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Abstract. We propose two efficient information hiding algorithms in
the least significant bits of JPEG coefficients of images. Our algorithms
embed information by modifying JPEG coefficients in such a way that
the introduced distortion is minimized. We derive the expected value of
the additional error due to distortion as a function of the message length
and the probability distribution of the JPEG quantization errors of cover
images. We have implemented our methods in Java and performed the
extensive experiments with them. The experiments have shown that our
theoretical predictions agree closely with the actual introduced distor-
tions.

1 Introduction

1.1 Motivation

Surveillance video data are often used as evidence of traffic accident or crime.
The surveillance system widely uses closed-circuit television (CCTV), which is
exemplified by the small camera at ATM machines or parking lots. The CCTV
system records scenes in analog film. Due to the high cost of film maintenance,
the security industry seeks a way to replace it with digital system and store-
in-files instead of films. However, there is one issue in using the digitally stored
video as evidence: authentication. Because of the ease of undetectable alteration,
it is essential to ensure that the video has not been tampered with after it was
archived. Federal Rules of Evidence (FRE) states that the original of a recording
is required to prove the content of the recording (FRE 1002) [1].

There is a requirement for authentication of digital image as evidence. An
authentication system should detect any tampering in a marked image. It may be
desirable for some applications to provide an indication of how much alteration
has occurred and where the alteration has occurred. Another requirement is that
the message extracting process should not require the original image. There are
two technical approaches which provide authentication of digital video data:
cryptographic approach [1, 2] and information hiding approach.

Cryptographic authentication, creates a digital digest of the original image
and encrypts it with the signer’s key, creating a digital signature. This digital
signature [25] can be decrypted only by a key that is correspondent to the signer’s
key. The digital signature can prove data integrity: if the image is exactly the



same as the original, the digest of the image will match the decrypted digest. In
cryptographic authentication, the digital signature is attached with the original
image or stored in a safe place for later use.

The information hiding approach inserts authentication data into the original
image by modifying the image imperceptibly. Combining authentication data
and image together is beneficial in many applications; however, the distortion
caused by modifying the original image raises many concerns. The degradation in
video quality is not noticeable by the human visual system; however, for example,
it may affect image enhancement processing or a pattern-matching system in an
attempt to recognize or identify a certain person appearing in the video. Such
image processing algorithms require the highest possible image quality in order
to work reliably. Law enforcement may ask questions such as “Is this image the
same as what was originally captured?”

To overcome the concern of the information hiding approach to the authen-
tication problem, we propose a embedding scheme to minimize distortion due
to embedding. It maintains the high quality of image as well as combining the
authentication data with to-be-authenticated data together, which makes the
information hiding approach to authentication more attractive.

Distortion is a measure of the modification of the original data due to em-
bedding information and it varies depending on the amount of information em-
bedded in the image, which is called a payload. It is clear that a high payload
increases the level of distortion. However, there has been very little work on how
to optimally embed information in terms of the tradeoff between distortion and
payload. We provide an analysis of distortion due to embedding with various
payloads. This will allow users to achieve the maximum possible payloads with
tolerable distortions of their data.

Most information hiding methods operate in two steps. First, a cover object is
analyzed and the perceptually insignificant bits are identified. It is assumed that
changing these bits will not make observable changes to the cover. Second, the
identified bits are modified by the message bits to create a stego object. In this
paper, cover object is an image in compressed JPEG [19] format. The perceptu-
ally insignificant bits correspond to a subset of LSBs of the JPEG coefficients.
Although, the LSBs of JPEG coefficients are usually considered perceptually
insignificant modifying some of these bits can produce detectable (but imper-
ceptible) distortions of the original image. Our algorithms use parity codes and
matrix-coding technique to minimize the distortion of the stego image relative
to the cover image.

The paper is organized as follows. In Sec. 2 we briefly review the relevant
prior work in the field. In Sec. 3 we provide technical background for our work
including the basic facts about JPEG compression and the matrix coding. In
Sec. 4 and 5 we describe our method and sketch the theoretical analysis of our
method. In Sec. 6 we present some experimental results. Finally, in Sec. 7 we
present the concluding remarks.



