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ABSTRACT

With the development of deep learning, automatic speaker
verification has made considerable progress over the past
few years. However, to design a lightweight and robust
system with limited computational resources is still a chal-
lenging problem. Traditionally, a speaker verification system
is symmetrical, indicating that the same embedding extrac-
tion model is applied for both enrollment and verification in
inference. In this paper, we come up with an innovative asym-
metric structure, which takes the large-scale ECAPA-TDNN
model for enrollment and the small-scale ECAPA-TDNNLite
model for verification. As a symmetrical system, our pro-
posed ECAPA-TDNNLite model achieves an EER of 3.07%
on the Voxceleb1 original test set with only 11.6M FLOPS.
Moreover, the asymmetric structure further reduces the EER
to 2.31%, without increasing any computational costs during
verification.

Index Terms— lightweight speaker verification, asym-
metric enroll-verify structure, ECAPA-TDNNLite

1. INTRODUCTION

Automatic speaker verification (ASV) refers to the process
of verifying a user’s identity based on the voiceprint [1, 2].
Classification-based ASV systems generally consist of two
stages: in the enrollment stage, ASV systems extract a fixed-
dimensional speaker embedding according to the user’s voice;
then in the verification stage, given the unknown speech,
speaker embeddings are extracted and compared with the
enrolled one. A preset threshold makes the final decision to
accept or reject the speech.

In the past years, performance of ASV has made signif-
icant improvement due to the successful application of deep
neural networks (DNN) [3, 4, 5, 6]. However, the compu-
tational complexity also increases accordingly. For devices
like mobile phones and IoT terminals, it matters to develop
low-latency models with limited resources, and the task has
attracted much attention. For example, [7] and [8] halve the
number of channels and prepose strides to reduce computa-
tional requirements of ResNet34. [9] and [10] develop the
lightweight models based on separable convolutions [11].

[12] applies binary neural networks to the task, while [13]
utilizes knowledge distillation to guide the student model
with the teacher model. They are all symmetrical systems.

In this paper, we propose an asymmetric structure at the
system level, where models of different scales are separately
employed in the enrollment and verification stages. Specif-
ically, a large-scale model with higher accuracy and larger
computational consumption is applied for enrollment, while
a small-scale model balancing performance and inference la-
tency executes during verification. As a result, the asymmet-
ric structure achieves better performance than the small-scale
model. We argue that it benefits lightweight applications due
to the following reasons:

• The DNN based embedding extraction model executes
in the verification stage for most of the time, since
users usually enroll their voices only once. Employing
a large-scale model during enrollment does not signifi-
cantly increase the overall computational complexity.

• Users are less sensitive to the latency of enrollment.
Besides, in some IoT application scenarios, feedbacks
like “enrollment success” can be presented immedi-
ately even though the device is still processing the
enrolled speech, which improves the user experience.

• The asymmetric structure exactly meets the scenar-
ios where speakers enroll their voices on the server
while verifying identities on devices. The server gen-
erally owns more abundant resources and supports
larger models. Symmetrical systems, however, limit
the server side to small-scale models only, leading to
poorer performance.

Another highlight of our paper is ECAPA-TDNNLite, a
small-scale model based on ECAPA-TDNN [14, 15]. ECAPA-
TDNNLite reduces computational costs by squeezing feature
mapping sizes during calculation and employing separable
convolutions instead, which reaches the balance between
performance and inference latency.

The rest of this paper is organized as follows. The next
section introduces details of the asymmetric structure. Sec-
tion 3 describes the experimental setup and evaluation proto-
col. Results and discussions are presented in Section 4, while
conclusions are drawn in Section 5.
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Fig. 1. The training process of the asymmetric structure.
Frame-wise input features are fed into the large-scale model
and the small-scale model, respectively. AAM softmax loss
is applied on both enrollment and verification sides, and an
additional loss function aligns the speaker subspace bewteen
the enrolled embeddings and the verified embeddings.

