
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2020, No. 1, pp. 6–42. DOI:10.13154/tosc.v2020.i1.6-42

Towards Low-Energy Leakage-Resistant
Authenticated Encryption from
the Duplex Sponge Construction

Chun Guo1,2,3, Olivier Pereira3,
Thomas Peters3 and François-Xavier Standaert3

1 Key Laboratory of Cryptologic Technology and Information Security of Ministry of Education,
Shandong University, Qingdao, Shandong, 266237, China, chun.guo@sdu.edu.cn

2 School of Cyber Science and Technology, Shandong University, Qingdao, Shandong, China
3 Institute of Information and Communication Technologies, Electronics and Applied

Mathematics (ICTEAM), UCLouvain, B-1348 Louvain-la-Neuve, Belgium
olivier.pereira@uclouvain.be,thomas.peters@uclouvain.be,fstandae@uclouvain.be

Abstract. The ongoing NIST lightweight cryptography standardization process
highlights the importance of resistance to side-channel attacks, which has renewed
the interest for Authenticated Encryption schemes (AEs) with light(er)-weight side-
channel secure implementations. To address this challenge, our first contribution is
to investigate the leakage-resistance of a generic duplex-based stream cipher. When
the capacity of the duplex is of c bits, we prove the classical bound, i.e., ≈ 2c/2,
under an assumption of non-invertible leakage. Based on this, we propose a new
1-pass AE mode TETSponge, which carefully combines a tweakable block cipher that
must have strong protections against side-channel attacks and is scarcely used, and a
duplex-style permutation that only needs weak side-channel protections and is used to
frugally process the message and associated data. It offers: (i) provable integrity (resp.
confidentiality) guarantees in the presence of leakage during both encryption and
decryption (resp. encryption only), (ii) some level of nonce misuse robustness. We
conclude that TETSponge is an appealing option for the implementation of low-energy
AE in settings where side-channel attacks are a concern. We also provides the first
rigorous methodology for the leakage-resistance of sponge/duplex-based AEs based
on a minimal non-invertibility assumption on leakages, which leads to various insights
on designs and implementations.
Keywords: Authenticated Encryption · Duplex Construction · Leakage-Resistance ·
Leveled Implementations · Multi-User/Beyond Birthday Security

1 Introduction
Problem statement. In 2013, the NIST initiated a lightweight cryptography project
to understand the need for dedicated Authenticated Encryption with Associated Data
(AEAD), which has led to the launching of a standardization process in 2019 [oST18].
In this context, resistance to side-channel attacks is identified as one of the desirable
features that is missing from existing solutions. From an application viewpoint, it is clearly
motivated by the observation that lightweight devices may be deployed in environments
where they can be under physical control of an adversary, yet be responsible for critical tasks
(e.g., automotive, drone-related). Maybe more worryingly, a lack of embedded security
can also be the root of serious distributed attacks starting from seemingly non-critical
connected objects, such as home lamps [RSWO17], for instance.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2019-09-01, Revised: 2019-11-23, Accepted: 2020-01-23, Published: 2020-05-07

https://doi.org/10.13154/tosc.v2020.i1.6-42
mailto:chun.guo@sdu.edu.cn
mailto:olivier.pereira@uclouvain.be,thomas.peters@uclouvain.be,fstandae@uclouvain.be
http://creativecommons.org/licenses/by/4.0/

Chun Guo, Olivier Pereira, Thomas Peters and François-Xavier Standaert 7

From a cryptographic viewpoint, NIST’s lightweight physical security goal challenges the
current state of side-channel countermeasures, which typically imply significant overheads.
For example, the cycle counts of the (optimized) masked software implementations of block
ciphers by Goudarzi and Rivain presented at Eurocrypt 2017 [GR17] blows up by factors
ranging from tens to hundreds for numbers of masking shares starting at 2, compared to a
non-protected implementation. Significant (quadratic) overheads can also be observed in
hardware as the number of shares increases, especially if the random generation of the
shares is taken into account [GMK17].

This state of affairs raises the question of the design of AE modes allowing both efficient
and light(er) weight implementations (e.g., supporting constant memory requirements in
streaming applications) and embedding side-channel resistance features, so that the secure
implementation of the mode can circumvent, at least in part, the costs associated to the
protection of its underlying primitives. Besides, and if aiming at standardization, it is also
desirable that such modes offer as many standard security features as possible. In this
respect, we will be particularly interested in the following properties.

• Multi-user security, which is important in a context of large-scale deployment of
lightweight device in a context of mass-surveillance and distributed adversaries [BT16].

• Security beyond the classical birthday bound, which increases key lifetime [GL17], a
property that is particularly relevant in the case of lightweight devices for which key
evolution protocols may cause undesirable costs or not be available at all.

• Nonce misuse resistance, or at least resilience, in order to mitigate errors in cipher
usage [RS06, ADL17].

State-of-the-art. Taken separately, the design of lightweight symmetric primitives &
modes and the design of leakage-resilient (or resistant) primitives & modes have been
topics of quite intense research over the last years. For lightweight designs, we refer to the
recent survey of Biryukov and Perrin [BP17], and to the CAESAR competition [cae19].
For leakage-resilient primitives, we refer to the line of works initiated by Dziembowski
and Pietrzak’s leakage-resilient stream cipher [DP08], which has then been the seed for
the design of PRGs, PRFs and PRPs [YSPY10, FPS12, DP10], with contrasted practical
impact [BGS15]. For leakage-resistant authentication, encryption and AE modes, we refer
to the CCS 2015 work of Pereira et al. [PSV15] and follow-ups [BKP+18, BPPS17, BMOS17,
DM19]. We note that when it comes to encryption in the presence of leakage, we use the
term leakage-resistant for security definitions that allow all the computations (including
the computation of the “challenge ciphertext”) to leak, and the term leakage-resilient for
security definitions that exclude it (following the terminology in [GPPS19, Sta19]).

Yet, significant gaps remain, particularly if we aim for a lighter single pass design.
Concretely, let us focus on two recent proposals that explicitly seek to address side-channel
attack resistance at the mode of operation level: one based on sponges, and the other
based on tweakable block ciphers (TBCs). On the sponge side, ISAP was proposed at FSE
2017 by Dobraunig et al. as a potential solution for side-channel secure AE [DEM+17].
ISAP highlights the good properties of sponge-based constructions for side-channel security
— an observation that was also made by the Keccak team in the design of Keyak [BDH+19].
In short, these designs are built on the assumption that some leakage can be tolerated as
long as sponges have their capacity increased in proportion to the leakage.

In parallel to the work presented here, Dobraunig and Mennink [DM19] investigated
the leakage-resilience of the keyed duplex construction in a systematic way, assuming that
leakage leaves enough min-entropy in the state of the sponge. They investigate the security
of the keyed duplex construction based on this assumption, and apply their methodology
to ISAP and other schemes, focusing on confidentiality in the setting of nonce respecting
and encryption leaking. Anticipating on the discussions below, our analysis of the keyed
sponge construction is based on a strictly weaker assumption of hard-to-invert leakage

8 Towards Low-Energy Leakage-Resistant AE from the Duplex Sponge

(see [FH15]). This leads to a slightly more complicated security analysis, and it is certainly
interesting to be able to compare the two approaches. Besides, our TETSponge mode of
operation aims at a strictly stronger form of confidentiality against moderate nonce reuse
and encryption leakages, on top of authenticity against full nonce reuse and encryption &
decryption leakages.

Turning back to AE modes, but moving to the TBC setting, TEDT [BGP+19] was
designed to encourage the so-called leveled implementations, where (expensive) protections
against side-channel attacks are used in a minimal way, while the bulk of the computation
can be executed by cheap and weakly protected circuits. The authors of TEDT argue that
the leveled approach can bring significant performance gains compared to implementations
where side-channel protections are uniformly used during encryption. Precisely, leveled
implementations reduce the energy overheads of side-channel countermeasures, both
in software implementations (in which case the gains are also visible in reduced cycle
counts) and hardware ones, at the cost of a slightly increased code size or footprint.
Regarding security, the leveled implementations of TEDT could ensure strong guarantees
against leakages—corresponding to the top of the hierarchy of confidentiality and integrity
definitions established in [GPPS19]. Namely, TEDT ensures Ciphertext Integrity with
nonce Misuse resistance and Leakage in encryption and decryption (defined as CIML2
in [BPPS17]; also see Definition 2) in a liberal model where only the long-term key is “safe”.
TEDT also ensures security against Chosen Ciphertext Adversaries with misuse-resilience
(meaning security for messages encrypted with fresh, non-repeating nonces,1 even if there
is nonce-reuse otherwise) and leakage in encryption and decryption (defined as CCAmL2
in [BPPS17]; also see Definition 2), in two different leakage models. Yet, TEDT requires
two passes, hence requiring a memory as large as the plaintexts that are encrypted, which
makes it hardly suitable for lightweight applications. Besides, it has rate 1/4, which is
expected to be more expensive than the sponge-based approach of ISAP.

Contribution. Based on this state-of-the-art, we can rephrase our problem as:

Can we design a single-pass leakage-resistant AE mode, and
how can we argue about the form of leakage-resistance that it provides?

The goal of efficient AE in 1 pass pinpoints the duplex construction [BDPV11] as the
natural starting point (leakage-resistant AE modes for block ciphers typically refresh their
keying material for every message block, inducing a significant overhead). To this end,
our first contribution is a rigorous leakage security analysis of a general duplex-based
stream encryption w.r.t. a leaky version of the classical eavesdropper security model. The
analysis is made in the ideal permutation model since there is no other choice at present
(see Section 3.4), and we naturally focus on oracle-free leakage functions—as in [YSPY10]
and in the concurrent work [DM19]. As a compensation for this idealized analysis, all
results are obtained under the weakest and easiest to validate leakage assumption, namely
non-invertibility [FH15]. Building upon these, we prove security bounds that are expressive
and easy-to-understand, translating to the classical ≈ 2c/2 bound.

We then study how to extend the leakage-resistant duplex stream cipher into a 1-pass
AEAD mode and what can be achieved. We propose a new AEAD mode TETSponge,
standing for Tweakable (due to the use of TBC), Encrypt & Tag (the natural feature of
duplex) Sponge, as our result. It enhances the duplex stream cipher with two calls to an
n-bit TBC used as a key derivation function (KDF) and a tag generation function (TGF).
We also borrow the use of np-bit public key material from [BGP+19] to boost multi-user

1“Misuse-resilience” was due to [ADL17]. As discussed in [GPPS19], misuse-resistance in the sense
of [RS06] is believed impossible in many leakage settings: briefly, when the inputs including nonces are
arbitrarily controlled, the adversary could (almost) control the leakage traces, and this enables identifying
small changes in the encrypted messages.

Chun Guo, Olivier Pereira, Thomas Peters and François-Xavier Standaert 9

security. We show that these modifications cinch nice leakage AE security in the ideal
TBC and permutation model:2 leveled implementations, where only the two TBC-calls are
protected from side-channels, achieve: (i) multi-user CCAmL1 confidentiality up to ≈ 2n/2

queries and ≈ 2np users, which corresponds to CCA security with misuse-resilience, in the
presence of encryption leakages; (ii) multi-user CIML2 authenticity up to 2n/n2 queries
and ≈ 2np users.

For practical usability, we carefully designed TETSponge to achieve high black-box
CCA security as well, i.e., up to 2n/n2 queries and ≈ 2np users. To keep this submission
concise and easy to follow, the black-box results are only presented in a separate supporting
document as our main focus here is on leakage resistance.

Our contribution on the duplex stream cipher as well as the methodology for the leakage
security analysis of duplex/sponge-based AEs are general and can be easily adapted to
other duplex/sponge AEs.

Roadmap. In Section 2 we serve notations and the leakage security definitions used
in this paper. Then Section 3 presents our first contribution, i.e., the analysis of the
duplex-based stream cipher as well as the leakage assumptions in use. Building on this,
Section 4 defines TETSponge.

The security analyses of TETSponge are complicated and divided into Sections 6
(integrity multi-user CIML2) and 7 (multi-user CCAmL1). But before them, we will first
serve a useful intermediate result in Section 5.

2 Preliminaries

2.1 Notations and primitives
Given a bit-string x ∈ {0, 1}∗, |x| denotes its length. For any value x, we denote by
lsba(x)/msba(x) the least/most significant a bits of x. [num]a is the binary encoding of
the integer num using a representation of a bits.

We denote by a (q1, . . . , qω, t)-bounded adversary a probabilistic algorithm that has
access to ω oracles, O1, . . . , Oω, can make at most qi queries to its i-th oracle Oi, and
can perform computation bounded by running time t. Security notions define the oracles
O1, . . . , Oω available to the adversary in a security experiment. In a proof in the ideal
model, the adversary is also granted access to ideal objects (see later) that we do not
always make explicit in the notation.

A leaking implementation of an algorithm Algo is denoted LAlgo. It runs both Algo
and a leakage function LAlgo which captures the additional information given by the
implementation of Algo during its execution. LAlgo simply returns the outputs of both
Algo and LAlgo which all take the same input.

A random keyless permutation π, as used in sponge analyses, refers to a permutation
of {0, 1}b drawn uniformly at random among the set of all permutations of {0, 1}b, where
b is the security parameter. A Tweakable Block Cipher (TBC) with key space {0, 1}κ,
tweak space {0, 1}t, and domain {0, 1}n, also denoted (κ, t, n)-TBC, is a mapping Ẽ :
{0, 1}κ × {0, 1}t × {0, 1}n → {0, 1}n such that for any key K ∈ {0, 1}κ and any tweak
T ∈ {0, 1}t, X 7→ Ẽ(K,T,X) is a permutation of {0, 1}n. In this paper we only focus on
(n, n, n)-TBC. An ideal TBC ĨC : {0, 1}n×{0, 1}n×{0, 1}n → {0, 1}n, with the same spirit
as ideal (block) ciphers, is a TBC sampled uniformly from all (n, n, n)-TBCs. In this case,

2Multi-user security can also be proved under the standard strong tweakable pseudorandom permutation
assumption, though limited to n/2 bit. This limitation appears to be common: the ideal (tweakable)
blockcipher model is used to obtain non-trivial beyond n/2 bit multi-user security in several other
works [BT16, BHT18].

10 Towards Low-Energy Leakage-Resistant AE from the Duplex Sponge

ĨCTK is a random independent permutation of {0, 1}n for each (K,T) ∈ {0, 1}n × {0, 1}n
even if the key K is public.

Definition 1 (Nonce-based AEAD). A nonce-based authenticated encryption scheme with
associated data is a tuple AEAD = (Enc,Dec) such that:

• Enc : K × N × AD ×M → C maps a key k ∈ K, a nonce N ∈ N , some blocks of
associated data A ∈ AD, and a message M ∈M to a ciphertext C ∈ C.

• Dec : K ×N ×AD × C →M∪ {⊥} maps k ∈ K, N ∈ N , A ∈ AD, and C ∈ C to a
message M ∈M that is the decryption of that ciphertext, or to a special symbol ⊥
if integrity checking fails.

The message size `m uniquely determines the ciphertext size `c = `m + oh, where the
constant oh is the stretch. Given a key k ← K, Enck(N,A,M) := Enc(k,N,A,M) and
Deck(N,A,C) := Dec(k,N,A,C) are deterministic functions whose implementations may
be probabilistic.

2.2 Multi-user AE security with leakage
In general, leakage security definitions are stated w.r.t. implementations of a scheme
(e.g., an AEAD), and both an encryption leakage function LEnc and a decryption leakage
function LDec are associated to the implementation(s). This models the real-world leaky
implementations of the mathematical objects. Note that in theory, our leakage model
is non-adaptive, as the leakages are a parameter of the to-be-studied implementations
determined before the experiment starts rather than chosen by the adversary during the
experiment. This restriction was motivated from the side-channel practice & the necessity
for practical modes: see [YSPY10, FPS12] for some discussion. As more recently discussed
in [BDF+17], adaptive leakage models also have limited relevance in the context of power
and EM side-channels where the adversary has access to the (noisy) leakage of all the
intermediate computations. They may be more relevant in the abstract probing model
where one probe has to be excluded from the adversary’s view, hence making the adaptive
selection of a probe an important feature of the analysis.

