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Abstract. This paper discusses machine learning of grammars and com-
pilers of programming languages from samples of translation from source
programs into object codes. This work is an application of incremental
learning of definite clause grammars (DCGs) and syntax directed trans-
lation schema (SDTS), which is implemented in the Synapse system.
The main experimental result is that Synapse synthesized a set of SDTS
rules for translating extended arithmetic expressions with function calls
and assignment operators into object codes from positive and negative
samples of the translation. The object language is a simple intermediate
language based on inverse Polish notation. These rules contain an unam-
biguous context free grammar for the extended arithmetic expressions,
which specifies the precedence and associativity of the operators. This
approach can be used for designing and implementing a new program-
ming language by giving the syntax and semantics in the form of the
samples of the translation.

1 Introduction

This paper discusses machine learning of grammars and compilers of program-
ming languages from positive and negative samples of translation from source
programs into object codes. This work is an application of incremental learning
of definite clause grammars (DCGs) [16] and syntax-directed translation schema
(SDTS) [1]. The grammatical induction of these extended context free grammars
(CFGs) is implemented in the Synapse system [13,14].

The DCG can be converted to a logic program for parsing and generating
strings in the language of the grammar. The DCG is more powerful than the
CFG, as the DCG rules can have additional parameters for controlling deriva-
tions and for communicating parameters between separate nodes in the deriva-
tion tree.

This paper shows our experimental results of incremental learning of DCG
rules representing a restricted form of SDTS, which specify the translation by
compilers. We intend to apply this approach to design and implement a new
programming language by giving the syntax and semantics in the form of the
samples of the translation.
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1.1 Grammatical Induction of Extended CFG

Our approach to grammatical induction is characterized by rule generation based
on bottom-up parsing for positive sample strings, the search for rule sets and
incremental learning. In Synapse, the process called bridging generates the pro-
duction rules that bridge, or make up, any lacking parts of an incomplete deriva-
tion tree that is the result of bottom-up parsing of a positive string. The system
searches for a set of rules that satisfies all the samples by global search, in which
the system searches for the minimal set of rules that satisfies given sets of positive
and negative samples by iterative deepening.

Incremental learning is essential to this approach. In order to learn a grammar
from its sample strings, the positive samples are given to the rule generation
process in the order of their lengths. This process continues until the system
finds a set of rules that derives all the positive samples, but none of negative
samples. By incremental learning, a grammar can be synthesized by adding
rules to previously learned grammars of either similar languages or a subset
of the target language. This is a method to solve the fundamental problem of
computational complexity in learning CFG and more complex grammars [7,18].

An important feature of Synapse for the subject of this paper is that the
system synthesizes minimal or semi-minimal grammars based on a covering-
based approach. Many other grammatical inference systems for CFGs and their
extensions are classified into the generalization based approach, in which the
systems generate rules by analyzing the samples and generalizing and abstracting
the rules. This is a reason that there have been few publications on learning
small rule sets of both ambiguous and unambiguous CFGs and/or extended
CFGs. Learning SDTS was chosen as the subject of the Tenjinno competition
[20] at ICGI 2006. Clark [2] solved some of the problems of the competition.
Most participants to this competition, as well as the Omphalos competition [19]
at ICGI 2004 about learning CFG, did not intend to synthesize small grammars.

Learning DCG is closely related to inductive logic programming (ILP) [15].
Several studies dealt with learning grammars based on ILP [3,10]. Cussens and
Pulman [4] describes a method of learning missing rules using bottom-up ILP.
There have been, however, few publications focusing on learning DCG and its
applications based on ILP. Fredouille et. al. [6] describes a method for efficient
ILP-based learning of DCGs for biological pattern recognition. Ross [17] presents
learning of Definite Clause Translation Grammar, a logical version of attribute
grammar, by genetic programming.

1.2 Learning Grammars and Compilers

Processing of programming languages has been a key technology in computer sci-
ence. There has been much work in compiler theory, including reducing the cost
of implementing programming languages and optimizing object codes in compil-
ers. On the other hand, there have been few works on applying machine learning
of grammars and compilers. Dubey et. al. [5] describes a method of inferring
grammar rules of a programming language dialect based on the grammar of the
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original language for restoring the lost knowledge of the dialect. Other applica-
tions of machine learning to compilers are related to optimizing object codes.
Monsifrot et. al. [11] and Stephenson et. al. [21] showed methods of improv-
ing optimization heuristics in compilers by using machine learning technologies,
decision trees and genetic programming, respectively.

