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Abstract: We construct several examples of (2 + 1) dimensional N = 2 supersym-

metric Chern-Simons theories, whose moduli space is given by non-compact toric Cal-

abi-Yau four-folds, which are not derivable from any (3+1) dimensional CFT. One such

example is the gauge theory associated with the cone over Q111. For several examples,

we explicitly confirm the matter content, superpotential interactions and RG flows

suggested by crystal models. Our results provide additional support to the idea that

crystal models are relevant for describing the structure of these CFTs.
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1. Introduction

Until recently, the AdS4/CFT3 correspondence was underdeveloped compared with its

cousin AdS5/CFT4 [1, 2, 3]. One of the main reasons for that was our lack of un-

derstanding of CFT3 underlying M2 brane theories probing a Calabi-Yau four-fold.

M2-brane theories remained elusive compared with the theories of D3-branes, which
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can be studied by the usual open string analysis. Even the simplest CFT3 theory corre-

sponding to M2-branes probing C4 seemed to pose great difficulty. Since it has N = 8

supersymmetry and apparently it was difficult to go beyond N = 3 supersymmetry in

a (2+1)d field theory, the M2 theory was regarded as some unknown field theory yet to

be constructed. Recently, the status quo has changed drastically. One of the key ob-

servations was made by Schwarz [4]. He suggested that by introducing Chern-Simons

terms and turning off the gauge kinetic terms in a suitable limit, one can construct

(2+1)d field theories with more than N = 3 supersymmetry. One avatar of such idea,

in retrospect, was constructed by Bagger and Lambert [5, 6, 7] and independently by

Gustavsson [8, 9]. At first sight, a key role was played by 3-algebras, which do not

have a usual field theory structure. Subsequently, it was shown that the theory can

be recast as an ordinary field theory [10]. Since then, we have rapidly piled up vari-

ous higher supersymmetric theories of Chern-Simons theories with N = 6, 5, 4 and 3

[12, 13, 14, 15, 16, 17, 18, 19, 20], increasing the number of understandable AdS4/CFT3

pairs. In particular, the conjectured CFT3 dual of coincident M2-branes probing C
4

is the N = 6 CS theory worked out by Aharony, Bergman, Jafferis and Maldacena

(ABJM). Various checks of this proposal have been performed, such as computing the

moduli space, superconformal index [21] and higher order interactions due to instan-

tons [22]. N = 4 theories for M2-branes on (C2/Zn)2 and orientifolds thereof were

constructed in [14].1

In the case of D3-branes, the AdS5/CFT4 correspondence has a very rich structure

of theories with N = 1 supersymmetry (i.e. four supercharges) [24, 25, 26, 27]. The

most comprehensive class of dual pairs has been achieved for D3-branes probing non-

compact toric Calabi-Yau 3-folds. Given this situation, one might wonder if similar

structures have yet to be discovered in AdS4/CFT3 with N = 2 supersymmetry (namely

four supercharges). Several authors have already initiated such study [28, 29, 30, 31].

So far the field theory constructions have been restricted to those derived from (3+1)d

theories, i.e. theories with the same quiver diagrams and superpotentials as those

of (3+1)d. This represents considerable progress, but this set of theories is far from

generic. One should go beyond this approach to attack general N = 2 AdS4/CFT3.

Here we initiate such study. In the current paper, we construct several examples of the

theories which cannot come from the (3+1)d quiver theories. One famous example is

the theory of M2-branes probing the cone over Q111, which is expected to have a sextic

superpotential. This theory is the (2+1)d analogue of the theory of D3-branes probing

the conifold worked out by Klebanov and Witten [32]. Using the recently developed

1There are other N = 4 theories associated with C2/Zn × C2/Zm, with n 6= m, which involve

auxiliary fields [23].
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formalism of [29] and partly guided by crystal models [33, 34, 35], we explicitly construct

a (2+1)d theory whose moduli space is indeed C(Q111), where C(M) denotes the cone

over the manifold M .2 In addition, we work out several other theories that cannot have

a (3+1)d origin. Obviously, our constructions just touch the tip of an iceberg and an

extensive investigation of all related issues is beyond the scope of the current paper.

One feature worth mentioning, though, is that there can be more than one theory with

the same moduli space. This is reminiscent of Seiberg duality or toric duality [36, 37]

in (3+1)d. Apparently, there are far more possibilities in (2+1)d than in (3+1)d.

The paper is organized as follows. In section 2, we briefly summarize some aspects

of N = 2 Chern-Simons theories with matter and crystal models needed for later

sections. In section 3, we mention some features of (2+1)d theories derivable from

(3+1)d and try to characterize them. In section 4, we construct the theory whose

moduli space is C(Q111). In section 5, we construct the theory for C(dP3) × C and

show that, upon addition of masses for adjoint fields, it is connected to that of C(Q111)

by an RG-flow. This RG flow is suggested by crystal models. In section 6.1, we

construct another pair of models related by a similar RG-flow, the theories for D3 and

C
3/(Z2 × Z2) × C. Interestingly, the theories in section 6.1 are related to those in

sections 4 and 5 by a simple flip in the charges of some matter fields. In section 6.2,

we propose the CS theories for C3/(Zn × Zn) × C. This proposal is explicitly checked

for n = 3 in appendix A. Section 7 discusses partial resolution and how it connects the

theories we have studied. We conclude in section 8. In appendix B, we present some

thoughts about parity invariance in these models.

2. Preliminaries

2.1 Moduli spaces of (2+1)d CS theories

The moduli space of the theories of our interest can be computed following [29]. We

now summarize the procedure. A (2+1)d N = 2 Chern-Simons(CS) theory with bifun-

damental and adjoint matter is given, in N = 2 superspace notation, by the following

Lagrangian

Tr

(

−
∫

d4θ
∑

Xab

X†
abe

−VaXabe
Vb − i

∑

a

ka

∫ 1

0

dtVaD̄
α(etVaDαe−tVa) +

∫

d2θW (Xab) + c.c.

)

,

(2.1)

2We will use this notation to denote both real and complex cones over certain manifolds. We are

confident the difference will be clear in each specific case.
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where Va are vector supermultiplets and Xab denote chiral supermultiplets transforming

in the fundamental representation of gauge group a and the anti-fundamental repre-

sentation of gauge group b. For a = b, this corresponds to adjoint matter for gauge

group a. We take
∑

ka = 0. This is a necessary condition for the moduli space to be

four complex dimensional. Recall that in 2+1 dimensions a vector superfield has the

expansion

V = −2iθθ̄σ + 2θγµθ̄Aµ + · · · + θ2θ̄2D , (2.2)

where we omitted the fermionic part. Compared to 3+1 dimensions, there is a new

scalar field σ. We can write all terms contributing to the scalar potential in the La-

grangian

Tr

(

−4
∑

a

kaσaDa +
∑

a

Daµa(X) −
∑

Xab

(σaXab − Xabσb)(σaXab − Xabσb)
† −

∑

Xab

|∂Xab
W |2

)

.

(2.3)

µa(X) is the moment map for the a-th gauge group

µa(X) =
∑

b

XabX
†
ab −

∑

c

X†
caXca + [Xaa, X

†
aa] , (2.4)

and gives the D-term. Here we use the same terminology of (3+1)d.

By integrating out the auxiliary fields Da, we see that the bosonic potential is a

sum of squares. The vacua can be found by looking for vanishing of the scalar potential.

This gives rise to a set of matrix equations

∂Xab
W = 0

µa(X) = 4kaσa

σaXab − Xabσb = 0 (2.5)

The solutions to these equations automatically satisfy Da = 0 and correspond to super-

symmetric vacua. F-term constraints are exactly as in the (3+1)d case, while D-term

constraints are modified. The solution to only the F-terms is a useful object called the

master space [38], which is also a toric variety.