2. ASYMMETRIC STRUCTURE

2.1. Overview

The training process of the asymmetric structure is shown in
Fig. 1. Input features like MFCCs are fed into the large-scale
model (L-Model) and the small-scale model (S-Model), re-
spectively. Then classification-based loss functions compute
the loss between speaker embeddings and the correspond-
ing ground-truth labels. Following popular configurations in
ASV, we employ the additive angular margin softmax (AAM
Softmax) loss [16]. Besides, an additional loss function is
proposed to align the enrolled embedding and the verified em-
bedding from the same input utterance.

In inference, the L-Model computes the enrolled em-
bedding according to the target speaker’s voice while the
S-Model extracts the verified embedding given the unknown
speech. It is worth noting that if the S-Model is used for both
enrollment and verification, the whole system degrades to the
embedding-level knowledge distillation solution like [13].

2.2. Space Alignment

A key problem in the asymmetric structure is that the enrolled
embedding and the verified one may be derived from different
speaker subspaces, leading to mismatch in inference. There-
fore, it is necessary to maximize similarity of the two embed-
dings in the training process, namely space alignment. It is
similar to metric learning methods in ASV, and thus we in-

vestigate the angular prototypical (AP) loss in [8, 17] to our
system with slight modification. Assume that a mini-batch
contains B samples. e1, e2, ..., eB are enrolled embeddings
extracted from the mini-batch, and v1,v2, ...,vB are the ver-
fied embeddings. The cosine similarity between ei and vj
is

cos θi,j =
〈ei,vj〉
‖ei‖‖vj‖

, (1)

and the loss function is defined as

LAP = − 1

B

B∑
i=1

log
ew cos θi,i+b∑B
j=1 e

w cos θi,j+b
. (2)

In the original settings,w and b are trainable parameters. Here
we view w as a hyperparameter, and remove bias b since
it should have been canceled out by fraction. The AP loss
aims at maximizing cosine similarity between ei and vi (i =
1, 2, ..., N ) while minimizing the similarity of the rest pairs.
Therefore, utterances to form a mini-batch must be from dif-
ferent speakers. LetLL-AAM andLS-AAM be the two AAM loss
functions, and the overall loss is formulated as

L = LS-AAM + LL-AAM + λ · LAP, (3)

where λ is a scale factor to balance the losses.

2.3. L-Model

We employ ECAPA-TDNN as the L-Model, which is a new
variant of the TDNN structure and has achieved promising
success in ASV. Input MFCC features are fed into a Conv1D
layer with stride s = 1. The followings are three stacked SE-
Res2Blocks. Each block contains a preceding dense layer, the
dilated convolutions, a succeding dense layer and a squeeze-
and-expansion (SE) layer [18]. The whole block is covered
by a skip connection. Outputs from the three SE-Res2Blocks
are concatenated over channel dimension and fed into another
dense layer with 1536 units. Then the attentive statistics pool-
ing (ASP) layer calculates weighted statistics over the tem-
poral dimension, converting frame-wise feature mappings to
utterance-wise vectors. The last dense layer reduces the vec-
tor dimension from 3072 to 192, generating output speaker
embeddings. More details are reported in [15].

2.4. S-Model

Considering the requirements of real-life applications, the S-
Model is expected to run under critical resource-limited con-
ditions with only around 10M floating-point operations per
second (FLOPS). Therefore, we extend the ECAPA-TDNN
network to ECAPA-TDNNLite with the following modifica-
tions:

• Change stride of the first Conv1D layer from 1 to 2. The
configuration reduces the sequence length by half and
thus cuts down 50% computation, with slight degrada-
tion in performance.
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Fig. 2. Network topology of ECAPA-TDNNLite. k denotes
kernel size, d denotes dilation rate and s denotes stride in
Conv1D layers and SE-Res2Blocks. C and T are the chan-
nel and time dimensions of feature mappings, respectively.
Modifications in comparison with ECAPA-TDNN are plotted
in bold blue.