The grammars of programming languages need to not only be unambiguous,
but also reflect its semantics, i.e. how a program is computed. For example, any
grammar for arithmetic expressions should specify the precedence and left, or
right, associativity of the operators. Therefore, synthesizing grammars requires
some structural or semantic information other than positive and negative sam-
ples of source codes. To address this requirement, in our approach the samples
for the learning are pairs of source codes and corresponding object codes in an
intermediate language.

1.3 Organization of the Paper

Section 2 outlines CFG and SDTS, and defines Chomsky normal form of SDTS.
Section 3 briefly defines some basics of logic programming and DCG, and shows a
method of representing SDTS by DCG. Section 3 shows the bridging rule gener-
ation procedure for both CFGs and DCGs. Section 4 describes search strategies
for finding minimal or semi-minimal rule sets, and shows recent experimental
results of learning CFGs and DCGs. Section 6 describes learning DCG rules
that represent SDTS rules for translating extended arithmetic expressions into
object codes in a simple intermediate language, which is based on inverse Polish
notation. Section 7 presents the concluding remarks.

2 CFGs and SDTS

A context free grammar (CFG) is a system (N, T, P, s), where: N and T are
finite sets of nonterminal and terminal symbols, respectively; P is the set of
(production) rules of the form p → u, p ∈ N, u ∈ (N ∪ T )+; and s ∈ N is
the starting symbol. We write w ⇒G x for w, x ∈ (N ∪ T )+, if there are a rule
(p → u) ∈ P and strings z1, z2 ∈ (N ∪ T )∗ such that w = z1p z2 and x = z1u z2.
The language of G is the set L(G) = {w ∈ T + | s ⇒∗

G w}, where the relation ⇒∗
G

is the reflexive transitive closure of ⇒G. Nonterminal symbols are represented
by p, q, r, s, t, terminal symbols by a, b, c, d, e and either nonterminal or terminal
symbols by β, γ.

Chomsky normal form (CNF) rules are of the forms p → a and p → qr.
Synapse synthesizes rules of the extended CNF, p → β and p → βγ. A feature
of this normal form is that grammars can be made simpler than those in CNF.

A syntax-directed translation schema (SDTS) is a system T = (N, Σ, Δ, R, s),
where: Σ and Δ are sets of input terminal and output terminal symbols, respec-
tively; and R is a set of rules of the form

p → u, v. p ∈ N, u ∈ (N ∪ Σ)+, v ∈ (N ∪ Δ)+,
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such that the set of nonterminal symbols that occur in u is equal to that in v. If
a nonterminal symbol p appears more than once in u, we use symbols with the
subscripts p1, p2 to indicate the correspondence of the symbols in u and v. We
write w1, w2 ⇒T x1, x2 for w1, x1 ∈ (N ∪ Σ)∗ and w2, x2 ∈ (N ∪ Δ)∗, if there
is a rule (p → u, v) ∈ R and strings y1, y2 ∈ (N ∪ Σ)∗ and z1, z2 ∈ (N ∪ Δ)∗

such that w1 = y1 p y2, x1 = y1u y2, w2 = z1 p z2 and x2 = z1 v z2. The SDTS T
translates a string w ∈ Σ+, into x ∈ Δ+ and vice versa, if (s, s) ⇒∗

T (w, x).
The SDTS is regular, if and only if every rule is of the form of either p → a q, b r

or p → a, b. The regular SDTS is equivalent to a finite sequential transducer.
We restrict the form of SDTS to Chomsky normal form (CNF), in which

every string in the right hand side of the rule has at most two symbols, e.g.
(p → p q, p q), (p → p q, q p) or (p → a, b). Any SDTS T with rule(s) having
three symbols in the right hand side can be transformed into a SDTS in CNF,
which is equivalent to T . The SDTS in this paper is extended so that elements
of the strings may be not only constants but also lists of the constants. There
are, however, SDTS rules with more than three symbols in the right hand side,
that cannot be simply transformed to CNF.

