are in meters.

cluster. Figure 4 shows examples of cluster evolution for the

different environments. In the case of static environments,

there is just a single cluster, populated by the most recent

views. When there is a large change, a new cluster will grow

to have all the exemplars but one – should the change be

reversed as in the repetition scene, that cluster will again

grow. Notice that the bias towards newer views reduces older

cluster to single exemplars in the long term.

One of the interesting aspects of the view deletion al-

gorithm is how it deals with new ephemeral views. Such

a view v starts a new cluster with the oldest timestamp.

The next view to be added will not match v; assuming the

neighborhood is full, and all clusters are singletons, v will

be deleted. Only if the cluster is confirmed with the next

addition matching will it survive.

In the long term, the equilibrium configuration of any

neighborhood is a set of singleton clusters, representing the

most recent κ stable environments with the most recent

exemplars for each environment. This is the most desired

outcome for any algorithm.

Our clustering algorithm has similarities to the fuzzy-

means clustering done by Burgard et al. [5]. For their 2D

laser maps, a local occupancy grid is treated as a vector, and

the vectors are clustered to find representative environments.

The number of clusters is traded off against the divergence

of each cluster using a Bayesian Information Criteria. In our

case, we have a more direct means of comparing views, using

the closeness measure c(v, v′). We can vary the threshold

τ to obtain different bounds on the cluster variance. Our

technique has the advantage of low storage requirements and

an aging process to get rid of long-unused views. Finally,

there is no need to choose a particular cluster for localization,

as in [5], because a new view is compared against all views

to find the best match.

Our algorithm differs from the sample-based approach of

Biber and Duckett [4], which forms clusters as randomly-

chosen samples at different time scales and synthesizes the

common features into an exemplar. Instead, we keep single

recent exemplars for each cluster, which have a better chance

of matching new views.

VI. EXPERIMENTS

We performed a series of experiments using a robot

equipped with a stereo head from Videre Design. The FOV

was approximately 90 degrees, with a baseline of 9 cm,

and a resolution of 640x480. The experiments took place in

the Willow Garage building, a space of approximately 50x

x 50m, containing several large open areas with movable

furniture, workstations, whiteboards, etc. All experiments

1161

Fig. 7. Additional later sequence added to the map of Figure 6; closeup is on the left. The new VO path is in green, and the intra-path links are in
gray. There are 650 views and 2,676 links in this sequence, bringing the total map to almost 2K views. All inter-path links are shown in blue. Note the
relatively few links between the new path and the old ones, showing the environment has changed considerably. No view deletion is done in this figure.

were done during the day with no attempt to change the

environment or discourage people from moving around the

robot. Figure 5 shows some representative scenes from the

runs.

A. Incremental Construction

Over the course of two days, we collected a set of six

sequences covering a major portion of Willow Garage. The

sequences were done without regard to forming a full loop or

connecting to each other – see the four submaps on the left of

Figure 6. There were no VO failures in the sequences, even

with lighting changes, narrow corridors, and walls with little

texture. The map stitching result (right side, Figure 6) shows

that PR and optimization melded the maps into a consistent

global whole. A detail of the map in Figure 8 shows the

density of links between sequences in a stable portion of the

environment, even after several days between sequences.

To show that the map can be constructed incrementally

without regard to the ordering of the sequences, we redid the

runs with a random ordering of the sequences, producing the

same overall map with only minor variation.

For the whole map, there were a total of 29K stereo

frames, resulting in a skeleton map with 1228 view nodes

and 3826 links. The timings when adding the last sequence

are given in Figure 3. Given that we run PR and skeleton

integration only at 2 Hz, timings show that the system can

run online.

B. Map Repair

After an interval of 4 days, we made an additional se-

quence of some 13K frames, covering just a small 10m x

5m portion of the map. During this sequence, the stereo pair

was covered at random times, simulating 20 extended VO

failures. The area was a high-traffic one with lots of movable

furniture, so the new sequence had a significantly different

visual environment from the original sequences. The object

was to test the system’s ability to repair a map, and do so

under adverse conditions, namely VO failures.

