
Received July 1, 2020, accepted July 11, 2020, date of publication July 16, 2020, date of current version July 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3009783

Towards Medical Data Interoperability Through
Collaboration of Healthcare Devices

ABDUL JALEEL 1, TAYYEB MAHMOOD 2, MUHAMMAD AWAIS HASSAN 3,
GULSHAN BANO4, AND SYED KHALDOON KHURSHID 3
1Department of Computer Science, Rachna College of Engineering & Technology (RCET), University of Engineering and Technology, Lahore, Lahore 54890,
Pakistan
2Department of Electrical Engineering, Rachna College of Engineering & Technology (RCET), University of Engineering and Technology, Lahore, Lahore
54890, Pakistan
3Department of Computer Science, University of Engineering and Technology, Lahore, Lahore 54890, Pakistan
4Department of Information Technology, University of Sialkot, Sialkot 51040, Pakistan

Corresponding author: Abdul Jaleel (abduljaleel@uet.edu.pk)

ABSTRACT In the era of smart devices and connected neighborhoods, the ubiquitous monitoring and care of
patients are possible with the Internet of Medical Things (IoMT). Smart healthcare devices may serve their
purpose well when they are able to share patient’s data with each other. However, data formats vary widely
across vendors, rendering these devices not interoperable. Recent solutions mostly rely on cloud services
where a source device uploads the data, and the sink devices download it conforming to their own native
formats. However, the quality of service is expected to deteriorate in a cloud processing regime with inherent
network delays and traffic congestion, and the real-time data acquisition and manipulation is, therefore, not
possible. This article presents MeDIC, a framework of Medical Data Interoperability through Collaboration
of healthcare devices. MeDIC improves over a cloud-based IoMT by utilizing translation resources at the
network edge, with its probing and translating agents. The probing agents maintain a capability list ofMeDIC
devices within a local network and enable one MeDIC device to request data conversion from another device
when the former is not capable of this conversion by itself. The translating agent of the later then converts
the data into the required format and returns it to the former. These novel agents allow IoMT devices to
share their redundant computing resources for data translations in order to minimize cloud accesses. Legacy
devices are supported through MeDIC-enabled, fog resource managers. We evaluate MeDIC in four use
cases with rigorous simulations, which prove that this collaborative framework not only reduces the uplink
traffic but also improves the response time, which is critical in real-time medical applications.

INDEX TERMS IoT, IoMT, medical things, fog resource manager, edge resource discovery, continuous
patient monitoring, healthcare 4.0, interoperability hub, distributed computing, smart ICU, syntactic inter-
operability.

I. INTRODUCTION

The continuous advancements in information and commu-
nication technologies in the past decade have given rise to
the ubiquitous Internet of Things (IoT) [1]. Of its many use
cases, the Internet of Medical Things (IoMT) is an evolution
in which healthcare devices and systems are connected to
communicate and interact with each other [2]. In a smart city,
the integration of IoT into medical devices is expected to
improve the quality and effectiveness of services provided to
patients, particularly those who are having chronic diseases

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Zakarya .

and who require constant care [3]. With the help of Body
Area Networks, IoMT allows continuous monitoring of vital
physiological functions of otherwise a healthy person so that
an illness may get diagnosed, and appropriate actions are
taken immediately [4]. This is particularly important in pan-
demic situations like recent COVID-19 [5], where our most
advanced healthcare systems are also under stress, including
medical personals, as well as support systems [6], [7]. The
need for a remote, autonomous and ubiquitous IoMT frame-
work is greater than ever before [8].

The integration of smart sensors and controllers with the
internet has transformed the so-called cyber-physical sys-
tems into the Internet of Things and has recently become

132302 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 8, 2020

https://orcid.org/0000-0002-0886-7819
https://orcid.org/0000-0002-8853-305X
https://orcid.org/0000-0002-2738-4927
https://orcid.org/0000-0003-1818-9115
https://orcid.org/0000-0001-7070-6699


A. Jaleel et al.: Towards Medical Data Interoperability Through Collaboration of Healthcare Devices

TABLE 1. Comparison of existing researches.

the driving force behind the fourth industrial revolution,
dubbed as Industry 4.0 [9]. In this paradigm, healthcare ser-
vices are also witnessing digital transformations through the
inductions of smart equipment, for example, Automatic Infu-
sion Systems and real-time Dialysis Dose Monitoring [10],
in smart ambulances and hospitals. These healthcare devices
are generally interoperable and may be connected to form
a scalable IoMT when all the devices are sourced from
the same vendor, with recommended network infrastructure,
including cloud services. This dependency, however, presents
a bottleneck in almost all practical use cases because of a
diverse range of medical sensors and instruments. The con-
tinuous glucose monitoring (CGM) device from one vendor,
for example, measures blood glucose levels at regular inter-
vals [11]. This invaluable data, may not be consumable in
an insulin pen (IP) by another vendor [12]. Moreover, due to
their life-saving nature, the sophisticated medical equipment
comes from specialized vendors, conforming to the veracity
of national standards, and often implements proprietary pro-
tocols [2], [13]. Similarly, consumer-grade medical gadgets
also support various IoT protocols and data formats [14].
Therefore, in a practical IoMT, this diversity creates infor-
mation silos as the devices are not interoperable, hindering
the much sought horizontal integration in Industry 4.0 [9].
To help, some vendors are sourcing interoperability devices,
like HealthGO Hubs [15] and ELIOT hubs [16], which
support a subset of IoMT protocols, and the medical data
which they acquire is available through their proprietary,
cloud-based services. These hubs are generally limited to
vertical integration of healthcare services, including remote
patient monitoring and remote configuration (of health-
care devices) and lack a real-time, horizontal collaboration
through direct data transactions among these devices [9].
Moreover, their performance may deteriorate under load due
to the centralization of resources, evaluated later in this
article.
Owing to its utmost importance, IoT interoperability

remains the focus of numerous recent researches [14].

Next sections offers a good review of major efforts in the
domain of Electronic Health Records (EHR) [13], [17]–[20],
IoMT [2], [21], their security and authentication [17], [22],
[23] and their interoperability at various layers and levels,
including semantic [18], [24], protocol [1], intrinsic [25]
and cloud [13], [26], [27] level. However, less focus has
been attributed towards data format conflicts among IoMT
devices and their data interoperability.When devices generate
data in various formats, their conversion requires comput-
ing resources. Most of the previous attempts (summarized
in Table 1) relied on a central computing resource, pre-
dominantly a cloud. As data conversion lies in the critical
path of processing, inherent network dependencies of cloud,
including bandwidth limits and latency, are detrimental to the
medical use cases, which often require high dependability and
real-time latencies [28]. Alternatively, fog and edge comput-
ing have been proposed to overcome the above-mentioned
challenges [29]. Edge computing brings computing resources
closer to the data source and sink devices, which can effec-
tively improve the quality of service (QoS). Fog computing,
on the other hand, brings essential cloud services downward,
at the user network levels. To achieve data interoperability
in real-time within an IoMT, these fog and edge computing
devices are needed to be interwoven with the help of a col-
laborative and distributed framework, to enable the horizontal
integration in Industry 4.0 [9].

In this research, we propose a novel IoMT frame-
work that pushes the data interoperability towards the
network edge where the medical data originates. First,
a pyramid of resource management is implemented within
fog devices to provide baseline data interoperability to
legacy, vendor-specific devices. Second, an interoperabil-
ity stack is proposed that helps medical devices in sharing
their redundant computing resources, for the translations
of data transacting horizontally between these devices.
This way, the proposed framework effectively implements
the Edge-computing within capable medical devices, with
the help of its interoperability stack, integrated with the

VOLUME 8, 2020 132303



A. Jaleel et al.: Towards Medical Data Interoperability Through Collaboration of Healthcare Devices

hierarchy of resource managers. The interoperability stack
consists of software agents that remain active in the
background, and the framework prioritizes and ensures the
availability of a device’s computing resources to the native
application. Therefore, the cloud is accessed only when
data translation cannot be commenced locally. The proposed
framework is distributed, scalable, and extendable to the other
dimensions of IoMT, such as protocol interoperability, and to
other applications of IoT in general.
As a summary, we make the following contributions to the

domain of data interoperability within an IoMT.
1) We revisit an end-to-end framework of a cloud-based

interoperable IoMT in terms of service layers, includ-
ing authentication, subscription, and publication.

2) We propose a novel framework of Medical Data Intero-
prability through Collaboration, or MeDIC. The frame-
work enables device-level resource sharing through
its Probe and Translation interfaces in an edge com-
puting paradigm. To the best of our knowledge, this
work makes the first contribution towards the horizon-
tal integration of the healthcare devices, by solving
the interoperability challenges in a truly distributive
manner, thus avoiding information silos in Industry
4.0 paradigm.

3) We simulate four real-life use cases of MeDIC in
an open-source simulator, iFogSim in which MeDIC
enables data sharing between connected medical
devices, to compare the response latency and uplink
traffic related to data interoperability, with and without
MeDIC deployments.

The rest of the article is organized as follows. The next
section presents the recent researches on IoMT. This review
is followed by a narration of IoMT use cases and the moti-
vation behind this work. Section III presents the proposed
MeDIC framework and the architecture of its underlying
layers, interfaces and agents. Section IV evaluates the pro-
posed framework based on rigorous simulations of MeDIC
use cases, followed by simulation results and discussions.
Finally, section V concludes the article.

II. BACKGROUND

In this section, we first discuss the related work and then
describe the motivation behind our research.

A. RELATED WORK

Interoperability is ‘‘the ability of two ormore systems or com-
ponents to exchange information and to use the information
that has been exchanged’’ [31]. The problem of interoper-
ability in Information Technology has been long existed and
has been focused at various levels, for example, at a platform
level, networking level, syntactic level and semantic level,
and in various domains, for example in industrial and health-
care domains [14]. Especially, many efforts were devoted
towards the domain of Electronic Health Records (EHR) [13],
[17], [31], [41]. For example, HL7 is an Electronic Health
Record System which consists of the standards to maintain

syntactic and semantic interoperability [13]. There are also
other open source and proprietary/legacy standards, for exam-
ple, openEHR and MIMIC [18], which are conformed by
various healthcare providers and equipment vendors.