Example 1: reversing strings The following SDTS in CNF translates any string
into its reversal, for example, aababb to bbabaa.

s → a, a s → b, b s → a s, s a s → b s, s b

This SDTS derives the set of pairs of strings,

(a, a), (b, b), (aa, aa), (ab, ba), (ba, ab), (bb, bb), (aaa, aaa), (aab, baa), · · · .

3 Definite Clause Grammars (DCG)

We use the notations and syntax of standard Prolog for constants, variables,
terms, lists and operators, except that the constants are called atoms in Prolog.
A constant (an atom in Prolog) is an identifier that starts with a lower-case
character, and a variable starts with an upper-case character, as in standard
Prolog. A subterm of a term T is either T , an argument of a complex term T
or recursively a subterm of an argument of a complex term T . As any list is a
special term, subterms of [a, b, c] are [a, b, c], a, [b, c], b, [c], c, [ ].

A substitution θ is a mapping from a set of variables into a set of terms. For
any term t, an instance tθ is a term in which each variable X defined in θ is
replaced by its value θ(X). For any terms s and t, we write s � t, and say that
s is more general than t, if and only if t is an instance of s. A unifier for two
terms s and t is a substitution θ, such that sθ = tθ. The unifier θ is the most
general unifier (mgu), if there is another unifier σ for s and t, then sθ � sσ and
tθ � tσ. We write s ≡θ t, if s is unifiable with t by an mgu θ. For any terms s
and t, a term u is the lgg: least general generalization, if and only if u � s, u � t
and there is no other term v such that v � s, v � t and u � v.

A DCG rule, also called grammar rule in the draft of the ISO standard [12],
is of the form P --> Q1, Q2, · · · , Qm, where:



102 K. Imada and K. Nakamura

– P is a nonterminal term, which is either a symbol or a complex term of the
form p(T ) with a DCG term T ; and

– each of Q1, · · · , Qm is either a constant of the form [a] representing a ter-
minal symbol, or a nonterminal term.

The DCG terms are additional arguments in the Horn clause rules, which are
generally used for controlling the derivation and for returning results of the
derivation. The deduction by DCG is similar to that of CFG, except that each
of the DCG terms is unified with a corresponding term in the deduction. To
simplify the synthesis process, we restrict every atom for the nonterminal symbol
to have exactly one DCG term.

Most Prolog implementations have a functionality to transform the grammar
rules into Horn clauses, such that a string a1a2 · · · an is derived by the rule
set from the starting symbol s, if and only if the query s([a1, a2, · · · , an],[])
succeeds for the parsing program composed of the transformed clauses. Note
that the two arguments are used for representing strings by the difference lists.

Example 2: A DCG for non-context-free language The following set of rules is
a DCG for the language {anbncn | n ≥ 1}.

p(1) --> [a]. p(t(N)) --> [a],p(N).
q(1) --> [b]. q(t(N)) --> [b],q(N).
r(1) --> [c]. r(t(N)) --> [c],r(N).
s(N) --> p(N),q(N),r(N).

The Horn clauses transformed from these DCG rules are:

p(1,[a|X],X). p(t(N),[a|X],Y) :- p(N,X,Y).
q(1,[b|X],X). q(t(N),[b|X],Y) :- q(N,X,Y).
r(1,[c|X],X). r(t(N),[c|X],X) :- r(N,X,Y).
s(N,X0,X3) :- p(N,X0,X1),q(N,X1,X2),r(N,X2,X3).

For the query ?-s(N,[a,a,a,b,b,b,c,c,c],[]), the Prolog system returns the
computation result N = t(t(1)).

We can transform a SDTS in CNF into a DCG for translating strings by the
relations in Table 1. Each pair of the form X/Y represents an output side of a
string by a difference list. By this method, the problem of learning SDTS in CNF
from pairs of input and output strings can be transformed into that of learning
DCG.

Example 3: Reversal The following DCG corresponds to the example SDTS for
reversing strings in Section 2.

s([a|X]/X) --> [a]. s([b|X]/X) --> [b].
s([a|X]/[]) --> s(X/[]),[a]. s([b|X]/[]) --> s(X/[]),[b].