2 Related Work

With regard to the authentication that is based on information hiding, two prob-
lems are related: fragile watermarking and semi-fragile watermarking. In fragile
watermarking, the inserted watermark is lost or altered as soon as any modi-
fication occurs in the cover object. Watermark loss or alteration indicates that
the cover object has been tampered with, while the recovery of the watermark
within the data indicates data originality. In semi-fragile watermarking, the in-
serted watermark is designed to be destroyed by some manipulations but to
survive innocuous manipulations, e.g., moderate image compression. Since we
are interested in authenticating the original data we will only discuss fragile
watermarking.

The early fragile technique for authentication involves inserting the mark in
the least significant bits (LSBs) of the actual image pixels [7, 8] and the added wa-
termark is a pseudo-random sequence, which is not related to the content of the
image. Wong [9] calculates a digest of the image using a hash function. The image
ID, image size and user key are hashed and embedded by modifying the LSBs of
pixels of the image. A hybrid method in color images was proposed by Yeung and
Mintzer [10]; Fridrich and Goljan [11] proposed an improvement. Fragile water-
marking systems in the transformation domain like JPEG have the advantage
that the mark can be embedded in the compressed domain. Wu and Liu [29]
describe a technique based on a modified JPEG encoder, which changes the
quantized DCT coefficients before entropy coding. Kundur and Hatzinakos [21]
and Xie and Arce [22] describe techniques based on the wavelet transform. Kun-
dur modifies the Haar wavelet transformation coefficients while Xie modifies the
SPIHT algorithm.

The goal of steganography is to insert a message into a carrier signal so
that it cannot be detected by unintended recipients. Steganalysis attempts to
discover hidden signals in suspected carriers or at the least detect which media
contain hidden signals. Detailed survey of early algorithms and software for
steganography and steganalysis can be found in [18, 28]. An early quantitative
technique for steganalysis was designed by Westfeld and Pfitzmann [26]. This
research prompted interest in both improving statistical detection techniques [13,
15] as well as building new steganographic methods that would be difficult to
detect by statistical methods [27, 24, 16].

Various attempts have been made to make steganographic content difficult
to detect, often by reducing the payload. Anderson and Petitcolas [3] suggested
using the parity of a group of bits to encode a message bit; large groups of cover
bits could be used to encode a single bit, the bits that need to be changed could
be chosen in a way that would make detection hard. Westfeld [27] designed a
steganographic algorithm F5 that uses matrix coding to minimize the modifica-
tions of the LSBs. Fridrich et al. [14, 15] reported several techniques for detecting
steganographic content in images. If a message is inserted into the LSBs of an
image, some features of the image change in a manner that depends on the
message size.



Sallee [24] developed a hiding method that preserves distributions of indi-
vidual JPEG coefficients. Fridrich et al. [16] have proposed an information hid-
ing method that guarantees low distortion rates of stego objects. The method
makes use of the JPEG quantization errors by computing all rounding errors
of the JPEG coefficients. Note that for some coefficients the rounding error is
0.5±ε. These coefficients can be rounded either down or up without a noticeable
difference and they are considered changeable. Recently, Kim et al. [20] have de-
scribed a parity-coding based hiding algorithm that minimizes distortion error
by utilizing the rounding errors in JPEG quantization.

3 Technical Background

3.1 Information Hiding System

The goal of information hiding is to convey a message secretly and imperceptibly
to people except a specific receiver. Generally, it modifies a cover object to embed
message. We denote the cover object as a vector X and the message as M . M
will be embedded in X by modifying X into X̂, which is called a stego object.

X = (x1, x2, . . . , xl), X̂ = (x̂1, x̂2, . . . , x̂l), M = (m1,m2, . . . , mk). (1)

An information hiding algorithm has a pair of functions f and g such that

X̂ = f(X,M), M = g(X̂). (2)

3.2 JPEG Image Format

We assume here that cover objects are image files in JPEG format, but our
techniques are not limited to them. The JPEG image formatting removes some
image details to obtain considerable saving of storage space without much loss of
image quality. For the JPEG encoder, each channel is divided into 8× 8 blocks
and transformed using the two-dimensional discrete cosine transform (DCT).
Let f(i, j), i, j = 0, . . . , N − 1 be an N ×N image block in any of the channels
and let F (u, v), u, v = 0, . . . , N − 1 be its DCT coefficient. See [17] for the
mathematical specifics.