To address the problem of interoperability while consid-
ering various types of IoT application domains and architec-
tures of the IoT, Negash et al. [34] presented a holistic abstract
model of IoT with three layers including technical, syntactic
and semantic, each with a different level of interoperability
requirements. The technical level of interoperability deals
with hardware and protocol mappings, whereas syntactic and
semantic interoperability methods are used for data formats
and protocol mappings. A number of standards and protocols
are proposed and conformed by healthcare devices, at these
various levels. When vendor-specific devices store data in
incompatible formats, even the devices operating with the
same protocol are unable to exchange data [42]–[44].

1) DATA NORMALIZATION FOR INTEROPERABILITY

For data interoperability, normalization at the data
source ensures syntactic and semantic homogeneity.
Clarke et al. [25] implemented an end-to-end remotemonitor-
ing platform based on the IEEE 11073 standards for personal
health devices which interchange data in HL7 format. How-
ever, all the stack-holders must conform to the same standard
to utilize the benefits of normalization-based solutions.When
devices are heterogeneous in their data formats, Lubamba and
Bagula [13] demonstrated that instead of converting every
record in HL7, a process called normalization, conversion
at the data sink results in better resource utilization, hence
resulting in lower overheads.

However, most of the current solutions to interoperability
of heterogeneous formats operated devices are based on nor-
malization (translation from the source into sink formats) at
a central resource. Especially, such efforts are shown fruitful
in the domain of personal and electronic health record man-
agement, where the data is collected and served through a
central repository of the data warehouse. Reilent et al. [30]
proposed an HL7-based normalization for data interoperabil-
ity in personal health record systems and wellness telecare
systems with a nation-wide health-data repository in Estonia,
while Alzghoul et al. [19] and Khalique et al. [31] pro-
posed similar solutions for Jordan and Pakistan, respectively.
Jabbar et al. [24] introduced semantic interoperability
among data collected from syntactically heterogeneous IoMT
devices through a set of annotations that are processed by a
centralized service at the cloud. Because such systems are not
real-time and normalization is required only during archival,
central-resource based interoperability makes sense in these
domains. However, in the domain of IoT, especially IoMT,
a real-time patient monitoring and healthcare needs a hierar-
chical solution with a central cloud server offering baseline
connectivity with intermediate resources near data origina-
tion and consumption which enables fast data access [26]. For
interoperability, the literature is thus further subdivided into
the cloud-, fog- and edge-based solutions.

132304 VOLUME 8, 2020



A. Jaleel et al.: Towards Medical Data Interoperability Through Collaboration of Healthcare Devices

2) CLOUD-BASED INTEROPERABILITY

Due to their scalability, universal access, and transpar-
ent authentication, cloud-based interoperability was a focus
of many studies. For example, Garai and Adamko [27]
introduced an Open Telemedicine Interoperability Hub,
a cloud-oriented framework that determines a centralized
information-flow and interprets, maps, converts, and aggre-
gates the incoming data for syntactic and semantic interop-
erability. Boutros-Saikali et al. [21] presented a cloud-based
IoMT platform for the development of healthcare monitoring
applications, solving the problems of interoperability, inte-
gration and security. The authors extended Scriptr.io, a cloud-
based service to implement an interoperability layer that
normalizes the data into an internal format for later consump-
tion. A comprehensive review of the existing research works,
related to data interoperability in IoMT devices, and their
comparison is given in Table 1. The use of centralized and
cloud-based approaches brings an advantage of scalability,
but these approaches face drawbacks of processing cost and
network delays, which are detrimental to real-time patient
data sharing among healthcare devices and facilities.

There are some efforts made to shift the integration com-
plexity to the central middleware stack and web services.
Roehrs et al. [18] applied semantic interoperability through
a middleware for the integration of Personal Health Record,
whereas Georgi et al. [32] proposed a middleware to over-
come the heterogeneity of communication protocol imple-
mented by data sensors which smooth the retrieve of data
from the sensors. Ivanov et al. [33] introduced a middleware,
OpenICE-Lite, to provide connectivity platform for IoMT
offering real-time communication and coordination of medi-
cal devices for accessing and analyzing the medical data.

3) FOG- AND EDGE-BASED INTEROPERABILITY

The Fog/Edge-based approaches work in a distributed fashion
and bring the benefits of lesser delays and reduced cloud
processing costs. Moustafa et al. [26] argued that interoper-
ability through the cloud, despite its technical merits, is less
useful in real-time applications and instead introduced an IoT
gateway that implements interoperability at the edge of the
network, to save bandwidth and to improve response time.
Derhamy et al. [1] proposed Arrowhead, a dedicated and
on-demand protocol-translation service. It is located within
local clouds of IoT as a Fog server and reduces the
latency related to the translation of supported formats.
Negash et al. [34] proposed a Web of Virtual Things server,
that is deployed as a Fog hub or at the cloud and provides
interoperability through normalization for syntactic integra-
tion of devices with a REST-based API. The utilization of
a web of virtual things for interoperability opens a path for
an integrated and scalable IoT. Gia et al. [35] presented a
low-cost IoMT system that uses fog-layer to operate sensor
nodes in an energy-efficient way. Rahman and Hussain [36]
presented a fog-based semantic interoperability solution for
heterogeneous IoT devices to overcome the bottleneck of

longer distances intrinsic in the cloud-based solution of inter-
operability.

Finally, there are some other approaches towards inter-
operability that exploit the hierarchical levels of connectiv-
ity. Ahmed et al. [37] presented a multilayer, modular IoT
Hub that offers syntactic, semantic, communication inter-
operability. Zarko et al. [38] proposed an architecture to
provide interoperability that was built around the hierarchical
stack of application, cloud, smart space, and device domain
for providing connectivity between different resources, like
sensors, actuators, gateway, and cloud. Cintuglu et al. [39]
developed real-time test cases for the interoperability of the
multi-agent system. Microgrids were installed for standardiz-
ing the frameworks of interoperability. This model elaborates
on a new approach based on the multi-agent system.

From this review, it is evident that a consensus exists on
shifting compute-intensive operations from the cloud level to
the fog and edge levels. Inevitably, data translation (or nor-
malization) for interoperability must also be pushed closer to
the data source and sink devices in an IoMT because it is the
most resource-hungry operation [45].Moreover, the proposed
solutions lack horizontal integration of computing resources,
a key enabler of Industry 4.0, and a horizontally collaborative
framework of computations in a heterogeneous IoT (IoMT) is
yet to be explored. Next, we present how medical use cases
also persuade towards this horizontal integration and data
sharing of smart medical devices, and how a framework like
MeDIC may help in these use cases.

B. MOTIVATION

A medical application (App) may connect a healthcare
provider to his patient’s IoMT devices, a scenario illustrated
in Figure 1(a). Here, the patient’s smartphone serves as a
gateway to the respective cloud. It supports requesting and
sharing of data, but data translations are to be supported by
the cloud to resolve heterogeneous data formats; otherwise,
the data remains useless. By keeping the problem in perspec-
tive, this work focuses on IoMT in four real-life medical use
case depicted in Figure 1(b) and elaborated below.

1) INSIDE AN AMBULANCE

A smart ambulance is on its way to the hospital, carry-
ing a patient that requires medical assistance, (lower right
of Figure1(b)). Conventionally, a paramedic in the van is
communicating with the experts at the hospital and exe-
cutes standard medical procedures according to the received
instructions. When IoMT is deployed in this smart ambu-
lance, the doctor is able to monitor the patient’s vital signs
through healthcare devices, for example, Glucose Level
Monitor (GLM), Heart Beat Rate (HBR) monitor, Oxygen
Level/Flow and Blood Pressure Monitor (BPM), etc. These
devices connect to a medical cloud through an interoperabil-
ity hub with remote patient monitoring support because they
generate data in diverse formats, including JSON (JavaScript
Object Notation), XML (ExtensibleMarkup Language), CSV
(Comma-Separated Values) and binary formats, respectively.

VOLUME 8, 2020 132305



A. Jaleel et al.: Towards Medical Data Interoperability Through Collaboration of Healthcare Devices

FIGURE 1. Use cases of an IoMT-enabled smart city, (a) Patient wearing IoMT devices, managed with his
smartphone. The data is shared with Healthcare provider through cloud. (b) Connected Ambulance, Hospitals
and smart Intensive Care Unit.

In addition, this ambulance is equipped with devices such
as smart infusion controllers or ventilators, rendering remote
access possible over the same infrastructure [16]. It enables
a doctor to emulate a particular clinical environment that
is specifically tailored to the patient’s health conditions.
However, in a real-time, horizontally-collaborative net-
work, our controllers should be able to directly read from
monitors, without cloud trips. When the devices are data-
heterogeneous, the hub must also provide prompt data trans-
lations in this scenario. Alternatively, the MeDIC framework
offloads the hub by putting available computing resources
into capable healthcare devices at disposal. Now the treatment
plans can be pre-configured into MeDIC controllers (inside
the ambulance), and an appropriate plan is activated by the
paramedic, earliest in an emergency situation.

2) INSIDE AN INTENSIVE CARE UNIT

A smart intensive care unit (ICU) is depicted in the left part
of Figure 1(b). An ICU is different from a smart ambu-
lance in that more capable healthcare devices are installed to
address the diverse needs of critical patients [46]. Moreover,
the devices are installed in groups (alongside patients’ beds)
to serve individual patients with diverse healthcare needs.
Therefore, it is expected that some very capable devices
are busy in one group, but are possibly laying idle in other
groups. These devices are able to collaborate and share their
idle resources if an appropriate collaborative framework,
like MeDIC, is provided within the local area network of

the ICU [47]. Translating the required data within the net-
work will not only decrease uplink traffic, but will also
enable real-time and autonomous control of medical actua-
tors, including but not limited to infusion controller, ventila-
tors, etc.