Let us consider the abelian case. The supersymmetric conditions set all σa equal

to a given value σ. The remaining equations

µa(X) = 4kaσ (2.6)

look like standard D-term equations with a set of effective FI terms ζa = 4kaσ. Since
∑

a ka = 0, one of these equations is redundant. Call G the number of gauge groups. We

3



are left with G − 1 equations. By taking integer linear combinations of the equations,

we can set G − 2 equations to the form

µ̃i(X) = 0 , i = 1, ...G − 2 (2.7)

where the index i identifies G − 2 linear combinations of the gauge group, orthogonal

to the direction determined by the FI parameters ζa. These combinations are easily

identified as the kernel of the following matrix [43]

C =

(

1 1 . . . 1 1

k1 k2 . . . kG−1 kG

)

. (2.8)

We see that we are imposing the vanishing of the D-terms for G−2 U(1) gauge groups.

As usual, combining D-term constraints with U(1) gauge transformations is equivalent

to modding out by the complexified gauge group. The equation for the remaining U(1)

gauge field looks like a D-term condition with a FI term. However, it does not add

further constraints: it simply determines the value of the auxiliary field σ. Analogously

we do not need to mod out by the remaining U(1) gauge group. As explained in detail

in [11, 12], the U(1) is coupled to the overall U(1) gauge field by the Chern-Simons

coupling and leaves a discrete symmetry Zk, where k = gcd({ka}). Note that since we

are obtaining the 4-complex dimensional moduli space by imposing G−2 D-terms, the

master space is G + 2 dimensional.

The moduli space is non-compact CY4-fold and is interpreted as the transverse

space to one M2-brane in M-theory probing such geometry. In the non-abelian case,

the moduli space is the symmetric product of N copies of the abelian moduli space

[29].

The computation of the moduli space closely resembles the (3+1)d case, with a

simple modification concerning D-terms. In practice, we will use the machinery of toric

geometry. We refer the reader to [36], to which notation we adhere, for a comprehensive

review of its application to this problem.

We close this section with a comment on two classes of models: those in which

all ki 6= 0 and those in which some ki = 0. For the first class, all vector multiplets

become massive and hence it is easier to think about their IR limit. On the other hand,

we can also argue that there is no objection to considering models in the second class.

When computing the moduli space, we quotient by the U(1) gauge group(s) with ki = 0.

Hence, we only consider variables that are invariant under these gauge group(s). We can

think about the corresponding gauge fields as auxiliary fields (Lagrange multipliers).

For all the quivers in this paper, we find CS levels in both classes that reproduce the

desired geometries. Since both of them seem to work at the level accessible at the

moment, we list both possibilities.
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2.2 Minimal review of crystal models

We now give a brief review of the M-theory crystal models [33, 34, 35]. Crystal mod-

els relate a toric CY4 to a three-dimensional periodic graph (crystal). This crystal is

conjectured to encode information about the CFT3 on M2-branes probing the corre-

sponding CY4.

X1

X2

X3

X4

Figure 1: Crystal of C
4 adopted from [34].

The toric diagram forms a convex polyhedron in Z3 ⊂ Z4. 3 The reduction from

Z4 to Z3 is a consequence of the CY condition. The crystal model follows from a T-

duality of M-theory. We take the T-duality transformation along a T 3 ⊂ T 4 aligned

with the projection Z4 → Z3. This corresponds to the x6,7,8 directions in Table 1. By

T-duality, we mean the element t in the SL(2, Z) × SL(3, Z) duality group which acts

as t : τ ≡ C(3) + i
√

gT 3 → −1/τ . The stack of N M2-branes turns into a stack of N

M5-branes wrapping the dual T 3. We call them the T -branes. The degenerating circle

fibers turn into another M5-brane extended along the (2+1)d world-volume and a non-

trivial 3-manifold S in IR3×T 3. We call it the S-brane. Preservation of supersymmetry

requires that the S-brane wrap a special Lagrangian submanifold of IR3 × T 3 = (C∗)3,

and that it is locally a plane in IR3 and a 1-cycle in T 3. The result is summarized in

Table 1.

0 1 2 3 4 5 6 7 8 9 11

M5 ◦ ◦ ◦ ◦ ◦ ◦
M5 ◦ ◦ ◦ Σ

Table 1: The brane configuration for M2 theories probing a toric CY4.

3See [40, 41, 42] for more information on toric geometry

5



The crystal graph is the intersection locus between the T -branes and the S-brane

projected onto the T 3. Figure 1, shows the crystal for C4. We have 4 bonds and 2

vertices. In crystal models each bond represents a N = 2 chiral field. As in dimer

models, it is easy to read off the superpotential from crystal models. Every vertex in

the crystal contributes a term in the superpotential, given by the product of all the

fields meeting at a vertex, with a positive sign for white vertices and a negative sign for

black ones.4 In Figure 1, we see that we have four chiral fields and two superpotential

terms. It is not clear how to read off the gauge group from the crystal model compatible

with the CS theories proposed so far, though there has been partial success [35]. The

proposal in [43] seems to be promising for solving this problem. The ABJM model

has four bifundamental chiral multiplets and the superpotential is identified with that

of the conifold (3+1)d theory [12]. This is in perfect agreement with the structure

suggested by Figure 1. We will see later that there is another possibility for assigning

gauge groups to the above crystal.

An important concept is that of a perfect matching. It is a collection of bonds

such that every node in the crystal belongs to exactly one bond. In (3+1)d, it has

been shown that there is a one to one correspondence between perfect matchings in

the dimer model and GLSM fields describing the moduli space [44]. The same is true

for the case of crystals, since it is straightforward to show that perfect matchings are

good variables for solving F-term equations.5 While all the calculations in the coming

sections can be performed without any reference to perfect matchings, it is sometimes

practical to use this correspondence.

In addition, crystal models seem to be very useful in clarifying such issues as RG-

flows, partial resolution and toric-duality in the (2+1)d setting. One can also use

crystal models to work out the meson spectrum of the corresponding CFT3, which

is an important check of AdS4/CFT3 correspondence. In what follows, we use the

information on the superpotential and RG-flow obtained from crystal models to guide

the construction of some (2+1)d theories.

3. (2+1)d theories with and without (3+1)d parents

Recently, various authors discussed the possibility of generating (2+1)d CS theories

4As we explain below, current understanding of crystal models does not allow for the identification

of gauge groups. Because of that, it is not clear how the gauge indices of chiral fields in superpotential

terms are contracted.
5Notice that this statement is not equivalent to saying that the correspondence between crystals

and CY4 singularities is established. Although there is a natural proposal, there is no proof of how

perfect matchings are positioned in a toric diagram.
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with toric CY4 moduli spaces by taking theories with the same quiver diagrams and

superpotentials of theories in (3+1)d [28, 29, 30, 31]. We will refer to these models as

theories with (3+1)d parents. While this represents an interesting progress that allows

the construction of an infinite number of new models, it is not the generic situation and

gives a reduced subset of theories for M2-branes over toric CY4 manifolds. It is possible

to give a very intuitive characterization of all these theories. They are theories whose

3d toric diagrams can be projected down to the 2d toric diagrams of the parent theories

[43]. All known theories with (3+1)d parents satisfy this property. When projected,

an important role is played by the multiplicity of GLSM fields [36, 37, 39], namely the

multiplicity of every node in the toric diagram has to match the one computed from

a (3+1)d theory. It turns out that all (2+1)d CS theories with toric moduli spaces

that have been studied in the literature, even before the aforementioned references, fall

into this subclass of models with (3+1)d parents. Figure 2 shows a sample collection

of those models and their projections. Interestingly, some models like (b) admit more

than one projection. If projected down, it gives the toric diagram of C(F0), a chiral

Z2 orbifold of the conifold. If projected sideways, it gives the toric diagram of a non-

chiral Z2 orbifold of the conifold (also denoted the cone over L222). In these cases, the

coincidence of moduli spaces can be verified by direct computation. Interestingly, both

theories have the same moduli space but, naively, different amounts of supersymmetry.

