
Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Towards Methodological Principles

for Ontology Engineering

A thesis submitted by

Mustafa Jarrar

For the degree of

Doctor of Philosophy

Vrije Universiteit Brussel

Faculty of science

May 2005

Promoter: Professor Dr. Robert Meersman

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Jury Members:

- Professor Dr. Luc Steels (Jury President)

Vrije Universiteit Brussel, Belgium

- Professor Dr. Robert Meersman (Promoter)

Vrije Universiteit Brussel, Belgium

- Professor Dr. Dirk Vermeir

Vrije Universiteit Brussel, Belgium

- Professor Dr. Fausto Giunchiglia

University of Trento, Italy

- Professor Dr. Esteban Zimanyi

Université Libre de Bruxelles, Belgium

© Copyright 2005 by Mustafa Jarrar

All rights reserved.

Copyright Note: The text and the ideas presented in this thesis rests with

the Author. No part of this work may be reproduced, stored in retrieval

system, or transmitted in any form or by any means, electronic,

mechanical, photocopying, recording, or otherwise, without the prior

permission of the author.

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Abstract

The Internet and other open connectivity environments create a strong

demand for the sharing of data semantics. Emerging ontologies are

increasingly becoming essential for computer science applications.

Organizations are looking towards them as vital machine-processable

semantics for many application areas. An ontology in general, is an agreed

understanding (i.e. semantics) of a certain domain, axiomatized and

represented formally as logical theory in a computer resource. By sharing

an ontology, autonomous and distributed applications can meaningfully

communicate to exchange data and make transactions interoperate

independently of their internal technologies.

The main goal of this thesis is to present methodological principles for

ontology engineering to guide ontology builders towards building

ontologies that are both highly reusable and usable, easier to build, and

smoother to maintain.

First, we investigate three foundational challenges in ontology

engineering (namely, ontology reusability, ontology application-

independence, and ontology evolution). Based on these challenges, we

derive six ontology-engineering requirements. Fulfilling these

requirements is the goal and motivation of our methodological principles.

Second, we present two methodological principles for ontology

engineering: 1) ontology double articulation, and 2) ontology

modularization. The double articulation principle suggests that an

ontology be built as separate domain axiomatizations and application

axiomatizations. While a domain axiomatization focuses on the

characterization of the intended meaning (i.e. intended models) of a

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

vocabulary at the domain level, application axiomatizations mainly focus

on the usability of this vocabulary according to certain

application/usability perspectives. An application axiomatization is

intended to specify the legal models (a subset of the intended models) of

the application(s)’ interest. The modularization principle suggests that

application axiomatizations be built in a modular manner.

Axiomatizations should be developed as a set of small modules and later

composed to form, and be used as, one modular axiomatization. We

define a composition operator for automatic module composition. It

combines all axioms introduced in the composed modules.

Third, to illustrate the implementation of our methodological principles,

we develop a conceptual markup language called ORM-ML, an ontology

engineering tool prototype called DogmaModeler and a customer

complaint ontology that serves as a real-life case study.

This research is a contribution to the DOGMA research project, which is a

research framework for modeling, engineering, and deploying ontologies.

In addition, we find we have benefited enormously from our participation

in several European projects. It was through the CCFORM project

(discussed extensively in chapter 7) that we were able to test and debug

many ideas that resulted in this thesis. The Network of Excellence

KnowledgeWeb has also proved to be a fruitful brainstorming

environment that has undoubtedly improved the quality of the analyses

performed and the results obtained.

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

To my Parents

 To my country Palestine

 To all donors in the world

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Acknowledgments

At last, I am very glad to write this page. The relief and accomplishment I

feel in having come to this stage comes with a deep sense of indebtedness

to the help, support, and inspiration of the many people to whom the

thesis owes its existence.

First of all, I wish to express my sincere gratitude to Professor Robert

Meersman, the promoter and the friend, who guided this work and helped

whenever I was in need. Robert’s direction and support have been

invaluable, not only in science but also in life experience. I was blessed in

the last five years, with his guidance, encouragement, tolerance, freedom,

trust, hospitality, and his friendship.

To the members of the jury - Professor Dr. Fausto Giunchiglia, Professor

Dr. Esteban Zimanyi, Professor Dr. Dirk Vermeir, and the president of

jury, Professor Dr. Luc Steels - I am most grateful for the precious time

you all devoted to reading this. It is my honor and I thank you for the

advice and the constructive criticism that contributed substantially to

bringing the original conception to this final stage.

I wish to express my debt to all present and former colleagues in

STARLab who have provided me with inspiration, advice, and

encouragement, and who have so generously shared their knowledge and

technical expertise with me. Especially, I am indebted to my colleague

Andriy Lisovoy, who helped me in the implementation of

DogmaModeler. Andriy is more than a colleague: I thank him also for the

richness he brought to my social and especially for the inspiring coffee

breaks that we spent together. I wish him great success in his PhD and in

his life in general.

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

I would like to thank also, Stijn Heymans for reviewing chapter 5. His

discussion and suggestions have influenced my work significantly.

I am in debt to many other colleagues for the useful discussions, we had

on different occasions - of which served greatly to influence my research.

In particularly I wish to thank Andreas Persidis, Stefano Spaccapietra,

Olga De Troyer, Luk Vervenne, Jan Demey, Nicola Guarino, Enrico

Franconi, Jeff Z. Pan, Luciano Serafini, Giancarlo Guizzardi, Paolo

Bouquet, Aldo Gangemi, Mohand-Saïd Hacid, Robert Colomb, Rita

Temmerman, Werner Ceusters, and Stefano Borgo.

I also gratefully acknowledge the financial support I received from the

BTC-CTB, as part of a mixed scholarship offered under the cooperation

program between Belgium and Palestine.

Finally, I dedicate this work to my parents, my sons, my country,

Palestine, and to all donors in the world.

Contents

Introduction and Overview ..1

1.1 Scope and motivation... 1

1.1.1 Foundational challenges in ontology engineering3

1.1.2 Types of methodologies ...5

1.2 Summary of the main goals and contributions... 8

1.3 Thesis outline and structural overview .. 11

Fundamental Challenges in Ontology Engineering16

2.1 Ontology reusability... 17

2.1.1 Significance of ontology reusability...18

2.1.2 Reusability challenges..19

2.1.3 Conclusion..20

2.2 Ontology application-independence .. 21

2.2.1 Example..22

2.2.2 Related work ..26

2.2.3 Ontology usability is also important...28

2.2.4 Conclusion..28

2.3 Ontology evolution... 30

2.3.1 The complexity of change ..30

2.3.2 Distributed evolution..31

2.3.3 Alternative axiomatizations..32

2.3.4 Conclusion..33

2.4 Summary .. 34

Ontology Double Articulation ..39

3.1 Introduction.. 40

3.1.1 Overview of the double articulation principle ..40

3.1.2 Example..42

3.2 Domain Axiomatization ... 44

3.2.1 Definition (double articulation, intended models, legal models)..............46

3.2.2 Importance of linguistic terms in ontology engineering...........................48

3.2.3 On representing domain axiomatizations ...50

Table of Contents

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

3.2.4 Summary: properties of domain axiomatization.......................................53

3.3 The notion of an ontology base.. 53

3.3.1 Definition (Lexon)..53

3.3.2 Definition (Concept)...54

3.3.3 Definition (Role) ..55

3.3.4 Definition (Mapping lexons into first order logic)55

3.3.5 The notion of context ...57

3.3.6 The notion of Gloss ...58

3.3.7 Further formal axiomatizations (Incorporating upper level ontologies)...61

3.4 Application axiomatization .. 65

3.4.1 Example..67

3.5 Discussion .. 72

Ontology Modularization ...76

4.1 Introduction.. 77

4.1.1 A simple example...77

4.2 Related work .. 80

4.3 Our approach... 82

4.3.1 Modularity criterion ...82

4.3.2 Module composition...85

4.4 Formal framework ... 87

4.4.1 Definition (Module) ...87

4.4.2 Definition (Model, Module satisfiability) ..87

4.4.3 Definition (Composition operator) ...87

4.4.4 Definition (Modular axiomatization) ...90

4.5 Composition of ORM conceptual schemes... 92

Step 1: Composing fact types. ...94

Step 2: Composing constraints. ...95

Step 2.1: Combining value constraints ..96

Step 2.2: Combining mandatory constraints ..96

Step 2.3: Combining disjunctive mandatory..97

Step 2.4: Combining uniqueness and frequency constraints................98

Step 2.5: Combining set-comparison constraints...............................101

Step 2.6: Combining subtype constraints (total, exclusive)104

Step 2.7: Combining ring constraints...105

Table of Contents

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Step 3: Reasoning about the satisfiability of ORM modules...........................108