More recently, the COVID-19 pandemic has overburdened
ICUs in terms of equipment, physical space, and human
resources [48]. The equipment and infrastructures can be
upgraded at a higher pace, but the front line human resources
are scarce and at risk in COVID-19 [49]. Clinical decision
support systems were proposed to reduce human interac-
tion and man-made errors [50]. In an edge/fog computing
paradigm, a real-time decision making is possible
in AI1-enabled devices [51]. However, the interoperability
among the devices from diverse vendor-base must be ensured
at a real-time, using a framework like MeDIC. Similarly,
edge computing resources may be added on-demand for
decision support systems in large setups. Using MeDIC,
compute resources of these edge computers can be efficiently
utilized to offload device-level compute resources, whenever
necessary.

3) INSIDE A SMART HOSPITAL

In the IoMT paradigm, a smart hospital connects individual
smart medical facilities, including ICUs, operation theaters,
laboratories, and offices [27], [52]. With MeDIC, all the

1Artificial Intelligence

132306 VOLUME 8, 2020



A. Jaleel et al.: Towards Medical Data Interoperability Through Collaboration of Healthcare Devices

devices in the wide area network of the hospital can share
their idle resources. This also includes workstations available
to the hospital staff. With the help of a MeDIC App, these
workstations become Edge Computers (EC) that perform
translations on-demand. Thus, the avalanche data requests
originating from the individual facilities’ networks can be fur-
ther filtered out by the collaborating ECs. This may result in
tremendous savings in bandwidth and cloud resource usage,
along with reductions in translation latencies.

4) IN A SMART CITY

A smart city connects smart hospitals, clinics, kiosks, and
ambulances to the patients in a coherent and collaborative
way. Here, doctors have access to their patients’ medical
records irrespective of their geographic location and sam-
pling methods. This access is provided through a medical
application (App) on the doctor’s smart monitoring device
(a mobile phone or a smart pad), hereby referred to as a
doctor’s wallet. Patients are equipped with smart medical
sensors that are implantable/wearable, forming a Body Area
Network while their data are gatewayed through a patient’s
smartphone (Figure 1(a)) as a mobile edge computer [28],
referred to as a patient wallet.
Conventionally, the patient’s and doctor’s wallets are con-

nected to the cloud services, which archive electronic health-
care records (EHR) and authenticate their access, as shown
in the upper right of Figure 1(b). Cloud services can be eas-
ily extended to provide data interoperability between IoMT
devices, which is the focus of this work. However, such
services have computing costs and are attributed to all sorts
of issues of a typical cloud, including network latency and
congestion, which are critical in medical uses [28]. Using
a MeDIC App instead, we argue that the cloud computing
load and network traffic related to data translation (to ensure
interoperability) can be minimized by using the wallet’s own
compute resources.

III. PROPOSED FRAMEWORK OF MeDIC

MeDIC stands forMedical Data Interoperability throughCol-
laboration of healthcare devices. The framework is built upon
the basic idea of resolving the data format conflicts of IoMT
devices within the requesting device itself or with the help of
other IoMT devices within the local network.
TheMeDIC framework is presented in Figure 2. On the top

of the conventional IoT interfaces of authentication, subscribe
and publish, MeDIC enables collaboration of IoMT devices
through its Probe and Translation interfaces, integrated with
a hierarchical resource manager. As shown in the figure,
the interfaces provide autonomous and collaborative software
agents [53] that expose the services offered by these inter-
faces. These agents are deployedwithin the IoMTdevices that
are categorized based on the following assumptions.

• Legacy devices implement conventional interfaces of
authentication, subscribe, and publish only.

FIGURE 2. The proposed framework for Medical Data Interoperability
through the Collaboration of Healthcare Devices (MeDIC).

• MeDIC devices implement MeDIC-specific Probe and
Translation interfaces that allow resource sharing
through data translation services.

• Source devices include sensors that generate a patient’s
medical data. In this work, we assume that source
devices are legacy devices and are inherently resource-
constrained. Therefore, they are only able to generate
data in their vendor-specific formats.

• Sink devices include monitor, analytic, and transducer
devices that subscribe to the patient’s medical data.
These also include patient’s and doctor’s wallets and
other devices that possess adequate compute capabilities
to process the data. Hence, these devices are the focus
of this work. MeDIC sink devices are able to translate
medical data from one format to another through their
translation interface. For this purpose, their computing
resources are enumerated with the help of the Probe
interface. In this way,MeDIC devices can be categorized
as Edge devices.

• Resource Manager represents a hierarchy with cloud
resource manager (CRM) at the top, the edge resource
manager (ERM) at the intermediate levels, and local
resource manager (LRM) at the LAN levels. ERM and
LRM cache the related portions of resource tables from
CRM. In addition, they provide baseline translation ser-
vices to legacy devices. This way, ERM/LRM can be
categorized as Fog resource managers.

A. AUTHENTICATION

This interface facilitates a sink device to get access rights of
a source device. The simplest solution provides an authen-
tication server on the cloud that maintains a list of patient’s
devices with their access credentials and relevant data per-
missions, hereby referred to as the resource table (RTAB).
A patient deice is identified and indexed with its Uniform
Resource Identifier (URI) [54]. Once authenticated, devices
can upload their data and download others’ data in their native

VOLUME 8, 2020 132307



A. Jaleel et al.: Towards Medical Data Interoperability Through Collaboration of Healthcare Devices

format [55], through the cloud resource manager (explained
later). The process of authentication is depicted in Figure 3.
The authentication interface provides two agents that are
described below.

FIGURE 3. The authentication process.

1) TokenRequestClient

This agent executes in a sink device when it needs to connect
with a source device. The agent works as a handshaking
client. It gets the access key (shared by the patient to the
healthcare provider) of the source device as input and sends
a request to the authenticator at the cloud (or in the patient
wallet in case of local connectivity) for tokens and the URIs
of patient IoMT devices.

2) AUTHENTICATOR

This agent executes within the cloud (or in the patient wallet
in case of local connectivity) and implements the response
side of handshaking. The input to this agent is the patient pub-
lic key, and the message type is ‘token request’. The authen-
ticator generates access-tokens for all the patient devices
indexed in RTAB of authenticator (registered through the
patient’s wallet). It then sends a token generated specifically
for the respective patient device at corresponding URI, which
saves it for authenticating data requests. A list of correspond-
ing URIs and related tokens are then sent to the sink device
(e.g., a healthcare provider’s wallet) that uses them to request
healthcare data of the patient. Once allotted, the token can be
used as long as the communication is alive.

B. SUBSCRIBE/PUBLISH

This interface provides a Subscriber agent that facilitates a
sink device to retrieve the medical data from a source device
after the authentication process is successful. This agent exe-
cutes in sink devices, including the doctor’s wallet. The data

request is made by using the source device’s URI with the
authentication token.

When a legacy device makes a data request through its
Subscriber agent, the resource manager retrieves the data
from the source device’s Publisher agent, get it translated
into the sink device’s supported format if required and then
dispatches it back to the Subscriber. This process is illustrated
in Figure 4. Alternatively, a Subscriber agent in a MeDIC
device is able to make requests of types ‘DataRe-
quest’, ‘DataRequestWithFormat’ and ‘ForwardRequest’.
The resource manager subsequently responds in respective
ways, which are further explained in the context of the
resource manager and illustrated in Figures 5 and 6. Even-
tually, the Subscriber receives a properly formatted data and
forwards it to the requesting process of the sink device.

FIGURE 4. The Subscribe-Publish process through a Resource Manager.

C. RESOURCE MANAGER

MeDIC relies on a hierarchy of resource managers to provide
data interoperability. Conventionally, the resource manager
is implemented in a cloud service referred to as the Cloud
Resource Manager (CRM), as shown in Figure 4. For data
interoperability, CRM is entrusted to translate data into the
sink’s supported format before dispatching. In MeDIC, this
is done by extending the RTAB to maintain the list of sup-
ported formats (FList) of the participating devices in an IoMT,
as shown in the figure.

As explained earlier, the sink device makes a data request
through its Subscriber agent. A SubscribeHandler agent in
the resource manager responds, initiating an RTAB look-up
to get FLists of both source and sink devices. If the inter-
section of the retrieved FLists is not an empty set, a data
format match is identified. In this case, a data request is for-
warded to the source device, tagged with the matched format.

132308 VOLUME 8, 2020



A. Jaleel et al.: Towards Medical Data Interoperability Through Collaboration of Healthcare Devices

FIGURE 5. Local Resource Manager: The architecture and the interface
for MeDIC.

FIGURE 6. Edge Resource Manager (ERM) architecture and interface.

The retrieved data is then sent back to the sink device. Alter-
natively, CRM gets it translated through its own Probe and
Translation agents into a format that is supported by the sink
device (DataFormat ∈ FListsink ), before dispatch.
Evaluated later in this article, the above mentioned CRM,

albeit its scalability, is expected to compromise the key

feature of a real-time IoMT, i.e., the response time. To deter,
MeDIC provides a cache of CRM as a proxy to the cloud,
at the edge of our IoMT network. For example, in a hospital
WAN, the resource manager is provided as a fog service,
referred to as Edge Resource Manager (ERM) or within
an Edge Computer. Alternatively, it is implemented within
a low-cost hardware shell (an interoperability hub [15]),
referred to as Local ResourceManager (LRM), within a LAN
of small medical facilities, including ambulances and kiosks.