While the first one seems to have N = 2, the second one has N = 4. It is natural to

expect that SUSY is enhanced in the first model. We will explore these issues in future

work.

Conversely, the projection prescription gives us a way to identify ‘pure’ (2+1)d

theories, namely those without (3+1)d parents. They are simply those whose toric

diagrams cannot be projected into 2d ones. A prototypical example is the cone over

Q111. It is interesting to work out some pure (2+1)d theories in order to understand

their general structure and why they do not allow (3+1)d parents. This is the subject

of our next section.

4. Gauge theory for C(Q111)

We now construct the gauge theory for C(Q111). Very much like the conifold in (3+1)d,

C(Q111) is a great starting point due to its large symmetry. We will extract from crystals

as much information as possible, assuming their correctness. We will later see that they

are indeed right, by performing various checks, including the computation of the moduli

space. From crystal model constructions [34, 35], we know that C(Q111) has:

• 6 chiral fields.
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4

32

2

2

2

2a) C4 → C(T 11)

b) (C2/Z2)
2 → C(F0), C(L222)

c) C(T 11) × C → C2/Z2 × C

d) C(M32) → C(dP0)

Figure 2: 3d toric diagrams and their projection to the 2d toric diagrams of the parents. (a)

is the well known ABJM theory. It projects down to the conifold, from which it borrows the

quiver and superpotential. How the 2d toric diagram is ‘inflated’ into a 3d one depends on the

choice of CS levels. The number appearing in the toric diagram denotes the multiplicity of the

particular node. The multiplicity is one unless otherwise stated. (b) admits two projections

(indicated in green and red) to toric diagrams coming from (3+1)d theories.

• 2 non-vanishing superpotential terms of order 6.

Since the theory has two terms in the superpotential, there are no restrictions on the

abelian moduli space coming from F -terms. In other words, the superpotential vanishes

in the abelian case and the master space is C6. Then, we must have 2 constraints from

D-terms, i.e., G − 2 = 2 (with G the number of gauge groups), thus we also know the

theory has 4 gauge groups. Finally, it is given by an SU(2)3/U(1)2 coset, which has

SU(2)3 × U(1)R global symmetry. This structure appears clearly in our construction.

The presence of 6 chiral fields is not surprising, since this is the minimal matter content

we can think of in a theory with SU(2)3 symmetry. One can try to construct a theory

that meets all the requirements above. The constraints are so strong that the answer is

basically unique.6 Figure 3 shows the proposed quiver diagram. We will then subject

6It is important to notice that there might exist dual descriptions of this theory, with different

quivers, which share the same moduli space.
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this theory to various tests.

4

3

C2

A2

C1

A1

B1,B21 2

Figure 3: Quiver diagram for Q111.

The superpotential is given by

W = C1A1B1C2A2B2 − C1A1B2C2A2B1 . (4.1)

In this and coming expressions, color indices are contracted between adjacent fields

and a trace is implicit. The theory has an explicit SU(2) global symmetry under

which B1 and B2 form a doublet, as well as a U(1)R symmetry. A useful intermediate

step in the computation of the mesonic moduli space is the master space.7 To find it,

we look for solutions of F-term equations without imposing gauge invariance. As in

any (toric) theory with two superpotential terms, we obtain QF = 0 and the GLSM

fields (equivalently perfect matchings) are identified with the chiral fields. Let us call

(p1, p2, p3, p4, p5, p6) = (A1, A2, B1, B2, C1, C2). The master space is hence C6. We can

construct the matrix of charges for GLSM fields (which in this case are equivalent to

the chiral fields). The charges can be read from the quiver and are given by

A1 A2 B1 B2 C1 C2

Q1 1 0 0 0 −1 0

Q2 0 1 0 0 0 −1

Q3 −1 −1 1 1 0 0

Q4 0 0 −1 −1 1 1

(4.2)

Different choices of the CS coefficients give interesting theories. We are interested

in breaking the symmetry of the master space down to global symmetry of Q111, i.e.

7For short, we refer to the mesonic moduli space as just the moduli space in what follows.
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SU(2)3 × U(1). There are only two choices that lead to this symmetry at the level of

the charge matrix. They are (k,−k, 0, 0) and (k, k,−k,−k). Since we do not want a

further Zk orbifold, we take k = 1. Let us first consider k = (1,−1, 0, 0). In this case,

the two U(1)’s by which we quotient can be taken to be Q3 and Q4. This gives rise to

QD(1,−1,0,0) =

( −1 −1 1 1 0 0

0 0 −1 −1 1 1

)

(4.3)

We clearly see that this charge matrix breaks the global symmetry of the master space

from U(6) down to SU(2)3×U(1), as desired. The pairs (A1, A2), (B1, B2) and (C1, C2)

transform as doublets of each of the SU(2) factors. The toric diagram is given by the

kernel of this matrix and is equal to

GT
(1,−1,0,0) =











1 0 1 0 0 1

1 0 1 0 1 0

0 0 −1 1 0 0

−1 1 0 0 0 0











(4.4)

All columns add up to 1, as usual. We can drop, for example, the fourth row and plot

the toric diagram. The result is shown Figure 4 and is precisely the one for C(Q111).

Figure 4: Toric diagram for the k = (1, 1,−1,−1) theory.

We now repeat the analysis for k = (1, 1,−1,−1). In this case, we quotient by

Q1 + Q3 and Q1 + Q4, which gives

QD(1,1,−1,−1) =

(

0 −1 1 1 −1 0

1 0 −1 −1 0 1

)

(4.5)

Once again, the SU(2)3 × U(1) symmetry is clear from this matrix. The doublets are

now different from the previous case, and are given by (A1, C2), (A2, C1) and (B1, B2).

Taking the kernel we obtain
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GT
(1,1,−1,−1) =











−1 0 0 0 0 1

0 −1 0 0 1 0

1 1 0 1 0 0

1 1 0 0 0 0











(4.6)

It is straightforward to see that it also corresponds to the toric diagram in Figure 4.

Let us provide some argument of why this theory does not come from a (3+1)d

parent. From Figure 3, we see that the quiver contains nodes with a single incoming

and a single outgoing arrow. Such nodes correspond to Nf = Nc gauge groups and

possibly generate dynamical scales, not leading to a CFT.

5. A Klebanov-Witten RG flow

Using crystals, the authors of [35] have proposed some Klebanov-Witten type RG flows

[32] connecting theories, which result from adding adjoint masses. The adjoint masses

come from twisting bonds in the crystal. In particular, it is suggested there should

exist such a flow between C(dP3) × C and C(Q111). We now investigate this flow and

use it to determine the gauge theory for C(dP3) × C. We go a step beyond [35] and

propose the quiver for this model, which is shown in (5). It is obtained by undoing the

RG flow that we now explain.

Φ2

Φ1

C2

A2

C1

A1

B1,B2

4

3

1 2

Figure 5: Quiver diagram for C(dP3) × C.