Pattern 1 (Top common supertype)..109

Pattern 2 (Exclusive constraint between types)110

Pattern 3 (Exclusion-Mandatory)...111

Pattern 4: (Frequency-Value)...113

Pattern 5 (Value-Exclusion)...115

Pattern 6 (Set-comparison constraints) ..116

4.6 Discussion and conclusions ... 119

ORM Markup Language ...124

5.1 Introduction and motivation .. 125

5.1.1 Why ORM..126

5.2 ORM-Markup Language.. 127

5.2.1 ORM-ML metadata ..128

5.2.2 ORM-ML Body..130

Object Types..130

Subtypes...131

Predicates...131

Predicate Objects ...132

Constraints ...133

5.3 Discussion and conclusions ... 137

DogmaModeler Ontology Engineering Tool..................................141

6.1 Introduction, a quick overview of DogmaModeler 142

6.2 Modeling domain axiomatizations in the Ontology Base 145

6.2.1 Context Modeling...145

6.2.2 Concept Modeling ..147

6.2.3 Lexon Modeling ...149

Lexon notation and visualization...150

6.3 Modeling application axiomatizations... 152

6.3.1 Generating ORM-ML...155

6.3.2 Verbalization ..156

6.4 Validation of application axiomatization... 160

6.5 Axiomatization libraries... 165

6.6 Composition of axiomatization modules .. 169

Table of Contents

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

6.7 Other functionalities .. 173

6.7.1 Ontology-driven forms ...173

6.7.2 Ontology Multilingualism ..176

6.8 Discussion and conclusions ... 176

The CCFORM Case Study ...179

7.1 Introduction.. 180

7.2. Customer Complaint ontology .. 181

7.2.1 Customer-complaint domain axiomatization..182

“Customer Complaint” Context...182

Vocabularies and their glosses...185

Lexons ...186

7.2.2 Customer-complaint application axiomatization....................................186

Complaint Problems ..187

Complaint resolutions..189

Contract ...190

Complaint ..191

Complainant...192

Complaint recipient ...193

Address ..193

7.3 Discussion and lessons learnt .. 196

7.4 Multilingual lexicalization of the CContology..................................... 199

7.5 Conclusions.. 203

Conclusions and Future Work ...205

8.1 Summary .. 206

8.2 Discussion and concluding remarks .. 207

Contribution to ORM ..218

8.3 Future Research... 219

Appendices ..223

Appendix A: ORM Markup Language ... 225

Appendix A1 (tree view of the ORM-ML XML-Schema)..............................225

Appendix A2 (ORM-ML XML-Schema) ...227

Appendix A3: Complete Example ..237

Table of Contents

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Appendix B: DogmaModeler ... 242

Appendix B1: DogmaModeler Ontology Metadata ..242

Appendix B2: XML-Schema of ORM-ML graphical style sheets247

Appendix B3: ORM Verbalization Templates ..251

English verbalization template...251

Dutch verbalization template ...259

Arabic verbalization template ..267

Russian verbalization template ..274

Appendix C: Customer Complaint Ontology ... 282

Appendix C1: The CCglossary..282

Appendix C2: Lexons in the CContology ...299

Appendix D: Thesis Glossary... 315

Bibliography..319

List of Figures

Fig. 2.1. Ontology A. ...23

Fig. 2.2. Ontology B. ...23

Fig. 3.1. Ontology Double Articulation. ..41

Fig. 3.2. A bibliography ontology base..43

Fig. 3.3. Particular applications committing to an ontology base through their application

axiomatizations...44

Fig. 3.4. An example of three different applications specializing a domain concept.......47

Fig. 3.5. A list of concepts described by glosses. ..59

Fig. 3.6. A formal axiomatization of the instantiation relationship, as found in

[GGMO01]. ..64

Fig. 3.7. A formal axiomatization of the Parthood relationship as found in [GGMO01].64

Fig. 3.8. Meaningful semantic interoperation between Bookstore applications.68

Fig. 3.9. An OWL representation of the Bookstore ontological commitment.71

Fig. 4.1. Book-shopping and Car-Rental axiomatizations. ..78

Fig. 4.2. Modularized axiomatizations. ...79

Fig. 4.3. (a) Compatible composition, (b) Incompatible composition.86

Fig. 4.4. Combining UML constraints. ..90

Fig. 4.5. Examples of several combinations of ORM constraints: (a) combination of two

value constraints, (b) combination of uniqueness, and frequency, (c) combination

of subset and equality, and (d) combinations of equality and exclusion constraints.

..90

Fig. 4.6. Combining ORM fact types...95

Fig. 4.7. Combining value constraints. ..96

Fig. 4.8. An example of a mandatory constraint. ...97

Fig. 4.9. An example of a disjunctive mandatory constraint. ..97

Fig. 4.10. An example of combining disjunctive mandatory constraints.........................98

Fig. 4.11. Example of uniqueness constraints..99

Fig. 4.12. Example of a frequency constraint. ...99

Fig. 4.13. An example of combining uniqueness and frequency constraints.100

Fig. 4.14. An example of combining inter-predicate uniqueness constraints.101

Fig. 4.15. Examples of set-comparison constraints. ..102

Fig. 4.16. Converting multiple exclusions into pairs of exclusions.103

List of Figures

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 4.17. Combining subset (or equality) with exclusion. ..103

Fig. 4.18. Combining subset and equality constraints. ..104

Fig. 4.19. Examples of subtype constraints: (a) total, (b) exclusive.104

Fig. 4.20. Combining subtype constraints. ..105

Fig. 4.21. Examples of ring constraints. ..106

Fig. 4.22. Relationships between ring constraints [H01]. ..107

Fig. 4.23. Subtype without a top common supertype...109

Fig. 4.24. Subtype with exclusive supertypes..110

Fig. 4.25. Unsatisfiable schemes because of the mandatory and exclusion conflicts. ...112

Fig. 4.26. Contradiction between value and frequency constraints.114

Fig. 4.27. Contradiction between value and exclusion constraints.115

Fig. 4.28. A non fact type populatable schema..116

Fig. 4.29. Main set-comparison implications [H01]. ...117

Fig. 5.1. An empty instance of the ORMSchema, as an example of ORM-ML document.

..128

Fig. 5.2. An example of an ORMMeta node, using Dublin Core metadata elements. ...129

Fig. 5.3. An example of an ORMMeta Node, using DogmaModeler metadata elements.