For a query ?-s(X,[b,b,a,b,a,a],[]), the transformed Prolog program re-
turns the value X = [a,a,b,a,b,b]/[] of the DCG term, and for a query
?-s([a,a,b,a,b,b]/[],X,[]), the solution X = [b,b,a,b,a,a].
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Table 1. Relations between SDTS rules and DCG rules

SDTS DCG
p → q p(X/Y ) --> q
p → a, b p([b|Y ]/Y ) --> [a]
p → ar, ra p(X/Y ) --> [a], r(X/[a|Y ])
p → qr, qr p(X/Z) --> q(X/Y ), r(Y/Z)
p → qr, rq p(X/Z) --> q(Y/Z), r(X/Y )

4 Rule Generation Based on Bottom-Up Parsing

Fig. 1 shows the rule generation procedure, which receives a string a1 · · · an, the
starting symbol with a DCG term s(T ), and a set of rules from the top-level
search procedure from global variable P , and returns a set of DCG rules that
derives the string from s(T ). This nondeterministic procedure is an extension of
that for learning CFG in extended CNF [14]. The extension is related to adding
DCG terms and generalization for the generated rules.

4.1 Rule Generation

The rule generation procedure includes a bottom-up parsing algorithm for pars-
ing an input string a1 · · ·an using the rules in the set P . If the parsing does not
succeed, the bridging process generates rules in extended CNF, which bridge any
lacking parts of the incomplete derivation tree.

The input string a1a2 · · · an is represented by a set of 3-tuples {(a1, 0, 1),
(a2, 1, 2), · · · , (an, n − 1, n)}, and the resulting derivation tree by a set D of 3-
tuples of the form (p(T ), i, j), each of which represents that the set of rules derives
ai · · · aj from p(T ). For the ambiguity check, each time a new term (p(T ), i, j) is
generated, it is tested whether it has been generated before.

Subprocedure Bridge(p(T ), i, k) generates additional rules that bridge missing
parts in the incomplete derivation tree represented by the set of terms in D.
The process nondeterministically chooses six operations, as shown in Fig. 2. In
operations 5 and 6, nonterminal symbols q and r are nondeterministically chosen
from either previously used symbols or new symbols. The DCG term U and V
of these symbols are also nondeterministically chosen from the subterms of the
term T of the parent node. Subprocedure AddRule(R) first searches for a rule
R′ in the set P that has the same form as R in the sense that R and R′ differ
only in the DCG terms. It then replaces R′ with the lgg of R and R′, or simply
adds R to P .

Synapse has a special mode to efficiently generate DCG rules for SDTS. When
this mode is selected, each DCG term is restricted to a difference list, and the
rules are restricted to forms in Table 1. The system uses these restrictions for
generating rules for SDTS in Operation 5 and 6 in Fig. 2 and in generalization
in subprocedure AddRule.
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Procedure RuleGeneration(w, s(T0), K) (Comment: w : an input string, s(T ) :
the starting symbol with a DCG term, K : the bound for the number of rules.
Global variable P holds a set of rules.)

Step 1 (Initialize variables.)
D ← ∅. (D is a set of 3-tuples (β(U), i, j).)
k ← |P |. (k holds the initial number of rules in P .)

Step 2: (Parsing by inverse derivation)
For each ai, 1 ≤ i ≤ n = |w| in w, call Derive(ai, i − 1, i) in order.
If (s(T ), 0, n) ∈ D and T0 � T then terminate (Success).

Step 3: (Bridging rule generation)
If |P | ≥ K then terminate (Failure).
Call procedure Bridge(s(T ),0, n).
Terminate (Success). (Return the set P of rules).

Procedure Derive(β, i, j) (β : either a terminal a nonterminal term, i, j : inte-
gers for representing the positions of a substring. )
1. Add (β, j, k) to D. If p(W ) → β′ ∈ P such that β ≡θ β′, then add

(p(Wθ), j, k) to D.
To synthesize an unambiguous grammar, check ambiguity.

2. If p(W ) → αβ ∈ P and (α′, i, j) ∈ D with α ≡θ α′ and β ≡θ β′, then add
(p(Wθ), i, k) to D, and call Derive(p(Wθ), i, j).