The superpotential is 8

W = φ1(B1C1A1 − B2C2A2) − φ2(C1A1B1 − C2A2B2) . (5.1)

8Contrary to [35] where the superpotential is known in the abelian limit, we know the gauge indices

of all fields. We sort the fields in the superpotential accordingly.
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The RG flow is triggered by the following mass term

∆W = −(φ2
1 − φ2

2). (5.2)

It is straightforward to verify that, by integrating out the massive fields φ1 and φ2, we

recover (4.1) up to an unimportant overall multiplicative constant. This is indeed very

encouraging. Let us now check that the theory with quiver diagram in Figure 5 and

superpotential (5.1) has C(dP3) × C as its moduli space for some choice of CS levels.

As before, it is a straightforward exercise to write down the matrix translating quiver

fields to GLSM fields. It is given by

P =

































p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

A1 1 1 1 0 0 0 0 0 0 0

A2 1 0 0 1 0 0 1 0 0 0

B1 0 0 0 1 1 1 0 0 0 0

B2 0 1 0 0 1 0 0 1 0 0

C1 0 0 0 0 0 0 1 1 1 0

C2 0 0 1 0 0 1 0 0 1 0

φ1 0 0 0 0 0 0 0 0 0 1

φ2 0 0 0 0 0 0 0 0 0 1

































(5.3)

This determines the charge matrix QF = Ker(P ) encoding the F-term equations.

QF =















p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

1 0 −1 0 0 0 −1 0 1 0

1 −1 0 0 0 0 −1 1 0 0

1 0 −1 −1 0 1 0 0 0 0

1 −1 0 −1 1 0 0 0 0 0















(5.4)

From (5.3), we can determine how GLSM fields are charged under the four quiver

U(1)’s. This is given by

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Q1 1 0 0 0 0 0 −1 0 0 0

Q2 0 0 0 0 0 0 1 0 −1 0

Q3 −1 0 0 0 1 0 0 0 0 0

Q4 0 0 0 0 −1 0 0 0 1 0

(5.5)

Since the CS levels are not affected by the RG flow, once again we are interested in

looking at the theory with k = (1, 1,−1,−1). This tells us that we can impose the
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D-terms for Q1 + Q3 and Q1 + Q4.

QD =







p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

0 0 0 0 1 0 −1 0 0 0

1 0 0 0 −1 0 −1 0 1 0






(5.6)

The total charge matrix is obtained from concatenating (5.4) and (5.6). The toric

diagram is again given by

GT = Ker(Qtot) =















p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

0 0 0 0 0 0 0 0 0 1

−1 −1 0 0 0 1 0 0 1 0

0 1 0 −1 0 −1 0 1 0 0

2 1 1 2 1 1 1 0 0 0















(5.7)

The result is represented in Figure 6, where we use the first three rows of the previous

matrix. This is indeed the toric diagram for C(dP3) × C.

3

Figure 6: Toric diagram for the k = (1, 1,−1,−1) theory.

The multiplicity of GLSM fields in Figure 6 does not project down to any of the

toric diagrams that arise from dP3 quivers [39]. We also know this is the case because,

otherwise, the gauge theory would have six gauge groups and a completely different

quiver. Like C(Q111) this is a pure (2+1)d theory.

6. More examples

6.1 Another pair of theories connected by an RG flow

We now present a similar pair of theories connected by an RG flow, also anticipated in

[34]. The two theories correspond to D3 and C3/(Z2 ×Z2)×C. Crystal model suggest
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that the superpotential of the theories corresponding to C3/(Z2×Z2)×C are the same

as those of C(dP3)×C in the abelian limit (namely when fields are no longer matrices

and ordering becomes unimportant). I.e., nodes in both crystals combine the same

fields. This hints that the matter contents are related by suitable flips of the charges.

We expect D3 and C(Q111) to be connected in a similar way.

Let us first consider D3. Its quiver is shown in Figure 7. It is obtained from the

C(Q111) quiver by flipping half of the arrows. The superpotential is

W = C1A1B1B2A2C2 − B1C1A1A2C2B2 . (6.1)

This superpotential follows form crystal models and, as we explained, can be obtained

from the superpotential of C(Q111) by changing the order of fields according to the

charge assignments.

4

3

21

A1

C1

A2

C2
B1

B2

Figure 7: Quiver diagram for D3.

Since we have only two superpotential terms, QF = 0, as for Q111, and GLSM fields

are identified with chiral fields. The quiver U(1) charges are given by

A1 C1 A2 C2 B1 B2

Q1 1 −1 0 0 0 0

Q2 0 0 −1 1 0 0

Q3 −1 0 1 0 1 −1

Q4 0 1 0 −1 −1 1

(6.2)

As for Q111, there are two choices of CS levels that produce the desired moduli space:

k = (1, 1,−1,−1) and k = (1,−1, 0, 0). We analyze k = (1, 1,−1,−1), the other option

is analogous. We quotient by Q1 + Q3 and Q1 + Q4, given by the matrix

QD =

(

0 −1 1 0 1 −1

1 0 0 −1 −1 1

)

(6.3)
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In this case, Qtot = QD. Its kernel determines the toric diagram matrix

GT =











−1 −1 0 0 0 1

1 1 0 0 1 0

1 0 0 1 0 0

0 1 1 0 0 0











(6.4)

This matrix corresponds to the toric diagram for D3. Figure 8 plots its last three rows.

Figure 8: Toric diagram for the k = (1, 1,−1,−1) theory.

In passing, we note that it is easy to identify another theory whose moduli space

is D3. It arises from the (3+1)d parent theory of the cone over the Suspended Pinch

Point(SPP), whose toric diagram can be obtained from that of D3 by a suitable pro-

jection. In this case, the gauge theory has only three gauge groups [45] and the CS

couplings are k = (1,−1, 0), with zero in one of the gauge groups without the adjoint

[43]. This example shows a behavior that we expect to be generic, the same mod-

uli space arises from theories with and without (3+1)d parents. Furthermore, these

theories can have a different number of gauge groups.

We now propose a theory for C3/(Z2 × Z2) × C. We obtain its quiver from the

one of C(dP3)×C, shown in Figure 5, by flipping the direction of A2, B2 and C2. The

quiver diagram is shown in Figure 9.

The superpotential is

W = φ1(B1C1A1 − A2C2B2) + φ2(B2A2C2 − C1A1B1) (6.5)

As explained before, the superpotential of C3/(Z2×Z2)×C is the same as C(dP3)×C in

the abelian case. Because of this, the P and QF matrices as are the same of C(dP3)×C,

(5.3) and (5.4). The quiver U(1) charges correspond to

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Q1 0 0 1 1 0 −1 −1 0 0 0

Q2 0 −1 1 0 0 0 −1 1 0 0

Q3 0 −1 0 1 0 0 0 0 0 0

Q4 0 0 0 0 0 −1 0 1 0 0

(6.6)
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B2

B1

21

3

4

A1

C1

A2

C2

Φ1

Φ2

Figure 9: Quiver diagram for C
3/(Z2 × Z2) × C.

Let us consider k = (1, 1,−1,−1) (once again, k = (1,−1, 0, 0) gives the same moduli

space). We then consider Q1 + Q3 and Q1 + Q4, which give

QD =







p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

0 -1 1 2 0 -1 -1 0 0 0

0 0 1 1 0 -2 -1 1 0 0






(6.7)

Combining QF and QD and finding its kernel, we get

GT = Ker(Qtot) =















p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

1 0 1 0 -1 0 1 0 1 0

0 0 -1 1 1 0 1 1 0 0

0 1 1 0 1 1 -1 0 0 0

0 0 0 0 0 0 0 0 0 1















. (6.8)

Removing, for example, the first row gives the toric diagram of C3/(Z2 × Z2) × C as

shown in Figure 10.