..130

Fig. 5.4. ORM-ML representation of an Object Type. ..131

Fig. 5.5. ORM-ML representation of subtypes..131

Fig. 5.6. A simple binary predicate and its representation in ORM-ML.132

Fig. 5.7. ORM-ML representation of nested fact types (Objectified predicates)...........133

Fig. 5.8. ORM-ML representation of Uniqueness and Mandatory constraints.134

Fig. 5.9. ORM-ML representation of the Subset constraint...135

Fig. 5.10. ORM-ML representation of the Equality constraint......................................135

Fig. 5.11. ORM-ML representation of the Exclusion constraint.135

Fig. 5.12. ORM-ML representation of the Exclusive and Totality constraint.136

Fig. 5.13. ORM-ML representation of the value constraint...136

Fig. 5.14. ORM-ML representation of the Frequency constraint...................................137

Fig. 5.15. ORM-ML representation of the Ring constraints. ...137

Fig. 6.1. A general screenshot of DogmaModeler. ..143

Fig. 6.2. Context modeling window. ...146

Fig. 6.3. Concept modeling window..147

Fig. 6.4. Incorporating existing lexical resources in gloss modeling.148

Fig. 6.5. Lexon-modeling window...149

List of Figures

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 6.6. Lexon graphical notation. ..150

Fig. 6.7. Lexon browsing...151

Fig. 6.8. Modeling application axiomatizations...154

Fig. 6.9. Mapping to ORM Subtype relationship...155

Fig. 6.10. The ORM-ML panel window. ...156

Fig. 6.11. The Pseudo NL panel window...157

Fig. 6.12. Verbalization template for the ORM Mandatory constraint.158

Fig. 6.13. Example of ORM mandatory constraint..158

Fig. 6.14. Verbalization template for the ORM Exclusive constraint............................159

Fig. 6.15. Example of an ORM Exclusive constraint. ...159

Fig. 6.16. Verbalization template for the ORM Subset constraint.160

Fig. 6.17. Example of ORM Subset constraint. ...160

Fig. 6.18. DogmaModeler’s support of Logical validations. ...162

Fig. 6.19. DogmaModeler’s support of ontological validations.163

Fig. 6.20. DogmaModeler’s support of syntax and lexical validations..........................164

Fig. 6.21. DogmaModeler’s a meta-model of the axiomatization library.....................166

Fig. 6.22. DogmaModeler’s support of axiomatization libraries.168

Fig. 6.23. DogmaModeler’s support of axiomatization libraries.169

Fig. 6.24. An example of the ORM-ML representation of a modular axiomatization,

using URIs..171

Fig. 6.25. An example of an ORM-ML representation of a modular axiomatization,

where the content of a module is included as a sub-commitment.172

Fig. 6.26. The step of generating an ontology-based web form.....................................174

Fig. 6.27. the “Xform Tree” window...174

Fig. 6.28. The resultant web form of e-Payment axiomatization...................................175

Fig. 7.1. The “Complaint Problems” application axiomatization module.188

Fig. 7.2. The “Complaint Resolutions” application axiomatization module..................190

Fig. 7.3. The “Contract” axiomatization module. ..191

Fig. 7.4. The “Complaint” application axiomatization module.192

Fig. 7.5. The “Complainant” application axiomatization module..................................192

Fig. 7.6. The “Recipient” application axiomatization module.......................................193

Fig. 7.7. The “Address” application axiomatization module. ..195

Fig. 7.8. An example of multilingual lexicalization of the CContology.201

Fig. A.1. A tree view of the elements in the ORM-ML XML Schema..........................226

Fig. A.2. ORM schema diagram example..237

List of Figures

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. B.1. ORM-Diagram, English..258

Fig. B.2. ORM-Diagram, Dutch. ...265

Fig. B.3. ORM-Diagram, Arabic. ..273

Fig. B.4. ORM-Diagram, Russian. ..280

List of Tables

Table 2.1. Ontology Engineering Requirements. ..35

Table 4.1. All possible combatable combinations or ring constraints.108

List of Figures

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Chapter 1: Introduction and Overview

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Chapter 1

Introduction and Overview

“The process of building or engineering ontologies for

use in information systems remains an arcane art form,

which must become a rigorous engineering discipline.”

- (Guarino et al., [GW02])

The central goal of this thesis is to develop methodological principles for

ontology engineering. We briefly outline the scope and motivation of the

thesis in section 1.1. In section 1.2, we summarize the main goals and

contributions of the thesis and in section 1.3, we give an overview of the

thesis outline.

1.1 Scope and motivation

The Internet and open connectivity environments create a strong demand

for the sharing of data semantics. Emerging ontologies are increasingly

becoming essential for computer science applications. Organizations are

Chapter 1: Introduction and Overview

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

beginning to view them as useful machine-processable semantics for

many application areas. Some examples of such applications are:

• e-commerce content standards [GP03][BCW97][CG01],

• bioinformatics [Gene00] [BBB+98] [KRS+02],

• geographical information systems [F97][FE99][U01][RSV98],

• regulatory and legal information systems [BVW97][GP01][JS03],

• digital libraries [SMD00][W98] [BDMW95],

• e-learning [SKC02][AKS04][VKMND04],

• agent technology [FLS96][TB01][K03],

• database design [G02] and integration [W95][WSW99],

• software engineering [DW00][WF99][M98],

• natural language processing [K96][CC03][BCW02],

• information access and retrieval [GMV99][ACFOH03][AR00],

• the Semantic Web [BF99][M04][GAC+04],

• Web services [BLA+05][NM02],

• etc.

An ontology in general, is a shared understanding (i.e. semantics) of a

certain domain, axiomatized and represented formally -as logical theory-

in a computer resource. By sharing an ontology, autonomous and

distributed applications can meaningfully communicate to exchange data

and make transactions interoperate independently of their internal

technologies. In this way, heterogeneous and distributed information

resources can be integrated and searched through mediators [TSC01]

[SOV+02].

Chapter 1: Introduction and Overview

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

In recent years, research on ontologies has turned into an interdisciplinary

subject. It combines elements of Philosophy (especially what is now

called Analytic Philosophy [S03a]), Linguistics (mainly lexical semantics

[KTT03]), Logic (in particular, first-order logic and its derivatives, e.g.

description logic [BCMNP03]), and Computer Science. Within computer

science, the research on ontologies emerged “mainly” within two

subcommunities: artificial intelligence (among scientists largely

committed to building shared knowledge bases) and database (among

scientists and members of industry who are largely committed to building

conceptual data schemes, also called semantic data models [V82]).

Unlike a conceptual data schema or a “classical” knowledge base that

captures semantics for a given enterprise application, the main and

fundamental advantage of an ontology is that it captures domain

knowledge highly independently of any particular application or task

[JDM03]. A consensus on ontological content is the main requirement in

ontology modeling, and this is what mainly distinguishes it from

conceptual data modeling. Neither an ontology nor its development

process is a single person enterprise [KN03].

1.1.1 Foundational challenges in ontology engineering

In this section, we briefly present critical challenges that face the endeavor

of the ontology development life cycle. We consider tackling these

challenges as the goal of our research.

• Ontology reusability. Reusability implies the maximization of an

ontology’s use across different kinds of applications or tasks, i.e.

among different purposes [JDM03][JM02a]. The main benefits of

ontology reuse are not only savings in time, cost, and efforts, but

also an increase in “reliability” [HV93]. A highly reusable

ontology gives the indication that it is generally accepted (it fosters

Chapter 1: Introduction and Overview

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

trust and consensus). Considering the reusability during the

development phase will assist in ensuring that the resulting

ontology to be specific for and dependent on certain purposes. The

more reusable an ontology is, the more it will be independent from

specific needs. This is an essential goal for ontology development

methodologies to guide ontology builders towards more reusability

[G97]. The main challenges that hamper ontology reusability are

1) the influence of a specific purpose (what it is made for) on the

ontology developer and 2) the difficulty of identifying and

isolating the reusable components (i.e. allowing the reuse of the

general-purpose parts of an ontology).

• Ontology application/task-independence. Ontologies are supposed

to capture semantics at the domain level and be independent of

application requirements [G97][CJB99][M99a][JDM03]. One

problem that arises when building an ontology is that there will

always be intended or expected application requirements “at hand”

(i.e. usability perspectives) which influence the independence of

ontology axioms. Different usability perspectives (i.e. different

purposes of what an ontology is made for and how it will be used)

lead to different or even to conflicting axiomatizations, although

these axiomatizations might intuitively be in agreement at the

domain level. The more an axiomatization is independent of

application perspectives, the less usable it will be. In contrast, the

closer an axiomatization is to application perspectives, the less

reusable it will be. From a methodological viewpoint, notice that if

a methodology emphasizes usability perspectives, or evaluates

ontologies based only on how they fulfill specific application

requirements, the resultant ontology will be similar to a conceptual

data schema (or a classical knowledge base) containing specific -

and thus less reusable - knowledge. Likewise, if a methodology

Chapter 1: Introduction and Overview

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

emphasizes only on the independence of the knowledge and

ignores application perspectives, the resultant ontology will be less

usable.