The coefficient F (0, 0) is the DC coefficient and all others are called AC
coefficients. JPEG uses quantization and rounding formulas,

F ′(u, v) =
F (u, v)
Q(u, v)

, (3)

F ′′(u, v) = Round(F ′(u, v)) (4)

to obtain integer-valued coefficients F ′′(u, v), where Q(u, v) is a quantization
table [17]. The process results in a quantization error:

δ(u, v) = F ′′(u, v)Q(u, v)− F (u, v). (5)



3.3 Minimizing Embedding Distortion

The cover object is obtained by a JPEG compression process and the JPEG
coefficients and the corresponding rounding errors are known. Information hiding
will add additional distortion beyond the quantization errors (see Eq. (5)).

Let X ′ and X ′′ be the vectors of DCT coefficients before and after the round-
ing, respectively (see Eq. (4)). The rounding error is given by ri = x′′i − x′i.

X ′ = (x′1, x
′
2, . . . , x

′
l).

X ′′ = Round(X ′) = (x′′1 , x′′2 , . . . , x′′l ).
R = X ′′ −X ′ = (r1, r2, . . . , rl).

Our analysis will assume that each element of R is an independent, identically
distributed (i.i.d.) random variable and that its probability density p(r), r ∈
[−0.5, 0.5] is known. A message M = (m1 m2 . . . mk) is a binary sequence and
each element, mi, is a i.i.d. random variable. A message, M , is embedded into X,
and the output of the embedding process is X̂. In prior work, the cover object,
X, was typically X ′′, but in this paper, X will be X ′. Note that X ′ is only
available during the JPEG encoding process.

We propose an embedding algorithm for minimizing distortion given rounding
errors. We will show how bit-parity coding and matrix coding can be used to
minimize the distortion.

4 Parity Coding

4.1 Embedding Algorithm

Our embedding algorithm makes use of given rounding errors. We seek a pair of
functions f and g such that

X̂ = f(X,R, M), M = g(X̂) (6)

and ‖X̂−X‖1 is minimized. This approach assumes that encoding is done within
JPEG, since R is known. Distortion is defined as:

D = |X̂ −X|. (7)

Note that if X̂ = X then D = R, i.e. if no information is embedded, the distortion
is equivalent to the rounding error. Since embedding any message almost always
requires changing bits, the best result that can be obtained is

‖D‖1 ≥ ‖R‖1.

We will show how bit-parity codes of length n ≤ l/k can be used to minimize
the distortion ‖D‖1.



Embedding Algorithm The embedding process divides X into blocks of length
n. To embed a bit mi the block Xi = xn(i−1)+1, . . . , xni is considered. If the
parity of the LSBs of Xi is equal to mi, no change needs to be made to any
xj , so X̂i = Xi. On the other hand, if the parity of the LSBs of Xi is different
from mi, we need to select an xj ∈ Xi to replace it by either x̂j = x′′j − 1 or
by x̂j = x′′j + 1; in the first case, the distortion will be dj = −1 + rj and in
the second case, it will be dj = 1 + rj . One exception applies to this embedding
algorithm. When x′′j = ±1, we will make x̂j = ±2 to avoid creating additional
zero-valued coefficients. Since we are interested in minimizing |dj |, we should use
x̂j that minimizes it, that is

x̂j =





2, rj ≥ 0 & x′′j = 1
x′′j − 1, rj ≥ 0 & x′′j 6= 1
−2, rj < 0 & x′′j = −1
x′′j + 1, rj < 0 & x′′j 6= −1.

In terms of rounding error, rj , the distortion is given by

dj =
{

1 + |rj |, x′′j rj > 0 & x′′j = ±1
1− |rj |, otherwise.

Finally, the additional error due to distortion, εj is given by

εj =
{

1, x′′j rj > 0 & x′′j = ±1
1− 2|rj |, otherwise. (8)

A goal in information hiding is to design embedding functions such that
‖d‖1 is minimal. Since rjs are already given, minimizing ‖d‖1 is equivalent to
minimizing ∆ =

∑l
j=1 εj .

4.2 Embedding Distortion

Let us define Xp as a set of the coefficients such that their corresponding em-
bedding error is εj = 1−2|rj | and Xq as a set of the coefficients such that εj = 1.