• Replace dilated convolutions with separable convolu-
tions in SE-Res2Blocks to further reduce the number
of parameters, meanwhile maintaining the same recep-
tive field.

• Sum outputs of the three SE-Res2Blocks instead of
concatenation. The concatenation operator results in
high-dimensional feature mappings and relatively ex-
pensive computational costs for the following layers.

The whole network topology of ECAPA-TDNNLite is shown
in Fig. 2.

3. EXPERIMENTAL SETUP

3.1. Dataset

Experiments are carried out on the Voxceleb dataset [20, 21].
The development part of Voxceleb2 is employed for train-
ing, which contains 1092009 utterances from 5994 speakers.
We perform online data augmentation over the training utter-
ances with MUSAN [22] and RIR [23] datasets. There are six

types of augmentation: music, babble, ambient noise, tele-
vision, tempo and reverberation. The babble noise includes
3 to 8 speech files, and the television noise is a mixture of
one speech file and one music file. The tempo augmentation
speeds up or down utterances by 1.1 or 0.9 without changing
speakers’ pitch. For reverberation, we only take the small and
medium simulated room impulse responses.

3.2. Evaluation Protocol

All systems are evaluated on clean trials of the Voxceleb1
dataset, including Voxceleb1-O, Voxceleb1-E and Voxceleb1-
H. Cosine similarity is calculated between embedding pairs.
Evaluation metrics include equal error rate (EER) and min-
imum normalized detection cost (MinDCF). Ptarget is set to
0.01 and CFA = CMiss = 1 for MinDCF.

3.3. Training Details

Inputs are 80-dimensional MFCC features with 25 ms length
and 10 ms shift. MFCCs are mean-normalized and no voice
activity detection is applied. SpecAugment randomly masks 0
to 5 frames in both time and frequency domains of the log mel
spectrograms. Last, the features are cropped into 2-second
segments and 256 segments form a mini-batch. Note that
segments in the same mini-batch must come from different
speakers, to satisfy requirements of the AP loss.

We set the number of channels C = 512 for ECAPA-
TDNN, andC = 144 for ECAPA-TDNNLite. The bottleneck
dimension of the SE-Block and the ASP layer is 128, and the
scale dimension in the SE-Res2Block equals 8. Size of the
output speaker embedding is 192. AAM Softmax loss func-
tions use a margin of 0.2 and a scale of 32. Hyperparameter
w in AP loss is also set to 32, and the scale factor λ equals 10.

In the training process, model parameters update through
the SGD optimizer. According to the warmup strategy, the
learning rate is initialized as 0, and linearly increases to 0.1
in 5 epochs. Then the learning rate halves whenever the vali-
dation loss does not improve for over 3 epochs. The training
process terminates after 100 epochs.

Table 1. Comparison between ECAPA-TDNNLite and re-
cent works on EERs of Voxceleb1-O, the number of parame-
ters, FLOPS and the real-time factor (RTF). The RTF is mea-
sured on a single core of Intel(R) Xeon(R) CPU E5-2650 v4
@ 2.20GHz with one thousand 10-second utterances.

Model EER(%) #Params FLOPS RTF

SpeakerNet-M [9] 2.21 5.0M - -
VGG-M-40 [19] 4.64 4.0M 0.53G -
Thin ResNet-34 [7] 2.36 1.4M 0.93G -
Fast ResNet-34 [8] 2.37 1.4M 0.45G -
Julien at al. [10] 3.31 238K 11.5M -

Julien at al. [10] (our impl.) 3.32 243K 11.6M 7.0×10-3

ECAPA-TDNNLite 3.07 318K 11.6M 1.8×10-3



Table 2. Performance of the symmetrical and asymmetric structures on the Voxceleb1 dataset. Superscript † means that the
model is trained individually, while ? indicates the model is trained in the asymmetric structure.