There is a further check we can perform on the two theories we have just introduced.

In [35], it is suggested that there exists an Klebanov-Witten type RG-flow connecting

C3/(Z2 ×Z2)×C and D3 theories. Indeed, it is easy to check that adding (φ2
2 − φ2

1) to

(6.5) and integrating out the massive fields, we obtain (6.1).

6.2 C
3/(ZN × ZN ) × C orbifold

We can extend our results for C3/(Z2 × Z2) × C and give a proposal for a general

C3/(ZN × ZN ) × C orbifold. The theory contains 2N gauge groups and 4N matter
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2
2

2

Figure 10: Toric diagram for the k = (1, 1,−1,−1) theory.

fields given by

Xi ( 2(i−1), 2i−1)

Yi ( 2i−1, 2i)

Zi ( 2i, 2(i−1))

φi Adj2i

(6.9)

with i = 1, . . . , N and nodes in the quiver identified by mod (2N). The superpotential

is

W =
N
∑

i=1

φi(Xi+1Yi+1Zi+1 − ZiXiYi) . (6.10)

From this superpotential, we can use Kasteleyn matrix techniques to determine that

the number of GLSM fields is 3N + 1.9 Because of this, it is computationally difficult

to verify this proposal for large N . In Appendix A, we confirm it explicitly for N = 3.

The notation in the previous section for C3/(Z2 × Z2) × C translates into the general

notation as follows: (A1, A2, B1, B2, C1, C2) → (Y1, X1, Z1, Z2, Y2, X2) and nodes are

relabeled according to (1, 2, 3, 4) → (1, 3, 2, 4).

It is interesting to consider the N = 1 case, since it provides an alternative to

ABJM for M2-branes on C4. The model has a U(N1) × U(N2) gauge group with X

transforming as (N2, N̄1), Y as (N1, N̄2) and two adjoints φ1 and Z = φ2 of U(N2).

The superpotential is given by

W = φ1 X Y φ2 − φ2 X Y φ1 . (6.11)

The moduli space is C4 for CS levels (1,−1). See [43] for the same theory, but derived by

other methods. It would be interesting to understand how supersymmetry is enhanced

in this model.

9It is interesting to compare this number with the 2N +1 GLSM fields of C2/ZN ×C orbifolds [39].
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7. Partial resolution

7.1 Partial resolution in CS theories

Different geometries and their dual gauge theories can be connected by partial reso-

lution. Partial resolution works in this case very similarly to (3+1)d, with a few new

features that we now discuss.

We can turn on FI parameters for any of the gauge groups, with the consequent

modification of the D-term equations. The G−2 ones that originally vanish are of most

importance. As a result of the FI terms, some chiral fields in the quiver (equivalently

the corresponding GLSM fields) acquire vevs. These vevs higgs the theory at low

energies and can also give mass to some of the chiral fields, which have to be integrated

out.

It is interesting to notice that for the specific case of manifolds of the form CY3×C,

the number of possible partial resolutions is smaller than for CY3. The reason for

this is twofold. The CY3 × C theory has generally less gauge groups than the CY3

counterpart10 and only G − 2 independent FI terms result in resolutions.

We also need to take care of the CS couplings. As we now show, whenever two gauge

groups are higgsed to the diagonal subgroup by a bifundamental vev, the resulting CS

coupling is the sum of the original ones. Suppose some field with charges (−1, 1) under

gauge groups A1 and A2, whose CS couplings are k1 and k2, acquires a vev. For its

scalar component, the covariant derivative is

DµΦ = ∂µΦ − i(A1
µ −A2

µ)Φ . (7.1)

The combination A−
µ = A1

µ −A2
µ becomes massive. We call m its mass. The relevant

piece of the action is

S =

∫

d3x k1ǫ
µνρA1

µ∂νA1
ρ + k2ǫ

µνρA2
µ∂νA2

ρ − m2(A1
µ −A2

µ)
2 + · · · . (7.2)

Defining A± = A1 ±A2 and k± = k1 ± k2, we get

S =

∫

d3x k+ǫµνρA+
µ ∂νA+

ρ +k+ǫµνρA−
µ ∂νA−

ρ +2k−ǫµνρA−
µ ∂νA+

ρ −m2(A−
µ )2+· · · . (7.3)

At energies well below m, we can proceed to integrate out A−. The equation of

motion reads

10A simple example that falls into this category but does not satisfy this rule is C4 = C3 × C. The

ABJM theory (the theory for C4) has one gauge group more than N = 4 SYM in (3+1)d (the theory

for C3).
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k−ǫµνρ∂νA+
ρ + k+ǫµνρ∂νA−

ρ = m2A−
µ . (7.4)

At energies well below m, we can consider A− is constant. Then, the previous expression

reduces to

k−ǫµνρ∂νA+
ρ ∼ m2A−

µ (7.5)

and

S ∼
∫

d3x k+ǫµνρA+
µ ∂νA+

ρ + 2k−ǫµνρA−
µ ∂νA+

ρ − m2(A−
µ )2 + · · · . (7.6)

Plugging the approximate solution to the equation of motion we get

S =

∫

d3x k+ǫµνρA+
µ ∂νA+

ρ − k2
−

2m2
F+

µνF
+
µν · · · . (7.7)

As anticipated, we get a CS coupling for the surviving gauge field whose CS level is

the sum of the Higgsed CS levels. In addition, there is a Maxwell term that vanishes

in the IR limit (equivalently in the m → ∞ limit).

7.2 Connections between models

We now investigate the web of connections that result from partial resolutions between

the theories we have studied. With this goal in mind, the list of partial resolutions we

considered is certainly not exhaustive.

By now, we expect the reader to be familiar with the kind of matrices that arise

when analyzing these models from a toric geometry perspective. Hence, for the brevity

of the presentation, we just state the quiver vevs that are turned on (working out the

corresponding vevs for GLSM fields is straightforward) and the results.

C3/(Z3 × Z3) × C is resolved down to C3/(Z2 × Z2) × C by turning on vevs for

X1 and Z1. The CS levels match the ones we have studied. C3/(Z2 × Z2) × C can

be resolved to C(T 11) × C by vevs of A1 and A2. The quiver diagram is shown in

Figure 11.a, k = (1,−1) and the superpotential is

W = φ1(B1C1 − C2B2) + φ2(B2C2 − C1B1) . (7.8)

This theory has been recently discussed in [29]. On the other hand, turning on a

vev for B1 resolves C3/(Z2×Z2)×C down to C(SPP )×C. This is a new gauge theory

without a (3+1)d parent.11 Its quiver diagram is shown in Figure 12.a, k = (1,−2, 1)

and its superpotential is given by

11Turning on a vev for A1 leads to a theory in which one of the gauge groups has vanishing CS level.

Similarly to what happens for some examples in previous sections, formal computation of the moduli

space also leads to C(SPP ) × C.
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Φ1
B2, C1

B1, C2
Φ2

1 2

(b)(a)

Figure 11: Quiver and toric diagram for C(T 11) × C.

W = φ1(C1A1 − A2C2B2) + φ2(B2A2C2 − C1A1) . (7.9)

Φ1 B2Φ2

2
21 C2C1 3

A1 A2

(b)(a)

Figure 12: Quiver and toric diagram for C(SPP ) × C.

This is in agreement with the crystal proposal [35]. Computing its moduli space,

we obtain the toric diagram in Figure 12.b.

C(dP3)×C has a very similar pair of resolutions to the same theories. Vevs for A1

and A2 take us to C(T 11) × C, and a vev for B1 takes us to C(SPP )× C.