Xp = {xj | x′′j rj ≤ 0 ∨ x′′j 6= ±1}
Xq = {xj | x′′j rj > 0 ∧ x′′j = ±1}

Let p = |Xp|
|Xp|+|Xq| , i.e, the related proportion of all coefficients that belong to Xp

and let q = 1− p, i.e, the related proportion of Xq.
For a given block of coefficients, X = {x1, . . . , xn} of size n, there will be

0 ≤ np ≤ n coefficients from Xp and nq = n− np coefficients from Xq. For any
np, the probability of the particular proportion of coefficients will be

P{np = i} =
(

n

i

)
piqn−i (9)



First, the distortion for those coefficients that belong to Xp is analyzed. We
have assumed that rjs are i.i.d. random variables and that their probability
density fr(x) is known. We can define this probability distribution for ψ = |r|
as

Fψ(x) =
∫ x

−x

fr(x)dx, x ∈ [0, 0.5].

The probability distribution for ν = 1− 2ψ is given by

Fν(x) = 1− Fψ(
1− x

2
), x ∈ [0, 1]. (10)

We are looking for a coefficient having the smallest embedding error within
every block, X. If there are np > 0 coefficients from Xp in a given block, the
algorithm will choose the coefficient corresponding to the minimal embedding
error among the np coefficients. Since the embedding error for the coefficients
from Xq is 1, which is always greater than the embedding errors of the coefficients
from Xp, the remaining coefficients are not considered.

Given the probability distribution Fν(x) for the embedding errors of the
coefficients in Xp, the minimal additional error due to embedding is given by

µ = min
j
{εj}, 1 ≤ j ≤ n.

The distribution of µ when np = i is given by

Fµ(x, i) = Pr{µ ≤ x|np = i} =
{

U(x− 1), i = 0
1− (1− Fν(x))i, i ≥ 1,

(11)

where
U(x− 1) = 0, x < 1
U(x− 1) = 1, x ≥ 1

and Fν(x) is given by Eq. (10).
After taking account of all possible combinations of the coefficients, the dis-

tribution of additional error will be given by

Fµ(x) =
∑n

i=0

(
n
i

)
piqn−iFµ(x, i). (12)

The expected value of the embedding error will then be given by

E[µ] =
∑n

i=0

(
n
i

)
piqn−iE[µ|np = i], (13)

where

E[µ|np = i] =
∫ ∞

0

xdFµ(x, i), i ≥ 0



5 Modified Matrix Coding

5.1 Background

Matrix coding was proposed by Crandall [12] to improve embedding efficiency
by decreasing the number of required bit changes. Westfeld [27] proposed F5,
a steganographic algorithm which implemented the matrix coding. In F5, cover
data is the set of LSBs of quantized DCT coefficients after rounding. The nota-
tion (1, n, k), where n = 2k − 1, denotes embedding k message bits into an n bit
sized block by changing only one bit of it. The embedding process divides X into
blocks of length n and message data M into blocks of length k. To embed the ith

message block, {mk(i−1)+1, . . . , mki} , a cover data block {xn(i−1)+1, . . . , xni} is
used. Let us denote M and X as the message block and the cover block. The
advantage of matrix coding is that we change only one bit to embed several bits.
A function b needs to be defined in matrix coding:

b(X) =
n⊕

j=1

(xj) · j. (14)

To calculate α, the position of the bit that needs to be changed, we use

α = M ⊕ b(X). (15)

If α 6= 0, then bit α in the block of X should be flipped, 1 to 0 or 0 to 1. The
modified block is then given by

X̂ =
{

X, if α = 0.
x1, . . . ,¬xα, . . . , xn if α 6= 0.

(16)

On the decoder’s side, k message bits are obtained from an n bit sized cover
data by computing the following:

M = b(X̂). (17)

We cannot tune F5 [27] to minimize distortion since the bit flip is completely
constrained. We propose to modify F5 to increase the number of possible bit-
change choices in each block. We describe our approach for two bit-changes. We
call our method Modified Matrix Encoding (MME) and denote MME3, MME4
when we extend it to 3 and 4 bit-changes respectively.