Pioneered by Rogaway and Shrimpton [RS06], nowadays black-box AE analyses typically
follow all-in-one definitions that integrate both confidentiality and integrity. However,
in front of an adversary with access to leakage, the adoption of separate definitions for
integrity and confidentiality potentially offers more insight on which implementation-level
properties are necessary/sufficient for which goal [Sta19]. This difference follows from the
important general feature of physically observable cryptography that unpredictability is
much easier to ensure than indistinguishability [MR04], which has a strong impact on the
assumptions that may be needed to prove both notions. Also, different levels of robustness
against nonce reuse may be achieved w.r.t. these notions: it was shown that when a nonce
is arbitrarily reused (in the same flavor as the misuse-resistance notion [RS06]), integrity
in the presence of leakage is achievable [BKP+18, BPPS17], yet confidentiality in the
presence of leakage may not [BKP+18, GPPS19] (see also footnote 1). This difference is
also reflected in the separate definitions.

2.2.1 Integrity

In detail, regarding integrity, we rely on the multi-user Ciphertext Integrity with Misuse-
resistance and Leakage (muCIML2) defined in [BGP+19], which was built upon the
single-user version CIML2 introduced in [BKP+18, BPPS17]. The suffix 2 means two
leakage sources, i.e., both encryption and decryption. In some sense, the definition is
obtained by enhancing the traditional (multi-user) INT-CTXT security with leakages.

Chun Guo, Olivier Pereira, Thomas Peters and François-Xavier Standaert 11

Definition 2 (muCIML2 advantage). Given the implementation of a nonce-based au-
thenticated encryption AEAD = (Enc,Dec) with leakage function pair L = (LEnc, LDec),
the multi-user ciphertext integrity advantage with misuse-resistance and leakage of an
adversary A against AEAD with u users is

AdvmuCIML2
A,AEAD,L,u := Pr

[
ALEncK,LDecK,π,π

−1,ĨC,ĨC−1
forges

]
,

where the probability is taken over the u user keys K = (K1, . . . ,Ku), Ki
$← K, over A’s

random tape and the ideal oracles π and ĨC and where:

• LEncK(i,N,A,M): if 1 ≤ i ≤ u, outputs the cipher EncKi(N,A,M) and the leakage
trace LEnc(Ki, N,A,M);

• LDecK(i,N,A,C): if 1 ≤ i ≤ u, outputs
(
DecKi(N,A,C), LDec(Ki, N,A,C)

)
;

• The event “A forges” means that any of A’s query to LDecK(i,N,A,C) returns M 6=
⊥, while C was not resulted from an earlier encryption query to LEncK(i,N,A,M).

2.2.2 Confidentiality

Regarding confidentiality, we try to achieve weaker nonce robustness, i.e., multi-user
Chosen-Ciphertext Attack security with misuse-resilience and Leakage. Informally, the
notions allow the adversary A to query leaking encryption and (leaking) decryption oracles
arbitrarily, and capture the confidentiality of several messages encrypted using fresh,
non-repeating nonces. The latter goal is formalized via the “old-school” left-or-right
paradigm, i.e., A shall not tell apart encrypting M0 from encrypting M1. This choice
follows from the conceptual difficulty to define the leakage of the idealized (random) objects
that are used in real-or-random definitions [Sta19]. As mentioned, the misuse-resilience
we guarantee captures confidentiality with fresh nonces in the challenges and was first
introduced by Ashur et al. [ADL17].

Following [GPPS19, BGP+19], the notion capturing 1 leakage source (i.e., encryption
only) is abbreviated as muCCAmL1, while the notion capturing the presence of 2 leakages
sources (i.e., including decryption) is muCCAmL2. We only recall the former definition.

Definition 3 (muCCAmL1 advantages). Given the implementation of a nonce-based au-
thenticated encryption AEAD = (Enc,Dec) with leakage function pair L = (LEnc, LDec), the
multi-user chosen-ciphertext advantage with misuse-resilience and leakage of an adversary
A against AEAD with u users is

AdvmuCCAmL1
A,AEAD,L,u :=

∣∣∣Pr
[
PrivKmuCCAmL1,0

A,AEAD,L,u ⇒ 1
]
− Pr

[
PrivKmuCCAmL1,1

A,AEAD,L,u ⇒ 1
]∣∣∣ ,

where the security game PrivKmuCCAmL1,d
A,AEAD,L,u is defined in Figure 1.

We will also use a notion of eavesdropper security with leakage. Since it is a bit specific
for “one-time” stream ciphers, we defer it to Section 3.

2.3 Oracle-free probabilistic leakage functions
Most analyses of sponge-based constructions rely on the ideal (permutation) model (see
Section 3.4 for an alternative). We follow that practice, which has the advantage of offering
an easy compatibility with quite minimal leakage assumptions: we will assume that
leakages resulting from each call to the permutation π are non-invertible. This assumption
was previously used by Yu et al. [YSPY10] on a random oracle-based PRG. This approach
also comes with the important benefit that it can be easily measured/challenged by
cryptanalytic practice (as will be detailed in the next section), and therefore might lead

12 Towards Low-Energy Leakage-Resistant AE from the Duplex Sponge

PrivKmuCCAmL1,d
A,AEAD,L,u is the output of the following experiment:

Initialization: generates u secret keys K1, . . . ,Ku
$← K and sets Ech, E1, . . . , Eu ← ∅.

Leaking encryption queries: A gets adaptive access to LEnc(·, ·, ·, ·),
LEnc(i,N,A,M) outputs ⊥ if (i,N, ∗, ∗) ∈ Ech, else computes C ← EncKi(N,A,M)
and leakenc ← LEnc(Ki, N,A,M), updates Ei ← Ei ∪ {N} and returns (C, leakenc).

Decryption queries: A gets adaptive access to Dec(·, ·, ·, ·),
Dec(i,N,A,C) outputs ⊥ if (i,N,A,C) ∈ Ech, else returns DecKi(N,A,C);

Challenge queries: on possibly many occasions A submits (i,Nch, Ach,M0,M1),
If |M0| 6= |M1| or Nch ∈ Ei or (i,Nch, ∗, ∗) ∈ Ech, returns ⊥; Else computes
Cd ← EncKi(Nch, Ach,Md) and leakdenc ← LEnc(Ki, Nch, Ach,M

d), updates Ech ←
Ech ∪ {(i,Nch, Ach, Cd)} and finally returns (Cd, leakdenc);

Finalization: A outputs a guess bit d′ which is defined as the output of the game.

Figure 1: The PrivKmuCCAmL1,d
A,AEAD,L,u game.

to a better understanding of how to implement and design modes from a real-world
perspective.

Formally, for F ∈ {π,⊕}, i.e., the components of a duplex, each computation of F
comes with leakages LF, which is an efficient probabilistic function of the values involved
in the computation. For the permutation π, we further split the leakage into an input
and an output part, i.e., we write (Linπ (Sin), Loutπ (Sout)) for the leakage due to evaluating
π(Sin) → Sout or π−1(Sout) → Sin. This distinction between Linπ and Loutπ allows to
independently quantify the secrecy of the input and the output which better reflects the
designers implementation goals for each functions/calls.

We require that for any F, the leakage function LF must have no access to the ideal
oracle π. This restriction effectively excludes the artificial “future computation attacks”
from the model: it guarantees that LF only leaks information about the computation that
is happening in the device rather than the computation that may happen in “future” calls
of π. Oracle-freeness restriction was first used by Yu et al. [YSPY10], and recently by the
concurrent work of DM [DM19]. For the sake of space, we refer to [DP08] and [YSPY10]
for detailed discussion about “future computation attacks”.

2.4 A general duplex-based stream cipher and its security models

As mentioned, one of our main contributions is the leakage security of a general duplex-
based stream cipher, denoted DuStr[π], that constitutes the basis of many duplex-based
AEs (e.g., Ascon [DEMS19], and TETSponge that will be introduced). Formally, the cipher
DuStr[π] is defined in Figure 2. For simplicity we assume the size of the inputs |A| and
|M | are always multiples of r (otherwise it would be too complicated to follow), and we
use an offset δ1 to model the commonly used domain separation bits in duplex AEs, which
depends on the concrete schemes and is typically of only 1 or 2 bits. For preciseness we also
make the leakages (which follows the convention from Section 2.3) of each step explicit.

For the leakage security of DuStr[π], we follow [PSV15] and leverage the security
model (left-or-right) Eavesdropper security with Leakage (EavL). It states that two dis-
tinct messages encrypted by DuStr[π] are indistinguishable. Formally, recall that we have
LDuStrB [π](IV,A,M) := (DuStrB [π](IV,A,M), LDuStr(B, IV,A,M)) according to our con-
ventions, where the leakage function LDuStr includes all the leakages listed in Figure 2.

Chun Guo, Olivier Pereira, Thomas Peters and François-Xavier Standaert 13

The duplex stream cipher DuStrB [π](IV,A,M), |B| = κ:
(1) Computes S′0 ← IV ‖B, S1 ← π(S′0). The leakages of this step are Linπ (S′0) and Loutπ (S1);
(2) For i = 1, . . . , ν, ν = |A|/r, computes S′i ← (A[i]‖0c)⊕Si and Si+1 ← π(S′i). The leakages

are Linπ (S′i), Loutπ (Si+1), L⊕(msbr(Si), A[i]);
(3) Sν+1 ← Sν+1 ⊕ (0r‖δ1) for a fixed offset δ1. The leakages are L⊕(lsbc(Sν+1), δ1);
(4) For i = 1, . . . , `, ` = |M |/r, computes j ← i+ν, C[i]← msbr(Sj)⊕M [i], S′j ← C[i]‖lsbc(Sj),

Sj+1 ← π(S′j). Leakages are L⊕(msbr(Sj),M [i]) and Linπ (S′j), Loutπ (Sj+1);
(5) Returns c = C[1]‖ . . . ‖C[`].

Figure 2: The duplex-based stream cipher DuStr and the involved leakages.

Then, the leakage eavesdropper advantage of an adversary Aπ against LDuStr is

AdvEavL
LDuStr(Aπ) :=

∣∣Pr[Aπ(LDuStrB(IV,A,M0))⇒ 1]− Pr[Aπ(LDuStrB(IV,A,M1))⇒ 1]
∣∣. (1)

This notion can be seen as the leaky version of the black-box eavesdropper security, or
an extremely weakened muCCAmL1 setting that only allows the adversary to make a single
query to the challenge leaking encryption oracle and have its ciphertext and encryption
leakages (as such, it can also be viewed as “single-query leakage CCA”). For ease of use,
we further define

AdvEavL
LDuStr(qπ, t, `) := max

{
AdvEavL

LDuStr(A)
}
, (2)

where the maximal is taken over all adversaries A that makes qπ queries to π, runs in time
t, and observes the ciphertext and leakages from encrypting a message with ` blocks.

2.5 The H-coefficient technique
Our proofs crucially rely on Patarin’s H-coefficient technique [Pat08]. We thereby provide
a quick overview, following the presentation of [CS14]. Fix a distinguisher D that makes a
bounded number of q queries to its oracles. The technique addresses the settings where
D’s aim is to distinguish between two worlds: a “real world” and an “ideal world”. Assume
wlog that D is deterministic. The execution of D defines a transcript that includes the
sequence of queries and answers received from its oracles; D’s output is a deterministic
function of its transcript. Thus, if Tre and Tid denote the probability distributions on
transcripts induced by the real and ideal worlds, respectively, then D’s distinguishing
advantage is upper bounded by the statistical distance between Tre and Tid, which can be
further bounded by the H-coefficient main lemma [CS14]. In brief, we have

Lemma 1. Fix a distinguisher D. Let T = Tgood ∪ Tbad be a partition of the set of
attainable transcripts T . Assume that there exists ε1 such that for any τ ∈ Tgood, one has

Pr[Tre = τ]
Pr[Tid = τ] ≥ 1− ε1,

and that there exists ε2 such that Pr[Tid ∈ Tbad] ≤ ε2. Then Adv(D) ≤ ε1 + ε2.

The definitions of “transcripts” crucially depend on the concrete problem, and could
be found in the proofs latter.

3 Leakage security of the duplex stream cipher DuStr[π]
In this section we investigate the leakage confidentiality of the duplex-based stream
cipher DuStr[π]. Leakage confidentiality is in general hard to achieve (and analyze) and

14 Towards Low-Energy Leakage-Resistant AE from the Duplex Sponge

assumptions that “bound” the information in leakages are clearly necessary, as otherwise
cleartext messages may leak in full. In this respect, we first formalize the two assumptions
that we use to bound the leakages’ informativeness, i.e., the non-invertibility assumption
in Section 3.1, and the bounded XOR leakage assumption in Section 3.2. Based on these,
in Section 3.3 we finally prove its EavL security. We serve some discussion in Section 3.4.

3.1 Bounding the leakages: non-invertibility restriction
Motivation. As mentioned before, we assume that (some of) the leakage functions are
essentially non-invertible. In detail, note that the following sequence of actions appear in
virtually all duplex-based AEs: (1) squeezing (the most significant bits, wlog) from a secret
b-bit state Si: Yi ← msbr(Si); (2) modifying the state with a b-bit offset ∆: S′i ← Si ⊕∆;
(3) deriving a new state: Si+1 ← π(S′i). After the 3rd step, the subsequent computations
are irrelevant to the state Si. We therefore view this as a basic unit and bound its leakages
on Si.

Let us reconsider the above unit. Note that for the call π(S′i) in step (3), in many cases
the piece msbr(S′i) is a non-secret ciphertext block, e.g., see Fig. 6 (on the other hand, the
piece lsbc(∆) captures the possible XOR of domain separation bits). Therefore, the least
significant bits lsbc(S′i) are the critical secret, and the subsequent actions are compromised
as long as lsbc(S′i) is recovered. These c bits are involved in three actions. The 1st is of
course the call π(S′i). The others are: (a) the XOR of ∆, and (b) the “previous” π-call
π(?)→ Si that “produces” Si–following the convention in duplex papers, we didn’t present
this action in the above unit, but it’s clearly relevant. We shouldn’t be restricted to lsbc(S′i),
as we may also consider initializing the duplex with a key of κ 6= c bits. Therefore, in our
assumption we consider ω bits lsbω(S′i) for generality, and assume that the side-channel
adversary cannot predict the value of lsbω(S′i) within a limited number of guesses, even
if all the other involved (b − ω)-bit values are chosen by him (this simplification also
emphasizes the crucial role of lsbω(S′i)).

Definition. Formally, we define

AdvInv[ω](A) := Pr
[
sch

$← {0, 1}ω,G ← Aπ(leak) : sch ∈ G
]
, (3)

where G is a finite set of guesses, and A’s input leak is a list of leakages depending on
three values yin, ypre ∈ {0, 1}b−ω, and δ ∈ {0, 1}ω chosen by A, i.e.,

leak =
[
Loutπ (ypre‖sch), L⊕(δ, sch), Linπ (yin‖(δ ⊕ sch))

]
. (4)

Further Insights. To clarify, the random state sch is the secret that is to be challenged
by A. A is required to choose ypre, yin, and δ (playing the role of the aforementioned
lsbc(∆)) to “fill in the gap” and gets the leakages, as if ypre‖sch is the aforementioned
current state Si of the “unit”, which is modified to yin‖(δ ⊕ sch) and results in a call to
π(yin‖(δ ⊕ sch)). See Fig. 3 (Left) for illustration. As mentioned, sch is involved in three
actions, which exactly correspond to the three leakages.

In such an invertibility game, the power of A is quantified along three dimensions,
i.e., the number qπ of its queries to π, the running time t, and the number NG of allowed
guesses (i.e., |G| ≤ NG; clearly the larger NG, the higher AdvInv[ω](A)). To simplify, we
further define

AdvInv[ω](qπ, t, NG) := max
(qπ,t,NG)-A

{
AdvInv[ω](A)

}
, (5)

When ω = c, the assumption captures the secrecy of the “capacity part”, which is in
line with the intuition proposed for ISAP [DEM+17].

Chun Guo, Olivier Pereira, Thomas Peters and François-Xavier Standaert 15

c

s

ych
Spre

m

π
sch

yin

Sout
ypre

Spre

(M [i])
r

cπ π π

δ

s′ch

Figure 3: (Left) Illustrating the Inv[ω] assumption. The value in red (i.e., sch) is the
critical secret. The involved values are as defined with Eq. (3), while the values Spre and
Sout are only mentioned in the subsequent security tester. (Middle) The “basic” message
manipulating operation. The value ych in red is the secret. (Right) A summary: which
values should be somehow ensured secret (i.e., the lsbω bits of the input, and the entire
output, as stressed by the red bold lines).