The purpose of the LRM is to provide baseline data inter-
operability of legacy devices within small networks, thus,
saving the cloud trips. For this, the RTAB in LRM imports
the relevant entries of healthcare devices present in the net-
work fromCRM. Besides, the routing appliance is configured
to forward all IoMT requests to the respective LRM. The
advantages include an efficient RTAB look-up because this
local table is much smaller than one in CRM. Moreover,
a data request can be locally served when the source device is
also present in the same network because LRM caches URIs
and access tokens. Finally, like CRM, the proposed LRM
also houses MeDIC’s Probe and Translation agents, which
translate data from the source device’s supported format to the
legacy sink device’s supported format, like interoperability
Hubs in earlier works [38], [39]. However, the LRM can
run out of computing resources when participating devices
have diverse data formats and when sink devices are sub-
scribing at a higher frequency, or subscribing to many source
devices.
Here comes the fundamental advantage of MeDIC that

avoids LRM resource bottlenecks, by allowing horizontal
collaboration of participating healthcare devices to translate
between data formats with the help of their own compute
resources. To ascertain baseline interoperability, the LRM’s
translation resources are reserved for legacy devices, and their
data requests are handled within the LRM in a fashion similar
to CRM, as illustrated in Figure 4. To distinguish, MeDIC
devices access LRM on a separate channel (using a specified
network port). When a MeDIC sink makes a DataRequest,
the SubscribeHandler in LRM responds with the FList of the
source device, in a case when the intersection of sink and
source FLists results in an empty set, as depicted in Figure 5.
Once in the sink, the data formats present in this FList are then
probed for a collaboratorMeDIC device. On a hit, theMeDIC
Subscriber initiates a subsequent DataRequestWthFormat,
tagged with the matched data format. SubscribeHandler is
now able to retrieve the requested data and sends it back to
the Subscriber. From this point, the sink device assumes the
responsibility to translate received data through the collabo-
rating MeDIC device, thus offloading the LRM, in addition
to avoiding a cloud trip.

When a MeDIC device is unable to find a collaborator, its
Subscriber agent initiates a ForwardRequest. The LRM sim-
ply forwards it as a data request towards the ERM/CRM. In
this way, both computing resources and network resources are
optimally managed in the proposed framework. This process
is depicted in Figure 6.

VOLUME 8, 2020 132309



A. Jaleel et al.: Towards Medical Data Interoperability Through Collaboration of Healthcare Devices

It is noteworthy that the RTAB entries in the LRM or
ERM are populated from CRM after proper authentication,
as described earlier in this section. Therefore, only authenti-
cated MeDIC devices are entrusted with data translation, and
data security issues are taken care of, centrally in the cloud.

D. PROBE

Compute resource sharing is enabled in MeDIC through its
Probe and Translation agents. Particularly, the Probe agents
maintain a Translation Resource Table (TRT) that enlists
the capabilities and the state of available MeDIC devices,
as illustrated in Figure 7. TRT is a hash table that is keyed
with a Translation Tuple (TT).2 Each entry in TRT maintains
a priority queue containing the URIs of MeDIC devices that
support that particular TT.3 The queues are ordered with
respect to the Load Factors of available MeDIC devices,
having a device with the lowest Load Factor on the top. The
Load Factor reflects the available computational resources
in a MeDIC device and will be elaborated in the context of
Translation, later in this section.
To help populating and maintaining its TRT, the Probe

interface provides two agents, namely, the Enumerator and
the Discovery Responder, which are detailed below.

1) ENUMERATOR

AnEnumerator populates andmaintains the device’s TRT and
is illustrated in Figure 7. The Enumerator makes a discovery
broadcast, which is responded by all the MeDIC devices in
the local network. A list of supported formats (the FList)
and a Load Factor of the responding device is received as a
response, which is used to enqueue the collaborating MeDIC
device.
As MeDIC devices are able to translate between the for-

mats listed in FList, the Translation tuples are simply the
permutations of all 2-element subsets of the FList.4 Each TT
is then used either to make a new queue in TRT when one
does not already exist or to enqueue the MeDIC device with
respect to its Load Factor. The enumeration process is shown
in Algorithm 1.
The network congestion due to probing is minimized in

MeDIC by allowing the discovery broadcast in only two
cases. First, when a MeDIC device is powered on, and later
when a TT is missed in TRT, as explained later. As a result,
aMeDIC node always gets the current network state at power-
on, and gets listed in TRTs of other devices subsequently.

2) DISCOVERY RESPONDER

This agent implements the server-side of the Probe interface
in MeDIC devices. Its job is to simply forward the natively

2An ordered pair of input and output data formats, e.g. (JSON, XML) and
(XML, JSON) are two different Translation Tuples.

3The supported TTs of a MeDIC device belong to the permutation set of
its FList.

4For example, when the Flist consists of JSON, XML and CSV,
the 6 TTs are (JSON ,XML), (JSON ,CSV ), (XML,CSV ), (XML, JSON ),
(CSV , JSON ), (CSV ,XML).

FIGURE 7. Enumerating MeDIC devices with Probe’s Enumerator and
Discovery Responder agents.

Algorithm 1 The Enumeration Algorithm
1: procedure ENUMERATE(M , Flist , LF)
2: Inputs:

M is the MeDIC device to be enrolled
FList is a list of supported formats
LF is the Load Factor
.

3: Initialize:

ST ← {}
4:

5: for TT ∈ ST do

6: Q← TRT [TT ] ⊲ TRT is Hash table
7: if Q 6= NULL then

8: enqueue(Q,M ,LF)
9: else

10: TRT [TT ]← newQueue(Head = M )
11: end if

12: end for

13: end procedure

supported FList with the current Load Factor, in response
to a discovery broadcast, which is not a resource-intensive
function. The discovery response generated by the Discovery
Responder carries a list of supported formats (the FList), and
the current Load Factor of the device, which is used by the
Enumerator to enqueue the collaborating MeDIC device.

3) TRTWalk

When aMeDIC Subscriber agent receives FList of the source
device in the response of initial DataRequest (Figure 5), it

132310 VOLUME 8, 2020



A. Jaleel et al.: Towards Medical Data Interoperability Through Collaboration of Healthcare Devices

Algorithm 2 The TRTWalk Algorithm
1: function TRTWALK(So, Si)
2: Inputs:

So = {IF | IF is a Source Data Format}
Si = {OF | OF is a Sink Data Format}

Require: So ∩ Si ≡ {} ⊲ No format match
3: Initialize:

ST ← So × Si
ST = {(IF,OF) | IF ∈ So ∧ OF ∈ Si}

4:

5: for TT ∈ ST do

6: Q← TRT [TT ] ⊲ TRT is Hash table
7: Data← QUEUEWALK(TT ,Q)
8: if Data 6= NULL then

9: return Data
10: end if

11: end for

12: DiscoveryBroadcast() ⊲ Translator not found
13: Data← ForwardRequest()
14: return Data
15: end function

probes for a translation collaborator with a process called
TRTWalk that is listed in Algorithm 2. In TRTWalk, a set
ST is formed by multiplying the received set of source for-
mats with the set of native formats. Each entry in this set
is a Translation tuple, for which a QueueWalk is iteratively
performed.
In a QueueWalk (listed in Algorithm 3), the enqueued

MeDIC devices are dequeued, iteratively. A dequeued
entry, M , is then probed with a probeRequest which expects
an updated Load Factor in response. If the Load Factor is
above a threshold, the Queue Walk continues to probe the
next available MeDIC device. In case when no appropriate
collaborator is found, TRTWalk is repeated for the next TT,
as listed in Algorithm 2. Eventually, a discovery broadcast is
made within the local network to enumerate availableMeDIC
devices, simultaneously with a ForwardRequest when the set
ST is exhausted. The set SM acts as a stack in QueueWalk,
as dequeued MeDIC devices are temporarily pushed onto it
during probing, and are later enqueued back at the end of a
QueueWalk.

Alternatively, when a MeDIC device with an appropriated
Load Factor is found, a DataRequestWithFormat is made.
The retrieved data is then translated through the Translation
interface, as illustrated in Figure 8. Queuing of the available
MeDIC devices with respect to Load Factors is MeDIC’s
arbitration policy whenmore than one collaborators are avail-
able. Because a Load Factor reflects the current CPU load
on a MeDIC device, the device with the lowest CPU load is
selected for translation. In this way, a device that is initially
at the top of the queue will slowly sink towards its bot-
tom, effectively relieving it from further Translation requests.
Thus, the goal is to efficiently enable collaboration, without
overburdening one particular device. Similarly, the devices

Algorithm 3 The QueueWalk Algorithm
1: function QUEUEWALK(TT , Q)
2: Inputs:

TT = (IF,OF)
Q is the priority queue of MeDIC devices,
with respect to LF

3: Initialize:

SM ← {} ⊲ An empty stack
4:

5: while M ← dequeue(Q) do
6: LF ← probeRequest(M )
7: if LF < Threshold then

8: break
9: else

10: SM ← {(M ,LF)} ∪ SM
11: end if

12: end while

13: for (M ,LF) ∈ SM do

14: enqueue(Q, M, LF)
15: end for

16: if LF < Threshold then

17: DI ← DataRequestWithFormat(IF(TT ))
18: (DO,LF)← TransRequest(M ,DI ,TT )
19: enqueue(Q, M, LF)
20: return DO
21: end if

22: return NULL
23: end function

which become idle will automatically rise towards the top,
and will eventually serve Translation requests. Moreover,
some medical use cases would require assistance from an
additional Edge resource to aid translations, as will be demon-
strated in the next Section. Our proposed queuing policy will
automatically put this Edge Computer on the top of the related
queues, relieving overburdened MeDIC devices from serving
Translation requests.

E. TRANSLATION

The Translation interface provides the mechanism through
which MeDIC enables a capable device to perform
on-demand data translation, by utilizing its redundant com-
pute resources. It maintains a single attribute, a Load Factor
which represents currently utilized resources, including CPU
time and its memory occupation. The Translation interface
provides two agents, a Requester and a Translator.