In summary, we have been able to connect all the theories we have discussed in

this paper by either partial resolutions or mass deformations. Figure 13 summarizes

the “roadmap” of connections between the models.

8. Conclusions

In this paper we have constructed various examples of (2+1)d N = 2 CS gauge theories

that do not have a (3+1)d origin. One of them is the gauge theory for C(Q111). We

have also considered KW-type RG-flows connecting different theories as well as partial
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mass

PR

PR

mass

PR

PR

PR
C3/(Z3 × Z3) × C C

3/(Z2 × Z2) × C

C(T 11) × C

C(SPP )× C

C(Q111) × C

D3

C(dP3) × C

Figure 13: Connections between the theories we have studied. PR indicates partial resolu-

tion and “mass” corresponds to RG flows following mass deformations.

resolutions. It turns out that the chiral field content, superpotentials, RG-flows and

partial resolutions are in agreement with crystal models. It is important to emphasize,

though, that all our computations, most notably the calculation of moduli spaces, are

independent of the validity of crystal models. Thus, our results can be regarded as new

evidence that crystal models indeed capture the structure of these theories.

An ambitious goal would be to obtain an efficient procedure for constructing the

(2+1)d CS gauge theory for an arbitrary toric CY4-fold, analogous to the one provided

by dimer models in (3+1)d. To do this, it is still necessary to understand crystal models

in more detail, in particular how they encode gauge groups. The helical path idea of

[43] seems to be a promising direction. A robust proof of the correspondence between

crystal models and CY4/CFT3 is desirable. It is conceivable that the correspondence

can be proved both with string theory methods like [46] or purely in field theoretic

terms as in [44].

The next step would be to determine all gauge theories whose moduli space is a

given geometry. Then, we can investigate whether these models are related by some

kind of duality. An interesting Seiberg duality for CS theories has been recently intro-

duced in [47]. The full set of dualities might be larger than this since, in general, we

expect dual models can have different number of gauge groups. We have briefly men-

tioned this possibility in section 6.1, for the case of D3. Interestingly, (2+1)d mirror

symmetry is rich in such examples [48]. The D3 models are also examples of theories

with and without (3+1)d parents having the same moduli space. A similar pair is the

ABJM model and the N = 1 case of the models in section 6.2.

Understanding how geometry translates into field theory is the first step towards

a general understanding of AdS4/CFT3 in N = 2 settings. In addition, we would like
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to perform various checks on the dual pairs. One such test, is the precision matching

of R-charges computed from field theory and geometry as done in (3+1)d [24]. At this

moment, it is not clear how to implement such program. While the computation can

be done on the geometric side using the techniques in [41], it is still not known how

to use the field theory ideas of [49] in this context. Another possibility is to work out

the BPS operators on both sides of the correspondence, along the lines of [50]. This

program has been already initiated in the context of M2-branes in [52, 29, 43]. We

believe that plenty of new structures are still waiting to be discovered and we hope to

report our progress in the near future.
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A. C
3/(Z3 × Z3) × C

In this appendix, we investigate the general proposal of the section 6.2 for the case of

N = 3 The quiver diagram is shown in Figure 14. The superpotential is

W = φ1(X2Y2Z2 − Z1X1Y1) + φ2(X3Y3Z3 − Z2X2Y2) + φ3(X1Y1Z1 − Z3X3Y3) . (A.1)

From this superpotential, we can construct the following Kasteleyn matrix. Rows

and columns correspond to negative and positive superpotential terms, respectively

K =





φ1 0 X1 + Y1 + Z1

X2 + Y2 + Z2 φ2 0

0 X3 + Y3 + Z3 φ3



 (A.2)

The GLSM fields (perfect matchings of the crystal) can be computed as det K. Notice
that although we are using technology that is borrowed from the study of dimer models,
the reasoning above is independent of any dimer model interpretation and applies to
any theory in which the superpotential satisfies the toric condition (i.e. that every field
appears in exactly two terms, with opposite signs). They are 28, and their relation to
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Figure 14: Quiver diagram for C
3/(Z3 × Z3) × C.

quiver fields is encoded in the following matrix

P =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28

X1 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0

X2 1 1 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0

X3 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Z1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0

Z2 0 0 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0

Z3 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0

Y1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0

Y2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0

Y3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0

φ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

φ2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

φ3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

(A.3)

QF is the 20 × 28 dimensional matrix obtained as Ker(P ). We do not exhibit here
for space reasons. The quiver U(1) charges can be reproduced by the following charge
matrix

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28

Q1 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Q2 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Q3 0 −1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Q4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

Q5 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Q6 1 1 −1 0 0 0 0 0 −1 1 0 0 0 −1 1 0 0 0 0 −1 0 0 0 0 0 0 0 0

(A.4)

Following the general proposal, we take CS levels k = (1,−1, 1,−1, 1,−1). We then
quotient by Q1 + Q2, Q1 + Q4, Q1 + Q6 and Q2 + Q3. Then, we have

QD =

0

B

B

B

B

@

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28

−1 1 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 1 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 −1 0 0 0 0 0 0 1 0 0 0 −1 1 0 0 0 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

C

C

C

C

A

(A.5)

We combine QF and QD into Qtot and calculate the toric diagram of the moduli space
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as GT = Ker(Qtot). The result is

G
T

=

0

B

B

B

B

@

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

−2 −2 −2 −2 −2 −2 −2 −2 −1 −1 −1 −1 −1 −1 −1 −1 0 0 −1 −1 −1 −1 0 0 0 0 1 0

0 1 1 2 1 2 2 3 0 1 1 2 0 1 1 2 0 1 0 1 1 2 0 1 0 1 0 0

3 2 2 1 2 1 1 0 2 1 1 0 2 1 1 0 1 0 2 1 1 0 1 0 1 0 0 0

1

C

C

C

C

A

(A.6)

In Figure 15 we plot the first three rows of this matrix. This corresponds precisely to

the toric diagram of C3/(Z3 × Z3) × C and has a nice structure of multiplicities.

6

3

3

3
3

3

3

Figure 15: Toric diagram for the k = (1,−1, 1,−1, 1,−1) theory.

B. Parity invariance

Parity invariance is a key property expected to be satisfied by M2-brane theories. In this

appendix we present some evidence that our models preserve parity invariance. More

concretely, we show that when we expand the action around a point in moduli space

at which gauge groups with opposite CS levels are higgsed to the diagonal subgroup,

parity invariance is preserved up to irrelevant terms (for some assumption about the

superpotential). Our method is similar to the one used in [51] to derive the action of

D2-branes from that of M2-branes.

In order to illustrate our strategy, let us consider the toy model shown in Figure 16.

The gauge group is U(N1)×U(N2) and we have two bifundamentals X12, X21 and one

adjoint Φ for the second group. This theory contains various structures that are present

in general models.
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1
Φ

2

X12

X21

Figure 16: A toy model we use to investigate our ideas about parity invariance.