Tester: measuring leakage in practice. The concrete value of the advantage AdvInv[ω]

can be measured for a specific implementation on a specific device by running the best
known side-channel key/secret recovery adversary A against the following tester. This
along with our theorems later (e.g., Theorem 3) allows to determine how many plaintext
blocks can be processed before key updating.

1: Tester for non-invertibility AdvInv[ω](qπ, t, NG)
2: Let the adversary A serve b− ω bit values ypre and yin and ω-bit offset δ
3: Pick the secret: sch $← {0, 1}ω
4: Compute Spre ← π−1(ypre‖sch), s′ch ← sch ⊕ δ, and Sout ← π−1(yin‖s′ch)
5: Serve A with the leakages resulting from step 4. Following our notations, this gives A the

leakages Loutπ (ypre‖sch), L⊕(sch, δ), and Linπ (yin‖s′ch).
6: Let A output NG guesses G = {s1, . . . , sNG}, and A wins as long as sch ∈ G

3.2 (In)Distinguishability of the XOR leakages
Motivation. An implementation that aims at preserving confidentiality shall offer some
indistinguishability property for its message manipulations. To minimize assumptions &
ease measuring in practice, we follow the methodology of [PSV15, BGP+19]: we define
such an assumption w.r.t. the information an adversary might extract from the “basic”
message manipulation made in a keyed duplex (i.e., the aforementioned unit), and then
reduce the confidentiality of the “bigger” encryption to this assumption. Note that this
approach is more fine-grained than just assuming XORs leak-free.

Definition. Note that, when running the aforementioned unit, a part of the state—
typically of r bit,—is extracted as a key stream block, see Fig. 3 (middle). Concerning
the involved leakages, and with the goal of bounding LOR distinguishing advantages with
leakages in mind, we define

AdvLORL(A) :=
∣∣∣∣Pr
[
ych

$← {0, 1}r, c0 ← ych ⊕m0 : Aπ(c0, leak0)⇒ 1
]

− Pr
[
ych

$← {0, 1}r, c1 ← ych ⊕m1 : Aπ(c1, leak1)⇒ 1
]∣∣∣∣ , (6)

where leakd again depends on a c-bit value s chosen by A:

leakd =
[
Loutπ (ych‖s), L⊕(ych,md)

]
. (7)

Further Insights. Concretely, the sensitive data is the key stream block ych. It is the
output of a permutation-call, hence the presence of Loutπ (ych‖s). Then, ych is used to mask

16 Towards Low-Energy Leakage-Resistant AE from the Duplex Sponge

the message block, and thus L⊕(ych,md) comes. We also define

AdvLORL(qπ, t) := max
A

{
AdvLORL(A)

}
. (8)

While not necessarily negligible, this advantage can also be measured by a tester:

1: Tester for LORL AdvLORL(qπ, t)
2: Let the challenging adversary A serve s and (m0,m1)
3: Pick the secret: ych $← {0, 1}r, d $← {0, 1}
4: Compute c← ych ⊕md

5: Generate the permutation leakages: repeating Spre ← π−1(ych‖s) for p times
6: Serve A with c and the leakage traces resulted from steps 4 and 5. This gives A the

tuple (c, [Loutπ (ych‖s), L⊕(ych,md)])
7: Let A output the guess d′, A wins as long as d′ = d.

As discussed in [HLWW16, PSV15, Sta19], if a single XOR of the message leaks a single
bit, then no confidentiality would spring up. Thus, it is legitimate to focus on protecting
this part of the implementations. Concretely, and while it may not be possible to guarantee
that AdvLORL(qπ, t) is negligible, the advantages of this methodology are two-fold: in
theory, it could help establish somewhat best possible mode-level leakage security for
relevant applications; in practice, it allows us to faithfully reduce the confidentiality to
very simplified one-time components, for a single computation from a fixed random string,
which further makes it easier to study and to protect as isolated components. To ease
understanding, a summary of the critical values and their leakages is given in Fig. 3 (right).

3.3 Leakage EavL security of DuStr[π]
With the above preparations, in this subsection we establish the leakage eavesdropper
security of the stream cipher DuStr[π]. Formally, we have

Theorem 1. Regarding the EavL security of DuStr[π] defined in Eq. (2), we have

AdvEavL
LDuStr(qπ, t, `) ≤

(`+ 2)2

2c + ` ·AdvLORL(qπ, t∗) + 2AdvInv[κ](qπ, t∗, 2qπ)

+ 2(`+ 1) ·AdvInv[c](qπ, t∗, 2qπ), (9)

where t∗ = O(t+ `tl), and tl is as defined in Lemma 2.

Theorem 1 only gives rise to a one-time encryption scheme since it only concerns
the encryption of a single message. But as will be seen, it can be used to establish AE
security in an almost modular manner. Regarding the bounds, the term ` ·AdvLORL(qπ, t∗)
reflects the reduction to the “minimal message manipulation” (as discussed earlier),
and the factor ` reflects a (seemingly) unavoidable leakage security loss. The terms
2AdvInv[κ](qπ, t∗, 2qπ) + 2(`+ 1) ·AdvInv[c](qπ, t∗, 2qπ) capture the hardness of side-channel
secret recovery, and they are roughly of some birthday type

O
(qπ + `+ t

µκ · 2κ
)

+O
(
` · qπ + `+ t

µc · 2c
)
,

for some parameters µκ and µc that depend on the concrete conditions. It is nowadays a
common assumption that with such a small data complexity (2 or 3 leakage traces) µκ and
µc can be made very small [DEM+17], so we “restore” the classical 2c/2 security. The birth-
day bounds are essentially tight w.r.t. our assumptions: a collision between the (internal)
secret c-bit state values allows the adversary to obtain more than 2 leakages about a single
secret value, which is beyond our assumption (security with 2 leakages). So our assumption
Eq. (4), though a bit conservative, tightly restores the classical 2c/2 birthday bound.

Chun Guo, Olivier Pereira, Thomas Peters and François-Xavier Standaert 17

The ideal stream cipher IdealS(IV,A,M):

(1) Samples B $← {0, 1}κ;

(2) Computes S′0 ← IV ‖B and samples S1
$← {0, 1}b. The leakages of this step are Linπ (S′0)

and Loutπ (S1);

(3) For i = 1, . . . , ν, ν = |A|/r, computes S′i ← (A[i]‖0c) ⊕ Si and samples Si+1
$← {0, 1}b.

The leakages are Linπ (S′i), Loutπ (Si+1), L⊕(msbr(Si), A[i]);
(4) Sν+1 ← Sν+1 ⊕ (0r‖δ1). The leakages are L⊕(lsbc(Sν+1), δ1);
(5) For i = 1, . . . , `, ` = |M |/r, computes j ← i + ν, C[i] ← msbr(Sj) ⊕ M [i], S′j ←

C[i]‖lsbc(Sj), and samples Sj+1
$← {0, 1}b. The leakages are L⊕(msbr(Sj),M [i]) and

Linπ (S′j), Loutπ (Sj+1);
(6) Returns c = C[1]‖ . . . ‖C[`].

Figure 4: The ideal stream cipher IdealS and the involved leakages.

Proof. Technically, it is hard to prove Theorem 1 “directly”, and thus we follow [PSV15] and
introduce an idealized stream cipher IdealS in Figure 4 for “relay”. Briefly, IdealS is obtained
via replacing all the internal actions Si+1 ← π(S′i) in DuStr[π] by sampling Si+1

$← {0, 1}b.
By our conventions, we have LIdealS(IV,A,M) := (IdealS(IV,A,M), LIdealS(IV,A,M)),
where LIdealS includes all the leakages in Figure 4.

Regarding IdealS, we have the following two lemmas, the proofs of which are deferred
to subsections 3.3.1 and 3.3.2 respectively, for cleanness.

Lemma 2. For every (qπ, t)-bounded distinguisher Dπ and every adversary-chosen triple
tpl = (IV,A,M) such that (A,M) has ` blocks in total, it holds∣∣Pr[Dπ(LDuStrB [π](tpl))⇒ 1]− Pr[Dπ(LIdealS(tpl))⇒ 1]

∣∣
≤ (`+ 2)2

2c+1 + AdvInv[κ](qπ, t∗, 2qπ)+ (`+ 1) ·AdvInv[c](qπ, t∗, 2qπ), (10)

where t∗ = O(t+ `tl), and tl is the total time needed for evaluating Linπ , Loutπ , L⊕, and the
xor of two r-bit values.

Lemma 3. For every pair of `-block messages M0 and M1 and (qπ, t)-bounded adversary
Aπ, it holds∣∣Pr[Aπ(LIdealS(IV,A,M0))⇒ 1]− Pr[Aπ(LIdealS(IV,A,M1))⇒ 1]

∣∣
≤ ` ·AdvLORL(qπ, O(t+ `tl)),

where tl is as defined in Lemma 2.

These enable us to establish Eq. (10). In detail, for any (qπ, t)-bounded adversary Aπ,
we have∣∣Pr[Aπ(LDuStrB [π](IV,A,M0))⇒ 1]− Pr[Aπ(LDuStrB [π](IV,A,M1))⇒ 1]

∣∣
≤
∣∣Pr[Aπ(LIdealS(IV,A,M0))⇒ 1]− Pr[Aπ(LIdealS(IV,A,M1))⇒ 1]

∣∣︸ ︷︷ ︸
≤`·AdvLORL(qπ,O(t+`tl)) (by Lemma 3)

+
∑
b=0,1

∣∣Pr[Aπ(LDuStrB [π](IV,A,M b))⇒ 1]− Pr[Aπ(LIdealS(IV,A,M b))⇒ 1]
∣∣.

For each b, Lemma 2 indicates∣∣Pr[Aπ(LDuStrB [π](IV,A,M b))⇒ 1]− Pr[Aπ(LIdealS(IV,A,M b))⇒ 1]
∣∣

≤AdvInv[κ](qπ, O(t+ `tl), 2qπ) + (`+ 1) ·AdvInv[c](qπ, O(t+ `tl), 2qπ) + (`+ 2)2

2c+1 .

18 Towards Low-Energy Leakage-Resistant AE from the Duplex Sponge

Therefore,∣∣Pr[Aπ(LDuStrB [π](IV,A,M0))⇒ 1]− Pr[Aπ(LDuStrB [π](IV,A,M1))⇒ 1]
∣∣

≤ (`+ 2)2

2c + ` ·AdvLORL(qπ, O(t+ `tl)) + 2AdvInv[κ](qπ, O(t+ `tl), 2qπ)

+ 2(`+ 1) ·AdvInv[c](qπ, O(t+ `tl), 2qπ),

as claimed.

3.3.1 Proof of Lemma 2

The crux is to bound certain “bad events” during the execution of IdealS, for which we
leverage the non-invertible leakage assumption. For simplicity, wlog we consider the case
of |A| = 0, as this maximizes the amount of information obtained from the encrypting
process.

Preparations. Denote G1(D, LDuStrB[π], π) and G2(D, LIdealS, π) the games capturing
the interactions between D and the real (LDuStrB[π], π) and the ideal (LIdealS, π) resp.,
and simplify them as G1 and G2. We will prove the indistinguishability of G1 and G2
using the H-coefficient technique. To this end, note that the real adversarial transcripts
could be summarized as two lists τle and τπ: the former includes the ciphertext as well
as the leakages (its concrete representation won’t be needed in this proof), while the
latter τπ =

(
(Sin1 , Sout1), . . . , (Sinqπ , S

out
qπ)

)
includes the adversarial permutation queries and

responses, and indicates the i-th query is either forward π(Sini) → Souti or backward
π−1(Souti)→ Sini . Besides, at the end of the interaction, we reveal the involved internal
state values S = (S′0, S1, S

′
1, . . .) to D (see Figures 2 or 4 for the meaning of S′0, S1, . . .),

and append it to the transcript. Clearly, this does not reduce its advantage.
Note that the interactions with the (real or ideal) stream cipher additionally rely on r,

the random coins of the distinguisher D & the involved leakage functions. Yet, it can be
seen that during two games G1(D, LDuStrB [π1], π1) and G2(D, LIdealS, π2), if the following
conditions are fulfilled, then the queries and responses of D are the same, and thus D
outputs the same:

• π1(Sin) = Sout and π2(Sin) = Sout for any (Sin, Sout) ∈ τπ;
• the internal state values produced in the two games are the same S;
• the random coins r used in G1 and G2 are the same.

It is because all the internal actions in G1(D, LDuStrB [π1], π1) and G2(D, LIdealS, π2) give
rise to the same results (note that various other randomness sources such as the coins of
the leakage functions have also been included in the above). With the above considerations,
we summarize all the randomness in what we call extended transcripts, i.e., τ = (τπ,S, r).
Note that τle is absent in τ , as it can be recovered from r and S.

With respect to some fixed distinguisher D, an extended transcript τ = (τπ,S, r)
is attainable if there exists randomness (r, π) such that using r, the ideal execution of
G2(D, LIdealS, π) yields (τπ,S). We denote T the set of attainable transcripts.

Given a set τπ and a random permutation π, we say that π extends τπ, denoted π ` τπ,
if π(Sin) = Sout for all (Sin, Sout) ∈ τπ. It is easy to see that for any attainable transcript
τ = (τπ,S, r), the event Tid = τ happens if and only if π ` τπ, S is generated in the
execution, and the randomness r is used (by D and L). This means

Pr[Tid = τ] = Pr[π ` τπ] · Pr[r] · Pr[S is sampled in the ideal world]

= Pr[π ` τπ] · Pr[r] · 1
2κ ·

1
2(`+1)b , (11)

Chun Guo, Olivier Pereira, Thomas Peters and François-Xavier Standaert 19

as Pr[S′0] = Pr[B] = 1
2κ , while Pr[Si] = 1

2b for i = 1, . . . , ` + 1. In the subsequent two
paragraphs, we will define the partition T = Tgood ∪ Tbad and analyze Pr[Tid = τ] for
τ ∈ Tgood respectively.

Bad extended transcripts and Pr[Tid ∈ Tbad]. An attainable transcript τ = (τπ,S, r)
is bad, if any of following conditions is fulfilled:

• (B-1) contradiction between state value: there exists two distinct indices i, j ∈
[0, . . . , `] such that S′i = S′j ∧ Si+1 6= Sj+1, or S′i 6= S′j ∧ Si+1 = Sj+1;

• (B-2) exposure of secret state: if any of the following is fulfilled:
– there exists i ∈ {0, . . . , `} such that (S′i, ?) ∈ τπ; or
– there exists i ∈ {1, . . . , `+ 1} such that (?, Si) ∈ τπ.

As long as the c-bit (uniformly distributed) capacity pieces of S′0, S1, S2, . . . , S`+1 don’t
collide, the condition (B-1) cannot be fulfilled. Therefore,

Pr[(B-1)] ≤
(
`+ 2

2

)
· 1

2c = (`+ 2)2

2c+1 . (12)

To bound Pr[(B-2)], we need the non-invertible leakage assumption. Consider an
execution of G2 with the inputs (IV,M). We divide (B-2) into three subevents:

(1) BadInner: that occurs when there exists an index i ∈ {1, . . . , `} such that
(
?, Si

)
∈ τπ

or
(
S′i, ?

)
∈ τπ;

(2) BadInit: that occurs when (S′0, ?) ∈ τπ;
(3) BadFinal: that occurs when (?, S`+1) ∈ τπ.

Consider BadInner first. We follow Yu et al. [YSPY10, Appendix A] (i.e., their argument
for an event Querya with somewhat similar meaning): given an adversary Dπ, we construct
an adversary Aπ such that

AdvInv[c](Aπ) ≤ Prr,S,π[BadInner in Dπ(LIdealS(IV,M))]. (13)

To this end, Aπ runs an instance of D, and keeps τπ, i.e., the set of D’s queries to π. Aπ
simulates the following process against D:

(1) Aπ guesses an index i $← [1, `], samples a key B $← {0, 1}κ, sets S′0 ← IV ‖B, and
initializes a list leak with the leakages Linπ (S′0);

(2) For j = 1, . . . , i − 1, Aπ samples the new state Sj $← {0, 1}b, computes C[j] ←
msbr(Sj)⊕M [j], and:
• computes S′j ← C[j]‖(lsbc(Sj)⊕ δ1) and adds the leakages L⊕(lsbc(Sj), δ1) to

leak when j = 1, and
• computes S′j ← C[j]‖lsbc(Sj) otherwise.