• Ontology evolution. The continuous growth and intensive

maintenance of emerging ontologies currently (and for the

immediately foreseeable future) are serious challenges in the

ontology development life cycle [Hj01] [KKOF02] [MMS03].

Ontologies evolve over time, due to conceptual changes,

epistemological changes, scope extensions, mistakes and quality

improvements, etc. Such changes have implication for the

applications that have committed to a changing ontology. More

significantly however, the evolution processes itself becomes more

complex in the case of large-scale ontologies. Ontologies are being

developed, reviewed, used, and maintained by different people and

experts over different times and locations. Thus, we believe that

this challenge should not only be tackled through technical or ad

hoc solutions, but through an effective foundation of ontology

engineering that enables the smooth evolution of ontologies.

Consequently, such challenges imply the importance of a solid and a

principled methodology for ontology engineering that provides guidance

for developing “true” ontologies with minimum cost, time and effort.

1.1.2 Types of methodologies

According to the guiding scenario that a methodology provides, we

distinguish between a stepwise methodology, a modeling methodology,

and an engineering methodology
1
.

1 The goal of this distinction is to motivate and understand the general scope of the

thesis.

Chapter 1: Introduction and Overview

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

A stepwise methodology divides the ontology development process into a

set of phases, and provides a series of steps and guidelines to be followed

in each phase. For example, the Methontology [FGJ97] methodology

divides the ontology development life cycle into: specification,

conceptualization, formalization, implementation, and maintenance. The

On-To-Knowledge [S03b] methodology divides it into: feasibility study,

kickoff, refinement, evaluation, and applications & evolution. As an

analogy, the development process of a software program according to the

classical “Waterfall” methodology [R70] is divided into: specification,

requirement analysis, design, implementation, and testing.

A modeling methodology is concerned with the formal analysis of a given

domain: what kinds of modeling decision need to be made and how these

decisions can be evaluated. Such domain analysis (the modeling process)

can be performed typically by means of a set of well-defined modeling

constructs and primitives, e.g. the notions of concept/class, n-ary

relations/roles, functions, properties/attributes, constraint/rule types, etc.

As an analogy, the Object Role Modeling ORM [H01], and the Enhanced

Entity Relationship EER [EN99] are modeling methodologies for building

database schemes. They provide database designers with a set of

primitives by which they can be guided to build normalized database

schemes. In ORM, for instance, the world can be analyzed and modeled as

objects-types playing roles. In addition, ORM supports a rich set of

constraint types such as mandatory, uniqueness, subsumption, equality,

exclusive, subset, ring, etc., which allow for the focus on the integrity of

data models
2
. For ontologies, the OntoClean [GW02] methodology

provides a set of metaproperties, such as essence, rigidity, identity, unity,

2 It is perhaps worthwhile to note that ORM derives from NIAM (Natural Language

Information Analysis Method), which was explicitly designed to be a stepwise

methodology arriving at "semantics" of a business application's data based on natural

language communication.

Chapter 1: Introduction and Overview

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

subsumption, instantiation, etc. These metaproperties (as a theoretical tool

or methodology) guide ontology builders to focus on and characterize the

intended meaning of the properties, classes, and relations that make up an

ontology
3
.

An engineering methodology is concerned with the design, representation,

architecture, and management aspects of ontologies. The questions it

seeks to answer include how to enable ontology reusability, usability,

maintainability, distributed development, application-independence,

scalability, etc. Engineering methodologies are not concerned directly

with modeling decisions or phases. By way of analogy, in the software

development life cycle, the object-oriented paradigm is the basis for an

engineering methodology. This paradigm provides guidance for its

adopters (software developers) by encapsulating the complexity of each

software module, thus making their products (software programs) more

reusable, maintainable, and easy to build as it.

Notice that stepwise methodologies usually are invented based on “best

practice”, and their guidance cannot easily be formally captured; cf. the

pattern approach in software development [A97b]. In comparison, as both

modeling and engineering methodologies are usually based on well-

articulated principles, they can be called principled methodologies. For

any kind of methodology, as suggested by Meersman in [JM02a], this

should imply teachability and repeatability. Indeed, a good methodology

must be easy to understand and based on broadly accepted principles.

This thesis is concerned with developing two methodological principles

for ontology engineering, with the aim of tackling the ontology

3 The OntoClean methodology is mainly concerned with the taxonomic structure of an

ontology.

Chapter 1: Introduction and Overview

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

development challenges
4
 recapped above. Our two fundamental

methodological principles are “Ontology Double Articulation” and

“Ontology Modularization”.

Although we present a research prototype of an ontology development

tool as part of this study (called DogmaModeler, see chapter 6), it is not a

goal of our methodological principles to provide technical or ad hoc

solutions. We attempt to be general enough in describing our

methodological principles, so that they can be applied across domains and

application scenarios.

For illustration purposes, we have also developed a conceptual markup

language (called ORM-ML, see chapter 5) which allows for the marking

up and serialization of ORM conceptual diagrams. However, it is not our

goal to develop an ontology language, or reasoning primitives and

services.

Further discussions on the motivation and the engineering challenges of

ontologies will be presented in chapter 2. The next section summarizes the

main goals and contributions of the thesis.

1.2 Summary of the main goals and contributions

The central goal of this dissertation is to develop methodological

principles for ontology engineering. The main concerns that distinguish

our approach are:

1. Maximization of both reusability and usability of ontologies.

2. Easing of the development and the smoothening of the evolution

of ontologies.

4 Notice that the ontology development challenges presented in this thesis mostly are

engineering challenges. See (e.g. [GW00][U96]) to know about some development

challenges that concern the modeling and stepwise methodologies.

Chapter 1: Introduction and Overview

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Because of the nature of the subject, the contributions of this dissertation

will cover a fairly broad spectrum of aspects related to ontology

engineering. Keeping in mind the central goals stated above, our

contributions can be summarized as:

• Problem specification. Several challenges in ontology engineering

are discussed and clarified. These include, the influence of

usability perspectives in ontology engineering, domain

axiomatization verses application axiomatization, the importance

of reusability, reusability vs. usability of ontologies, ontology

evolution and the importance of linguistic terms in ontology

engineering, etc.

• Methodological principles. We present two methodological

principles for ontology engineering: 1) the “ontology double

articulation” principle that suggests that ontologies be articulated

in two parts: domain axiomatizations and application

axiomatizations; 2) the “ontology modularization” principle

suggests that application axiomatizations be decomposed into a set

of smaller, related modules. The main idea of the double

articulation principle is to prevent ontology builders from

encoding and mixing their application and usability (specific)

axioms with domain axioms. While domain axiomatizations are

mainly concerned with capturing the “intended meaning” of

domain vocabularies, application axiomatizations are mainly

concerned with the “usability” of these vocabularies. As a result,

we increase both reusability and usability. To represent an

ontology according to this principle, we first introduce the notion

of ontology base, for capturing domain axiomatizations. Second,

we introduce the notion of ontological commitments to capture

application axiomatization, by which particular applications

Chapter 1: Introduction and Overview

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

commit to a domain axiomatization. The main idea of the

modularization principle is to have smaller modules of

axiomatizations, which are easier to develop, reuse, replace, and/or

maintain, etc.