As illustrated in Figure 8 and explained above, when a
MeDIC device A finds a collaborator with a workable Load
Factor, its Subscriber agent fetches data with a DataRequest-
WithFormat request. The Requester agent now tags this data
with the corresponding TT and sends it to the selected collab-
orator as a TranslationRequest. Subsequently, the Translator
agent within the collaborator (MeDIC device X ) receives this
properly formatted request, and it immediately initiates the
data translation.

VOLUME 8, 2020 132311



A. Jaleel et al.: Towards Medical Data Interoperability Through Collaboration of Healthcare Devices

FIGURE 8. The Translation agents: the architecture and the interface.

1) TRANSLATION PROCESS

The translation of input data format into another format is
a computation-intensive process [45]. It requires parsing,
access, modification, and serialization of the input data. The
parsing step is the most resource-intensive and thus poses the
performance bottleneck for a translator. It involves character
conversion into the target format, followed by a lexical anal-
ysis, syntactical analysis, semantic analysis, and an interme-
diate data tree generator.
The translation process is elaborated in Figure 9 with the

help of an illustrative example. It presents an input data

snippet in XML format. To process this XML data, firstly,
a Lexical Analyzer uses its pre-defined Token Set to convert
the source XML listing into tokens by separating tags, double
quotes, equal sign, data values, etc. Then the Parser applies
the defined grammar rules for syntax analysis. In syntactic
analysis, the Parser checks whether the sequence of tags is
OK, the tags are properly closed, double quotes are properly
formatted, and values are described in proper data types.
If the validation test is passed, the meanings of XML tags
are determined by a Semantic Analyser. It identifies the tags,
attributes, and data for proper units and checks whether the
data types are correctly mentioned. Finally, the Parser reads
the data from XML Tags, into an intermediate Tree Data
Representation (TDR) for later access, as shown in the figure.
The main tag in XML becomes the root of this tree and the
sub-tags are placed as children nodes, as shown in part (b)
of Figure 9.

No data modification is required in this work. There-
fore, a Mapper function traverses this TDR, recursively in
pre-order (Root, Leftmost child — Rightmost child) and
prints its data into the output stream, formatted in the desired
output format (JSON in this example), a process called seri-
alization. The output of the Mapper function is shown in
part (c).

In a nutshell, a Parser function converts the received data
into TDR, which is then converted into the required format by
the Mapper function. At the completion of data translation,
the Translator dispatches the converted data to the Requester
along with the device’s updated Load Factor, which is then
used to enqueue the MeDIC device in the TRT of requesting
device, as given in Algorithm 3 (Line 19). In this way, probes
keep their TRTs in an updated state during the whole process.

2) LOAD FACTOR

The Load Factor is a representation of computing resources
that are currently occupied within a MeDIC device. A real-
istic estimation of Load Factors is key to the effective-

FIGURE 9. The illustrated translation process: (a) A data snippet from a source device supporting XML format, (b) Input data parsed into internal TDR,
(c) TDR mapped into output (JSON) format.

132312 VOLUME 8, 2020



A. Jaleel et al.: Towards Medical Data Interoperability Through Collaboration of Healthcare Devices

ness of MeDIC, which is essentially a heterogeneous dis-
tributed system. A number of algorithms are developed over
time to ascertain load balancing among heterogeneous nodes
and rely on various algorithms to estimate their utilization
factors [56]–[58]. However, in this work, we employ a simple
queuing scheme for load balancing, as explained in the con-
text of TRTWalk and a simple model to estimate Load Factor,
as described below.
Suppose D is a MeDIC device with the computational

power of ND Million Instructions Per Second (MIPS). Its
Load Factor LFD is given as,

LFD = LFID +
LTQ × CAvg

ND
(1)

where LFID represents intrinsic load on device D, LTQ is
length of Translation Requests in queue and CAvg is the
average cost of translation algorithms in Million Instructions.
In this way, the Load Factor reflects the expected time of
completion of its task queue and can be utilized to arbitrate
among MeDIC devices for translation services. On a Probe
request, LFD +

CAvg
ND

is returned as a Load Factor to reflect
the response time of a subsequent Translation request. On the
completion of a translation, the current length of the queue is
decremented by 1, and the new LFD is conveyed back to the
Requester in order to update its TRT accordingly, as given in
Algorithm 3.

As depicted in Figure 8, when a Subscriber Agent in a
MeDIC device or a Subscribe Handler in a resource manager
(LRM or ERM) sends a Probe Request to a collaborating
MeDIC device, the later shares its Load Factor which is
calculated by using the model in (1). Also, the collaborator
reports its new Load Factor when it returns the data in the
required format after the translation.

IV. EVALUATION

The MeDIC is evaluated by extending an open-source
IoT simulator, iFogSim [59], which enables the quantifi-
cation of various performance metrics of cloud-, edge- or
fog-based IoT frameworks. The evaluation simulates a
hypothetical smart city which deploys MeDIC, as shown
previously in Figure 2. The IoMT and infrastruc-
ture devices are configured with the parameters listed
in Table 2, while the configuration tree is illustrated
in Figure 10.

At the top of the MeDIC hierarchy of the smart city is a
cloud at Level 0, hosting a CRM. It serves directly to smart
hospitals in the smart city, its ambulances, kiosks, and the
smart medical apps in individuals’ wallets, each hosting an
ERM or LRM at Level 1 or 2, respectively. Finally, both
legacy and MeDIC devices constitute the leaf nodes of our
configuration tree at Level 3 and are hierarchically served
with LRM and ERM at respective levels, as shown in the fig-
ure while their simulated parameters are tabulated in Table 2,
including available bandwidth (in bits per second), compute
power (in Million Instructions Per Second) and physical
memory size (in bytes).

TABLE 2. Device configurations in iFogSim simulations.

A. THE EVALUATION MODEL

In a real-time system, the response time is always critical [60].
In the framework of MeDIC, we model the response time
(Tr ) as the time elapsed since a Subscriber agent originates
a request to the reception of data in the required format.
This response time comprises of the accumulated round-trip
times of all the network transactions (Tn), in addition to
the processing time for data translation (Tp), when required.
Mathematically,

Tr = Tn + Tp (2)

Let RM = {LRM ,ERM ,CRM} be a set of network lev-
els of MeDIC framework, as illustrated in Figure 10, with
latencies T = {Tl,Te,Tc}, respectively. Tp depends on the
compute capability of a particular node (tabulated as MIPS
rating in Table 2) and its Load Factor, governed by (1). The
network flight time depends on Tn depends on a number of
factors, for example, the network level that serves a subscribe
request (link latencies listed in Table 3), data packet size and
the network capabilities of the nodes (listed as Bandwidth
in Table 2).

1) CRM RESPONSE TIME

The worst-case response time is the time to get translation
through the cloud services as,

Tr = 4Lc + Tp (3)

2) LRM RESPONSE TIME

And the best case happens when a request is served through
LRM. In this case,

Tr = 4Ll + Tp (4)

When a transaction does not need translation, Tp = 0.

3) ERM RESPONSE TIME

When a request is served at ERM level, its response time is is
given by,

Tr = 4Le + Tp (5)

4) MeDIC RESPONSE TIME

As shown in Figure 8, the response time is the time spent
on an initial Data request, followed by n Probe requests
in TRTwalk until a translator is found, followed by a Data

VOLUME 8, 2020 132313



A. Jaleel et al.: Towards Medical Data Interoperability Through Collaboration of Healthcare Devices

FIGURE 10. Network configurations for iFogSim simulations, (a) Smart City, (b) Smart Hospital, (c) Smart Ambulance/ICU. The legends used are CRM, ERM
and LRM for Cloud, Edge, and Local resource managers, respectively. W is a Wallet device with MeDIC App, H stands for hospital, P is for Patient, D is for
Doctor, EC stands for Edge computer, M is for MeDIC devices, and L is for Legacy devices.

request with the format and finally, a Translate request. Math-
ematically,

Tr = T (FList)+ T (Probe)+ T (Data)

+T (Translate)+ Tp
= 2Tl + 2nTl + 4Tl + 2Tl + Tp
= 8Tl + 2nTl + Tp (6)

5) AVERAGE RESPONSE TIME

The origination of the data request in IoMT is a random pro-
cess. The average response time inMeDIC depends on factors
such that source and sink data formats, load factors, and the
number of iterations in the TRTWalk algorithm, which are all
probabilistic in nature and are often dependant on each other.
Therefore, instead of trying to develop complex closed-form
solutions for average response time and bandwidth consump-
tion, we rely on rigorous Monte-Carlo simulations, which are
described next in this section.

B. EXPERIMENTAL SETUP

A rigorous Monte-Carlo simulation methodology is adopted
in this work.We generate the iFogSim configurations dynam-
ically, varying key simulation parameters, including the num-
bers of legacy/MeDIC devices within an LRM and the num-
bers of data requests. We further assume what data sinks
generate data requests on an average of 1 request per second,
peaking at 10 requests per second, with a Gaussian distribu-
tion. Moreover, the number of translation requests handled
by the resource managers and the MeDIC devices are in pro-
portion to their MIPS ratings. The translation time and CPU
occupancy are also simulated, governed by the model in (1).
The results obtained through these Monte-Carlo simulations
are compiled and then presented as an average and a peak
response, normalized with respect to those pertaining to our
baseline (minimum) configurations as listed in Table 3.

1) USE CASE 1: SMART AMBULANCE AND KIOSKS

Up to ten medical devices were simulated in this scenario,
including a varying number of (legacy) data sources and a
relatively smaller number of (legacy and MeDIC) data sinks.
The participating sink devices were restricted to less than
‘four’ to keep this simulation realistic. The simulation results
are plotted in Figure 11.

TABLE 3. Network configurations for simulated use cases. Latency data
has been sourced from [36].