Aπ further adds the leakages Loutπ (Sj), Linπ (S′j), and L⊕(msbr(Sj),M [j]) to leak;
(3) Aπ samples y $← {0, 1}r and computes C[i] ← y ⊕M [i]. Aπ then submits y, C[i],

and δ = δ1 (when i = 1) or δ = 0 (when i > 1) to its Inv[c] challenger and obtains
the leakages

leakch =
[
Loutπ (y‖sch), L⊕(sch, δ), Linπ

(
C[i]‖(sch ⊕ δ)

)]
for the challenge secret sch ∈ {0, 1}c. Aπ then adds the leakages L⊕(y,M [i]) and
leakch to leak. This means y‖sch is taken as Si—though Aπ doesn’t know its value.

(4) Aπ then completes the remaining encrypting: for j = i + 1, . . . , `, Aπ samples
Sj

$← {0, 1}b, computes C[j] ← msbr(Sj) ⊕M [j], S′j ← C[j]‖lsbc(Sj), and adds
Loutπ (Sj), Linπ (S′j), and L⊕(msbr(Sj),M [j]) to leak.

20 Towards Low-Energy Leakage-Resistant AE from the Duplex Sponge

(5) Finally, Aπ samples S`+1
$← {0, 1}b, adds Loutπ (S`+1) to the list leak, returns

(C[1]‖ . . . ‖C[`], leak) to D, and outputs G := {lsbc(Sin), lsbc(Sout) : (Sin, Sout) ∈ τπ}.

The strategy of Aπ is to make a uniform guess on the position of the first inner secret
value that appears in τπ, as this value is the “first”, its being queried was necessarily due to
the corresponding leakages (rather than the compromising of the other inner states). This
guess will be correct with probability 1/`. Then, Aπ simulates IdealS(IV,M) and provides
the leakages to D, except for the i index, for which the leakages are replaced by those
obtained from an Inv challenger. Now if the guess on the index i is correct, then all the
inputs sent to D are distributed exactly as those in a normal execution of G2. Therefore,
when D halts, if D made a query with sch, then outputting the aforementioned set G
(based on τπ) would break the Inv game. So we have

Pr[sch ∈ G | BadInner in G2(D, LIdealS, π)] ≥ 1
`
.

Now, we observe that

Pr[sch ∈ G | BadInner in G2(D, LIdealS, π)] ≤ Pr[sch ∈ G]
Pr[BadInner in G2(D, LIdealS, π)] .

And it can be seen A is (qπ, t∗, 2qπ)-bounded, with t∗ = O(t+ `tl). By this,

Pr[BadInner in G2(D, LIdealS, π)] ≤ ` · Pr[sch ∈ G]

≤ ` ·AdvInv[c](A) (Eq. (3))

≤ ` ·AdvInv[c](qπ, t∗, 2qπ). (Eq. (5))

These finish the analysis of BadInner. For the events BadInit and BadFinal, similar
arguments could establish

Pr[BadInit] ≤ AdvInv[κ](qπ, t∗, 2qπ), Pr[BadFinal] ≤ AdvInv[c](qπ, t∗, 2qπ).

The three terms plus Eq. (12) yield

Pr[Tid ∈ Tbad] ≤ (`+ 1) ·AdvInv[c](qπ, t∗, 2qπ) + AdvInv[κ](qπ, t∗, 2qπ) + (`+ 2)2

2c+1 . (14)

Summarizing. For any good transcript τ = (τπ,S, r) ∈ Tgood, we have

Pr[Tre = τ] = Pr[π ` τπ] · Pr[r] · Pr[S is derived in the real world]

= Pr[π ` τπ] · Pr[r] · 1
2κ · Pr[∀i ∈ [0, `] : π(S′i) = Si+1 | π ` τπ].

Conditioned on ¬(B-1) and ¬(B-2), it can be seen that, for all i ∈ {0, . . . , `}, it holds
Pr[π(S′i) = Si+1 | π ` τπ ∧ ∀j < i : π(S′j) = Sj+1] ≥ 1

2b . This means Pr[∀i ∈ {0, . . . , `} :
π(S′i) = Si+1 | π ` τπ] ≥ 1

2(`+1)b . Therefore, Pr[Tre = τ] ≥ Pr[Tid = τ] by Eq. (11), and
thus Pr[Tid ∈ Tbad] constitutes the final bound, i.e.,∣∣Pr[Dπ(LDuStrB [π](IV,M))⇒ 1]− Pr[Dπ(LIdealS(IV,M))⇒ 1]

∣∣
≤ (`+ 2)2

2c+1 + (`+ 1) ·AdvInv[c](qπ, t∗, 2qπ) + AdvInv[κ](qπ, t∗, 2qπ).

Chun Guo, Olivier Pereira, Thomas Peters and François-Xavier Standaert 21

3.3.2 Proof of Lemma 3

Again we assume |A| = 0 for simplicity. Let M0 = M0[1]‖ . . . ‖M0[`] and M1 =
M1[1]‖ . . . ‖M1[`]. We start by building a sequence of ` + 1 messages Mh,0, . . . ,Mh,`

starting from M0 and modifying its blocks one by one, to obtain M1. That is, Mh,i :=
M1[1]‖ . . . ‖M1[i]‖M0[i+ 1]‖ . . . ‖M0[`]. For any i, assuming a (qπ, t)-bounded adversary
Aπ against LIdealS(IV,Mh,i−1) and LIdealS(IV,Mh,i), we build a (qπ, O(t+ `tl))-bounded
adversary Aπ2 against the distribution defined in Eq. (6). In detail, Aπ2 proceeds in four
steps:

(1) Aπ2 samples B $← {0, 1}κ, initializes an empty list leak, and sets S′0 ← IV ‖B;
(2) for j = 1, . . . , i − 1, Aπ2 samples Sj $← {0, 1}b, computes C[j] ← msbr(Sj) ⊕

M1[j], S′j ← C[j]‖lsbc(Sj) (S′j ← C[j]‖(lsbc(Sj) ⊕ δ1) when j = 1), and adds
Linπ (S′j−1), Loutπ (Sj), and L⊕(msbr(Sj),M1[j]) (and L⊕(lsbc(Sj), δ1)) to leak;

(3) Aπ2 samples s $← {0, 1}c and submits s to the LORL challenger. Assume that the
outputs are (cb, leakb) with

leakb =
[
Loutπ (ych‖s), L⊕(ych,mb)

]
.

Aπ2 then adds Linπ ((M1[i− 1]‖0c)⊕ Si−1), Loutπ (ych‖s), and L⊕(ych,mb) to leak;
(4) Aπ2 starts from cb‖C to emulate the remaining actions of LIdealS encrypting the

tail M0[i + 1]‖ . . . ‖M0[`] to obtain C[i + 1]‖ . . . ‖C[`]. Eventually, Aπ2 serves the
ciphertext C[1]‖ . . . ‖C[i − 1]‖cb‖C[i + 1]‖ . . . ‖C[`] (and lsbc(Sν+`+1), when = 1)
as well as all the generated simulated leakages to Aπ, and outputs whatever Aπ
outputs.

It can be seen depending on whether the input tuple received by Aπ2 captures the LORL
challenger encrypting M0[i] or M1[i], the inputs to Aπ capture LIdealS encrypting Mh,i−1
or Mh,i. Moreover, Aπ2 is (qπ, O(t+ `tl))-bounded if Aπ is (qπ, t)-bounded. Therefore,∣∣Pr[Aπ(LIdealS(IV,Mh,i−1))⇒ 1]− Pr[Aπ(LIdealS(IV,Mh,i))⇒ 1]

∣∣
≤ AdvLORL(qπ, O(t+ `tl))

by Eq. (8). This along with a simple summation implies the main claim.

3.4 Discussion
Where does leakage-resistance come from? We note that, in (the model of) a duplex,
the internal state is kept evolving by calling a perfectly random permutation. Since the
adversary cannnot recover the secret, he cannot predicate what would be the next internal
permutation call. Therefore, the subsequent state is derived via a fresh permutation-call
and thus random and secret.

On reducing to PRP assumptions. An alternative solution to study keyed sponge/duplex
is to reduce them to the PRP security of a “Partial-Key” Even-Mansour (PKEM) ci-
pher [ADMV15]. It is thus natural to ask whether EavL could also be reduced to the PRP
security of PKEM with leakages. While this direction is in general an interesting open
problem, the tricky issue is that the PKEM-based representation in [ADMV15] depicted
in Figure 5 contains a plenty of “imaginary” XORs that do not actually happen in reality.
How to model the leakage of these XORs is not directly obvious.

Forward security. Keyed sponges are not forward secure [BDPV10], in the sense that
the exposure of a b bit state enables recovering the earlier states. Consequently, the final
permutation call must hide its output state to some extent. This is captured by the bad
condition BadFinal in the proof of Lemma 2.

22 Towards Low-Energy Leakage-Resistant AE from the Duplex Sponge

0κ

IV

π
κ

B BB

c− n

r

A[1]

PKEM

π

B B

c− n

r

A[2]

π

B B

c− n

r

A[3]

...

Figure 5: The PKEM-based representation of a keyed sponge with κ-bit key/initial seed B.
The “partial-key” Even-Mansour cipher is inside the dashed rectangles. Internal actions of
XORing B cancel. The construction turns basically the same as the keyed sponge.

4 Description of TETSponge
We design TETSponge to turn the single-user EavL-secure duplex stream cipher into an
authenticated encryption with stronger multi-user security guarantees. The specification,
Section 4.2, will come after some intuitions in Section 4.1.

4.1 Design considerations
By Theorem 1, the duplex is a nice starting point for efficient 1-pass leakage-resilient AEs.
Indeed, the final duplex state is typically truncated as the tag. But typically, in a leveled
implementation, only the initial keyed part would be strongly protected against side-channel
attacks, and this causes the concern of decryption leakages. First, decryption leakages
enable recovering the internal state of (a leveled implementations of) the duplex [AFM19],
after which universal forgery is possible. Second, verifying the tag requires to perform the
entire computation to recover the valid tag and to compare it with the one included in the
ciphertext. Hence, this valid tag may be leaked, constituting trivial forgeries and breaking
CIML2. It is natural to ask how to remedy those issues.

Towards the first issue, our observation is that an additional keyed finalization function
helps. Namely, even if the internal state has been recovered in full, the construction then
collapses to a Hash-then-MAC authenticator, with the duplex being a keyless hash and the
keyed finalization being a fixed length MAC. Thus, if the finalization is carefully protected,
strong integrity with nonce-misuse and leakages is restored.

Towards the second issue, assuming n-bit tag size, then an approach to cope with
the leaking tag is to rely on an n-bit invertible primitive (e.g., a block cipher was used
in [BPPS17]), so that the verification only compares (and leaks) pre-images of tags
without ever computing the valid tag, which then remains unpredictable. Inversion may
be challenging though, as the duplex permutation size b is typically much larger than
any ordinary tag size n. Due to the presence of leakages, it is hard to build a “small”
invertible primitive from the large permutations (Feistel-based solution consumes O(n)
rounds [DP10]).

With these considerations, we use a tweakable block cipher (TBC) for the finalization
to increase robustness against decryption leakages. In detail, we derive a 2n-bit (hash)
digest from the keyed duplex, and then use an (n, n, n)-TBC to absorb this digest and
generate the (n-bit) tag. This solves all the above. The motivation for employing 2n-bit
digests is to boost the complexity of hash collision-based forgery attacks to 2n, which is
inherited from [BGP+19].

Of course, if the resistance to side-channel attacks is not a primary concern in a
specific implementation, it remains possible to only use the TBC in forward mode, and
recompute the valid tag as part of the ciphertext verification process. This may simplify

Chun Guo, Olivier Pereira, Thomas Peters and François-Xavier Standaert 23

the implementation a bit, but results in a weaker protection against side-channel attacks.
But when side-channel attacks are in scope, the TBC shall be well protected. Therefore,

following [PSV15, DEM+17, BGP+19], we also use it to derive the duplex-key from the
nonce and “setup” the duplex. Now, as long as the internal state is not fully exposed by
SCAs, it enables the inner keyed duplex to maintain some level of privacy and integrity;
even if the state is leaked in full, the scheme collapses to Hash-then-TBC authenticator,
and integrity is retained (so that severe malware attacks like [RSWO17] are not be possible
here). The use of “public keys” in order to offer multi-user security beyond |K|/2 is also
inherited from [BGP+19]. Briefly, the public keys create a strong independence between
different users and thus reduce the effectiveness of offline computation against the multiple
user keys. Besides, the actions involving these public keys do not need any additional
physical protection.

It is tempting to ask why bother integrity with nonce misuse-resistance and decryption
leakages in a 1-pass scheme that is not designed for nonce-reuse at all and loses confidentiality
against decryption leakages. The reason is that we choose 1-pass as a strict efficiency
target but we push the achievable limit of (nonce and leakage) robustness as far as possible
and extract the techniques to reach it.

4.2 Specification
Parameters. TETSponge[π, Ẽ] is built on an (n, n, n)-TBC Ẽ and a b-bit permutation π
with b = r + c. The key is K‖PK , where |K| = n and |PK | = np. We stress that only
K has to be kept secret, but PK can be public. The secret key K is picked uniformly
at random in {0, 1}n. The public part PK should be unique per session for separation.
The easiest way to non-interactively ensure uniqueness is to pick PK uniformly from
{0, 1}np . If nN = |N | denotes the fixed length of the nonces, we require that np ≤ r,
nN + np + n ≤ r + c, and 2n ≤ r + c+ 1. Yet, we recommend np ≈ n and c ≈ 2n and we
actually choose np = n − 1 and c = 2n as this leads to muCIML2 (and black-box CCA)
security up to 2n/n2 queries.

BN‖0∗

C = C[1]‖C[2]‖Z

Ẽ

K
π

n

r

M [1] C[1]

c
π

r

A[1]

c
π

r

A[2]‖10∗

c
π

PK‖0∗

M [2] C[2]‖10∗

c
π

U

n− 1V

n
ZẼ

K

1

1‖0c−2 2‖0c−2 1‖0c−2

N‖PK‖0∗

Figure 6: TETSponge[π, Ẽ]K,PK AEAD for ν = 2 blocks of associated data and ` = 2
message blocks. Dark squares indicate the “leak-free” TBC where the triangle denotes
the key input and the small black rectangle denotes the tweak input. The value 1‖0c−2 is
inserted only if |A[ν]| < r, resp. |M [`]| < r.

The encryption. As shown in Fig. 6, upon encrypting (N,A,M), the mode first derives
an n-bit initial seed B from N , using a strongly protected TBC-call to ẼPK‖0∗

K (N‖0∗). The
seed B is then used as the key of the duplex to process A and M = M [1]‖ . . . ‖M [`] and
produce c = C[1]‖ . . . ‖C[`]. Note that 2 bits are used for domain separation, in order to
distinguish M from A and to mark if the last blocks of A and M are of full r bits or not.

Let U‖V be the most significant 2n−1 bits of the final state with |U | = n. As discussed,
another strongly protected TBC-call is made, which generates the n-bit tag Z = ẼV ‖1K (U).
The final ciphertext is C[1]‖ . . . ‖C[`]‖Z.

24 Towards Low-Energy Leakage-Resistant AE from the Duplex Sponge

The decryption. Upon decrypting (N,A,C), C = C[1]‖ . . . ‖C[`]‖Z, the mode first
recovers the initial seed B via B = ẼPK‖0∗

K (N‖0∗), and then runs the duplex on A and
C[1]‖ . . . ‖C[`] to recover M and the 2n − 1 bit truncated state U‖V . Finally, it makes
an inverse TBC call U∗ = (ẼV ‖1K)−1(Z), and outputs M if and only if there is a match
U = U∗. In such a way, invalid decryption only leaks meaningless random values U∗
(instead of the correct tag) which increases robustness against decryption leakages at the
mode level (formally, helps achieve CIML2).