Remark: Our research on ontology double articulation is based and

builds on the research that was originally conducted by Meersman

in [M99a][M99b]. In this thesis, we present fundamental

modifications, extensions, and implementation to this idea. For

example, we provide precise definitions of the double articulation,

context, concept, and introduce the notions of domain

axiomatization, gloss, upper-forms, application ontological

commitments, etc.

This study is a contribution to the DOGMA
5
 research project,

which is a research framework for modeling, engineering, and

deploying ontologies.

• Implementation: ORM-ML, DogmaModeler, and the CCFORM

case study.

ORM-ML: we have defined a conceptual markup language, called

ORM-ML, which allows representing ORM conceptual diagrams

in an open and textual syntax. By doing this, we enable the reusing

of conceptual data modeling methods and tools -mainly ORM- for

modeling, representing, visualizing, and verbalizing application

axiomatizations [JDM03].

DogmaModeler: Based on the ideas presented in this thesis, we

have developed an ontology engineering tool, called

DogmaModeler. It supports among other things: (1) the

development, browsing, and management of domain and

5 DOGMA stands for “Development of Ontology Guided Methodology Approach”.

Chapter 1: Introduction and Overview

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

application axiomatizations, and axiomatization libraries; (2) the

modeling of application axiomatizations using the ORM graphical

notation, and the automatic generation of the corresponding ORM-

ML; (3) the verbalization of application axiomatizations into

pseudo natural language (supporting flexible verbalization

templates for English, Dutch, Arabic, and Russian, for example)

that allows non-experts to check, validate, or build

axiomatizations; (4) the automatic composition of axiomatization

modules, through a well-defined composition operator; (5) the

validation of the syntax and semantics of application

axiomatizations; (6) an illustration of the process of incorporating

lexical resources in ontology modeling; (7) a simple approach of

multilingual lexicalization of ontologies; (8) the automatic

mapping of ORM schemes into X-Forms and HTML-Forms; etc.

CCFORM case study: The methodological principles and their

support tool have been successfully applied in a number of

national and European projects such as CCFORM, FFPOIROT,

SCOP, etc. To end, we report our experience and main

achievements in applying our methodological principles and tool

in the CCFORM project, for developing a multilingual Customer

Complaint ontology (CContology) [JVM03].

1.3 Thesis outline and structural overview

The thesis is organized in four main parts. We specify the problem,

propose a solution, and show an implementation of this solution before

concluding appropriately.

Part I Problem Specification

Chapter 2 (Problem specification). In this chapter we present an

extended motivation for the goals of this thesis. We discuss and

Chapter 1: Introduction and Overview

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

specify several challenges in ontology engineering. We clarify and

define some terminology used in this thesis.

Part II: Methodological Principles

Chapter 3 (Ontology Double Articulation). In this chapter, we discuss

the “Ontology Double Articulation” methodological principle. We

examine the general properties of domain axiomatization verses

application axiomatization. We introduce the notion of an ontology

base, the notion of an ontological commitment; and show how

particular applications commit to the ontology base through

ontological commitment(s). The importance of lexical resources in

ontology engineering are discussed and incorporated.

Chapter 4 (Ontology Modularization). This chapter introduces the

“Ontology Modularization” methodological principle. We first present

its advantages (e.g. reusability, maintainability, distributed

development, etc.). Then we introduce and discuss a set of criterion,

which are necessary for achieving an effective modularization. We

define a composition operator for composing axiomatization modules.

At the end of this chapter, we present an algorithm for composing

ORM schemes (seen as application axiomatization modules).

Part III: Implementation Aspects and Case Study

Chapter 5 (ORM Markup Language). In this chapter we define the

ORM Markup Language. The motivation for choosing ORM for

modeling and representing application axiomatizations is explained.

Chapter 6 (DogmaModeler Ontology Engineering Tool). We present

the software that we have built to demonstrate the implementation of

the two methodological principles. The functionalities supported in

DogmaModeler are also discussed.

Chapter 1: Introduction and Overview

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Chapter 7 (CCFORM Case Study). In this chapter, we present a case

study of the development of a customer complaint ontology using our

methodological principals and the DogmaModeler tool. This ontology

itself and the lessons we learnt in applying our methodological

principles and tool will be presented and discussed.

Part IV: Conclusions

Chapter 8 (Conclusions and Future Work). This chapter summarizes

the main ideas of this thesis, and suggests directions for future work.

Appendices: Appendix A lists the XML Schema of the ORM markup

language. Appendix B lists the DogmaModeler ontology Metadata, An

XML-Schema of the ORM-ML graphical style sheets, and 5 ORM

Verbalization Templates. Appendix C lists the Customer Complaint

ontology (CCglossary, CC lexons, and seven application axiomatization

modules). Finally, appendix D presents a glossary of the terminology that

we often use in this thesis.

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Part I

Problem specification:

Fundamental challenges in

ontology engineering

“Semantics is a grand challenge for the current

generation of computer technology”

-(David Embley, [E05])

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Chapter 2: Foundational challenges in Ontology Engineering

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Chapter 2

Fundamental Challenges in

Ontology Engineering

“The most important task for the new information systems ontology

pertains to what we might call the Database Tower of Babel problem.

Different groups of data- and knowledge-base system designers have for

historical and cultural and linguistic reasons their own idiosyncratic terms

and concepts by means of which they build frameworks for information

representation. Different databases may use identical labels but with

different meanings; alternatively the same meaning may be expressed via

different names. As ever more diverse groups are involved in sharing and

translating ever more diverse varieties of information, the problems

standing in the way of putting such information together within a larger

system increase geometrically.”

 -(Barry Smith, [S02])

This chapter presents an extended analysis of the goals of this thesis and

the motivation driving this endeavor. We investigate and specify several

challenges in ontology engineering. Section 2.1 discusses the significance,

and challenges of ontology reusability. In section 2.2, we introduce and

discuss the most challenging issue in ontology engineering: the

application-independence of ontologies. In section 2.3, we clarify some

Chapter 2: Foundational challenges in Ontology Engineering

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

ontology evolution challenges. To end, section 2.4 draws some

conclusions and derives the main ontology engineering requirements.

2.1 Ontology reusability

Although the role of ontology in information systems is well appreciated

in the literature, little attention has been given to research on ontology

reusability. Approaches to ontology reusability remain ad hoc. The aim of

this section is to discuss what ontology reusability means, the key benefits

of reuse, and the main challenges that hamper ontology reusability.

Reusability is one of the most significant aspects in engineering and

manufacturing in general. For example, realizing the value of this,

software engineers have developed libraries of software routines that are

common to different programs to save themselves from having to recode

the same routines time and again. In the problem-solving research
6
, the

importance and techniques of knowledge reusability have been researched

to improve the reusability of “problem solving methods” [R00]. Several

researchers (e.g. Chandrasekaran and Johnson [CJ93], Clancey [C92], or

Swartout and Moore [SM93]) proposed the idea of structuring knowledge

into different levels of abstraction. Steels in [S93] proposed a

componential framework that decomposes knowledge into reusable

components. Many believed that building large knowledge bases would

only be possible if efforts are combined (Neches et al. in [PFP+92]). A

unified framework to enable and maximize knowledge reusability is

advisable.

Supporting and enabling knowledge reusability is an important goal of

building ontologies ([UG96] [GPB99] [G95]). Notice that ontology

usability is subtly different from ontology reusability. Increasing the

6 This research area was -active in the 80s- focusing on the development of the so-called

the next generation of expert systems.

Chapter 2: Foundational challenges in Ontology Engineering

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

reusability of knowledge implies the maximization of its usage among

several kinds of tasks. Increasing ontology usability could just mean

maximizing the number of different applications using an ontology for the

same kind of task
7
. The intended use of the term ‘task’, in this thesis, is

related and limited to the inferential knowledge that is required to describe

a task to be performed. It does not describe dynamic or temporal aspects
8
.

An application may perform one or more kinds of tasks. In this thesis, the

term task is often interchanged with the ‘application’ that performs one

kind of task. We sometimes use the term generic task to refer to a highly

reusable task.