5.2 Embedding Algorithm

MME will find pairs of numbers (β, γ) such that β ⊕ γ = α. If we use the
embedding technique described in Sec. 4.1 for each cover block, X of length n,
we are given two vectors of coefficients (x′1, ..., x

′
n), (x′′1 , ..., x′′n), before and after

rounding respectively. We know the rounding errors (r1, ..., rn) and the message
block M of length k. As in Sec. 2 X = X ′. We compute α using (15) and the



pairs (β1, γ1), ..., (βh, γh) such that βi ⊕ γi = α. Note that the number of pairs
is h = n−1

2 .
The embedding error using an unmodified F5 is given by ε0 = 1 − 2|rα|,

see (8). For each of the pairs (βi, γi), the embedding error is given by one of four
cases:

εi =





2, if x′′βi
rβi

> 0 & x′′γi
rγi

> 0 & x′′βi
= ±1 & x′′γi

± 1
2− 2|rγi

|, if x′′βi
rβi > 0 & x′′βi

= ±1 & x′′γi
6= ±1

2− 2|rβi |, if x′′γi
rγi

> 0 & x′′γi
= ±1 & x′′βi

6= ±1
2− 2(|rβi

|+ |rγi
|), otherwise.

(18)
In order to decide how to create X̂, we find

µ = min
j
{εj}, 0 ≤ j ≤ n− 1

2
.

Given µ, we compute X̂ by

X̂ =





X, if α = 0
x1, . . . , x̂α, . . . , xn, if µ = ε0

x1, . . . , x̂βi , . . . , x̂γi , . . . , xn, if µ = εi, i = 1, . . . , n−1
2 .

(19)

5.3 Embedding Distortion of MME

Let us denote Xp as a set of the coefficients such that their corresponding em-
bedding errors will be ε0 = 1 − 2|rj | when we change the coefficients. Xq is
denoted as a set of the coefficients such that the embedding errors will be ε = 1
if we change the coefficients.

Xp = {xj | x′′j rj ≤ 0 ∨ x′′j 6= ±1}
Xq = {xj | x′′j rj > 0 ∧ x′′j = ±1}

Let p = |Xp|
|Xp|+|Xq| , i.e, the related proportion of all coefficients that belong to

Xp and let q = 1 − p, i.e, the related proportion of Xq. For a given block of
coefficients, X = x1, . . . , xn, of size n, the only cases we should care about are
(a) xα ∈ Xp ∧ (xβ ∈ Xp ∧ xγ ∈ Xp) and (b) xα ∈ Xq ∧ (xβ ∈ Xp ∧ xγ ∈ Xp).

Let m be the number of pairs in which both xβ and xγ are from Xp, 0 ≤
m ≤ h. For any m, the probability of the particular proportion of coefficients
will be

P{m = i} =
(

h

i

)
(p2)i(1− p2)h−i (20)

First, the distortion for coefficients that belong to Xp is analyzed. Again we
assume that rjs are i.i.d. random variables and that their probability density
fr(x) is known. Probability distribution for y = |r| is given by

Fy(x) =
∫ x

−x

fr(x)dx, y ∈ [0, 0.5].



The probability density for z = |r1|+ |r2| is given by

fz(x) = fy(x)
⊗

fy(x), z ∈ [0, 1],

where
⊗

stands for convolution. The probability distribution is given by

Fz(x) =
∫ z

0

fz(x)dx, z ∈ [0, 1].

The probability distribution for ν = 1− 2y is given by

Fν(x) = 1− Fy(
1− x

2
), ν ∈ [0, 1]. (21)

The probability distribution for ω = 2− 2z is given by

Fω(x) = 1− Fz(2− x), ω ∈ [0, 2]. (22)

The embedding error due to change of xα ∈ Xp will follow the distribution
of Fν(x) and changes of xβ and xγ will follow the distribution of Fω(x).

To estimate the probability distribution of the embedding distortion due to
embedding for (t, n, k) matrix codes, we use the order statistics [23]. As the first
approximation, we have only considered the case when all embedding errors are
εi ≤ 1. Now, we need to obtain distribution of the smallest error we should take
for embedding with consideration of embedding errors greater than 1.

The distribution of µ when np = i and xα ∈ Xp is given by

Fµ(x, i) = Pi,Xp{µ ≤ x|np = i} =
{

U(x− 1), i = 0
1− (1− Fν(x))(1− Fω(x))i, i ≥ 1,

(23)

where U(x) was defined in Sec. 4.
The distribution of µ when np = i and xα ∈ Xq is given by

Fµ(x, i) = Pi,Xq{µ ≤ x|np = i} =
{

U(x− 1), i = 0
1− (1− Fω(x))i, i ≥ 1.