Procedure Bridge(p(T ), i, k) (p(T ) : a nonterminal term, i, k : integers.)
Nondetermistically choose one of the operations in Fig. 2.

Procedure AddRule(R) (R: a rule.)
Nondereminsitically choose one of the following process 1 or 2.
1. If P contains a rule R′ such that R differs from R′ only in DCG terms,

delete R′ from P and add the lgg of R and R′ to P . Else add R to P .
2. Add R to P .

Fig. 1. Procedure for Rule Generation by Bridging

5 Search for Rule Sets

The inputs to Synapse are ordered sets SP and SN of positive and negative
samples, respectively, and a set P0 of initial rules for incremental learning of the
grammars. Samples for learning a CFG are strings, whereas those for learning
DCGs are pairs of strings and atoms of the form s(T ) with DCG terms T . The
system searches for any set P of rules with P0 ⊆ P such that all the strings in
SP are derived from P but no string in SN is derived from P . Synapse has two
search strategies, global and serial search, for finding rule sets.

Fig. 3 shows the top-level procedure for the global search for finding mini-
mal rule sets. The system controls the search by the iterative deepening on the
number of rules to be generated. First, the number of initial rules is assigned to
the bound K of the number of rules. When the system fails to generate suffi-
cient rules to parse the samples within this bound, it increases the bound by one
and iterates the search. By this control, it is assured that the procedure finds
a grammar with the minimal number of rules at the expense that the system
repeats the same search each time the bound is increased.
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Op. 1 If (β, i, k) ∈ D, call AddRule(p(T ) → β).
Op. 2 If (β, i, j) ∈ D and (γ, j, k) ∈ D, call AddRule(p(T ) → βγ).
Op. 3 If p(T ) → q(S) ∈ Pwith T ≡θ T ′, call Bridge(q(Sθ), i, k).
Op. 4 If p(T ′) → β r(U) ∈ P with T ≡θ T ′, and (βθ, i, j) ∈ D with β ≡θ′ β′, call

Bridge(r(Uθ′), i, k).
Op. 5 If (β, i, j) ∈ D, call AddRule(p(T ) → β r(U)) and call Bridge(r(U), j, k).
Op. 6 For each j, i + 2 ≤ j ≤ k − 2, call AddRule(p(T ) → q(U) r(V )) and call

Bridge(q(U), i, j) and call Bridge(r(U), j, k).

– In Operations 5 and 6, each of U and V is a nondeterminstically chosen sub-
term of T , and the nonterminal symbols q and r are nondeterminstically chosen
among the symbols that occurs in P and a newly generated symbol.

– This figure only shows one side of the symmetrical operations 4 and 5.

Fig. 2. Rule Generation Operations

5.1 Serial Search and Search for Semi-minimal Rule Sets

In the serial search, the system generates additional rules for each positive sample
by iterative deepening. After the system finds a rule set satisfying a positive
sample and no negative samples, the process does not backtrack to redo the
search on the previous samples. By this search strategy, the system generally
finds semi-minimal rule sets in shorter computation time. Other methods for
finding semi-minimal rule sets include using non-minimal nonterminal symbols
in rule generation and restricting the form of the generated rules. These methods
generally increase the efficiency of searching for rule sets at the cost that the rule
sets found may not be minimal.

5.2 Experimental Results on Learning CFG and DCG

The experimental results in this paper were obtained with Synapse Version 4,
written in Prolog, using a Xeon processor with a 3.6 GHz clock and SWI-Prolog
for Linux.
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Procedure GlobalSearch(SP , SN , P0) (SP and SN are ordered sets of positive
and negative samples, respectively, each of which is a pair of a string and the
starting symbol with a DCG term. P0 is a set of optional initial rules.)

Step 1 (Initialize variables.)
P ← P0 (P is a global variable holding the set of rules).
K ← |P0| (the bound of the number of rules for iterative deepening).

Step 2: For each (w, s(T )) ∈ SP , iterate the following operations 1 and 2.
1. Call RuleGeneration(w, K).
2. For each (v, p(U)) ∈ SN , test whether P derives v from p(U) by the parsing

algorithm. If there is a string v derived from P , then terminate (Failure).
If no set of rules is obtained, then add 1 to K and iterate Step 2.