2.1.1 Significance of ontology reusability

The main benefits of ontology reuse are:

• Savings in time, cost, and efforts. Instead of constructing an

ontology from scratch and repeating the efforts that have already

been spent elsewhere to capture and creating the same knowledge,

one may reuse an existing ontology or some parts of it
9
. This

implies the construction of sharable ontology libraries, such that

one can easily search, identify and reuse ontology modules that fit

his/her purposes.

7 For example, compare a Bibliography ontology used by 1000 applications performing

the same kind task (e.g. bookselling) with another ontology (of the same subject-matter)

used by 100 applications performing different kinds of tasks (e.g. bookselling,

borrowing, publishing, etc.). While the former is highly used, the latter is highly reused.
8 For example, “online bookselling” is a task that can be described by a static knowledge

elements or propositions such as: IsA(Book, Product), PublishedBy(Book, Publisher),

ValuatedBy(Book, Price), RequestOf(Order, Book), Issues(Customer, Order),

SetteledVia(Order, Payment-method), etc.
9 For example, suppose one wishes to build an ontology of Online Bookstores, he/she

may reuse several parts from other existing ontologies of e.g. Customers, Order,

Payment-methods, Shipping, etc. which might be developed for and deployed in other

application scenarios.

Chapter 2: Foundational challenges in Ontology Engineering

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

• Increasing reliability [HV93]. A reusable ontology gives

indication that it is approved and generally accepted (i.e. trust and

consensus)
10

.

• They constitute an important quality factor. Taking reusability into

account during the development phase helps avoid that the

resulting ontology to be specific for and dependent on certain

purposes (i.e. “requirements at hand”). Pursuing ontology

reusability, in the early development phases, will help prevent the

ontology from reflecting a particular data model or from being

suitable only for one application, etc.

2.1.2 Reusability challenges

In the following, we discuss the fundamental challenges that hamper

ontology reusability.

The main concern that restricts ontology reuse is the dependency on the

purpose that an ontology is made for. Although ontologies are intended to

capture knowledge at the domain level
11

, the axiomatization of knowledge

can be noticeably influenced by the purpose that this knowledge is made

for and how it will be used. In other words, when axiomatizing a domain,

several kinds of usability perspectives are usually taken into account (e.g.

granularity, scope and relevancy, reasoning/computational scenario, etc.).

Thus, when using knowledge for a different purpose (i.e. reusing), the

usability perspectives for both purposes may differ or clash. Ontology

reusability will be restricted depending on how different the usability

perspectives are. We shall investigate this issue in section 2.2 since it is

10 For example, suppose an ontology of payment methods is used in 1000 application

scenarios and another ontology of the same subject matter is used only in 3 scenarios.

The repeated use of the former ontology gives indication that it is widely accepted and

there is a consensus about it, and it has been adequately tested and improved.
11 See Appendix D for the definition of “domain level”.

Chapter 2: Foundational challenges in Ontology Engineering

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

related to what we call ontology application-independence, or reusability

verses usability.

Another important reusability concern is the difficulty of identifying and

isolating the reusable components; i.e. allowing the general-purpose parts

of an ontology to be reused instead of reusing the whole ontology. An

ontology - in the common practice of ontology engineering - is being

represented as one module. Internal couplings in knowledge structure (e.g.

relationships between concepts, concept definitions, etc.) make it difficult

for the general-purpose parts to be isolated and reused. For example,

suppose one has a previously constructed a bookstore ontology that

describes books, orders, shipping methods, payment methods, etc. It

should be easy when building a new car-rental ontology to reuse for

example, the payment aspects, since both Bookstore and Car-Rental

ontologies share parts of a same axiomatization about payment methods.

Ontology representation frameworks and languages should support

modeling primitives that allow the representation of ontologies in a

modular manner so that one can easily (de)compose modules.

Consequently, we believe that the capability of ontology reuse strongly

depends on the design and engineering of the ontology representation

model.

2.1.3 Conclusion

In this section we have defined what ontology reusability means,

discussed the significance of ontology reusability as a fundamental

requirement in ontology engineering; and clarified the main foundational

challenges that restrict ontology reusability.

Based on the reusability challenges stated above, we derive the following

ontology engineering requirements:

Chapter 2: Foundational challenges in Ontology Engineering

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

• Ontologies should be engineered in a way that allows the isolation

and identification of the reusable parts of an ontology.

• The influence of usability perspectives on ontology axioms should

not be emphasized during the ontology development phases
12

.

In the next section, we proceed to discuss another related ontology

engineering challenge.

2.2 Ontology application-independence

In this section, we discuss another fundamental ontology engineering

challenge. We examine to what extent one can build an ontology

independently of application requirements. Then, we discuss ontology

reusability verses ontology usability before presenting the work done by

other researchers in relation to this challenge. To end, we draw some

important requirements for ontology engineering.

Ontologies are supposed to capture knowledge at the domain level

independently of application requirements [G97] [GB99] [CJB99]. This is

in fact, the main and most fundamental asset of an ontology. The greater

the extent to which an ontology is independent of application

requirements, the greater its reusability, and hence, the ease at which a

consensus can be reached about it. Guarino argued in [G97] that:

“Reusability across multiple tasks or methods should be

systematically pursued even when modeling knowledge related to a

single task or method: the more this reusability is pursued, the closer

we get to the intrinsic, task-independent aspects of a given piece of

reality (at least, in the commonsense perception of a human agent).”

12 This requirement will be revisited and extended in the next section, we shall discuss

the influence of usability perspectives in more detail.

Chapter 2: Foundational challenges in Ontology Engineering

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Ontology application-independence is not limited to the independence of

implementation requirements - it should also be considered at the

conceptual level. For example, notice that application-independence is the

main disparity between an ontology and a conceptual data schema (e.g.

EER, ORM, UML, etc.) although both capture knowledge at the

conceptual level [JDM03]. Unlike ontologies, when building a conceptual

data schema, the modeling decisions depend on the specific needs and

tasks that are planned to be performed within a certain enterprise, i.e. for

“in-house” usage.

The problem is that when building an ontology, there will always be

intended or expected usability requirements -“at hand”- which influence

the independency level of ontology axioms. In the problem-solving

research community, this is called the interaction problem. Bylander and

Chandrasekaran argue that:

“Representing knowledge for the purpose of solving some

problem is strongly affected by the nature of the problem and

the inference strategy to be applied to the problem.” [BC88]

The main challenge of usability influence is that different usability

perspectives (i.e. different purposes of what an ontology is made for and

how it will be used) lead to different - and sometimes conflicting -

axiomatizations although these axiomatizations might agree at the domain

level.

2.2.1 Example

The following example illustrates the influence of some usability

perspectives when modeling Bibliography ontologies.

We present two ontologies within the same Bibliography domain:

ontology A in fig. 2.1 and ontology B in Fig. 2.2. Suppose that both

ontologies are built separately; ontology A is built and used within a

Chapter 2: Foundational challenges in Ontology Engineering

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

community of bookstores, and ontology B is built and used within a

community of libraries
13

.

We will show that although both ontologies intuitively agree at the

domain level, they differ formally because of the differences in their

communities’ usability perspectives. To this end, we argue that building

ontologies under the strong influence of usability perspectives leads to

more application-dependent, and thus less reusable ontologies.

Fig. 2.1. Ontology A.

Fig. 2.2. Ontology B.

In the following, we examine the influence of usability perspectives on the

modeling decisions of both conceptual relations
14

 and ontology rules,
15

respectively.

13 Notice that the goal of this example is neither to discuss the Bibliography domain

itself, nor to present adequate an ontology - we use it only for illustration purposes.
14 See appendix D for the definition of “conceptual relation”.