Fig. 8. Detail of a portion of the large map of Figure 6. The cross-links
between the different sequences are shown in blue.

In Figure 7, the new sequence is overlaid against the

original ones. Despite numerous long VO failures, the new

sequence is integrated correctly and put into the right re-

lation with the original map. Because the environment was

changed, there are relatively few links between the original

sequences and the new one (see the detail on the right), while

there are very dense connections among the older sequences.

In the new environment, the old sequences are no longer

as relevant for matching, and the map has been effectively

repaired by the new sequence.

C. Deletion in a Small Area

We did not do view deletion in the first experiment because

the density of views was not sufficient to warrant it. With the

small area sequence just presented, there were enough views

to make deletion worthwhile. We collected statistics on the

map with different values for κ, the maximum number of

views allowed in a neighborhood. These statistics are for the

1162

area occupied by the new sequence.

κ ∞ 7 5 4 3 2

Views 643 232 162 134 104 78

Edges 2465 361 213 184 293 269

Views/nb 17.7 6.1 4.6 3.8 2.9 2.0

Clusters/nb 2.0 2.3 2.1 2.0 1.8 1.5

The View line shows the total number of new views in the

map, which decrease significantly with κ. New edges also

decline until κ = 4, and which point more edges are needed

as clusters are deleted and their neighbors must be linked.

The most interesting line is clusters per neighborhood. In

general, there are two clusters, one for each direction the

robot traverses along a pathway – views from these directions

have no overlapping FOV. Note that decreasing κ keeps the

number of clusters approximately constant, while reducing

the number of views substantially. It is the clusters that

preserve view diversity.

VII. CONCLUSION

We believe this paper makes a significant step towards

a mapping system that is able to function for long periods

of time in a dynamic environment. One of the main contri-

butions of the paper is to present the criteria for practical

lifelong mapping, and show how such a system can be

deployed. The key technique is the use of robust visual place

recognition to close loops, stitch together sequences made at

different times, repair maps that have changed, and recover

from localization failures, all in real time. To operate in

larger environments, it is also necessary to build a realtime,

optimized map structure connecting views, a role filled by

the skeleton map and Toro.

The role of view deletion in maintaining an efficient map

has been highlighted. With the LRU deletion algorithm, we

have shown that exemplars of different environments can be

maintained in a fine-grained manner, while minimizing the

storage required for views.

One of the main limitations of the paper is the lack of long-

term data and results on how the visual environment changes,

and how to maintain matches over long-term changes. Not all

features are stable in time, and picking out those that are is a

good idea. We have begun exploring the use of linear features

as key matching elements, since indoors the intersection of

walls, floors and ceilings are generally stable.

VIII. ACKNOWLEDGMENTS

We would like to thank Giorgio Grisetti and Cyrill Stach-

niss for providing Toro, and for their help in getting the

incremental version to work. We also would like to thank

Michael Calonder and Patrick Mihelich for their work on

the place recognition system.

REFERENCES

[1] M. Agrawal and K. Konolige. Rough terrain visual odometry. In Proc.

International Conference on Advanced Robotics (ICAR), August 2007.

[2] M. Agrawal and K. Konolige. FrameSLAM: From bundle adjustment
to real-time visual mapping. IEEE Transactions on Robotics, 24(5),
October 2008.

[3] H. Andreasson, A. Treptow, and T. Duckett. Self-localization in non-
stationary environments using omni-directional vision. Robotics and

Autonomous Systems, 55(7):541–551, July 2007.
[4] P. Biber and T. Duckett. Dynamic maps for long-term operation of

mobile service robots. In RSS, 2005.
[5] W. Burgard, C. Stachniss, and D. Haehnel. Mobile robot map learning

from range data in dynamic environments. In Autonomous Navigation

in Dynamic Environments, volume 35 of Springer Tracts in Advanced

Robotics. Springer Verlag, 2007.
[6] J. Callmer, K. Granström, J. Nieto, and F. Ramos. Tree of words for

visual loop closure detection in urban slam. In Proceedings of the

2008 Australasian Conference on Robotics and Automation, page 8,
2008.

[7] M. Calonder, V. Lepetit, and P. Fua. Keypoint signatures for fast
learning and recognition. In ECCV, 2008.