The action is given by

S =
1

2

∫

d3x(−DµX12D
µX†

12 − DµX21D
µX†

21 − DµΦDµΦ)

+
k

2

∫

d3xǫµνλ(A1
µ∂νA1

λ +
2i

3
A1

µA1
νA1

λ −A2
µ∂νA2

λ −
2i

3
A2

µA2
νA2

λ) + . . . (B.1)

where the covariant derivatives are

DµX12 = ∂µX1 + i(A1
µX12 − X12A2

µ)

DµX21 = ∂µX2 + i(A2
µX21 − X21A1

µ)

DµΦ = ∂µΦ + i[A2
µ, Φ] (B.2)

with Φ being Hermitian. We leave traces implicit in all our expressions. Next, let us

define the combinations

2A± = A1 ±A2 . (B.3)

The CS term can be rewritten as follows

ǫµνλ(A1
µ∂νA1

λ −A2
µ∂νA2

λ) = 4ǫµνλA−
µ ∂νA+

λ

ǫµνλ(A1
µA1

νA1
λ −A2

µA2
νA2

λ) = 2ǫµνλ(A−
µA−

ν A−
λ + 3A−

µA+
ν A+

λ ) . (B.4)

We can also write

DµX12 = ∂µX1 + i[A+, X12] + i(A−
µ X12 + X12A−

µ )

≡ D+
µ X12 + i(A−

µ X12 + X12A−
µ )

DµX
†
12 = ∂µX†

12 + i[A+, X†
12] + i(A−

µ X†
12 + X†

12A−
µ )

≡ D+
µ X†

12 + i(A−
µ X†

12 + X†
12A−

µ )

(B.5)

Next, let us expand around some point in moduli space X12 = R 1N×N such that

X12 = R 1N×N + X̃12.
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DµX12D
µX†

12 = D+
µ X̃12D

+µX̃†
12 + A−

µA−µ(R2 + O(X̃2
12))

+ i(2RA−
µ + A−

µ X̃12 + X̃12A−
µ )D+µX̃†

12

− i(2RA−
µ + A−

µ X̃†
12 + X̃†

12A−
µ )D+µX̃12

DµX21D
µX†

21 = D+
µ X21D

+µX†
21 + i(A−

µ X21 + X21A−
µ )D+µX†

21

− i(A−
µ X†

21 + X†
21A−

µ )D+µX21

(DµΦ)2 = (D+
µ Φ)2 − 2i[A−

µ , Φ]D+
µ Φ − ([A−

µ , Φ])2

(B.6)

The action does not contain any derivative of A−
µ . Then, similarly to [51], we can

eliminate it from the action using its equation of motion, resulting in

S =
1

2

∫

d3x(−D+
µ X̃12D

+µX̃†
12 − D+

µ X21D
+µX†

21 − D+
µ ΦD+µΦ

1

4(R2 + O(X̃2
12, X

2
21, Φ

2))
GµG

µ + iA−
µA−

ν A−
λ ) + . . . (B.7)

We are indeed integrating out A−
µ . The last term should be understood as a shorthand

for what results from replacing A− by the equation of motion. We have also defined

Gµ = 4kǫµνλD+
ν A+

λ + 2iRD+µX†
12 − 2iRD+µX12

+
∑

i={12,21}

(2iXiD
+µX†

i − 2iX†
i D

µXi + 2iD+µX†
i Xi − 2iD+µXiX

†
i

−2i[, Φ]D+µΦ) . (B.8)

Starting from the previous equation, we drop the tilde in X̃12. The D+
ν A+

λ squared term

gives the usual YM kinetic term. The commutator term in the last line of (B.8) comes

from [A−
µ , Φ]D+µΦ in the action, from which we have extracted A−

µ . Componentwise,

the last line involves the structure constants fabc of the Lie algebra. R plays the role of

a perturbation expansion parameter. If the superpotential is quartic (say with terms

of the form X12X21Φ
2) A+

λ , Xi and Φ have canonical dimension 1/2.

Parity acts by, for example, x1 → −x1. We can make (B.8) invariant if Xi → X†
i

and Φ does not change under a parity transformation. Notice that Xi → X†
i is the

same type of transformation used in ABJM to achieve parity invariance [12]. In ABJM,

this operation is accompanied by exchanging the two gauge groups. In our notation,

flipping the gauge groups corresponds to A−
µ → −A−

µ . Since we have integrated out

A−
µ , this last transformation is not visible in our formalism.

26



Terms involving Φ are irrelevant. So is the (A−)3 term after using the equation

of motion. Thus, the parity violating terms vanish in the IR limit. We expect this

kind of argument can be applied to generic points in moduli space. We can regard the

procedure we have just outlined as going to some kind of unitary gauge. The method

is a bit subtle, since the transformation is singular when (R2 + O(X2
i , Φ2)) vanishes.

Our arguments are based on the chiral fields having dimension 1/2. This issue becomes

more subtle for sextic superpotentials, but we have already seen that models with sextic

superpotential such as C(Q111) can be regarded as models with a quartic superpotential

by adding massive adjoints.

This method can be applied to most of the models in our paper, in which we can

separate gauge groups into pairs with (k,−k) CS levels.12 Let us, for example, consider

the C(Q111) theory. We have

S = −1

2

∫

(DµAiD
µA†

i + DµBiD
µB†

i + DµCiD
µC†

i )

+
k

2

∫

ǫµνλ(A1∂νA1 −A3∂νA3 + A2∂νA2 −A4∂νA4) + · · · (B.9)

and

DµA1 = ∂µA1 + i(A1 −A3)A1

DµC2 = ∂µC2 + i(A4 −A2)C2 . (B.10)

Proceeding as before, we can rewrite the CS term as

ǫµνλ((A1 −A3)µ∂ν(A1 + A3)λ + (A2 −A4)µ∂ν(A2 + A4)λ). (B.11)

Expanding around A1 = R and C2 = r, we can integrate out the (A1−A3) and (A2−A4)

combinations. Then, we see parity invariance can be achieved by Ai, Bi, Ci → A†
i , B

†
i , C

†
i

up to irrelevant terms.

References

[1] J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,”

Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:hep-

th/9711200].

[2] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from

non-critical string theory,” Phys. Lett. B 428, 105 (1998) [arXiv:hep-th/9802109].

12The model in Figure 12 has k = (1,−2, 1) and does not fall into this category. It would be

interesting to study how our ideas extend to more general models.

27



[3] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253

(1998) [arXiv:hep-th/9802150].

[4] J. H. Schwarz, “Superconformal Chern-Simons theories,” JHEP 0411 (2004) 078

[arXiv:hep-th/0411077].

[5] J. Bagger and N. Lambert, “Modeling multiple M2’s,” Phys. Rev. D 75 (2007) 045020

[arXiv:hep-th/0611108].

[6] J. Bagger and N. Lambert, “Gauge Symmetry and Supersymmetry of Multiple M2-

Branes,” Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955 [hep-th]].

[7] J. Bagger and N. Lambert, “Comments On Multiple M2-branes,” JHEP 0802 (2008)

105 [arXiv:0712.3738 [hep-th]].

[8] A. Gustavsson, “Algebraic structures on parallel M2-branes,” arXiv:0709.1260 [hep-th].

[9] A. Gustavsson, “Selfdual strings and loop space Nahm equations,” arXiv:0802.3456

[hep-th].

[10] M. Van Raamsdonk, “Comments on the Bagger-Lambert theory and multiple M2-

branes,” arXiv:0803.3803 [hep-th].

[11] N. Lambert and D. Tong, “Membranes on an Orbifold,” Phys. Rev. Lett. 101, 041602

(2008) [arXiv:0804.1114 [hep-th]].

[12] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, “N=6 superconformal Chern-

Simons-matter theories, M2-branes and their gravity duals,” arXiv:0806.1218 [hep-th].

[13] D. Gaiotto and E. Witten, “Janus Configurations, Chern-Simons Couplings, And The

Theta-Angle in N=4 Super Yang-Mills Theory,” arXiv:0804.2907 [hep-th].

[14] K. Hosomichi, K. M. Lee, S. Lee, S. Lee and J. Park, “N=4 Superconformal Chern-

Simons Theories with Hyper and Twisted Hyper Multiplets,” arXiv:0805.3662 [hep-th].