Figure 11(a) shows the average response time of data
requests originating from the Subscriber Agents within the
data sinks, with error bars corresponding to peak frequencies
of data requests. Results show that the LRM is sufficient
to handle the translation requests within a small network.
In this case, even peak demands are met with LRM, evident
from smaller error bars when the total number of devices is
up to 4. Beyond that, peak demands manifest proportionally
increasing response times because the data request rate is
modeled to proportionally increase with the number of source
devices in the network. MeDIC devices come to play their
role in these situations, by collaborating through their probe
and translation interfaces (Figure 8) and consequently reduc-
ing the response time in Figure 11(a) and the uplink traffic
in Figure 11(b). The up-link traffic increases because Trans-
lation requests are being forwarded upwards to the cloud,
which consequently increases the response time of such data
requests. Because the response time is a critical factor in
medical networks due to stringent real-time requirements,
the MeDIC framework greatly improves this metric by uti-
lizing local computing resources more efficiently, especially
under load.

2) USE CASE 2: A SMART ICU

In this case study, we simulate a sufficiently large,
MeDIC-enabled ICU [61]. Our iFogSim model consists of

132314 VOLUME 8, 2020



A. Jaleel et al.: Towards Medical Data Interoperability Through Collaboration of Healthcare Devices

FIGURE 11. Response time and uplink traffic from LRM of a connected ambulance, with configurations, 1) no MeDIC sink (M-0), 2) one MeDIC sink (M-1),
and 3) all MeDIC sinks (M-ALL). The Y-axis represents ratios, as simulation results are averaged and are further normalized with respect to Baseline case
(of 2 devices). The solid bars represent average numbers, while the error bars represent peak numbers.

FIGURE 12. Response time and uplink traffic results from the LRM of a connected ICU with configurations, 1) no MeDIC sink (M-0), 2) ten MeDIC sink
(M-10) and 3) all MeDIC sinks (M-ALL). The Y-axis represents ratios, as simulation results are averaged and are further normalized with respect to
Baseline case (of 50 devices). The solid bars represent the normal occupancy while the error bars show an over-burdened situation amid a disaster.

an LRM, 10s of data sinks (including ventilators, drip con-
trollers), and more than 100 legacy data sources (monitor
devices) to record vital parameters of admitted patients. Two
simulation scenarios are provided and are detailed below.
In the first scenario, ICU is dealing with a moderate

number of patients with diverse needs. We model an ICU
having 10 beds with 70% occupancy on average. However,
idle devices are on standby and are collaborating through
the MeDIC framework in this simulation. The response time
and uplink bandwidth requirements of the simulated ICU are
plotted in Figure 12. It is shown that when new patients are
admitted, and consequently, more devices become active, and
network congestion increases. A group of devices serving an
individual patient may or may not have a MeDIC device.
In case when the group only consists of legacy devices,
translation is provided by an LRM. As shown in Table 2,
the ICU LRM is sufficiently resourced to fulfill a moderate
number of translation requests. Thus, the average response
time does not degrade much with a monotonically increasing
number of devices. However, peak demand aggravates the
response time, especially in M-0, an ICU without MeDIC

devices. M-10 results in a much flattened response here, due
to the engagement of idle compute resources available within
the network.

In addition to the above-mentioned Monte-Carlo simula-
tions, we have also simulated a disastrous scenario in which
ICU is suddenly occupied with patients. It generates traffic
with an overwhelming number of data requests and eventually
over-burdening our LRMwith translation requests. As shown
in the figure, both M-0 andM-10 cases suffer in this scenario,
but M-All, a case where all data sinks are MeDIC, does
not incur a significant penalty. This much improvement is
achieved in part due to abundant local compute resources,
and in part, due to the reduced number of cloud trips over
the bandwidth-limited uplink, evident in Figure 12(b).
Finally, we simulated a pandemic situation (like COVID-

19) where temporary but fully-equipped and large ICUs are
deployed. A massively large number of patients admitted
here show similar medical conditions and may have to share
medical devices like ventilators. Shared devices are expected
to generate more than usual data requests, and therefore
over-burden themselves and the LRM.We cover this situation

VOLUME 8, 2020 132315



A. Jaleel et al.: Towards Medical Data Interoperability Through Collaboration of Healthcare Devices

in our iFogSim simulations by modeling a 200 beds facility.
Here, the data requests are multiplied by a factor of 4 as
compared to the above worst case. The simulation results are
summarized in Table 4. LRM and MeDIC infrastructure is
clearly over-whelmed in this case. To help, we have simulated
a case where an edge computer is inducted to provide data
translation through a MeDIC App. As evident in the results,
this device takes care of additional data traffic locally within
the network and thus allows aminimal impact on the response
time. In this way, MeDIC ensures the quality of the service,
even amidst disasters.

TABLE 4. Results of a simulated pandemic situation, M-0 represents no
MeDIC device, M-All is when all sinks are MeDIC, and M-EC represents an
augmentation with an Edge computer. The values represent ratios,
as simulation results are averaged and are further normalized with
respect to the baseline case (of 50 devices).

3) USE CASE 3: A SMART HOSPITAL

A smart hospital was modeled in iFogSim with an Edge
resource manager (ERM) on the top and up to 25 LRMs rep-
resenting individual ICU facilities. Moreover, up to 10 work-
stations equipped with MeDIC App were also incorporated
as Edge computers (EC). The configuration of an ERM/EC
is given in Table 2. The results from iFogSim simulations are
plotted in Figure 13.

FIGURE 13. Uplink traffic towards Cloud from the ERM of a connected
hospital with zero, one, and 10 Edge computers (E-0, E-1, and E-10,
respectively). The Y-axis represents ratios, as simulation results are
averaged and are further normalized with respect to Baseline case
(of 5 devices).

The ERM is deployed to filter the translation requests
fromLRMs. Because ERMalso performs translations with its
probe and translator interfaces, it suffices for small hospitals,
and no EC is required in this case, simulated as E-0.
However, in large setups, ERM must be augmented with

additional computing resources, as in the case of ICUs amid
disasters. This is also evident from E-1 and E-10 config-
urations in iFogSim simulations, where one and the ECs,
respectively, are collaborating through the MeDIC frame-
work, eventually reducing the cloud-bound translation traffic.

4) USE CASE 4: A SMART CITY

The iFogSim model of a smart city was included from 50 to
250 hospitals. For each experiment, the participating hos-
pitals were randomly sized according to the configuration
in Table 3. The number of translation requests is plotted
in Figure 14, once without MeDIC and then with MeDIC
deployment. The tremendous reduction in the number of
requests can be seen in the figure with MeDIC deployment.
As the required compute resources at the cloud increase
proportionally to the number of translation requests, MeDIC
also cuts down cloud processing costs, in addition to huge
bandwidth savings and thus leads to a sustainable Internet of
Medical things.

FIGURE 14. Translation requests redirected to the Cloud in Millions
per second, for a smart hospital with legacy IoMT (SH-L), a smart hospital
with a MeDIC framework (SH-M), remote care with legacy IoMT (RC-L)
and remote care with a MeDIC framework (RC-M).

Finally, we present a case of remote medical care where a
doctor’s wallet is able to access the patient’s medical devices
through a patient’s wallet. In Figure 14, we also plot the
simulation results of this scenario with and without MeDIC.
Exactly 2000 doctor’s wallets and 25000 patient’s wallets
were simulated with parameters given in Table 2. Although
the access is provided through a CRM, the proposed MeDIC
framework avoids cloud compute resources because transla-
tion is done in house within a data sink. Thus, the plot shows
a reduced number of translation requests when the MeDIC
app is deployed in wallets. However, bandwidth will still be
required to complete these transactions.

5) COMPARISON WITH RELATED WORK

From Table 1, the previously proposed solutions can be clas-
sified as cloud, middleware, fog, and edge-based interoper-
ability. It has been established that a hierarchy of Fog/edge
devices outperforms cloud-based solutions in their response
time and bandwidth as well as cloud utilization [26], and as
a result, many Interoperability Hubs are already proposed
and commercialized. Here, we make a comparison of these
schemes with our hierarchy of CRM, ERM and LRM, and
MeDIC devices. Shown in Figures 11 and 12, the simulations
were performed for three configurations, M − 0, M − x and
M − All. Here M − 0 represents a configuration without the
collaborative framework of MeDIC and is similar to schemes
proposed in [37]–[39]. It is evident from the results that

132316 VOLUME 8, 2020



A. Jaleel et al.: Towards Medical Data Interoperability Through Collaboration of Healthcare Devices

as the number of devices in an IoMT grows, the resource-
bottlenecks manifest themselves in aggravated response time
and uplink traffic. Consequently, the spikes in data requests
will be amplified to a point where the real-time performance
of IoMT will be compromised.
With the inclusion of the MeDIC framework, the com-

puting resources scale up with the growing number of
MeDIC devices. More translation resources result in better
probe operation, eventually reducing n in (6) and the overall
response time, albeit an increased number of data requests.
Therefore, the LRMs are offloaded to provide baseline inter-
operability to legacy devices, and ERMs filter the requests
bound to the CRM, thereby reducing overall uplink band-
width and cloud utilization, shown in Figures 13 and 14,
respectively. Without MeDIC, the previously proposed solu-
tions would work optimally with bounded requirements.
However, more Edge Computers would be required to sup-
plement Fog resources under load (as can be deduced from
Table 4), while device resources would be under-utilized.
Therefore, MeDIC enables optimal resource utilization by
developing a horizontally integrated framework in an effort to
extend the domain of the Internet of Medical things towards
the fourth industrial revolution (Industry 4.0).

V. CONCLUSION AND FUTURE WORK

We have proposed MeDIC as a framework in which med-
ical devices collaborate to translate otherwise incompati-
ble data formats. The MeDIC framework provides services,
including registration, subscribing, probing, translation, and
publishing. The experiments were performed to analyze the
effectiveness of MeDIC in terms of data response time and
uplink traffic. The results show that the response time of
both average and peak data requests is significantly improved.
In the future, this work will be extended to the protocol and
semantics compatibility.