Model Voxceleb1-O Voxceleb1-E Voxceleb1-H

Enroll Verify EER(%) MinDCF EER(%) MinDCF EER(%) MinDCF

1 ECAPA-TDNN† ECAPA-TDNN† 0.99 0.113 1.18 0.140 2.28 0.234
2 ECAPA-TDNNLite† ECAPA-TDNNLite† 3.07 0.296 3.00 0.318 5.20 0.436

3 ECAPA-TDNNLite? ECAPA-TDNNLite? 3.00 0.292 2.96 0.311 5.15 0.426
4 ECAPA-TDNN? ECAPA-TDNNLite? 2.31 0.251 2.24 0.245 3.77 0.358

4. RESULTS

4.1. Performance of ECAPA-TDNNLite

Table 1 lists recent works on lightweight ASV models. Most
of them achieve EERs in the range of 2% and 3%, with mil-
lions of parameters and up to 1G FLOPS. We argue that their
computational costs are still expensive and thus mainly take
Juliens’ work as the baseline, which reaches a 3.31% EER
with only 238K parameters and 11.5M FLOPS. To have a
fair comparison, we reproduce the work with the same ex-
perimental setup in Section 3. According to experimental
results, the individual ECAPA-TDNNLite model achieves a
better EER of 3.07% on Voxceleb1-O. Although our model
has 30% more parameters than Julien’s, the FLOPS are the
same and our model even runs 4 times faster. It shows an in-
teresting phenomenon that the inference speed is not strictly
proportional to the number of parameters or FLOPS. In our
case, it is a possible reason that Julien’s model stacks deep
despite fewer parameters, and thus reduces the degree of par-
allelism. More discussions can be viewed in [24]. We skip
this topic due to space limitation.

4.2. Performance of the Asymmetric Structure

Performance of the asymmetric structure is shown in Table 2.
Experiments 1 and 2 report EERs and MinDCFs of individ-
ual ECAPA-TDNN and ECAPA-TDNNLite models. For the
rest experiments, we jointly train the two models in the asym-
metric structure. Experiment 3 corresponds to the knowledge
distillation method. After joint training, only the small-scale
model, or namely the student model, is applied for both en-
rollment and verification. The performance improves by 2%
relatively in comparison with experiment 2. In the last exper-
iment where we employ ECAPA-TDNN for enrollment and
ECAPA-TDNNLite for verification, the EER metric reduces
by 25%, as well as 15% to 23% for MinDCF, which proves
effective in comparison with the symmetric structure. The in-
creased computational complexity only lies in the enrollment
stage, which we argue is of low usage rate and less latency-
sensitive to users in daily life. The asymmetric structure also
shows a new solution to improve performance on IoT devices.

Fig. 3. Explanation for effectiveness of the asymmetric struc-
ture. × and 4 denote speaker embeddings extracted by
ECAPA-TDNN and ECAPA-TDNNLite, respectively. The
two speakers are plotted in different colors.

In addition to increasing the computing capability or updating
models with limited resources, it is also effective to employ a
powerful model on the server for enrollment.

To explore why the asymmetric structure is effective, we
select two speakers from the Voxceleb1 test set and extract
speaker embeddings with both ECAPA-TDNN and ECAPA-
TDNNLite models. Then the embeddings are projected into
2D surface and normalized by different scales, as shown
in Fig. 3. θintra is the maximum intra-class distance of the
ECAPA-TDNNLite embeddings, and θinter is the minimum
inter-class distance. An ASV system is expected to have
smaller θintra and larger θinter. When we replace the ECAPA-
TDNNLite embeddings with ECAPA-TDNN embeddings for
enrollment, θintra narrows by ∆θ while θinter widens by the
same value, which eventually improves the performance.

5. CONCLUSIONS

This paper proposes the asymmetric structure, where mod-
els of different scales are employed for enrollment and ver-
ification. ECAPA-TDNNLite is presented as the small-scale
model, which achieves an EER of 3.07% with only 11.6M
FLOPS. The asymmetric structure further improves the per-
formance by 25% relatively, with no additional computational
costs during verification.
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