[15] K. Hosomichi, K.M. Lee, S. Lee, S. Lee and J. Park, “ N = 5, 6 superconformal Chern-

Simons theories and M2-branes on orbifolds,” arXiv:0806.4977 [hep-th].

[16] M. Benna, I. Klebanov, T. Klose and M. Smedback, “Superconformal Chern-Simons

Theories and AdS4/CFT3 Correspondence,” arXiv:0806.1519 [hep-th].

[17] M. Schnabl and Y. Tachikawa, “ Classification of N = 6 superconformal theories of

ABJM type,” arXiv:0807.1102 [hep-th].

[18] E. A. Bergshoeff, O. Hohm, D. Roest, H. Samtleben and E. Sezgin, “ The superconfor-

mal gaugings in three dimensions,” arXiv:0807.2841 [hep-th].

28



[19] J. Bagger and N. Lambert, “ Three-algebras and N = 6 Chern-Simons gauge theorie,”

arXiv:0807.0163 [hep-th].

[20] D. L. Jafferis and A. Tomasiello, “ A simple class of N = 3 gauge/gravity duals,”

arXiv:0808.0864 [hep-th].

[21] J. Bhattacharya and S. Minwalla, “Superconformal indices for N = 6 Chern-Simons

theories,” arXiv:0806.3251 [hep-th].

[22] K. Hosomichi, K. M. Lee, S. Lee, S. Lee, J. Park and P. Yi, “A Nonperturbative Test

of M2-Brane Theory,” arXiv:0809.1771 [hep-th].

[23] Y. Imamura and K. Kimura, “N=4 Chern-Simons theories with auxiliary vector mul-

tiplets,” arXiv:0807.2144 [hep-th] ; Y. Imamura, K. Kimura “On the moduli space of

elliptic Maxwell-Chern-Simons theories,” arXiv:0806.3727 [hep-th].

[24] S. Benvenuti , S. Franco, A. Hanany , D. Martelli and J. Sparks, “An Infinite family of

superconformal quiver gauge theories with Sasaki-Einstein duals,” JHEP 0506 (2005)

064, hep-th/0411264.

[25] A. Hanany and K. D. Kennaway, arXiv:hep-th/0503149.

[26] S. Franco, A. Hanany , K. Kennaway, D. Vegh and B. Wecht, “Brane dimers and quiver

gauge theories,” JHEP 0601 (2006) 096, hep-th/0504110.

[27] S. Franco, A. Hanany , D. Martelli , J. Sparks , D. Vegh and B. Wecht “Gauge theories

from toric geometry and brane tilings,” JHEP 0601 (2006) 128, hep-th/0505211.

[28] D. Martelli and J. Sparks, “ Moduli spaces of Chern-Simons quiver gauge theories,”

arXiv:0808.0912 [hep-th].

[29] A. Hanany and A. Zaffaroni, “ Tilings, Chern-Simons theories and M2 branes,”

arXiv:0808.1244 [hep-th].

[30] K. Ueda and M. Yamazaki, “ Toric Calabi-Yau four-folds dual to Chern-Simons-matter

theories,” arXiv:0808.3768 [hep-th].

[31] Y. Imamura and K. Kimura, “Quiver Chern-Simons theories and crystals,”

arXiv:0808.4155 [hep-th].

[32] I. R. Klebanov and E. Witten, “Superconformal field theory on threebranes at a Calabi-

Yau singularity,” Nucl. Phys. B 536(1998) 199 [arXiv:hep-th/9807080].

[33] S. Lee, “Superconformal field theories from crystal lattices,” Phys. Rev. D 75 (2007)

101901 [arXiv:hep-th/0610204].

29



[34] S. Lee, S. Lee and J. Park, “Toric AdS(4)/CFT(3) duals and M-theory crystals,” JHEP

0705(2007) 004 [arXiv:hep-th/0702120]

[35] S. Kim, S. Lee, S. Lee and J. Park, “Abelian Gauge Theory on M2-brane and Toric

Duality,” Nucl. Phys. B 797 (2008) 340 [arXiv:0705.3540 [hep-th]].

[36] B. Feng, A. Hanany and Y. H. He, “D-brane gauge theories from toric singularities and

toric duality,” Nucl. Phys. B 595, 165 (2001) [arXiv:hep-th/0003085].

[37] B. Feng, A. Hanany, Y. H. He and A. M. Uranga, “Toric duality as Seiberg duality and

brane diamonds,” JHEP 0112, 035 (2001) [arXiv:hep-th/0109063].

[38] D. Forcella, A. Hanany, Y. H. He and A. Zaffaroni, “Mastering the Master Space,”

arXiv:0801.3477 [hep-th].

D. Forcella, A. Hanany, Y. H. He and A. Zaffaroni, “The Master Space of N=1 Gauge

Theories,” JHEP 0808, 012 (2008) [arXiv:0801.1585 [hep-th]].

[39] B. Feng, S. Franco, A. Hanany and Y. H. He, “Symmetries of toric duality,” JHEP

0212, 076 (2002) [arXiv:hep-th/0205144].

[40] P. S. Aspinwall, B. R. Greene and D. R. Morrison, “Calabi-Yau moduli space, mirror

manifolds and spacetime topology change in string theory,” Nucl. Phys. B 416, 414

(1994) [arXiv:hep-th/9309097].

[41] D. Martelli, J. Sparks and S. T. Yau, “The geometric dual of a-maximisation for

toric Sasaki-Einstein manifolds,” Commun. Math. Phys. 268, 39 (2006) [arXiv:hep-

th/0503183].

[42] D. Martelli, J. Sparks and S. T. Yau, “Sasaki-Einstein manifolds and volume minimi-

sation,” Commun. Math. Phys. 280, 611 (2008) [arXiv:hep-th/0603021].

[43] A. Hanany, D. Vegh and A. Zaffaroni, “Brane Tilings and M2 Branes,” arXiv:0809.1440

[hep-th].

[44] S. Franco and D. Vegh, “Moduli spaces of gauge theories from dimer models: Proof of

the correspondence,” JHEP 0611, 054 (2006) [arXiv:hep-th/0601063].

[45] D. R. Morrison and M. R. Plesser, “Non-spherical horizons. I,” Adv. Theor. Math.

Phys. 3, 1 (1999) [arXiv:hep-th/9810201].

[46] B. Feng, Y. H. He, K. D. Kennaway and C. Vafa, “Dimer models from mirror symmetry

and quivering amoebae,” arXiv:hep-th/0511287.

[47] A. Giveon and D. Kutasov, “Seiberg Duality in Chern-Simons Theory,” arXiv:0808.0360

[hep-th].

30



[48] K. A. Intriligator and N. Seiberg, “Mirror symmetry in three dimensional gauge theo-

ries,” Phys. Lett. B 387, 513 (1996) [arXiv:hep-th/9607207].

[49] E. Barnes, E. Gorbatov, K. A. Intriligator, M. Sudano and J. Wright, “The exact super-

conformal R-symmetry minimizes tau(RR),” Nucl. Phys. B 730, 210 (2005) [arXiv:hep-

th/0507137].

[50] B. Feng , A. Hanany and Y. He, “Counting gauge invariants: The Plethystic program,”

JHEP 0703 (2007) 090 hep-th/0701063.

[51] S. Mukhi and C. Papageorgakis, “M2 to D2,” JHEP 0805, 085 (2008) [arXiv:0803.3218

[hep-th]].

[52] A. Hanany, N. Mekareeya and A. Zaffaroni, “Partition Functions for Membrane Theo-

ries,” arXiv:0806.4212 [hep-th].

31