REFERENCES

[1] H. Derhamy, J. Eliasson, and J. Delsing, ‘‘IoT Interoperability—On-
demand and low latency transparent multiprotocol translator,’’ IEEE Inter-
net Things J., vol. 4, no. 5, pp. 1754–1763, Oct. 2017.

[2] H. Habibzadeh, K. Dinesh, O. Rajabi Shishvan, A. Boggio-Dandry,
G. Sharma, and T. Soyata, ‘‘A survey of healthcare Internet of Things
(HIoT): A clinical perspective,’’ IEEE Internet Things J., vol. 7, no. 1,
pp. 53–71, Jan. 2020.

[3] P. Puello Marrugo, E. Martinez Franco, and J. C. Rodriguez Ribon, ‘‘Sys-
tematic review of platforms used for remote monitoring of vital signs in
patients with hypertension, asthma and/or chronic obstructive pulmonary
disease,’’ IEEE Access, vol. 7, pp. 158710–158719, 2019.

[4] M. Salayma, A. Al-Dubai, I. Romdhani, and Y. Nasser, ‘‘Wireless body
area network (WBAN),’’ ACM Comput. Surveys, vol. 50, no. 1, pp. 1–38,
Apr. 2017, doi: 10.1145/3041956.

[5] H. A. Rothan and S. N. Byrareddy, ‘‘The epidemiology and pathogenesis
of coronavirus disease (COVID-19) outbreak,’’ J. Autoimmunity, vol. 109,
May 2020, Art. no. 102433, doi: 10.1016/j.jaut.2020.102433.

[6] E. J. Emanuel, G. Persad, R. Upshur, B. Thome, M. Parker, A. Glickman,
C. Zhang, C. Boyle, M. Smith, and J. P. Phillips, ‘‘Fair allocation of scarce
medical resources in the time of Covid-19,’’NewEngland J.Med., vol. 382,
no. 21, pp. 2049–2055, May 2020, doi: 10.1056/NEJMsb2005114.

[7] D. S. W. Ting, L. Carin, V. Dzau, and T. Y. Wong, ‘‘Digital technology and
Covid-19,’’ Nature Med., vol. 26, no. 4, pp. 459–461, Mar. 2020.

[8] T. Yang, M. Gentile, C.-F. Shen, and C.-M. Cheng, ‘‘Combining point-
of-care diagnostics and Internet of medical things (IoMT) to combat the
COVID-19 pandemic,’’ Diagnostics, vol. 10, no. 4, p. 224, Apr. 2020.

[9] L. M. Camarinha-Matos, R, Fornasiero, and H. Afsarmanesh,
‘‘Collaborative networks as a core enabler of industry 4.0,’’ in
Collaboration in a Data-Rich World (IFIP Advances in Information
and Communication Technology), vol. 506. Cham, Switzerland: Springer,
2017. [Online]. Available: https://link.springer.com/chapter/10.1007/978-
3-319-65151-4_1

[10] B. Braun Medical Inc. Accessed: Apr. 30, 2020. [Online]. Available:
https://www.bbraunusa.com/en.html

[11] International | Dexcom. Accessed: Apr. 30, 2020. [Online]. Available:
https://www.dexcom.com/global

[12] Home—Companion Medical. Accessed: Apr. 30, 2020. [Online]. Avail-
able: https://www.companionmedical.com/

[13] C. Lubamba and A. Bagula, ‘‘Cyber-healthcare cloud computing interop-
erability using the HL7-CDA standard,’’ in Proc. IEEE Symp. Comput.
Commun. (ISCC), Jul. 2017, pp. 105–110.

[14] M. Noura, M. Atiquzzaman, and M. Gaedke, ‘‘Interoperability in Internet
of Things: Taxonomies and open challenges,’’Mobile Netw. Appl., vol. 24,
no. 3, pp. 796–809, Jun. 2019.

[15] Healthgo, Home Health Hub for Remote Patient Monitoring.
Accessed: Apr. 29, 2020. [Online]. Available: https://www.
edevice.com/products/healthgo

[16] Medisante Putting IoT to Work for Caregivers. Accessed: Apr. 30, 2020.
[Online]. Available: https://medisante.ch/hub

[17] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, ‘‘MedRec: Using
blockchain for medical data access and permission management,’’ in Proc.
2nd Int. Conf. Open Big Data (OBD), Aug. 2016, pp. 25–30.

[18] A. Roehrs, C. A. da Costa, R. da Rosa Righi, S. J. Rigo, and
M. H. Wichman, ‘‘Toward a model for personal health record interoper-
ability,’’ IEEE J. Biomed. Health Informat., vol. 23, no. 2, pp. 867–873,
Mar. 2019.

[19] M.M. AlZghoul, M. A. Al-Taee, and A.M. Al-Taee, ‘‘Towards nationwide
electronic health record system in jordan,’’ in Proc. 13th Int. Multi-Conf.
Syst., Signals Devices (SSD), Mar. 2016, pp. 650–655.

[20] J. H. Brenas, M. S. Al-Manir, C. J. O. Baker, and A. Shaban-Nejad,
‘‘A malaria analytics framework to support evolution and interoper-
ability of global health surveillance systems,’’ IEEE Access, vol. 5,
pp. 21605–21619, 2017.

[21] N. Boutros-Saikali, K. Saikali, and R. A. Naoum, ‘‘An IoMT platform
to simplify the development of healthcare monitoring applications,’’ in
Proc. 3rd Int. Conf. Electr. Biomed. Eng., Clean Energy Green Comput.
(EBECEGC), Apr. 2018, pp. 6–11.

[22] G. Pulkkis, J. Karlsson, M. Westerlund, and J. Tana, ‘‘Secure and reliable
Internet of Things systems for healthcare,’’ in Proc. IEEE 5th Int. Conf.
Future Internet Things Cloud (FiCloud), Aug. 2017, pp. 169–176.

[23] G. S. Tamizharasi, H. P. Sultanah, and B. Balamurugan, ‘‘IoT-based
E-health system security: A vision archictecture elements and future direc-
tions,’’ in Proc. Int. Conf. Electron., Commun. Aerosp. Technol. (ICECA),
vol. 2, Apr. 2017, pp. 655–661.

[24] S. Jabbar, F. Ullah, S. Khalid, M. Khan, and K. Han, ‘‘Semantic inter-
operability in heterogeneous IoT infrastructure for healthcare,’’ Wireless
Commun. Mobile Comput., vol. 2017, pp. 1–10, 2017.

[25] M. Clarke, J. de Folter, V. Verma, and H. Gokalp, ‘‘Interoperable end-to-
end remote patient monitoring platform based on IEEE 11073 PHD and
ZigBee health care profile,’’ IEEE Trans. Biomed. Eng., vol. 65, no. 5,
pp. 1014–1025, May 2018.

[26] H. Moustafa, E. M. Schooler, G. Shen, and S. Kamath, ‘‘Remote monitor-
ing and medical devices control in eHealth,’’ in Proc. IEEE 12th Int. Conf.
Wireless Mobile Comput., Netw. Commun. (WiMob), Oct. 2016, pp. 1–8.

[27] A. Garai and A. Adamko, ‘‘Comprehensive healthcare interoperabil-
ity framework integrating telemedicine consumer electronics with cloud
architecture,’’ in Proc. IEEE 15th Int. Symp. Appl. Mach. Intell. Informat.
(SAMI), Jan. 2017, pp. 000411–000416.

[28] F. A. Kraemer, A. E. Braten, N. Tamkittikhun, and D. Palma, ‘‘Fog
computing in healthcare–A review and discussion,’’ IEEE Access, vol. 5,
pp. 9206–9222, 2017.

[29] Y. Ai, M. Peng, and K. Zhang, ‘‘Edge computing technologies for Internet
of Things: A primer,’’ Digit. Commun. Netw., vol. 4, no. 2, pp. 77–86,
Apr. 2018.

[30] E. Reilent, I. Løøbas, A. Kuusik, and P. Ross, ‘‘Improving the data compat-
ibility of PHR and telecare solutions,’’ inProc. 5th Eur. Conf. Int. Fed.Med.
Biol. Eng., Á. Jobbágy, Ed. Berlin, Germany: Springer, 2012, pp. 925–928.

VOLUME 8, 2020 132317

http://dx.doi.org/10.1145/3041956
http://dx.doi.org/10.1016/j.jaut.2020.102433
http://dx.doi.org/10.1056/NEJMsb2005114


A. Jaleel et al.: Towards Medical Data Interoperability Through Collaboration of Healthcare Devices

[31] F. Khalique, S. A. Khan, and I. Nosheen, ‘‘A framework for pub-
lic health monitoring, analytics and research,’’ IEEE Access, vol. 7,
pp. 101309–101326, 2019.

[32] N. Georgi, A. Corvol, and R. Le Bouquin Jeannes, ‘‘Middleware
architecture for health sensors interoperability,’’ IEEE Access, vol. 6,
pp. 26283–26291, 2018.

[33] R. Ivanov, H. Nguyen, J. Weimer, O. Sokolsky, and I. Lee, ‘‘OpenICE-
lite: Towards a connectivity platform for the Internet of medical things,’’
in Proc. IEEE 21st Int. Symp. Real-Time Distrib. Comput. (ISORC),
May 2018, pp. 103–106.

[34] B. Negash, T. Westerlund, and H. Tenhunen, ‘‘Towards an interoperable
Internet of Things through a Web of virtual things at the fog layer,’’ Future
Gener. Comput. Syst., vol. 91, pp. 96–107, Feb. 2019.

[35] T. Nguyen Gia, M. Jiang, V. K. Sarker, A. M. Rahmani, T. Westerlund,
P. Liljeberg, and H. Tenhunen, ‘‘Low-cost fog-assisted health-care IoT
system with energy-efficient sensor nodes,’’ in Proc. 13th Int. Wireless
Commun. Mobile Comput. Conf. (IWCMC), Jun. 2017, pp. 1765–1770.