Step 3: Output the result P , and terminate (Success).
For finding multiple solutions, backtrack to the previous choice point.

Fig. 3. Top-Level Procedure for Global Search

Synapse recently synthesized all the CFGs of the problems in Hopcroft and
Ullman’s textbook [8] from only the samples1. The problems include not only
basic languages, such as parenthesis language and palindromes, but also non-
trivial languages such as the set of strings containing twice as many b’s as a’s,
strings not of the form ww, and the set {aibjck |i = j ≥ 1 or j = k ≥ 1}.

The experimental results show that the computation time by serial search is
much faster than by global search at the expense of 1.0 to 3 times larger sizes
of the rule sets in most cases. There are, however, rare cases where the learning
by serial search does not converge for large volume of samples. We are currently
working on solving this problem by introducing a more powerful search strategy.
The restrictions to the form of the rules are also effective in speeding up the
search, although the rules sets are slightly larger.

Example 4: Reversal The following pairs are some examples of positive samples
for learning a DCG for reversal.

[a] - [a]. [b] - [b]. [a,b] - [b,a].
[b,a] - [a,b]. [a,a,b] - [b,a,a]. [a,a,b,a]- [a,b,a,a].

Given these samples and no negative samples, Synapse synthesized the following
DCG rules after generating 12 rules in 0.13 sec.

s([a|X]/X) --> a. s([b|X]/X) --> b.
s(X/Y) --> s(Z/Y), s(X/Z).

By the serial search, the same rule sets are found after generating 21 rules in
less than 0.1 sec. This DCG of three rules is smaller than the DCG for reversing
strings in Example 3 in Section 2.

Synapse synthesized the DCG rules for the language {anbncn | n ≥ 1} in
Example 2 in Section 3 after generating 6.5 × 105 rules in 3200 sec. by giving
1 Detailed experimental results at the time 2006 are shown in [14].
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three initial rules p(1) --> [a], q(1) --> [b], r(1) --> [c] in addition to
the positive and negative samples.

6 Learning Translation in Simple Compiler

This section shows experimental results of learning translation of arithmetic ex-
pressions and assignment statements into an object language called SIL (Simple
Intermediate Language). This language is similar to P-code and byte-code, which
were originally designed for intermediate languages of Pascal and JAVA com-
pilers, respectively. In these languages, object codes for arithmetic and logical
expressions are based on the inverse Polish notation. The language SIL includes
the following instructions.

– load(T,V) pushes the value of variable (symbolic address) V of type T, which
is either i or f (float), to the top of the stack.

– push(T,C) pushes a constant C of type T to the top of the stack.
– store(T,V) stores the value at the top of the stack to variable (symbolic

address) V of type T.
– Arithmetic operations: fadd, fsubt, fmult, fdivide. These float type

operations are applied to two values on the stack and return the result at
the top of the stack instead of the two values.

– call(n,S) calls function S with n parameters, which are placed at the top
of the stack. The function returns the value at the top of the stack.

Note that although every instruction is typed, we deal with only object codes of
float type in this paper.

6.1 Step One: Learning Translation of Arithmetic Expression

For reducing the computation time, we divide the learning of translation into two
steps, and use incremental learning. In the first step, we gave Synapse positive
and negative samples as shown in Fig. 4 and the initial rules in Fig. 5 (a).
Each of the samples is a pair of an arithmetic expression and an object code in
SIL. The negative samples containing symbol X in the right hand side represent
restriction only on the source language. We assume that the rules for a and b
are generated by processing constants, and those for x and y by declarations of
the variables.