Chapter 2: Foundational challenges in Ontology Engineering

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

On modeling conceptual relations. The concept ‘Author’ in ontology B is

attributed with the ‘First Name’ and the ‘Last Name’ concepts. Such details

(i.e. granularity) are not relevant to bookstore applications; they are not

specified in ontology A. Similarly, unlike ontology A, the pricing

relations {Valuated-By(Book, Price), Amounted-To(Price, Value), Measured-

In(Price, Currency)} are not relevant for library applications, so they are not

specified in ontology B.

From such differences, one can see that deciding the granularity level and

the scope boundaries depend on the relevance to the intended (or

expected) usability. Although such differences do not necessarily

constitute a disagreement between both axiomatizations, they hamper the

reusability of both ontologies. In order to reuse such ontologies, the

reusing applications need to make some adaptations, viz. introducing the

incomplete knowledge and dismissing the “useless” knowledge that

normally distracts and scales down the reasoning/computational

processes.

On modeling ontology rules. Notice that both ontologies in the example

above do not agree on the notion of what is a “Book”. Although both

ontologies agree that the ISBN is a unique property for the concept book

(see the uniqueness rules
16

), they disagree whether this property is

mandatory for each instance of a book. Unlike ontology B, ontology A

axiomatizes that each instance of a book must have an ISBN value (see

the mandatory rule
17

). This rule implies for example that “PhD Theses” or

“Manuals”, etc. would not be considered instances of books in ontology A

15 See appendix D for the definition of “ontology rule”.
16 The uniqueness rule in ORM is equivalent to 0:1 cardinality restriction. (notation:

‘ ’), it can be verbalized as “each book must have at most one ISBN”.
17 The mandatory rule in ORM is equivalent to 1-m cardinality restriction. (notation: ‘ ’),

it can be verbalized as “each book must have at least one ISBN”.

Chapter 2: Foundational challenges in Ontology Engineering

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

because they do not have an ISBN, while they would be under ontology

B.

One can see from this example that modeling the ISBN as mandatory

property for all instances of the concept book is naturally affected by

bookstores’ business perspective. Obviously, bookstores communicate

only the books “that can be sold” and thus “commercially” should have

ISBN, rather than perusing the notion of book at the domain level.

Nevertheless, at the domain level, both bookstore and library applications

intuitively share the same concept of what is really a book. For example,

suppose that one assigns an ISBN for an instance of a “PhD Thesis”. This

instance can then be considered as a book for bookstores. If however, the

ISBN is removed for an instance of a book, then this instance will no

longer be a book, even though it still refers to the same real life object and

is still being referred to and used as a book.

Accordingly, as ontology rules are supposed to formally specify/constrain

the permitted models
18

 that can necessarily hold for a given domain [F02],

determining such rules, in practice is dominated by “what is permitted and

what is not” for the intended or expected usability.

Furthermore, besides the modeling decisions of ontology rules, the

determination of the number and the type of these rules (the reasoning

scenario) are also influenced by usability perspectives. For example, a

light-weight axiomatization (e.g. with a minimum number of rules or

formalities) might be sufficient if the ontology is to be accessed and used

by people (i.e. not computers). Depending on the application scenario,

other types of ontology rules (i.e. modeling primitives/constructs) might

be preferred, over the ORM set of rules (which are easier to reason for

database and XML based applications).

18 Also called “ontology models” as in [G95].

Chapter 2: Foundational challenges in Ontology Engineering

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

At this point, we conclude that even application-types might intuitively

agree on the same semantics at the domain level, but the usability

influence on axiomatizing this semantics may lead to different (or even

conflicting) axiomatizations. An axiomatization might be more relevant

for some applications than others, due to the difference of their usability

perspectives. This issue presents an important challenge to the nature and

the foundation of ontology engineering.

2.2.2 Related work

Guarino and his co-authors have argued (in e.g. [G98a][G97]) that in

order to capture knowledge at the domain level, the notion of what is an

ontology should be more precisely defined. Gruber’s commonly used

definition, [G95], of an ontology is of “an explicit specification of a

conceptualization”, referring to an extensional ("Tarski-like") notion of a

conceptualization as found e.g. in [GN87]. Guarino and his collaborators

point out that this definition per se does not adequately fit the purposes of

an ontology. They argue, in our opinion correctly, that a conceptualization

should not be extensional because a conceptualization benefits from

invariance under changes that occur at the instance level and from

transitions between different “states of affairs”
19

 in a domain. They

propose a conceptualization as an intensional semantic structure i.e.

abstracting from the instance level, which encodes implicit rules

constraining the structure of a piece of reality
20

. Therefore, “an ontology

only indirectly accounts for a conceptualization”. In other words, an

ontology becomes a logical theory which possesses a conceptualization as

an explicit, partial model. Furthermore, they have proposed the OntoClean

methodology for evaluating ontological decisions [GW02]. The

methodology consists of a set of formal notions that are drawn from

19 See Appendix D for the definition of “state of affairs”.
20 See e.g. the definition of “extensional verses intensional semantics” in appendix D.

Chapter 2: Foundational challenges in Ontology Engineering

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Analytical Philosophy and called metaproperties. Such metaproperties

include rigidity, essence, identity, unity, and dependence. The idea of

these notions is to focus on the intrinsic properties of the concepts, which

are application-independent.

Following Guarino et al’s ontology definition and their associated

OntoClean methodology, one can see in the previous example that the two

axiomatizations should not be seen as different ontologies since they only

differ on their description of extensions i.e. states of affairs. Both

axiomatizations implicitly share the same intensional semantic structure or

conceptualization. Furthermore, the ISBN is an extrinsic property (i.e. not

intrinsic)
21

 since it is not rigid
22

 for all instances of the concept book.

Therefore, it cannot be used to specify the intended meaning of a book at

the domain level.

An important problem of the OntoClean methodology, in our opinion, is

its applicability. It relies on deep philosophical notions that (1) in practice

are not easy or intuitive to utilize - at least for “nonintellectual” domain

experts; and (2) it only focuses on the intrinsic properties of concepts and

such properties are often difficult to articulate. For example, how to

formally and explicitly articulate the identity criteria of a book (or person,

brain, table, conference, love, etc.). Guarino and Welty state in [WG01]:

“We may claim as part of our analysis that people are uniquely identified

by their brain, but this information would not appear in the final system

we are designing”. In short, it would seems that OntoClean can be applied

21 To understand the difference between intrinsic and extrinsic properties, the following

is a quotation taken from [GW00]: “An intrinsic property is typically something inherent

to an individual, not dependent on other individuals, such as having a heart or having a

fingerprint. Extrinsic properties are not inherent, and they have a relational nature, like

“being a friend of John”. Among these, there are some that are typically assigned by

external agents or agencies, such as having a specific social security number, having a

specific customer i.d., even having a specific name.”
22 “A property is rigid if it is essential to all its possible instances; an instance of a rigid

property cannot stop being an instance of that property in a different world” [WG03].

Chapter 2: Foundational challenges in Ontology Engineering

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

mainly by highly trained intellectuals for domain analysis and ontological

checks
23

.

2.2.3 Ontology usability is also important

There is another factor that should not be ignored, especially with regards

to the philosophically inspired research on ontologies (or the so-called

“philosophical ontology” as in [S03a]). In keeping with current views in

the field of information technology, ontologies are to be shared and used

collaboratively in software applications. This gives even more weight to

the importance of ontology usability.

2.2.4 Conclusion

The closer an axiomatization is to certain application perspectives, the

more usable it will be. In contrast, the more an axiomatization is

independent of application perspectives, the more reusable it will be. In

other words, there is a tradeoff between ontology usability and ontology

reusability.

From a methodological viewpoint, if a methodology emphasizes usability

perspectives or evaluates ontologies based on how they fulfill specific

application requirements, the resulting ontology will be similar to a

conceptual data schema (or a classical knowledge base) containing

application specific and thus, less reusable knowledge. Likewise, if a

methodology emphasizes the independency of the knowledge, the

resulting ontology in general will be less usable, since it has no intended

use by ignoring application perspectives.