The encryption and decryption are formally described in Figure 7. Note that when c is
empty while A passes the integrity checking, Dec explicitly returns a special value true,
so that it can be used for authenticating A.

Note that since we expect the duplex to act as a keyless hash when the internal state
has been leaked, we cannot follow the more efficient design approaches that encroach the
capacity of the duplex/sponge — including full-state [MRV15, DMV17] and concurrent
absorption [SY15].

5 Idealizing the TBC calls in TETSponge
We will prove lower bounds for the leakage integrity and confidentiality of TETSponge in
the subsequent two sections. Both of the two proofs will rely on an idealized TETSponge
variant TETSponge[π, S̃IC]K,PK, which internally makes calls to a secret ideal TBC S̃IC
instead of the public ĨC.3 This means the key derivation and tag generation calls in
TETSponge[π, S̃IC]K,PK will not be influenced by the adversarial queries (to ĨC).

We will consider a setting motivated by the unbounded leakage assumption: a dis-
tinguisher is interacting with either the real world (TETSponge[π, ĨC]K,PK, π, ĨC) or the
idealized world (TETSponge[π, S̃IC]K,PK, π, ĨC), but all the intermediate values inside the
mode TETSponge[π, ĨC]K,PK/TETSponge[π, S̃IC]K,PK are completely given. Note that
this means the adversary could observe inputs/outputs of the internal TBC-calls from
the interaction with TETSponge[π, ĨC]K,PK/TETSponge[π, S̃IC]K,PK. Though, he cannot
choose the inputs/outputs in arbitrary. For example, for the internal TBC-calls due to key
derivations, the tweak has to be of the form PK‖0 with PK uniformly distributed, the
properties of which will be helpful for our proof. We show that D cannot distinguish the
two worlds up to ≈ 2n/n2 queries. Formally,

Lemma 4. Under the unbounded leakage assumption, it holds∣∣Pr[DTETSponge[π,ĨC]K,PK,π,π
−1,ĨC,ĨC−1

⇒ 1]− Pr[DTETSponge[π,S̃IC]K,PK,π,π
−1,ĨC,ĨC−1

⇒ 1]
∣∣

≤ u

2np + 16Q2

2c +
(2n+ 1)Q+ n2qĨC

2n . (15)

The remaining of this section are all devoted to prove Lemma 4. The idea is simple,
while the details are intricate due to the analysis of the non-standard sponge hashing.

5.1 Preparations
We rely on the H-coefficient technique [CS14]. For this, we summarize the information
involved during the adversarial interaction in transcripts. The definition, which is a bit
complicated, is divided into several paragraphs for cleanness.

3Regarding this idealization, note that we cannot simply replace the TBC-calls of the u users by calls
to u independent tweakable random permutations, as otherwise the birthday term u2

2n emerges.

Chun Guo, Olivier Pereira, Thomas Peters and François-Xavier Standaert 25

algorithm EncK,PK (N,A,M)
1. `← d|M |/re, ν ← d|A|/re
2. parse M as M [1]‖ . . . ‖M [`], with
|M [1]| = . . . = |M [`− 1]| = r and
1 ≤ |M [`]| ≤ r

3. parse A as A[1]‖ . . . ‖A[ν], with
|A[1]| = . . . = |A[ν − 1]| = r and
1 ≤ |A[ν]| ≤ r

4. B ← ẼPK‖0n−nP
K (N‖0n−nN)

5. IV ← N‖PK‖0b−n−nN−nP

6. S0 ← IV ‖B, S1 ← π(S0)
7. if ν ≥ 1 then
8. for i = 1 to ν − 1 do
9. Si ← Si ⊕ (A[i]‖0c)

10. Si+1 ← π(Si)
11. if |A[ν]| < r then
12. A[ν]← A[ν]‖10r−|A[ν]|−1

13. Sν ← Sν ⊕ (0r‖[1]2‖0c−2)
14. Sν ← Sν ⊕ (A[ν]‖0c)
15. Sν+1 ← π(Sν)
16. if ` ≥ 1 then
17. Sν+1 ← Sν+1 ⊕ (0r‖[2]2‖0c−2)
18. for i = 1 to `− 1 do
19. j ← i+ ν

20. C[i]← msbr(Sj)⊕M [i]
21. Sj ← C[i]‖lsbc(Sj)
22. Sj+1 ← π(Sj)
23. C[`]← msb|M [`]|(Sν+`)⊕M [`]
24. if |C[`]| < r then
25. Sν+` ← Sν+` ⊕ (0r‖[1]2‖0c−2)
26. Sν+` ← C[`]‖10r−|C[`]|−1‖lsbc(Sν+`)
27. else Sν+` ← C[`]‖lsbc(Sν+`)
28. Sν+`+1 ← π(Sν+`)
29. U‖V ← msb2n−1(Sν+`+1)

30. Z ← ẼV ‖1K (U)
31. c← C[1]‖ . . . ‖C[`], C ← c‖Z
32. return C

algorithm DecK,PK (N,A,C)

1. `← d |C|−n
r
e, ν ← d|A|/re

2. parse C as C[1]‖ . . . ‖C[`]‖Z, with
|C[1]| = . . . = |C[`− 1]| = r, 1 ≤ |C[`]| ≤
r, and |Z| = n

3. parse A as A[1]‖ . . . ‖A[ν], with |A[1]| =
. . . = |A[ν − 1]| = r and 1 ≤ |A[ν]| ≤ r

4. B ← ẼPK‖0n−nP
K (N‖0n−nN)

5. IV ← N‖PK‖0b−n−nN−nP

6. S0 ← IV ‖B, S1 ← π(S0)
7. if ν ≥ 1 then
8. for i = 1 to ν − 1 do
9. Si ← Si ⊕ (A[i]‖0c)

10. Si+1 ← π(Si)
11. if |A[ν]| < r then
12. A[ν]← A[ν]‖10r−|A[ν]|−1

13. Sν ← Sν ⊕ (0r‖[1]2‖0c−2)
14. Sν ← Sν ⊕ (A[ν]‖0c)
15. Sν+1 ← π(Sν)
16. if ` ≥ 1 then
17. Sν+1 ← Sν+1 ⊕ (0r‖[2]2‖0c−2)
18. for i = 1 to `− 1 do
19. j ← i+ ν

20. M [i]← msbr(Sj)⊕ C[i]
21. Sj ← C[i]‖lsbc(Sj)
22. Sj+1 ← π(Sj)
23. M [`]← msb|C[`]|(Sν+`)⊕ C[`]
24. if |C[`]| < r then
25. Sν+` ← Sν+` ⊕ (0r‖[1]2‖0c−2)
26. Sν+` ← C[`]‖10r−|C[`]|−1‖lsbc(Sν+`)
27. else Sν+` ← C[`]‖lsbc(Sν+`)
28. Sν+`+1 ← π(Sν+`)
29. U‖V ← msb2n−1(Sν+`+1)

30. U∗ ← (ẼV ‖1K)−1(Z)
31. if U 6= U∗ then return ⊥
32. else if ` > 0 then return

M [1]‖ . . . ‖M [`]
33. else return true

Figure 7: Specification of TETSponge[π, Ẽ] using a b-bit permutation π and an (n, n, n)-
TBC Ẽ.

26 Towards Low-Energy Leakage-Resistant AE from the Duplex Sponge

Permutation query transcripts. We summarize the adversarial queries to the random
permutation π in

τπ =
(
(Sin1 , Sout1), . . . , (Sinqπ , S

out
qπ)

)
.

From our unbounded-leakage assumption, all the (encryption and decryption) queries
made to TETSponge give all the ephemeral intermediate values to D. Therefore, these
queries result in records of the form (Sin, Sout). To make a distinction, we denote by τ∗π
the union of these leakage records and the adversarial query transcript τπ. It can be seen
that:

• upon an encryption query EncKi,PKi(N,A,M), TETSponge makes at most d |A|r e+
d |M |r e+ 1 queries to π;

• upon a decryption query DecKi,PKi(N,A,C), the number of internal π-calls is
(similarly) at most d |A|r e+ d |c|r e+ 1, where C = c‖Z.

Therefore, when interacting with the idealized scheme TETSponge[π, S̃IC]K,PK, the number
of internal π-calls is at most σ + qe + qd, and we have

Q :=
∣∣τ∗π ∣∣ ≤ σ + qe + qd + qπ. (16)

Hashing transcripts. Due to unbounded leakage assumption, for every query with the
nonce N , the public-key PK, the associated data A, and the ciphertext c, the duplex
behaves as evaluating a keyless hash function on (N,PK,A, c), and all the underlying
permutation calls are known by the adversary. Note that c may be directly specified
by a decryption query, or the response of an encryption query; though, this does not
matter, since the inputs that affect the hash outputs are the same. For convenience, we
introduce τ∗h , which is defined upon τ∗π , as the list of the inputs and outputs of this duplex
hashing. Formally, a tuple ((N,PK,A, c), S), N ∈ {0, 1}nN , PK ∈ {0, 1}np , A, c ∈ {0, 1}∗,
and S ∈ {0, 1}b, is in τ∗h , if and only if there exists a sequence of π queries (Sin0 , Sout0),
(Sin1 , Sout1),..., (Sinω , Soutω) in τ∗π such that:

• Sin0 = N‖PK‖0∗‖B for some B ∈ {0, 1}n, and
• With ν = d|A|/re and ` = d|M |/re, it holds ω = ν + `, and

– For i = 1, . . . , ν − 1, lsbc(Sini) = lsbc(Souti−1), msbr(Sini)⊕msbr(Souti−1) = A[i];
– When |A[ν]| < r, it holds lsbc(Sinν) = lsbc(Soutν−1)⊕(0r‖[1]2‖0c−2) and msbr(Sinν)⊕

msbr(Soutν−1) = A[ν]‖10∗; when |A[ν]| = r, it holds lsbc(Sinν) = lsbc(Soutν−1) and
msbr(Sinν)⊕msbr(Soutν−1) = A[ν];

– If ` > 1:
∗ lsbc(Sinν+1) = lsbc(Soutν)⊕ (0r‖[2]2‖0c−2), and msbr(Sinν+1) = C[1];
∗ For i = ν + 2, . . . , ω − 1, lsbc(Sini) = lsbc(Souti−1), msbr(Sini) = C[i− ν];
∗ When |C[`]| < r, lsbc(Sinω) = lsbc(Soutω−1) ⊕ (0r‖[1]2‖0c−2), msbr(Sinω) =
C[`]‖10∗; when |C[`]| = r, lsbc(Sinω) = lsbc(Soutω−1), and msbr(Sinω) = C[`].

– If ` = 1:
∗ When |C[`]| < r, lsbc(Sinω) = lsbc(Soutω−1) ⊕ (0r‖[3]2‖0c−2), msbr(Sinω) =
C[`]‖10∗; when |C[`]| = r, lsbc(Sinω) = lsbc(Soutω−1) ⊕ (0r‖[2]2‖0c−2), and
msbr(Sinω) = C[`].

• S = Soutω .

Note that the (2n− 1)-bit hashing digest is U‖V = msb2n−1(Soutω).

Keys. The “public-keys” PK = (PK1, . . . , PKu) are certainly in the adversarial tran-
scripts. Following [CS14], we make one step further and augment the transcript with the
secret user keys K = (K1, . . . ,Ku). Formally, we will append both PK and K to the
transcript.

Chun Guo, Olivier Pereira, Thomas Peters and François-Xavier Standaert 27

Records for key derivation and tag generation. In some sense, the adversarial goal is
to distinguish ĨCK1 , . . . , ĨCKu from S̃ICK1 , . . . , S̃ICKu . In this respect, at the end of the
interaction, we reveal all the internal calls to ĨC (in the real world) and S̃IC (in the ideal
world) to D. We summarize these calls in a list

τS̃IC =
(
(K1, T1, X1, Y1), (K2, T2, X2, Y2), . . .

)
.

In this list, the j-th tuple (Kj , Tj , Xj , Yj) indicates that:

• interacting with the real scheme TETSponge[π, ĨC]K,PK, the j-th query is either
ĨCTjKj (Xj)→ Yj or (ĨCTjKj)

−1(Yj)→ Xj ; and,
• interacting with the idealized scheme TETSponge[π, S̃IC]K,PK, the j-th query is
either S̃ICTjKj (Xj)→ Yj or (S̃ICTjKj)

−1(Yj)→ Xj .
Note that:
• these calls and their responses are secret in the black-box setting, but are leaked in

our unbound leakage setting.
• yet, since we assume leak-freeness of internal TBC-calls (i.e., TBC-calls made by

TETSponge[π, ĨC]), the secret user keys cannot be seen by the distinguisher, and do
not appear in the true adversarial transcripts. The transcript τS̃IC, in some sense,
is a merge of the secret keys (augmented by us, as mentioned) and the information
really leaked to D.

Summary. With all the above, we consider the four tuples τ∗h , τ∗π , τĨC, τS̃IC appended by
the keys PK,K. This yields what we call the transcript

τ = (τ∗h , τ∗π , τĨC, τS̃IC,PK,K).

5.2 Establishing Eq. (15)
First of all, for a transcript τ , we define two quantities µPK and µV , the maximum
multiplicity of PK and V , as

µPK := max
pk∈{0,1}np

∣∣{i ∈ {1, . . . , u} : PKi = pk}
∣∣,

µV := max
v∈{0,1}n−1

∣∣∣{((N,PK,A, c), S) ∈ τ∗h : V = v
}∣∣∣. (17)

With these two quantities, we start the main argument by defining bad transcripts.

5.2.1 Bad transcripts for idealizing TETSponge

Definition 4. An attainable transcript τ is bad, if any of the following is fulfilled:
• (B-1) µPK ≥ n+ 1, µV ≥ n+ 1.
• (B-2) there exists a query (K,T,X, Y) ∈ τS̃IC such that (K,T, ?, ?) ∈ τĨC.

Otherwise τ is good. The set of bad transcripts is Tbad.

Intuitions of the conditions. G2 deviates from G1 in the use of the secret ideal TBC S̃IC.
The difference thus stems from the contradictions between τĨC and τS̃IC, which is captured
by (B-2). Though, the straightforward approach to bound Pr[(B-2)] gives rise to a poorer
bound Pr[(B-2)] = O(uqĨC/2

n). To rescue, we note that a query (K,T, ?, ?) ∈ τĨC can only
“hit” queries in τS̃IC with the specific tweak T . Thus precisely, the probability that each
adversarial query to ĨC is O(µT /2n) rather than O(|τS̃IC|/2

n), where µT is the maximum
number of times a specific tweak value appears in τS̃IC. All these considerations motivated
us to introduce the condition (B-1).

28 Towards Low-Energy Leakage-Resistant AE from the Duplex Sponge

Analyzing (B-1). As PK1, . . . , PKu are uniformly distributed, we have

Pr[µPK ≥ n+ 1] ≤
(

u

n+ 1

)
· 1

(2np)n ≤
(u

2np
)n+1

· 2np
(n+ 1)! ≤

(u

2np
)n+1

,

where the last inequality comes from (n+1)! ≥
(
n+1
e

)n+1 ≥ 2n+1 ≥ 2np since n+1 ≥ 6 > 2e.
Furthermore, when u ≤ 2np and np ≤ n, we have

Pr[µPK ≥ n+ 1] ≤
(u

2np
)n+1

≤ u

2np . (18)

To reason about µV , we analyze the multi-semicollision property of the involved sponge-
based hashing. In detail, we consider the game G2 capturing the interaction of D with the
ideal world (TETSponge[π, S̃IC]K,PK, π, ĨC). We define several simple bad events during
this interaction:

• (B-11) Right after a forward π query π(Sin)→ Sout is made (by either the adversary
or the construction TETSponge[π, S̃IC]), there exists an (earlier) π query (Sin′ , Sout′)
such that lsbc−2(Sout) = lsbc−2(Sin′) or lsbc−2(Sout) = lsbc−2(Sout′).

• (B-12) Right after a backward π query π−1(Sout)→ Sin is made,
– there exists another π query (Sin′ , Sout′) such that lsbc−2(Sin) = lsbc−2(Sout′);
– or, there exists an S̃IC query (K,PKi‖0, N‖0∗, B) ∈ τS̃IC (which is due to

TETSponge deriving a key B) such that Sin = N‖PKi‖0∗‖B.
• (B-13) At any time, there exist n+ 1 forward π queries (Sin1 , Sout1), . . . , (Sinn+1, S

out
n+1)

such that mid(Sout1) = . . . = mid(Soutn+1), where mid(Souti) = msb2n−1(lsbn−1(Souti)),
i.e., extracting n− 1 bits from the middle.