[8] M. Cummins and P. M. Newman. Probabilistic appearance based
navigation and loop closing. In ICRA, 2007.

[9] F. Dayoub and T. Duckett. An adaptive appearance-based map for
long-term topological localization of mobile robots. In IROS, 2008.

[10] E. Eade and T. Drummond. Unified loop closing and recovery for real
time monocular slam. In BMVC, 2008.

[11] D. Fox and W. Burgard. Markov localization for mobile robots in
dynamic environments. Journal of Artificial Intelligence Research,
11:391–427, 1999.

[12] F. Fraundorfer, C. Engels, and D. Nistér. Topological mapping,
localization and navigation using image collections. In IROS, pages
3872–3877, 2007.

[13] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. A tree
parameterization for efficiently computing maximum likelihood maps
using gradient descent. In In RSS, 2007.

[14] J. Gutmann and K. Konolige. Incremental mapping of large cyclic
environments. In Proc. IEEE International Symposium on Computa-

tional Intelligence in Robotics and Automation (CIRA), pages 318–
325, Monterey, California, November 1999.

[15] D. Haehnel, R. Triebel, W. Burgard, and S. Thrun. Map building with
mobile robots in dynamic environments. In ICRA, pages 1557–1563,
2003.

[16] H. Jegou, M. Douze, and C. Schmid. Hamming embedding and weak
geometric consistency for large scale image search. In ECCV, 2008.

[17] H. Jegou, H. Harzallah, and C. Schmid. A contextual dissimilarity
measure for accurate and efficient image search. Computer Vision and

Pattern Recognition, IEEE Computer Society Conference on, 0:1–8,
2007.

[18] K. Konolige and M. Agrawal. Frame-frame matching for realtime
consistent visual mapping. In Proc. International Conference on

Robotics and Automation (ICRA), 2007.
[19] K. Konolige, J. Bowman, J. Chen, P. Mihelich, M. Colander, V. Lepetit,

and P. Fua. View-based maps. In Submitted, 2009.
[20] M. Montemerlo and S. Thrun. Conditional particle filters for simulta-

neous mobile robot localization and people-tracking. In ICRA, pages
695–701, 2002.

[21] D. Nistér and H. Stewénius. Scalable recognition with a vocabulary
tree. In CVPR, 2006.

[22] E. Rosten and T. Drummond. Machine learning for high-speed corner
detection. In European Conference on Computer Vision, volume 1,
2006.

[23] J. Sivic and A. Zisserman. Video google: A text retrieval approach
to object matching in videos. Computer Vision, IEEE International

Conference on, 2:1470, 2003.
[24] R. C. Smith and P. Cheeseman. On the representation and estimation

of spatial uncertainty. International Journal of Robotics Research,
5(4), 1986.

[25] N. Snavely, S. M. Seitz, and R. Szeliski. Skeletal sets for efficient
structure from motion. In Proc. Computer Vision and Pattern Recog-

nition, 2008.
[26] I. Ulrich and I. Nourbakhsh. Appearance-based place recognition for

topological mapping. In ICRA, 2000.
[27] C. Valgren, A. Lilienthal, and T. Duckett. Incremental topological

mapping using omnidirectional vision. In IROS, 2006.
[28] B. Williams, G. Klein, and I. Reid. Real-time slam relocalisation. In

ICCV, 2007.
[29] D. Wolf and G. Sukhatme. Online simultaneous localization and

mapping in dynamic environments. In ICRA, 2004.

1163

