

Proceeding Paper Towards Manufacture Stable Lead Perovskite APbI₃ (A = Cs, MA, FA) Based Solar Cells with Low-Cost Techniques [†]

Amal Bouich ¹,*¹, Julia Marí-Guaita ¹, Asmaa Bouich ¹,², Inmaculada Guaita Pradas ¹ and Bernabé Marí ¹

- ¹ Instituto de Diseño, Fabricación y Producción Automatizada, Universitat Politècnica de València, 46022 València, Spain; juliasetze@gmail.com (J.M.-G.); bouich.asmaa@gmail.com (A.B.); iguaita@upv.es (I.G.P.); bmari@fis.upv.es (B.M.)
 - Department of Computer Science, University ibn tofail Kenitra Marocco, B.P. 242, Kénitra 14 000, Morocco
- * Correspondence: bouich.amal@gmail.com

2

+ Presented at the 1st International Conference on Energy, Power and Environment, Gujrat, Pakistan, 11–12 November 2021.

Abstract: Herein, we examine the impact of cations on the structural, morphological, optical properties and degradation of lead perovskite APbI₃ (where A = MA, FA, Cs). Its structure, surface morphology and optical properties have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-Visible spectrometer. The structure of perovskite thin films was found to be in the direction of (110) plane. It is seen from the XRD results that this kind of cation assumes a significant part in stabilising and improving the performance of APbI3 based solar cells. Here, the cesium lead iodide thin films show a smooth and homogenous surface and enormous grain size without pinhole perovskite film. An optical investigation uncovered that the band gap is in a range from 1.4 to 1.8 eV for the different cations. Additionally, in ~60% humidity under dark conditions for two weeks, the structural and optical properties of CsPbI3 films remained good. Furthermore, the efficiency of FTO/TIO2/CSPbI3/Spiro-Ometad/Au solar cells was calculated to be 21.48%.

Keywords: thin films; hybrid perovskite; optical properties; phase stability; efficiency

1. Introduction

Perovskites solar cells have shown a huge improvement in efficiency in recent years; with an increase in power conversion efficiency (PCE) of 3.8% in 2009 to more than 25% in 2019 [1]. Furthermore, due to the flexibility of Perovskites as a result of their incorporation with different elements, there still exists a window for further increase in PCE in the future [2]. In ABX₃ perovskite, A is the cation where A = (MA, FA, or Cs), B is a small cation where B = (Pb or Sn ...) and X is the anion where X = (Cl, I or Br). Numerous techniques have been utilized for the manufacture of perovskite solar cells. Among them are the one-step spin coating technique [3] and the two-step spin coating technique, both techniques are easy to control and produce perovskite thin films [4]. Due to their optimal bandgap of about 1.47 eV for photovoltaic applications, Quantum Dot APbI3 lead iodide materials are considered suitable perovskite materials. However, they do have a problem regarding their stability [5]. Here, we show that cation A affects the morphological and optical properties of APbI₃, and investigate the stability of CsPbI₃, FaPbI₃, and MaPbI₃. Findings show that CsPbI₃ shows a stable structure under a relative humidity of ~60%.

2. Thin Films Preparation

All compounds, lead iodide (PbI2, 99%), formamidinium iodide (FAI), methylammonium iodide MAI, cesium iodide (CsI), Lead iodide (PbI₂, 99%), DMF, DMSO as solvents, and chlorobenzene as anti-solvent was purchased from Sigma Aldrich, St. Louis, MO, USA.

Citation: Bouich, A.; Marí-Guaita, J.; Bouich, A.; Pradas, I.G.; Marí, B. Towards Manufacture Stable Lead Perovskite APbI₃ (A = Cs, MA, FA) Based Solar Cells with Low-Cost Techniques. *Eng. Proc.* **2021**, *12*, 81. https://doi.org/10.3390/ engproc2021012081

Academic Editor: Shahid Iqbal

Published: 12 January 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). The APbI3 (a = Cs, Fa, Ma) perovskite thin films were elaborated on clean FTO glasses. The perovskite solutions were made from 1 M FAI, MAI, CsI, (1 M PbI₂) and were dissolved in DMF solution for two hours. The mixed solutions were kept on a hot plate at 60 °C for two hours in a glovebox, then 100 μ L was spin-coated at 3000 rpm for 10 s and 1 mL chlorobenzene was dropped onto the wet APbI3 films at 4000 rpm for 50 s. Consequently, the as-prepared APbI3 were thermally annealed at 120 °C for 10 min.

Thin films FAPbI3, MaPbI3, CsPbI3 structure were characterized by X-ray diffraction (XRD). Morphology images were taken by scanning electron microscope (SEM). Optical properties were performed using Ocean Optics HR4000 spectrophotometer and the performance was calculated by Scaps.

3. Results

The XRD analysis was examined for FAPbI₃, MaPbI₃, CsPbI₃ fresh and aged samples in Figure 1a–c, respectively. The aged FAPbI₃ shows degradation issues after two weeks and appears the non-perovskite δ -FAPbI₃ phase. This is verified by the augmentation of the peak characteristic of the δ phase, located at 12.6°. In the case of the sample CsPbI₃ aged, no additional peaks were shown, compared to the aged MAPbI₃, which demonstrated a dissociation of film into PbI₂.

Figure 1. XRD pattern of fresh and aged samples of (a) MaPbI₃, (b) FaPbI₃ and (c) CsPbI₃.