• (B-14) Right after a forward S̃IC query S̃ICPK‖0
∗

K (N‖0∗)→ B is made, there exists
a π query (Sin, Sout) such that Sin = N‖PK‖0∗‖B. Note that this concerns with
the TBC call made by TETSponge during deriving initial keys.

We denote by q1 the number of forward π queries, and by q2 that of backward π
queries. Clearly, q1 ≤ Q, q2 ≤ qπ (as TETSponge does not make backward π queries), and
q1 + q2 ≤ Q. With these, consider a forward query π(Sin) → Sout. Its response Sout is
uniformly distributed in a set of size at least 2b −Q. Consider any “target” (Sin′ , Sout′).
To have lsbc−2(Sout) = lsbc−2(Sin′), Sout shall be in a set of size at most 2r+2. Therefore,
when Q ≤ 2b/2, we have

Pr
[
lsbc−2(Sout) = lsbc−2(Sin

′
)
]
≤ 2r+2

2b −Q ≤
2r+3

2b = 8
2c .

This calculation trick will be frequently used in the remaining analysis without explicitly
mentioning. Similarly, Pr[lsbc−2(Sout) = lsbc−2(Sout′)] ≤ 8

2c . As the number of “targets”
is at most Q, we have

Pr[(B-11)] ≤ q1 ·Q ·
(8

2c + 8
2c
)
≤ 16q1Q

2c .

In a similar vein, it can be seen (using (n+ 1)! ≥ 2n+1) that

Pr[(B-12)] ≤ q2 ·Q ·
8
2c + q2 · (qe + qd) ·

2
2b ≤

10q2Q

2c , and

Pr[(B-13)] ≤
(

q1

n+ 1

)
·
(2

2n−1

)n
≤
(8Q

2n
)n+1

· 1
8(n+ 1)! ≤

(4Q
2n
)n+1

· 1
8 ≤

Q

2n ,

since 4Q ≤ 2n.

Chun Guo, Olivier Pereira, Thomas Peters and François-Xavier Standaert 29

To bound Pr[(B-14)], we define a set

τ∗π
[
N,PK

]
:=
{
B ∈ {0, 1}n : (N‖PK‖0∗‖B, ?) ∈ τ∗π

}
. (19)

Then, for a certain S̃IC query S̃ICPK‖0
∗

K (N‖0∗)→ B, we have

Pr
[
B ∈ τ∗π [N,PK]

]
≤
∣∣τ∗π [N,PKi]

∣∣
2n − 2qe − 2qd

≤
2
∣∣τ∗π [N,PKi]

∣∣
2n .

Summing over all the S̃IC queries, we find

Pr[(B-14)] ≤
∑

(K,PK‖0∗,N‖0∗,B)∈τ
S̃IC

2
∣∣τ∗π[N,PK]∣∣

2n

≤
u∑
i=1

2
∑
N∈{0,1}nN :(Ki,PKi‖0∗,N‖0∗,?)∈τ

S̃IC

∣∣τ∗π[N,PKi

]∣∣
2n

≤µPK ·
∑

N∈{0,1}nN ,PK∈{0,1}np

2
∣∣τ∗π[N,PK]∣∣

2n ≤ 2nQ
2n ,

since
∑
N∈{0,1}nN ,PK∈{0,1}np

∣∣τ∗π[N,PK]∣∣ = |τ∗π | ≤ Q.
Let Bad1 := (B-11)∨ (B-12)∨ (B-13)∨ (B-14). We now show that µV ≤ n given ¬Bad1,

so that (using q1 + q2 ≤ Q)

Pr[µV ≥ n+ 1] ≤ Pr[Bad1] ≤ 16q1Q

2c + 10q2Q

2c + Q

2n + 2nQ
2n ≤

16Q2

2c + (2n+ 1)Q
2n .

For this, we argue that distinct hashing evaluations induce distinct final π queries,
which is stated formally in the following lemma.

Lemma 5. Conditioned on ¬Bad1, we show that two distinct tuples ((N,PK,A, c), S)
and ((N ′, PK ′, A′, c′), S′) in τ∗h necessarily have S 6= S′. Moreover, both S and S′ were
the outputs of forward π queries during the interaction.

The proof is deferred to subsection 5.3 for cleanness. By Lemma 5, the “final” π queries
of the |τ∗h | hash records are |τ∗h | distinct forward queries. Conditioned on ¬(B-13), the
number of semi-collisions on V within these final π queries is at most n. Therefore, the
claim µV ≤ n follows.

Analyzing (B-2) conditioned on ¬(B-1). Note that in the ideal world, for any query
(K,T,X, Y) ∈ τS̃IC, the key K is from the dummy key-tuple K, and is uniformly distributed.
Then, using an auxiliary set

τĨC[T] :=
{
K ∈ {0, 1}n : (K,T, ?, ?) ∈ τĨC

}
,

we can bound

Pr[(B-2)] ≤
∑

(K,T,?,?)∈τ
S̃IC

Pr
[
K ∈ τĨC[T]

]

≤
∑

t∈{0,1}n−1:(K,t‖0,?,?)∈τ
S̃IC

∣∣τĨC[t‖0]
∣∣

2n︸ ︷︷ ︸
C1

+
∑

V ∈{0,1}n−1:(K,V ‖1,?,?)∈τ
S̃IC

∣∣τĨC[V ‖1]
∣∣

2n︸ ︷︷ ︸
C2

.

30 Towards Low-Energy Leakage-Resistant AE from the Duplex Sponge

By the construction, the S̃IC queries (K, t‖0, ?, ?) are necessarily key derivation queries,
for which K = Ki and t‖0 = PKi‖0∗ for some user index i. Since µPK ≤ n, we have

C1 =
u∑
i=1

∣∣τĨC[PKi‖0∗]
∣∣

2n ≤ µPK ·
∑

PK∈{0,1}np

∣∣τĨC[PK‖0∗]
∣∣

2n ≤ n ·
∑

PK∈{0,1}np

∣∣τĨC[PK‖0∗]
∣∣

2n .

Moreover, for any S̃IC query (Ki, V ‖1, ?, ?), i.e., tag generation query, there necessarily
exists at least one hash record ((N,PK,A, c), S) ∈ τ∗h such that PK = PKi. By this,

C2 =
u∑
i=1

∑
V :((?,PKi,?,?),S)∈τ∗

h
:mid(S)=V

∣∣τĨC[V ‖1]
∣∣

2n

≤µPK ·
∑

PK∈{0,1}np

∑
V :((?,PK,?,?),S)∈τ∗

h
:mid(S)=V

∣∣τĨC[V ‖1]
∣∣

2n

≤µPK · µV ·
∑

V ∈{0,1}n−1

∣∣τĨC[V ‖1]
∣∣

2n ≤ n2 ·
∑

V ∈{0,1}n−1

∣∣τĨC[V ‖1]
∣∣

2n .

Therefore,

Pr[(B-2) | ¬(B-1)] ≤n ·
∑

PK∈{0,1}np

∣∣τĨC[PK‖0∗]
∣∣

2n + n2 ·
∑

V ∈{0,1}n−1

∣∣τĨC[V ‖1]
∣∣

2n

≤n2 ·
∑

t∈{0,1}n

∣∣τĨC[t]
∣∣

2n ≤
n2qĨC

2n ,

which allows us to conclude

Pr[Tid ∈ Tbad] ≤ Pr[(B-1)] + Pr[(B-2) | ¬(B-1)] ≤ u

2np + 16Q2

2c +
(2n+ 1)Q+ n2qĨC

2n .

5.2.2 Finishing the application of the H-coefficient technique

Now consider a good transcript τ = (τ∗h , τ∗π , τĨC, τS̃IC,PK,K). Let

τS̃IC[K,T] :=
{

(X,Y) ∈ ({0, 1}n)2 : (K,T,X, Y) ∈ τS̃IC

}
.

With this notation, it is clear that

Pr[Tid = τ] = Pr[K,PK] · Pr[π ` τ∗π] · Pr[ĨC ` τĨC] ·
∏

(K,T)

1
(2n)|τ

S̃IC
[K,T]|

.

Furthermore,

Pr[Tre = τ] = Pr[K,PK] · Pr[π ` τ∗π] · Pr[ĨC ` τS̃IC | ĨC ` τĨC] · Pr[ĨC ` τĨC]
= Pr[K,PK] · Pr[π ` τ∗π]

· Pr[ĨCTK(X) = Y for all (K,T,X, Y) ∈ τS̃IC | ĨC ` τĨC] · Pr[ĨC ` τĨC],

Since τ is good,

Pr[ĨCTK(X) = Y for all (K,T,X, Y) ∈ τS̃IC | ĨC ` τĨC]

= Pr[ĨCTK(X) = Y for all (K,T,X, Y) ∈ τS̃IC] =
∏

(K,T)

1
(2n)|τ

S̃IC
[K,T]|

.

Chun Guo, Olivier Pereira, Thomas Peters and François-Xavier Standaert 31

In conclusion, for any good transcript τ we have Pr[Tre = τ] = Pr[Tid = τ], and thus∣∣Pr[DTETSponge[π,ĨC]K,PK,π,π
−1,ĨC,ĨC−1

⇒ 1]− Pr[DTETSponge[π,ĨC]K,PK,π,π
−1,ĨC,ĨC−1

⇒ 1]
∣∣

≤ u

2np + 16Q2

2c +
(2n+ 1)Q+ n2qĨC

2n .

5.3 Proof of Lemma 5
Assume that the query chains underlying the two hashing ((N,PK,A, c), S) and ((N ′, PK ′,
A′, c′), S′) are (Sin0 , Sout0),..., (Sinω , Soutω) and (Sin′0 , Sout

′

0),..., (Sin′ω′ , S
out′

ω′) respectively, and
let d|A|/re = ν, d|M |/re = `, d|A′|/re = ν′, and d|M ′|/re = `′. Then proving S 6= S′

means proving Sinω 6= Sin
′

ω′ . Note that, conditioned on ¬(B-12) and ¬(B-14), the first
records (Sin0 , Sout0) and (Sin′0 , Sout

′

0) were necessarily resulted from forward π queries.
Then, by iteratively applying ¬(B-12), it can be seen all the queries in the two chains are
forward: this establishes the second claim. To show Sinω 6= Sin

′

ω′ , we distinguish several
cases as follows.

5.3.1 Case 1: (N,PK) 6= (N ′, PK′).

Then Sin0 6= Sin
′

0 , i.e., the two chains are already distinct at the first π queries. By ¬(B-11),
we have Sin1 6= Sin

′

1 ; similarly, iteratively applying ¬(B-11) eventually results in the desired
conclusion Sinω 6= Sin

′

ω′ .

5.3.2 Case 2: (N,PK) = (N ′, PK′).

This means (A, c) 6= (A′, c′). We define X as:

• X = X when |X| is a multiple of r, and
• X = X‖10∗ otherwise.

Then we have to further consider several subcases.

Subcase 2.1: A‖c 6= A′‖c′. It is clear that there exists an index i such that Sini 6= Sin
′

i .
By ¬(B-11), Sinj 6= Sin

′

j for any j > i, and thus Sinω 6= Sin
′

ω′ .

Subcase 2.2: A‖c = A′‖c′ and ν = ν′. Since (A, c) 6= (A′, c′), it has to be |A[ν]| < r
or |C[`]| < r or |A′[ν′]| < r or |C ′[`′]| < r. Now,

• If |A[ν]| < r ∧ |A′[ν]| = r or |A[ν]| = r ∧ |A′[ν]| < r, then Sin
′

ν 6= Sinν due to the
separation constant [1]2‖0c−2. Thus by ¬(B-11), Sinj 6= Sin

′

j for any j > ν and
further Sinω 6= Sin

′

ω′ .
• Else, then either |c[`]| < r ∧ |c′[`]| = r or |c[`]| = r ∧ |c′[`]| < r since (A, c) 6= (A′, c′).
Then Sin′ω 6= Sinω′ due to the separation constant [2]2‖0c−2.

Subcase 2.3: A‖c = A′‖c′, and ν 6= ν′. Wlog ν > ν′: then it has to be `′ ≥ 1. Now,

• If |A[ν′]| < r, then Sin′ν′ 6= Sinν′ since the separation constant [1]2‖0c−2 is only XORed
into Sout′ν′−1, and thus all the subsequent calls are distinct.

• Else, if `′ = 1, then Sin
′

ν′+1 6= Sinν′+1 since Sin′ν′+1 is obtained by XORing [3]2‖0c−2

with Sout′ν′ while Sinν′+1 is obtained by XORing either [1]2‖0c−2 or 0c (depending on
whether |A[ν′ + 1]| < r).
• Else, i.e., `′ > 1, then Sin′ν′+1 6= Sinν′+1 since Sin′ν′+1 is obtained by XORing [2]2‖0c−2

with Sout′ν′ while Sinν′+1 is obtained by XORing either [1]2‖0c−2 or 0c.

In all, in all cases, we will have Sinω 6= Sin
′

ω′ . Thus the claims.

32 Towards Low-Energy Leakage-Resistant AE from the Duplex Sponge

6 Leakage integrity of TETSponge
6.1 Concrete leakage assumptions and result
For TETSponge, even very weak implementations could ensure integrity: as long as
the protected TBC calls are secure against key recovery attacks (e.g., DPAs exploiting
multiple queries to the TBCs), integrity is ensured even if all the other intermediate
values (in the duplex) are leaked in full. Such a leakage assumption was previously called
“unbounded” [BKP+18]. Formally, we define L∗ = (L∗Enc, L∗Dec), where:

• L∗Enc consists of the following information appearing during the encryption:
— {Sin, Sout} for each internal call to π(Sin)→ Sout, and
— {T,X, Y } for each internal call to ẼTK(X) → Y or (ẼTK)−1(Y) → X (i.e., all

values are completely leaked except for the key K), and
— {a, b} for each internal XOR action a⊕ b.

• L∗Dec consists of the above that are generated during the decryption.

We further write −→q = (qe, qd, qĨC, qπ), and denote by (−→q , σ)-adversaries the adversaries
that respectively make qe, qd, qĨC, and qπ queries to LEncK, LDecK, ĨC, and π, and have at
most σ blocks (of r bits) in all their queried plaintext and ciphertext including associated
data. With these, we have the following result for TETSponge.

Theorem 2. Assume u ≤ 2np , np ≤ n, n ≥ 5, Q = σ + qe + qd + qπ ≤ min
{

2n/4, 2b/2
}
,

and leakage L∗ is “unbounded” as above. Then in the ideal TBC and permutation model,
for any (−→q , σ)-adversary A it holds

AdvmuCIML2
A,TETSponge,L∗,u ≤

3u
2np + 32Q2

2c +
7nQ+ n2qĨC

2n . (20)

Inside the bounds, qπ, qĨC = t reflect the time complexity. If n = 128, and with our
chosen parameters np = n−1 and c = 2n, the bound simplifies to 5u

2127 + 214t+27σ
2128 , implying

high security up to 2124 users, 2114 computations, and roughly 2120 message blocks.

6.2 Proof of Theorem 2
Lemma 4 indicates that the forgery probability of a −→q -bounded adversary A against the
real construction TETSponge[π, ĨC] is close to that against the ideal TETSponge[π, S̃IC],
i.e.,

AdvmuCIML2
D,TETSponge[π,ĨC]K,PK,L∗,u

−AdvmuCIML2
D,TETSponge[π,S̃IC]K,PK,L∗,u

≤ u

2np + 16Q2

2c +
(2n+ 1)Q+ n2qĨC

2n . (21)

The remaining part is devoted to bounding AdvmuCIML2
D,TETSponge[π,S̃IC]K,PK,L∗,u

. Consider

the muCIML2 game capturing the interaction between A and TETSponge[π, S̃IC]K,PK.
We define an event CHAIN: at any time, for the i-th user there exists a hash record
((N,PKi, A, c), S) and a S̃IC query (Ki, V

∗‖1, U∗, Z) (that corresponds to generating a
tag) such that msb2n−1(S) = U∗‖V ∗, while there was no encryption query of the form
LEnc(i,N,A, ?)→ c‖Z. Obviously, it is impossible to compute a forgery as long as CHAIN
does not happen.