(24)

After taking account of all possible combinations of the coefficients, the dis-
tribution of additional error will be given by

Fµ(x) =
∑h

i=0

(
h
i

)
piqh−i(p Fµ(x, i,Xp) + q Fµ(x, i,Xq)). (25)

The expected value of embedding distortion due to embedding, E[µ], is given by

E[µ] =
h∑

i=0

(
h

i

)
piqh−ipE[µ|np = i, Xp] qE[µ|np = i,Xq],

where
E[µ|np = i,Xp] =

∫∞
0

xdFµ(x, i,Xp),
E[µ|np = i,Xq] =

∫∞
0

xdFµ(x, i, Xq).

Since changes occur in n
n+1 cases in any block, the expected embedding error

per bit is given by
E[‖ε‖1] = E[µ]× n

n + 1
.



6 Experimental Results

We have implemented our algorithms in Java. In this section we demonstrate
the operation of our methods on two test images. Figure 1 shows the test im-
ages, which are color JPEG images. Rounding error histograms are also shown
in Fig. 1; we estimate the rounding-error distributions by normalizing the his-
tograms.
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Fig. 1. Left column: armadillo image. Right column: tiger image. Top row: test images.
Bottom row: rounding error histograms of the nonzero AC JPEG coefficients. The
histogram is normalized to estimate a probability density of rounding errors.

The algorithm modifies a publicly available implementation of the JPEG
image compression algorithm. After computing the DCT, all non-zero AC coef-
ficients are marked for possible embedding and collected to form X ′′ with the
corresponding rounding errors forming R. The implementation follows the al-
gorithm described in Sec. 4 and 5. Our algorithm uses bit-parity and modified
matrix encoding to choose the coefficients of which modifications introduce min-
imal embedding distortion.

All tests was accomplished with 7 different block-sizes for matrix coding
((t, 2k−1, k), k = 1, . . . , 7) and for bit-parity coding (2k, k = 1, . . . , 7).

Figures 2 and 3 show the theoretical embedding error analysis for parity
coding and MME. They plot the comparison of the predicted embedding error
to the real experimental embedding error and show close agreement between the
theoretical prediction and the actual embedding distortion.

Figures 4 and 5 show the comparison of distortion in various embedding rates
(µ−1) using F5, MME and the extended versions of MME, MME3 and MME4,
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Fig. 2. Embedding error analysis of bit-parity coding in various block size n. Top:
Theoretical embedding error and experimental embedding error for the armadillo image
(left image in Fig. 1). Bottom: Comparison of the theoretical embedding error to the
experimental embedding error for the tiger image (right image in Fig. 1).
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Fig. 3. Embedding error analysis of modified matrix encoding in embedding rates. X-
axis is µ−11. Top: result for for the armadillo image (left image in Fig. 1). Bottom:
result for for the tiger image (right image in Fig. 1)



that modify up to 3 and 4 bits per block, respectively. (These algorithms are an-
alyzed but not defined in this paper.) Note that the embedding errors caused by
MME can be decreased by MME3 version noticeably, but benefit from MME4 is
not much noticeable. The top graphs plot the distortions per embedding message
bit in decreasing embedding rates, µ−1. Note that the embedding rate is given by
the block size divided by the number of message bits in the block. The bottom
graphs plot the distortion per changed bit in decreasing embedding rates, µ−1.
The distortions due to our embedding algorithms are noticeably lower than one
due to F5.
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Fig. 4. Embedding error analysis for the armadillo image (left image in Fig. 1). Top row:
Embedding distortion per embedding message bit with µ−1. Bottom row: Embedding
distortion per changing one bit with µ−1.
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Fig. 5. Embedding error analysis for the tiger image (right image in Fig. 1). Top
row: Embedding distortion per embedding message bit µ−1. Bottom row: Embedding
distortion per changing one bit µ−1.



7 Conclusions

In this paper, we propose two efficient information hiding algorithms in the least
significant bits of JPEG coefficients of images. Our algorithms embed informa-
tion by modifying JPEG coefficients in such a way that the introduced distortion
is minimized. We derive the expected value of the additional error due to distor-
tion as a function of the message length and the probability distribution of the
JPEG quantization errors of cover images. We have implemented our methods in
Java and performed the extensive experiments with them. The experiments have
shown that our theoretical predictions agree closely with the actual introduced
distortions. Future work will include techniques for finding effective embedding
algorithms using more sophisticated codes.
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