Figure 2 displays SEM images of MaPbI₃, FaPbI₃ and CsPbI₃ fresh and aged that display the apparition of numerous pinholes and transformations in surface morphology compared to the Fresh MAPbI₃ and Fresh FAPbI₃, as we can note that for the CsPbI₃ surface,

less pinholes are seen after two weeks in humidity, which is in good agreement with the results of XRD that approve the stability of the $CsPbI_3$ sample.

Figure 2. SEM images of APbI₃ where A = (Ma / Fa/Cs) (**a**) Fresh MaPbI₃ Film (**b**) Fresh FaPbI₃ Film (**c**) Fresh CsPbI₃ Film (**d**) Aged MaPbI₃ Film (**e**) Aged CsPbI₃ Film (**f**) Aged FaPbI₃ Film.

XRD results correlate with the UV-visible measurements, which show a good bandgap [6] (Figure 3). A slow decrease in the absorption of aged CsPbI₃ intensity demonstrates the slow degradation of CsPbI3. Hence, our results suggest that cesium can slow the degradation of the perovskite structure of APbI3 films.

Figure 3. (a) Bandgap of APbI₃ where A = Cs, FA, MA, (b) the absorption of CsPbI₃ aged.

4. Performance of FTO/TiO₂/APbI3/Spiro-Ometad/Au

The performance $FTO/TiO_2/APbI3/Spiro-Ometad/Au$ of solar cells where FTO is the back contact [7] through changes in the bandgap, SCAPS-1D software was used. The simulation parameters of $APbI_3$ were taken from our previous calculations, where the bandgap varied from 1.7 to 1.8 eV. Figure 4 shows the J-V characteristic curve; the P-V

Back Contact: Au Spiro-Ometad APbl3

Front Contact

Glass

Figure 4. Performance of APbI3 (A = Cs, Fa, Ma) based solar cells.

demonstrates the stable performance of solar cells (Table 1).

Solar Cell -	Voc	Jsc	FF	eta
	V	mA/cm ²	%	%
MAPbI ₃	0.8562	25.654019	86.09	18.91
FAPbI ₃	1.1413	22.401144	83.79	21.42
CsPbI ₃	1.0715	21.571401	88.63	21.48

curve shows that the maximum power is for FaPbI₃ and CsPbI₃. On the other hand, CsPbI₃

Table 1. Characteristics of APbI3 (A = Cs, Fa, Ma) based solar cells.

5. Conclusions

In this work, APbI3 perovskite thin films were determined using the spin-coating technique and the impact of cations on their stability and performance was investigated.

According to the results reported above, cesium may be the best option for the better performance of the cell, as it shows greater crystallinity and stability in humid conditions.

Author Contributions: Conceptualization, A.B. (Amal Bouich); methodology, A.B. (Amal Bouich); validation, B.M.; formal analysis, J.M.-G.; investigation, A.B. (Asmaa Bouich) and A.B. (Amal Bouich); resources, J.M.-G.; data curation, A.B. (Amal Bouich); writing—original draft preparation, J.M.-G.; writing—review and editing, A.B. (Amal Bouich), I.G.P. and B.M.; visualization, J.M.-G. and A.B. (Amal Bouich); supervision, B.M.; project administration, B.M.; funding acquisition, B.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Ministerio de Economía y Competitividad (Spain), grant number PID2019-107137RB-C21.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank Ministerio de Economía y Competitividad (Spain) for supporting this work. the Author Amal Bouich acknowledged the post-doctoral contract supported by the RRHH.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

- 1. Bouich, A.; Mari, B.; Atourki, L.; Ullah, S.; Touhami, M.E. Shedding Light on the Effect of Diethyl Ether Antisolvent on the Growth of (CH₃NH₃) PbI₃ Thin Films. *JOM* **2021**, *73*, 551–557. [CrossRef]
- 2. Bouich, A.; Hartiti, B.; Ullah, S.; Ullah, H.; Touhami, M.E.; Santos, D.M.F.; Mari, B. Experimental, theoretical, and numerical simulation of the performance of CuInxGa (1-x) S2-based solar cells. *Optik* **2019**, *183*, 137–147. [CrossRef]
- 3. Bouich, A.; Ullah, S.; Marí, B.; Atourki, L.; Touhami, M.E. One-step synthesis of FA1-xGAxPbI3 perovskites thin film with enhanced stability of alpha (α) phase. *Mater. Chem. Phys.* **2021**, *258*, 123973. [CrossRef]
- Bouich, A.; Ullah, S.; Ullah, H.; Mollar, M.; Marí, B.; Touhami, M.E. Electrodeposited CdZnS/CdS/CIGS/Mo: Characterization and Solar Cell Performance. *JOM* 2020, 72, 615–620. [CrossRef]
- Zhao, T.; Liu, H.; Ziffer, M.E.; Rajagopal, A.; Zuo, L.; Ginger, D.S.; Li, X.; Jen, A.K. Realization of a highly oriented MAPbBr3 perovskite thin film via ion exchange for ultrahigh color purity green light emission. *ACS Energy Lett.* 2018, *3*, 1662–1669. [CrossRef]
- 6. Bouich, A.; Hartiti, B.; Ullah, S.; Ullah, H.; Touhami, M.E.; Santos, D.M.F.; Mari, B. Optoelectronic characterization of CuInGa (S) 2 thin films grown by spray pyrolysis for photovoltaic application. *Appl. Phys. A* **2019**, *125*, 1–9. [CrossRef]
- 7. Bouich, A.; Ullah, S.; Ullah, H.; Mari, B.; Hartiti, B.; Touhami, M.E.; Santos, D.M.F. Deposit on different back contacts: To high-quality CuInGaS2 thin films for photovoltaic application. *J. Mater Sci. Mater. Electron.* **2019**, *30*, 20832–20839. [CrossRef]