[36] H. Rahman and M. I. Hussain, ‘‘Fog-based semantic model for supporting
interoperability in IoT,’’ IET Commun., vol. 13, no. 11, pp. 1651–1661,
Jul. 2019.

[37] A. Ahmed, M. Kleiner, and L. Roucoules, ‘‘Model-based interoperability
IoT hub for the supervision of smart gas distribution networks,’’ IEEE Syst.
J., vol. 13, no. 2, pp. 1526–1533, Jun. 2019.

[38] I. P. Zarko, S. Soursos, I. Gojmerac, E. G. Ostermann, G. Insolvibile,
M. Plociennik, P. Reichl, and G. Bianchi, ‘‘Towards an IoT framework
for semantic and organizational interoperability,’’ in Proc. Global Internet
Things Summit (GIoTS), Jun. 2017, pp. 1–6.

[39] M. H. Cintuglu, T. Youssef, and O. A. Mohammed, ‘‘Development and
application of a real-time testbed for multiagent system interoperability:
A case study on hierarchical microgrid control,’’ IEEE Trans. Smart Grid,
vol. 9, no. 3, pp. 1759–1768, May 2018.

[40] IEEE Standard Glossary of Software Engineering Terminology,
IEEE Standard 610.12-1990, 1990, pp. 1–84.

[41] H. Kaur,M.A.Alam, R. Jameel, A. K.Mourya, andV. Chang, ‘‘A proposed
solution and future direction for blockchain-based heterogeneousmedicare
data in cloud environment,’’ J. Med. Syst., vol. 42, no. 8, p. 156, Aug. 2018.

[42] Q. Life, ‘‘Compatibility of device data with hospital information sys-
tems (white paper),’’ Qualcomm Life Inc., San Diego, CA, USA, Tech.
Rep. MKT-210 DCN 2018-206 Rev 3.0, Nov. 2018. [Online]. Avail-
able: https://capsuletech.com/wp-content/uploads/2019/01/compatability-
of-device-data-with-hospital-information-systems.pdf

[43] Kathy Tong. (Jun. 2012). Ehr Compatibility and Connectivity: Two
Obstacles to Patient Care. Accessed: May 11, 2019. [Online]. Available:
https://ehrintelligence.com/news/ehr-compatibility-and-connectivity-two-
obstacles-to-patient-care

[44] R. Quinn. (Feb. 2015). Compatibility Issues Make Physicians Use of Elec-
tronic Health Records Systems Tougher—The Rheumatologist. Accessed:
Mar. 11, 2019. [Online]. Available: https://www.the-rheumatologist.org/
article/compatibility-issues-make-physicians-use-of-electronic-health-
records-systems-tougher/

[45] T. Lam, J. J. Ding, and J.-C. Liu, ‘‘XML document parsing: Operational
and performance characteristics,’’ Computer, vol. 41, no. 9, pp. 30–37,
Sep. 2008.

[46] A. S. R. M. Ahouandjinou, K. Assogba, and C. Motamed, ‘‘Smart and
pervasive ICU based-IoT for improving intensive health care,’’ in Proc.
Int. Conf. Bio-Eng. Smart Technol. (BioSMART), Dec. 2016, pp. 1–4.

[47] N. A. Halpern, ‘‘Innovative designs for the smart ICU,’’ Chest, vol. 145,
no. 3, pp. 646–658, Mar. 2014.

[48] T. Kain and R. Fowler, ‘‘Preparing intensive care for the next pandemic
influenza,’’ Crit. Care, vol. 23, no. 1, Oct. 2019.

[49] J. E. Hollander and B. G. Carr, ‘‘Virtually perfect? Telemedicine for
Covid-19,’’ New England J. Med., vol. 382, no. 18, pp. 1679–1681,
Apr. 2020, doi: 10.1056/nejmp2003539.

[50] M. Frize, C. M. Ennett, M. Stevenson, and H. C. Trigg, ‘‘Clinical deci-
sion support systems for intensive care units: Using artificial neural net-
works,’’ Med. Eng. Phys., vol. 23, no. 3, pp. 217–225, Apr. 2001, doi: 10.
1016/S1350-4533(01)00041-8.

[51] X. Liu, R. H. Deng, Y. Yang, H. N. Tran, and S. Zhong, ‘‘Hybrid privacy-
preserving clinical decision support system in fog–cloud computing,’’
Future Gener. Comput. Syst., vol. 78, pp. 825–837, Jan. 2018.

[52] H. Zhang, J. Li, B. Wen, Y. Xun, and J. Liu, ‘‘Connecting intelligent things
in smart hospitals using NB-IoT,’’ IEEE Internet Things J., vol. 5, no. 3,
pp. 1550–1560, Jun. 2018.

[53] H. S. Nwana, ‘‘Software agents: An overview,’’ Knowl. Eng. Rev., vol. 11,
no. 3, pp. 205–244, Sep. 1996.

[54] T. Clark, Uniform Resource Identifier (URI). New York, NY, USA:
Springer, 2013, pp. 2319–2320.

[55] N. Kahani, K. Elgazzar, and J. R. Cordy, ‘‘Authentication and access
control in e-health systems in the cloud,’’ in Proc. IEEE 2nd Int. Conf.
Big Data Secur. Cloud (BigDataSecurity) Int. Conf. High Perform. Smart
Comput. (HPSC), IEEE Int. Conf. Intell. Data Secur. (IDS), Apr. 2016,
pp. 13–23.

[56] A. Jaleel, S. Arshad, and M. Shoaib, ‘‘A secure, scalable and elastic
autonomic computing systems paradigm: Supporting dynamic adaptation
of self-* services from an autonomic cloud,’’ Symmetry, vol. 10, no. 5,
p. 141, May 2018, doi: 10.3390/sym10050141.

[57] M. Alam, R. A. Haidri, and M. Shahid, ‘‘Enhanced load balancing strategy
with migration cost on heterogeneous distributed systems,’’ in Proc. 3rd
Int. Conf. Contemp. Comput. Informat. (IC3I), Oct. 2018, pp. 273–278.

[58] J. M. Shah, K. Kotecha, S. Pandya, D. B. Choksi, and N. Joshi, ‘‘Load
balancing in cloud computing: Methodological survey on different types
of algorithm,’’ in Proc. Int. Conf. Trends Electron. Informat. (ICEI),
May 2017, pp. 100–107.

[59] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, ‘‘IFogSim:
A toolkit for modeling and simulation of resource management techniques
in the Internet of Things, edge and fog computing environments,’’ Softw.,
Pract. Exper., vol. 47, no. 9, pp. 1275–1296, Sep. 2017.

[60] A. Jaleel, S. Arshad, M. Shoaib, and M. Awais, ‘‘Design quality met-
rics to determine the suitability and cost-effect of Self-* capabilities for
autonomic computing systems,’’ IEEE Access, vol. 7, pp. 139759–139772,
2019.

[61] S. O. Koh, P. H. Park, M. H. Kong, C. Y. Jeung, W. M. Lim, and Y. L. Kim,
‘‘Number of beds and types of intensive care unit (ICU) in university and
non-university hospitals in korea,’’ Korean J. Crit. Care Med., vol. 13,
no. 2, pp. 212–217, 1998.

ABDUL JALEEL received the B.S., M.S., and
Ph.D. degrees in computer science and engineer-
ing from the University of Engineering and Tech-
nology, Lahore, Lahore, Pakistan, in 2006, 2010,
and, 2019, respectively. He is currently working
as an Assistant Professor with the Rachna Col-
lege of University of Engineering and Technology,
Lahore, Pakistan. His research interests include
the development of self-managing software appli-
cations, Health-IoT, autonomic computing, and
software quality measurement metrics.

TAYYEB MAHMOOD received the Ph.D. degree
in information and communication engineering
from the Korea Advanced Institute of Science and
Technology, Daejeon, South Korea. He is cur-
rently working as an Assistant Professor with the
Department of Electrical Engineering, University
of Engineering and Technology, Lahore, Lahore,
Pakistan. His research interests include low-power
computing, the Internet of Things, and embedded
systems.

MUHAMMAD AWAIS HASSAN received the
B.S. degree (Hons.) in computer science from Pun-
jab University, and the M.S. and Ph.D. degrees
in computer science from the University of Engi-
neering and Technology, Lahore, Lahore, Pakistan.
He is currently working as an Assistant Profes-
sor with the Department of Computer Science
and Engineering, University of Engineering and
Technology, Lahore. His research interests include
artificial intelligence, reinforcement learning, and
adaptive eLearning systems.

132318 VOLUME 8, 2020

http://dx.doi.org/10.1056/nejmp2003539
http://dx.doi.org/10.1016/S1350-4533(01)00041-8
http://dx.doi.org/10.1016/S1350-4533(01)00041-8
http://dx.doi.org/10.3390/sym10050141


A. Jaleel et al.: Towards Medical Data Interoperability Through Collaboration of Healthcare Devices

GULSHAN BANO received the M.S. degree in
computer science from the University of Engi-
neering and Technology, Lahore, in 2018. Since
October 2018, she has been working as a Lecturer
with the Department of Information Technology,
University of Sialkot, Pakistan. Her specialization
is in software engineering and machine learning.
She supervises the researches on machine learn-
ing, data sciences, and software engineering. Her
current research interests includemachine learning

and artificial intelligence for social media usage and gratification on youth
behaviors.

SYED KHALDOON KHURSHID received the
Ph.D. degree in computer science, in 2014.
He is currently working as an Assistant Professor
with the Department of Computer Science and
Engineering, University of Engineering and Tech-
nology (UET), Lahore, Lahore, Pakistan. His cur-
rent research interests are in smart correlation
patterns among devices and empathy in artificial
intelligence.

VOLUME 8, 2020 132319