Synapse was made to search unambiguous DCGs with the starting symbol s1.
The system synthesized eight DCG rules in Fig. 6 (a) after generating 3.4 × 106

rules in approximately 2000 sec by the global search. Among the positive samples,
only the first nine samples were directly used for generating the grammar and
the other positive samples are used for checking of the translation; the system
parsed these samples without generating any additional rules. For the learning,
24 randomly chosen negative samples including Fig. 4 were sufficient.
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Positive samples

a : push(f,a). ( a ) : push(f,a).
a + a : push(f,a),push(f,a),fadd. a * a : push(f,a),push(f,a),fmult.
a / a : push(f,a),push(f,a),fdivide. a - a : push(f,a),push(f,a),fsubt.
a + a + a : push(f,a),push(f,a),fadd,push(f,a),fadd.
a * a + a : push(f,a),push(f,a),fmult,push(f,a),fadd.
a / a + a : push(f,a),push(f,a),fdivide,push(f,a),fadd.
a - a + a : push(f,a),push(f,a),fsubt,push(f,a),push(f,a),fadd.
( a ) + a : push(f,a),push(f,a),fadd.
a + a * a : push(f,a),push(f,a),push(f,a),fmult,fadd.
a * a * a : push(f,a),push(f,a),fmult,push(f,a),fmult.

Negative samples

( a : X. a ) : X. ( + a : X. ( * a : X.
+ a : X. * a : X. a + : X. a * : X.
a + a : push(f,a),fadd,push(f,a).
a * a : push(f,a),fmult,push(f,a).
a + a + a : push(f,a),push(f,a),push(f,a),fadd,fadd.
a * a + a : push(f,a),push(f,a),push(f,a),fmult,fadd.
a + a * a : push(f,a),push(f,a),fadd,push(f,a),fmult.

Fig. 4. Samples for translating arithmetic expressions into the object codes in SIL for
Step One

(a) Initial rules for Step One

n([push(f,a)|Y]/Y) --> a. n([push(f,b)|Y]/Y) --> b.
n([load(f,x)|Y]/Y) --> x. v([store(f,x)|Y]/Y) --> x.
n([load(f,y)|Y]/Y) --> y. v([store(f,y)|Y]/Y) --> y.
op1([fadd|Y]/Y) --> +. op1([fsubt|Y]/Y) --> -.
op2([fmult|Y]/Y) --> *. op2([fdivid|Y]/Y) --> /.
lp(Y/Y) --> ’(’. rp(Y/Y) -->’)’.

(b) Initial rules for Step Two
op3(Y/Y) --> =. s(X/Y) --> s1.
fn([call(1,sin)|Y]/Y) --> sin. fn([call(1,cos)|Y]/Y) --> cos.

Fig. 5. Initial DCG rules for translating arithmetic expressions and assignment state-
ments into object codes in SIL

6.2 Step Two: Learning Translation of Function Calls and
Assignment Operator

In the second step, we gave Synapse the samples including those in Fig. 7, and
made the system search for rules for translating function calls and assignment
operator (=), based on the result of the first step. The starting symbol was set
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(a) Rules for Arithmetic Expressions Synthesized in Step 1

s1(X/Y) --> e(X/Y). s → e, e
s1(X/Z) --> s1(X/Y), f(Y/Z). s → s f, f p
f(X/Z) --> op1(Y/Z), e(X/Y). p → op1 e, e op1
e(X/Y) --> n(X/Y). e → n, n
e(X/Z) --> e(X/Y), g(Y/Z). e → e g, e g
g(X/Z) --> op2(Y/Z), n(X/Y). r → op2 n, n op2
n(X/Z) --> lp(X/Y), p(Y/Z). s → lp p, lp p
p(X/Z) --> s1(X/Y), rp(Y/Z). p → s rp, s rp

(b) Rules for Function Calls and “=” Operator Synthesized in Step 2

n(X/Z) --> fn(Y/Z), q(X/Y). n → fn q, q fn
q(X/Z) --> lp(X/Y), p(Y/Z). n → lp p, lp p
s(X/Z) --> v(Y/Z), r(X/Y). s → v r, r v
r(X/Z) --> op3(Y/Z), s(X/Y). q → op3 s, op3 s

Fig. 6. Synthesized DCG rules and the corresponding SDTS rules for translating ex-
tended arithmetic expression into object codes in SIL

to s. The initial rules are composed of the synthesized rules in Step One in Fig.
6 (a) and all the initial rules in Fig. 5, which include s(X/Y) --> s1, (s → s1
in SDTS).

By incremental learning, Synapse synthesized the four additional rules in Fig.
6 (b) after generating 1.8 × 107 rules in 4400 sec. Only the first four positive
samples were directly used for generating the grammar and the other positive
samples are used for checking of the translation. In Step two, 24 randomly chosen
negative samples were also sufficient.