To ease the analysis, we split CHAIN into several simple bad events and show that
CHAIN cannot happen as long as none of these events occur. Concretely,

• (C-1) There exist two user indices j, ` such that Kj‖PKj = K`‖PK`, or µPK ≥ n+1.

Chun Guo, Olivier Pereira, Thomas Peters and François-Xavier Standaert 33

• (C-2) Right after a forward π query π(Sin)→ Sout is made,
– (C-21) there exists an (earlier) π query (Sin′ , Sout′) such that lsbc−2(Sout) =

lsbc−2(Sin′), lsbc−2(Sout) = lsbc−2(Sout′), or msb2n−1(Sout) = msb2n−1(Sout′);
or

– (C-22) there exists a S̃IC query (K,V ‖1, U, Z) (that corresponds to a tag
generation) such that msb2n−1(Sout) = U‖V ; or

• (C-3) At any time, there exist n+ 1 forward π queries (Sin1 , Sout1), . . . , (Sinn+1, S
out
n+1)

such that mid(Sout1) = . . . = mid(Soutn+1), where mid(Souti) = msb2n−1(lsbn−1(Souti)).
• (C-4) Right after a backward π query π−1(Sout)→ Sin is made, if:

– (C-41) there exists another π query (Sin′ , Sout′) such that lsbc−2(Sin) =
lsbc−2(Sout′), or

– (C-42) there exists a S̃IC query (K,PK‖0∗, N‖0∗, B) (that corresponds to a
key derivation) such that Sin = N‖PK‖0∗‖B.

• (C-5) Right after a (necessarily forward) key derivation query S̃ICPK‖0
∗

K (N‖0∗)→ B
happens, there exists a π query (Sin, Sout) such that Sin = N‖PK‖0∗‖B.

• (C-6) Right after an inverse S̃IC query/tag generation query (S̃ICV ‖1K)−1(Z) → U ,
there exists a π query (Sin, Sout) such that msb2n−1(Sout) = U‖V .

Some of the conditions have been analyzed when proving Lemma 4. First, using u ≤ 2np ≤
2n we have

Pr[(C-1)] ≤ u2

2n+np + u

2np ≤
2u
2np .

Second, (C-21) is the condition (B-11) in Section 5.2 enhanced with msb2n−1(Sout) =
msb2n−1(Sout′), thus Pr[(C-21)] ≤ 16q1Q

2c + 2Q2

22n−1 (q1 being the number of forward π queries).
And it is clear that Pr[(C-22)] ≤ 2(qe+qd)Q

22n−1 . Thus (using qe + qd ≤ Q)

Pr[(C-2)] ≤ 16q1Q

2c + 4Q2 + 4(qe + qd)Q
22n ≤ 16q1Q

2c + Q+ qe + qd
2n ≤ 16q1Q

2c + 2Q
2n .

The last inequality stems from Q ≤ 2n/4.
The condition (C-3) is the same as the condition (B-13) in Section 5.2, thus Pr[(C-3)] ≤

Q
2n . The condition (C-4) is the condition (B-12) in Section 5.2, thus Pr[(C-4)] ≤ 10q2Q

2c .
(C-5) is the condition (B-14) in in Section 5.2, thus

Pr[(C-5) | ¬(C-1)] ≤ 2nQ
2n . (22)

Finally consider (C-6). Conditioned on ¬(C-2) and ¬(C-3), an analysis similar to the
previous one for µV (also in Section 5.2) indicates that the number of distinct records
((N1, PK1, A1, c1), S1), ((N2, PK2, A2, c2), S2), . . . in τ∗h with mid(S1) = mid(S2) = . . . is
at most n. Therefore, for each inverse query (S̃ICV ‖1K)−1(Z) → U , there are at most n
“target” U values, and thus

Pr[(C-6)] ≤ nqd
2n − qĨC

≤ 2nqd
2n . (23)

Define Bad := (C-1) ∨ (C-2) ∨ (C-3) ∨ (C-4) ∨ (C-5) ∨ (C-6), then we have

Pr[Bad] ≤ 2u
2np + 16Q2

2c + (2n+ 3)Q+ 2nqd
2n . (24)

Below we show Pr[CHAIN | ¬Bad] = 0, so that Pr[CHAIN] ≤ Pr[Bad]. Assume otherwise,
then consider the last adversarial action before CHAIN happens:

34 Towards Low-Energy Leakage-Resistant AE from the Duplex Sponge

6.2.1 Case 1: A makes a π query

If this query is forward, then the fact that it causes the event CHAIN contradicts ¬(C-2);
if this query is backward, then it contradicts ¬(C-4).

6.2.2 Case 2: A makes an encryption query LEncK,PK(i,N,A,M)

Note that all the key derivation queries/S̃IC queries of the form (Ki, PKi‖0∗, X, Y) ∈ τS̃IC
have nothing to do with the CHAIN event. Regarding the remaining possibilities, we
further distinguish two subcases:

• Subcase 2.1: a subsequent (forward) π query causes CHAIN event. This again
contradicts ¬(C-2).

• Subcase 2.2: the subsequent (new) tag generation query S̃ICV ‖1Ki
(U)→ Z causes the

event CHAIN. Assume that the involved hash record is ((N,PKi, A, c), S) which
corresponds to the i-th user. The assumption means there exists another hash record
of the j-th user ((N ′, PKj , A

′, c′), S′) such that msb2n−1(S) = msb2n−1(S′). To
reach a contradiction, we further distinguish two cases:
– Subcase 2.3.1: (N,A, c) 6= (N ′, A′, c′). Then as argued before (in Section 5.2),

conditioned on ¬(C-21), the two involved hash chains are different, and thus
msb2n−1(S) = msb2n−1(S′) would contradict ¬(C-21);

– Subcase 2.3.2: (N,A, c) = (N ′, A′, c′). Then it has to be i 6= j. Now, if
Ki 6= Kj , then the new S̃IC query S̃ICV ‖1Ki

(U)→ Z has nothing to do with the
j-th user. Otherwise, it holds PKi 6= PKj by ¬(C-1), which means the two
involved hash chains are different, and thus msb2n−1(S) = msb2n−1(S′) would
contradict ¬(C-21).

6.2.3 Case 3: A makes a decryption query

We also consider two subcases:

• Subcase 3.1: a subsequent (forward) π query causes CHAIN event. Then it again
contradicts ¬(C-2).

• Subcase 3.2: the subsequent (new) tag generation query (S̃ICV ‖1Ki
)−1(Z)→ U causes

CHAIN event. This contradicts ¬(C-6).

As conclusion, we have

AdvmuCIML2
D,TETSponge[π,S̃IC]PK,L∗,u

≤ Pr[Bad] ≤ 2u
2np + 16Q2

2c + (2n+ 3)Q+ 2nqd
2n . (25)

Together with Eq. (15) this yields Eq. (20) (using 4 < 5 ≤ n):

u

2np + 16Q2

2c +
(2n+ 1)Q+ n2qĨC

2n + 2u
2np + 16Q2

2c + (2n+ 3)Q+ 2nqd
2n

≤ 3u
2np + 32Q2

2c +
5nQ+ 2nqd + n2qĨC

2n . (26)

7 Leakage confidentiality of TETSponge
7.1 Concrete leakages assumption and result
For confidentiality the implementations shall satisfy the bounded leakages assumptions in
Section 3, i.e., non-invertibility & bounded XOR leakages; and we will apply Theorem 1.

Chun Guo, Olivier Pereira, Thomas Peters and François-Xavier Standaert 35

Following the notations of Section 3, we naturally define the leakage function L = (LEnc, LDec)
of our implementation as follows:

• LEnc consists of the leakages that are generated during the encryption:
— the leakages Linπ (Sin) and Loutπ (Sout) generated by all the internal calls to

π(Sin)→ Sout, and
— the leakages L⊕(a, b) generated by all the internal actions a⊕ b.

• LDec = ∅ since muCCAmL1 is CCA with encryption leakages only.

For the TBC Ẽ, we simply assume its leakage function LẼ returns nothing, i.e., Ẽ is
(indistinguishable to) leak-free. All the analyses can be easily modified to incorporate
non-empty LẼ, but we eschew for simplicity.

For −→q = (qm, qe, qd, qĨC, qπ), (−→q , t, σ)-adversaries are adversaries making at most qm, qe,
qd, qĨC, and qπ queries respectively to the non-challenge LEnc, the challenge LEnc, Dec,
ĨC, and π, running at most in time t, and having σ blocks in all their (challenge &
non-challenge) queries including associated data.

Theorem 3. Assume u ≤ 2np , np ≤ n, n ≥ 5, σ + qe + qd + qm + qπ ≤ min
{

2n/4, 2b/2
}
,

and leakage L = (LEnc, LDec) is defined as above. Then in the ideal TBC and permutation
model, for any (−→q , t, σ)-adversary A, it holds

AdvmuCCAmL1
A,TETSponge,L,u ≤

6u
2np + 65Q2

2c +
8(n+ 1)Q+ 4nqd + 2n2qĨC

2n + σAdvLORL(Q, t∗)

+ 2qeAdvInv[n](Q, t∗, 2Q) + 2(σ + qe)AdvInv[c](Q, t∗, 2Q), (27)

where AdvLORLand AdvInv[ω] are defined in Eqs. (8) and (5) resp, Q = σ+qe+qd+qm+qπ,
t∗ = O(t+ σtl), and tl is the total time for evaluating Lin and Lout.

The concrete security is mainly limited by the terms “inherited” from Theorem 1.
As discussed, the terms 2qeAdvInv[n](Q, t∗, 2Q) + 2(σ + qe)AdvInv[c](Q, t∗, 2Q) are in
O
(
qe · qπ+σ+t

µn·2n

)
+ O

(
σ · qπ+σ+t

µc·2c

)
for some specific parameters µn and µc. Though, the

influence of the number u of users on the security remains negligible: once u ≤ 2np/5,
TETSponge is secure up to the birthday 2n/2 complexity—it is smaller than 2c/2 due to
the shorter initial seed B.

7.2 Proof of Theorem 3
The core idea follows the standard eavesdropper-to-CPA reduction: to prove that encrypting
M0

1 ,M
0
2 , . . . is close to encrypting M1

1 ,M
1
2 , . . ., we will replace the encryption of M0

i by
M1
i in turn, and the gap of each such replacement could be bounded by Theorem 1.

We just need additional arguments for the decryption queries (due to the CCA setting).
Formally, we start by defining G0 as the game PrivKmuCCAmL1,0

A,TETSponge,L,u, and G∗0 as the game
PrivKmuCCAmL1,1

A,TETSponge,L,u. And we say a decryption query DecK,PK(i,N,A,C) is trivial if the
encryption action EncK,PK(i,N,A, ?)→ C happens before. The subsequent proof consists
of several small steps presented in the following paragraphs.

7.2.1 Idealizing TETSponge

We introduce two new games G1 and G∗1: G1, resp. G∗1, is obtained from G0, resp. G∗0, via
replacing the internal ĨC-calls (made by TETSponge[π, ĨC]) by S̃IC-calls. By Lemma 4, we
have ∣∣Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]

∣∣ ≤ u

2np + 16Q2

2c +
(2n+ 1)Q+ n2qĨC

2n , (28)

36 Towards Low-Energy Leakage-Resistant AE from the Duplex Sponge

and (similarly)

∣∣Pr[G∗1 ⇒ 1]− Pr[G∗0 ⇒ 1]
∣∣ ≤ u

2np + 16Q2

2c +
(2n+ 1)Q+ n2qĨC

2n , (29)

where Q = σ + qe + qd + qm + qπ.

7.2.2 Excluding non-trivial decryption queries

We then introduce two other intermediate games G2 and G∗2, which differ from G1 and G∗1
in that:

• They return ⊥ (as well as the decryption leakages) for all non-trivial decryption
queries, and

• They abort when ∃i 6= j : Ki‖Ti = Kj‖Tj .

The gaps are actually the probability of forgery against the idealized TETSponge construc-
tion, which could be found in Eq. (24), Section 6. Therefore,

∣∣Pr[G2 ⇒ 1]− Pr[G1 ⇒ 1]
∣∣ ≤ 2u

2np + 16Q2

2c + (2n+ 3)Q+ 2nqd
2n (30)∣∣Pr[G∗2 ⇒ 1]− Pr[G∗1 ⇒ 1]

∣∣ ≤ 2u
2np + 16Q2

2c + (2n+ 3)Q+ 2nqd
2n . (31)

7.2.3 The main hybrid-based argument

Then, we denote the qe challenge tuples by

(i1, N1, A1,M
0
1 ,M

1
1), . . . , (iqe , Nqe , Aqe ,M0

qe ,M
1
qe),

and use qe hops to replace M0
1 , . . . ,M

0
qe by M1

1 , . . . ,M
1
qe in turn, to show that G2 can be

transited to G∗2. For convenience, we define G3,0 = G2, and define a sequence of games

G3,1,G3,2, . . . ,G3,qe ,

such that in the j-th system G3,j , the first j messages processed by the challenge en-
cryption oracle are M0

1 , . . . ,M
0
j , while the remaining qe − j messages being processed are

M1
j+1, . . . ,M

1
qe . It can be seen that G3,qe = G∗2.

We then show that for j = 1, . . . , qe, G3,j−1 and G3,j are indistinguishable for Aπ,ĨC.
For this, from Aπ,ĨC we build an adversary Aπ,ĨC2 , such that |Pr[G3,j−1 ⇒ 1]− Pr[G3,j ⇒
1]| is related to the bound proved in Theorem 1. In detail, initially, Aπ,ĨC2 samples
u distinct keys K1‖T1, . . . ,Ku‖Tu for subsequent simulations. It also keeps a pair of
tables (STable,STable−1), which have entries of the form STable(K,T,X) = Y and
STable−1(K,T, Y) = X, to simulate the secret ideal TBC S̃IC via lazy sampling. Aπ,ĨC2

then runs Aπ,ĨC. Upon Aπ,ĨC’s action, Aπ,ĨC2 reacts as follows.

Upon Aπ,ĨC making a query to ĨC or π: Aπ,ĨC2 simply relays the query to its correspond-
ing oracle and relays the response.

Upon A making a (non-challenge) encryption query (i∗, N∗, A∗,M∗): Aπ,ĨC2 distin-
guishes two cases.

Chun Guo, Olivier Pereira, Thomas Peters and François-Xavier Standaert 37

• If (Ki∗ , PKi∗‖0∗, N∗‖0∗) /∈ STable, then Aπ,ĨC2 samples an initial key B∗ such
that (Ki∗ , PKi∗‖0∗, B∗) /∈ STable−1, defines STable(Ki∗ , PKi∗‖0∗, N∗‖0∗) ←
B∗ and STable−1(Ki∗ , PKi∗‖0∗, B∗) ← N∗‖0∗, and then runs the encryption
DuStrB∗ [π](N∗‖PKi∗‖0∗, A∗,M∗) to get the ciphertext c∗‖U∗‖V ∗ and leakages.
Aπ,ĨC2 then computes Z∗ ← STable(Ki∗ , V

∗‖1, U∗) (if (Ki∗ , V
∗‖1, U∗) /∈ STable

then Aπ,ĨC2 defines the entry STable(Ki∗ , V
∗‖1, U∗) to a newly sampled value Z∗).

For this entire process Aπ,ĨC2 has to make `∗i + 1 queries to π and consume O(`itl)
time. Finally, Aπ,ĨC2 returns the outputs c∗‖Z∗ and the leakages to Aπ,ĨC;

• If (Ki∗ , PKi∗‖0∗, N∗‖0∗) ∈ STable, Aπ,ĨC2 simply runs the encryption process
DuStrB∗ [π](N∗‖PKi∗‖0∗, A∗,M∗) with B∗ = STable(Ki∗ , PKi∗‖0∗, N∗‖0∗), com-
putes Z∗ ← STable(Ki∗ , V

∗‖1, U∗) on the obtained U∗ and V ∗, and returns c∗‖Z∗

and the leakages to Aπ,ĨC. The cost is similar to the above case.

Upon A making a non-trivial decryption query (i∗, N∗, A∗, C∗): Aπ,ĨC2 parses C∗ =
c∗‖Z∗, and computes the hashing digest U∗‖V ∗ accordingly. Then,

• if (Ki∗ , V
∗‖1, Z∗) /∈ STable, Aπ,ĨC2 samples U∗∗ such that (Ki∗ , V

∗‖1, U∗∗) /∈
STable, and defines the two table entries as STable(Ki∗ , V

∗‖1, U∗∗) ← Z∗,
STable−1(Ki∗ , V

∗‖1, Z∗)← U∗∗;
• if (Ki∗ , V

∗‖1, U∗∗) ∈ STable, Aπ,ĨC2 just sets U∗∗ ← STable−1(Ki∗ , V
∗‖1, Z∗).

Now Aπ,ĨC2 returns (⊥, U∗∗) to Aπ,ĨC (regardless of U∗∗ = U∗ or not). This requires Aπ,ĨC2
to make `∗i + 1 queries to π.

Upon A submitting the `-th challenge tuple (i`, N`, A`,M
0
` ,M

1
`): it necessarily

holds (Ki` , PKi`‖0∗, N`‖0∗) /∈ STable, since

• Previous encryption queries to the i`-th user cannot define STable(Ki` , Ti` , C0(N`))
due to the challenge nonce-respecting restriction on A;

• Previous encryption queries to the i`′ -th users cannot define STable(Ki` , Ti` , C0(N`))
since Ki`‖Ti` 6= Ki`′‖Ti`′ .

With these in mind, depending on `, Aπ,ĨC2 reacts as follows:

• When ` < j, it encrypts M0
` and returns. In detail, Aπ,ĨC2 samples B`, defines the

entries STable(Ki` , PKi`‖0∗, N`‖0∗) ← B` and STable−1(Ki` , PKi`‖0∗, B`) ←
N`‖0∗, and then runs DuStrB` [π](M0

`)→ c`‖U`‖V`, generates the tag Z` accordingly
and returns c`‖Z` and the leakages to Aπ,ĨC. The cost is similar to the non-challenge
encryption queries.

• When ` = j, it relays M0
` and M1

` to the eavesdropper EavL challenger of DuStr to
obtain cb`‖U`‖V` and leakages leakenc, then generates the tag Z` accordingly and
returns cb`‖Z` to Aπ,ĨC.

• When ` > j, it simply encrypts M1
` and returns. The details are similar to the

described case ` < j.

It can be seen that, depending on whether b = 0 or 1, the whole process is the same
as either G3,j−1 or G3,j . As remarked before, besides running Aπ,ĨC, Aπ,ĨC2 internally
processes at most qm + qe + qd queries. Therefore, for G2,j and G2,j−1, Aπ,ĨC2 makes at

38 Towards Low-Energy Leakage-Resistant AE from the Duplex Sponge

most σ + qm + qe + qd + qπ = Q queries to π and spends t∗ = O(t + σtl) computations
(mainly on evaluating the leakage functions). By all the above, we have∣∣Pr[G3,j ⇒ 1]− Pr[G3,j−1 ⇒ 1]

∣∣ ≤ AdvEavL
LDuStr(Q, t∗, `j),

where the maximum is taken over all A making Q permutation queries, running in time
t∗, and choosing inputs with `j blocks. Thus

∣∣Pr[G∗2 ⇒ 1]− Pr[G2 ⇒ 1]
∣∣ ≤ qe∑

j=1

∣∣Pr[G3,j ⇒ 1]− Pr[G3,j−1 ⇒ 1]
∣∣

≤
qe∑
j=1

AdvEavL
LDuStr(Q, t∗, `j). (32)

Summing over Eqs. (28), (29), (30), (31), and (32), we finally have∣∣Pr[G0 ⇒ 1]− Pr[G∗0 ⇒ 1]
∣∣

≤ 6u
2np + 64Q2

2c +
(8n+ 8)Q+ 4nqd + 2n2qĨC

2n +
qe∑
j=1

AdvEavL
LDuStr(Q, t∗, `j). (33)

The term
∑qe
j=1 AdvEavL

LDuStr(Q, t∗, `j) is bounded by Theorem 1 as

Q2

2c + σ ·AdvLORL(Q, t∗) + 2qeAdvInv[κ](Q, t∗, 2Q) + 2(σ + qe) ·AdvInv[c](Q, t∗, 2Q).

We thus have Eq. (27).

8 Conclusion
Sponge-based designs come with a complete state refresh at every iteration, a feature
that has been thought to provide good protection against leakage for quite some time.
In parallel with the recent work of Dobraunig and Mennink [DM19], we provide formal
tools that support this intuition, using a weaker physical assumption of non-invertible
leakages, but at the cost of more involved analyses. Due to their good efficiency properties,
such Sponge-based designs appear as a useful ingredient for the design of lightweight
modes of operation with resilience to leakage, as targeted by the ongoing NIST lightweight
cryptography standardization process.

In the second part of the paper, we design and analyze TETSponge: a one-pass mode of
operation that combines the good features of the duplex sponges with other recent advances
in leakage-resistant designs in order to provide strong integrity with leakage in encryption
and decryption, and strong confidentiality with leakage in encryption. Protecting against
decryption leakage at the mode level would require a second pass, and we analyze proposals
in this direction in the extended version of the paper. TETSponge also offers beyond
birthday security in the multi-user setting and nonce misuse-resilience.

TETSponge directly serves as a basis for the Spook round-2 candidate to the NIST
lightweight crypto standardization effort.4 Spook was designed with the idea of leveled
implementations in mind, where only its two external TBCs are strongly protected against
side-channel attacks. Its components (i.e., the TBC and the permutation) were selected
in order to allow efficient masking (so minimum AND complexity and depth) while also
enabling resource sharing for unprotected implementations. It is expected that this

4https://www.spook.dev/

https://www.spook.dev/

Chun Guo, Olivier Pereira, Thomas Peters and François-Xavier Standaert 39

approach should deliver significant energy gains when side-channel attacks are a concern,
while only implying limited (code size or area) overheads otherwise.

In view of the wide variety of security targets that the protection against leakage
entails (e.g., leakage in encryption only or in encryption and decryption, with leakage-
resilience or resistance, with or without beyond-birthday guarantees and multi-user security
– see [GPPS19]), we expect that the tools developed here could serve to analyze a variety
of other existing AE schemes (e.g., other round-2 candidates of the NIST standardization
effort) while also motivating the design of new ones. Turning the abstract analyses in this
work into concrete guidelines for hardware implementers and evaluating the overheads of
strongly protected AE schemes is another important track for future investigations.

Acknowledgments
We thank the reviewers for comments that help reshape our work, and Itamar Levi for
discussion w.r.t. side-channel state recovery attack against duplex. Thomas Peters is a
postdoctoral researcher and François-Xavier Standaert is a senior research associate of the
Belgian Fund for Scientific Research (F.R.S.-FNRS). This work has been funded in parts
by the European Union through the ERC project SWORD (724725), and the European
Union and Walloon Region FEDER USERMedia project 501907-379156. Chun Guo was
partly supported by the Program of Qilu Young Scholars of Shandong University.

References
[ADL17] Tomer Ashur, Orr Dunkelman, and Atul Luykx. Boosting Authenticated

Encryption Robustness with Minimal Modifications. In CRYPTO 2017, Part
III, pages 3–33, 2017.

[ADMV15] Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche. Security
of Keyed Sponge Constructions Using a Modular Proof Approach. In FSE
2015, pages 364–384, 2015.

[AFM19] Alexandre Adomnicai, Jacques J.A. Fournier, and Laurent Masson. Masking
the Lightweight Authenticated Ciphers ACORN and Ascon in Software. Cryp-
tology ePrint Archive, Report 2018/708, 2019. Appeared at BalkanCryptSec
2018.

[BDF+17] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire,
François-Xavier Standaert, and Pierre-Yves Strub. Parallel implementations of
masking schemes and the bounded moment leakage model. In EUROCRYPT
2017, pages 535–566, 2017.

[BDH+19] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche,
and Ronny Van Keer. The Keyak authenticated encryption scheme, 2019.
https://competitions.cr.yp.to/caesar.html.

[BDPV10] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge-
Based Pseudo-Random Number Generators. In CHES 2010, pages 33–47,
2010.

[BDPV11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplex-
ing the Sponge: Single-Pass Authenticated Encryption and Other Applications.
In SAC 2011, pages 320–337, 2011.

https://competitions.cr.yp.to/caesar.html

40 Towards Low-Energy Leakage-Resistant AE from the Duplex Sponge

[BGP+19] Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, and François-
Xavier Standaert. TEDT, a leakage-resilient AEAD mode for high (physical)
security applications. Cryptology ePrint Archive, Report 2019/137, 2019.
https://eprint.iacr.org/2019/137.

[BGS15] Sonia Belaïd, Vincent Grosso, and François-Xavier Standaert. Masking and
leakage-resilient primitives: One, the other(s) or both? Cryptography and
Communications, 7(1):163–184, 2015.

[BHT18] Priyanka Bose, Viet Tung Hoang, and Stefano Tessaro. Revisiting AES-
GCM-SIV: Multi-user Security, Faster Key Derivation, and Better Bounds. In
EUROCRYPT 2018, Part I, pages 468–499, 2018.

[BKP+18] Francesco Berti, François Koeune, Olivier Pereira, Thomas Peters, and
François-Xavier Standaert. Ciphertext Integrity with Misuse and Leakage:
Definition and Efficient Constructions with Symmetric Primitives. In AsiaCCS
2018, pages 37–50, 2018.

[BMOS17] Guy Barwell, Daniel P. Martin, Elisabeth Oswald, and Martijn Stam. Au-
thenticated Encryption in the Face of Protocol and Side Channel Leakage. In
ASIACRYPT 2017, Part I, pages 693–723, 2017.

[BP17] Alex Biryukov and Leo Perrin. State of the art in lightweight symmetric
cryptography. Cryptology ePrint Archive, Report 2017/511, 2017. https:
//eprint.iacr.org/2017/511.

[BPPS17] Francesco Berti, Olivier Pereira, Thomas Peters, and François-Xavier Stan-
daert. On Leakage-Resilient Authenticated Encryption with Decryption Leak-
ages. IACR Trans. Symmetric Cryptol., 2017(3):271–293, 2017.

[BT16] Mihir Bellare and Björn Tackmann. The Multi-user Security of Authenticated
Encryption: AES-GCM in TLS 1.3. In CRYPTO 2016, Part I, pages 247–276,
2016.

[cae19] CAESAR: Competition for Authenticated Encryption: Security, Applicability,
and Robustness, 2019. https://competitions.cr.yp.to/caesar.html.

[CS14] Shan Chen and John P. Steinberger. Tight Security Bounds for Key-
Alternating Ciphers. In EUROCRYPT 2014, pages 327–350, 2014.

[DEM+17] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, and
Thomas Unterluggauer. ISAP - Towards Side-Channel Secure Authenticated
Encryption. IACR Trans. Symmetric Cryptol., 2017(1):80–105, 2017.

[DEMS19] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. Ascon v1.2. Submission to NIST, 2019. Available: https:
//csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/round-1/spec-doc/ascon-spec.pdf.

[DM19] Christoph Dobraunig and Bart Mennink. Leakage Resilience of the Duplex
Construction. Cryptology ePrint Archive, Report 2019/225, 2019.

[DMV17] Joan Daemen, Bart Mennink, and Gilles Van Assche. Full-State Keyed Duplex
with Built-In Multi-user Support. In ASIACRYPT 2017, Part II, pages
606–637, 2017.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-Resilient Cryptography.
In FOCS 2008, pages 293–302, 2008.

https://eprint.iacr.org/2019/137
https://eprint.iacr.org/2017/511
https://eprint.iacr.org/2017/511
https://competitions.cr.yp.to/caesar.html
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf

Chun Guo, Olivier Pereira, Thomas Peters and François-Xavier Standaert 41

[DP10] Yevgeniy Dodis and Krzysztof Pietrzak. Leakage-Resilient Pseudorandom
Functions and Side-Channel Attacks on Feistel Networks. In CRYPTO 2010,
pages 21–40, 2010.

[FH15] Benjamin Fuller and Ariel Hamlin. Unifying Leakage Classes: Simulatable
Leakage and Pseudoentropy. In ICITS, pages 69–86, 2015.

[FPS12] Sebastian Faust, Krzysztof Pietrzak, and Joachim Schipper. Practical Leakage-
Resilient Symmetric Cryptography. In CHES 2012, pages 213–232, 2012.

[GL17] Shay Gueron and Yehuda Lindell. Better Bounds for Block Cipher Modes of
Operation via Nonce-Based Key Derivation. In CCS 2017, pages 1019–1036,
2017.

[GMK17] Hannes Groß, Stefan Mangard, and Thomas Korak. An Efficient Side-Channel
Protected AES Implementation with Arbitrary Protection Order. In CT-RSA
2017, pages 95–112, 2017.

[GPPS19] Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert.
Authenticated encryption with nonce misuse and physical leakage: Definitions,
separation results and first construction - (extended abstract). In LATIN-
CRYPT, volume 11774 of Lecture Notes in Computer Science, pages 150–172.
Springer, 2019.

[GR17] Dahmun Goudarzi and Matthieu Rivain. How Fast Can Higher-Order Masking
Be in Software? In EUROCRYPT 2017, Part I, pages 567–597, 2017.

[HLWW16] Carmit Hazay, Adriana López-Alt, Hoeteck Wee, and Daniel Wichs. Leakage-
Resilient Cryptography from Minimal Assumptions. J. Cryptology, 29(3):514–
551, 2016.

[MR04] Silvio Micali and Leonid Reyzin. Physically Observable Cryptography (Ex-
tended Abstract). In TCC 2004, pages 278–296, 2004.

[MRV15] Bart Mennink, Reza Reyhanitabar, and Damian Vizár. Security of Full-State
Keyed Sponge and Duplex: Applications to Authenticated Encryption. In
ASIACRYPT 2015, Part II, pages 465–489, 2015.

[oST18] National Institute of Standards and Technology. Lightweight Cryptography,
2018. https://csrc.nist.gov/projects/lightweight-cryptography.

[Pat08] Jacques Patarin. The “Coefficients H” Technique. In SAC 2008, pages 328–345,
2008.

[PSV15] Olivier Pereira, François-Xavier Standaert, and Srinivas Vivek. Leakage-
Resilient Authentication and Encryption from Symmetric Cryptographic
Primitives. In CCS 2015, pages 96–108, 2015.

[RS06] Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of
the Key-Wrap Problem. In EUROCRYPT 2006, pages 373–390, 2006.

[RSWO17] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. IoT
Goes Nuclear: Creating a Zigbee Chain Reaction. IEEE Security & Privacy,
16(1):54–62, 2017.

[Sta19] François-Xavier Standaert. EUROCRYPT 2019. pages xv, https://www.
youtube.com/watch?v=KdhrsuJT1sE, 2019.

https://csrc.nist.gov/projects/lightweight-cryptography
https://www.youtube.com/watch?v=KdhrsuJT1sE
https://www.youtube.com/watch?v=KdhrsuJT1sE

42 Towards Low-Energy Leakage-Resistant AE from the Duplex Sponge

[SY15] Yu Sasaki and Kan Yasuda. How to Incorporate Associated Data in Sponge-
Based Authenticated Encryption. In CT-RSA 2015, pages 353–370, 2015.

[YSPY10] Yu Yu, François-Xavier Standaert, Olivier Pereira, and Moti Yung. Practical
Leakage-Resilient Pseudorandom Generators. In CCS 2010, pages 141–151,
2010.

	Introduction
	Preliminaries
	Notations and primitives
	Multi-user AE security with leakage
	Oracle-free probabilistic leakage functions
	A general duplex-based stream cipher and its security models
	The H-coefficient technique

	Leakage security of the duplex stream cipher DuStr []
	Bounding the leakages: non-invertibility restriction
	(In)Distinguishability of the XOR leakages
	Leakage EavL security of DuStr []
	Discussion

	Description of TETSponge
	Design considerations
	Specification

	Idealizing the TBC calls in TETSponge
	Preparations
	Establishing Eq. (15)
	Proof of Lemma 5

	Leakage integrity of TETSponge
	Concrete leakage assumptions and result
	Proof of Theorem 2

	Leakage confidentiality of TETSponge
	Concrete leakages assumption and result
	Proof of Theorem 3

	Conclusion