The synthesized DCG contains the CFG for the extended arithmetic expres-
sions, which specifies that:

1. The precedence of the operators in op2 (* and /) is higher than that of op1
(+ and -), which is higher than the assignment operator “=”; and

2. All arithmetic operators of op1 and op2 are left associative. The operator “=”
is right associative. (Note that this associativity is coincident with that of C
language. In many languages, the assignment operator is non-associative.)

The synthesized DCG rules can be converted to usual Prolog rules by adding
two arguments for the difference lists representing the input strings. Since the
DCG is left recursive, we needed to remove the left recursion by folding some of
the clauses. The obtained program is executed as follows.

?- s(X/[],[a,*,b,*,b,*,’(’,a,+,x,’)’],[]).
X = [push(f,a),push(f,b),fmult,push(f,b),fmult,push(f,a),

load(f,x),fadd,fmult]

?- s(X/[],[x,=,y,=,sin,’(’,a,+,b,*,y,’)’],[]).



110 K. Imada and K. Nakamura

Positive samples

x = a : push(f,a), store(f,x). sin ( a ) : push(a),call(1,sin). x
= a + b : push(f,a), push(f,b),fadd, store(f,x). x = y = a :
push(f,a), store(f,y),store(f,x). sin ( a + b ) :
push(f,a),push(f,b),fadd,call(1,sin). sin ( a ) + b :
push(f,a),call(1,sin),push(f,b),fadd. sin ( a ) * b :
push(f,a),call(1,sin),push(f,b),fmult. sin ( a ) * cos ( b ) :
push(f,a),call(1,sin), push(f,b),

call(1,cos),fmul.
sin ( cos ( b ) ) : push(f,b),call(1,cos),call(1,sin). sin ( a + b
) : push(f,a),push(f,b),fadd,call(1,sin).

Negative samples

sin a : X. sin + a : X. sin * a : X. sin a ) : X.
sin ( a ) a : X. sin ) : X. sin sin : X. sin + : X.
sin * : X. = a a ) : X. = a : X. ( = a : X. (
a = a : X. a = x : X. = x ( a ) : X. a = b b : X. x
= a + b : push(f,a),store(f,x),push(f,b),fadd.

Fig. 7. Samples for learning DCG for translating extended arithmetic expressions with
function calls and assignment operators into the object codes in SIL

X = [push(f,a),push(f,b),load(f,y),fmult,fadd,call(1,sin),
store(f,y),store(f,x)] ;

The computation is deterministic, and each query has only one solution.

7 Concluding Remarks

We showed an approach for machine learning of grammars and compilers of
programming languages based on grammatical inference of DCG and SDTS,
and showed the experimental results. The results of this paper are summarized
as follows.

1. We extended the incremental learning of minimal, or semi-minimal, CFGs
in the Synapse system to those of DCG and of SDTS.

2. Synapse synthesized a set of rules in SDTS for translating arithmetic expres-
sions with function calls and assignment operators into object codes from
samples of the translation. This set of SDTS rules can be used as a compiler
in Prolog that outputs object codes in the intermediate language SIL.

3. The synthesized SDTS rules contain an unambiguous CFG for the extended
arithmetic expressions, which specifies the precedence and associativity of
the operators.

Although we showed learning of only a portion of compiling process of of the
existing language, the learning system synthesized an essential part of the com-
piler from samples of translation. This approach can be used for produce the
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grammar of a new language and at the same time implement the language from
the samples of source programs and object codes.

We are currently working to improve the methods of learning DCGs and
SDTSs, and extending the compiler to include type check and type conversion
and to translate other statements and declarations. For type checking, the non-
terminal symbols need to have additional parameters for the type. As the control
instructions in the object codes generally have labels, we need a non-context-free
language for the object codes. Other future subjects include:

– Theoretical analysis of learning DCG and SDTS.
– Clarifying the limitations of our methods in learning grammars and compilers

of programming languages.
– Applying our approach for learning DCG to syntactic pattern recognition.
– Applying our approach for learning DCG to general ILP, and inversely ap-

plying methods in ILP to learning DCG and SDTS.
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