Based on the above, we propose the following ontology engineering

requirement:

23 See [GGO02] for a successful application of OntoClean on cleaning up

WordNet[M95].

Chapter 2: Foundational challenges in Ontology Engineering

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

• The influence of usability perspectives on ontology axioms should

be well articulated, pursuing both reusability and usability.

To fulfill this requirement, in Chapter 3 we will propose the ontology

double articulation principle. Concisely, an ontology is double-articulated

into domain axiomatization and its application axiomatizations. While a

domain axiomatization is concerned with capturing the intended meaning

of domain vocabularies (which is supposed to be reusable), application

axiomatizations are mainly concerned with the usability of these

vocabularies.

We are now ready to analyze the third ontology engineering challenge:

ontology evolution.

Chapter 2: Foundational challenges in Ontology Engineering

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

2.3 Ontology evolution

The continuous growth and intensive maintenance of ontologies are

serious concerns in the ontology development life cycle. Ontologies

evolve over time [KKOF02], due to conceptual changes, epistemological
24

changes, scope extensions, mistake corrections and quality enhancements,

etc. Furthermore, ontologies evolve in a distributed environment through

interactions by different people over different locations [BHGSS03].

Current research on ontology evolution focuses mainly on treating the

implication of changes on the applications that are committing to a

“changed” ontology, more than dealing with the evolution process itself.

Change to an ontology has operational consequences for running

applications – for example, consider the implications of changes on a

database schema [VH91]. Various mechanisms have been proposed to

tackle the impact of changes by separating the changes into new versions

or layers, see e.g. [Hj01] [KKOF02] [MMS03].

Not only the implications of evolution, but also the evolution process

“itself” becomes more complex in case of large-scale and distributed

ontologies. In this thesis, we focus only on clarifying and tackling

foundational (i.e. not technical) challenges in ontology evaluation.

2.3.1 The complexity of change

Before modifying or extending an ontology, one needs to carefully

understand the intended meaning of all existing concepts and axioms. In

case of large-scale ontologies, this process becomes more complex

because (1) of the internal couplings among axioms and the large number

of them; (2) the large-scale ontologies are usually built by different people

and capture knowledge across domains and subjects.

24 See appendix D for the definition.

Chapter 2: Foundational challenges in Ontology Engineering

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

As ontology axioms only indirectly account for a conceptualization

[G98a], a large part of the intended meaning of the ontology concepts will

remain implicit between ontology developers. It will be difficult for

different ontology developers, especially those with different backgrounds

working in different time periods to know what was originally intended,

or what the modeling decisions and choices were. To a large extent, the

literal interpretations of the concepts labels (i.e. terms) will be considered

rather than what was originally intended, especially in case of a light-

weight ontology axiomatization.

Accordingly, in order to achieve efficient maintenance, critical

assumptions that are important because they make clear the factual

meaning of an ontology vocabulary should be rendered as part of the

ontology. Such an attachment - even if added informally - would facilitate

both users' and developers' commonsense perception of the subject

matter. It is important, not only for future maintenance but also advised

for the collaborative and distributed development of ontologies. To fulfill

this engineering requirement, we shall introduce the notion of gloss to

ontology engineering in chapter 3. A gloss is supposed to render

informally the factual knowledge that is critical to understanding a

concept, but that is unreasonable, irrelevant, or very difficult to formalize

and articulate explicitly.

2.3.2 Distributed evolution

Ontology development and maintenance is not a single-person effort.

Adequate ontologies are normally built, reviewed, and maintained by

several types of knowledge experts [SK03]. For example, our experience

in building a “Customer Complain Ontology”, reported in chapter 7,

shows that some parts of the ontology - specifically those that capture

knowledge about customer regulations - should be built and evaluated by

lawyers. The classification of complaint problems and resolutions should

Chapter 2: Foundational challenges in Ontology Engineering

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

be performed by market and ADR
25

 experts. The whole ontology needs to

be reviewed by CRM
26

 application experts and other such professionals.

Engineering such collaborations is a challenge, especially in the case of

large-scale and multi-domain ontologies. First, the development and

maintenance processes need to be divided and distributed among the

contributors according to their expertise; second, the contributions of the

experts need to be integrated and this is not an easy task.

Several software environments have been proposed to enable the

distributed development of ontologies, such as [SKKM03], [MMS03], and

[TTN97]. We believe that instead of (or complementary to) developing

such ad hoc tactics for tackling this issue, the ontology representation

model itself should be capable of distributed development and smooth

evolution
27

. As an analogy, compare the capability of distributing the

development of a program built in Pascal with a program built in JAVA

i.e. procedural verses object-oriented distributed software development.

2.3.3 Alternative axiomatizations

Alternative axiomatizations are different formalizations of the same

subject-matter. They reflect different usability perspectives. As we have

discussed in section 2.2, an axiomatization might be more relevant or

usable for one application than another. In many cases, the irrelevance

might only apply to certain portions and not the whole axiomatization. For

example, the creators of different applications may prefer to alter the

axiomatization of the notion of ‘address’ within an ontology depending on

how addresses are structured in their country of service.

25 ADR stands for Alternative Dispute Resolution.
26 CRM stands for Customer Relationship Management.
27 In chapter 4 and 5, we shall discuss and illustrate how the double-articulation and the

modularization engineering principles aim to fulfill this requirement.

Chapter 2: Foundational challenges in Ontology Engineering

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

The main advantages of allowing easy interchange of ontology parts (i.e.

replacing parts), in general, are:

1. Enabling ontology users and maintainers to interchange ontology

parts with others that are more relevant, reliable, accurate, etc.

2. Enabling “Natural” ontology evolution: successful axiomatizations

in certain domains will likely become popular and evolve into the

trusted de facto semantics.

Still, the way an ontology is represented and engineered currently does not

allow for an easy interchange of it parts as it is being built and used as one

component. Alternating the axiomatization of ontology parts demands that

the ontology be represented and engineered as a configurable set of

modules; rather than as one large and complexly interrelated component
28

.

2.3.4 Conclusion

In this section, we have presented important engineering challenges in

ontology evolution: complexity of change, distributed development, and

alternating axiomatizations.

Based on the above challenges, we draw the following ontology

engineering requirements:

• Critical assumptions that make clear the factual meaning of an

ontology vocabulary should be rendered as part of the ontology,

even if informally, to facilitate both users' and developers'

commonsense perception of the subject matter.

• The ontology representation model should be capable of

distributed and collaborative development.

28 We shall discuss ontology modularization in chapter 5, and illustrate (de/)compose of

ontological modules.

Chapter 2: Foundational challenges in Ontology Engineering

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

• Ontologies should be engineered in a way that enables smooth and

efficient evolution.

• Ontologies should be engineered in a way that allows for easy

replacement of ontology parts.

2.4 Summary

In this chapter, we have focused on clarifying several foundational

challenges in ontology engineering: ontology reusability, ontology

application-independence, and ontology evolution
29

. Based on these

challenges, we summarize the main ontology engineering requirements in

the table below:

No. Requirement

R1.
Ontologies should be engineered in a way that allows the

isolation and identification of the reusable parts of the ontology.

R2.

The influence of usability perspectives on ontology axioms

should be well articulated, in pursuit of both reusability and

usability.

R3.

Critical assumptions that make clear the factual meaning of an

ontology vocabulary should be rendered as part of the ontology,

even if informally, to facilitate both users' and developers'

commonsense perception of the subject matter.

29 We are aware of other foundational challenges in ontology engineering that are not

discussed due to the limited focus of our research. Such challenges include that of

ontology multilingualism and ontology integration. We have developed modest

methodological guidelines for developing multilingual lexicalization of ontologies. These

guidelines are presented briefly in chapter 7, as part of our case study. Furthermore,

[K04] [VDZ04] show some advantages and applications of our methodological

principles in ontology integration.

Chapter 2: Foundational challenges in Ontology Engineering

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

R4.
The ontology representation model should be capable of

distributed and collaborative development.

R5.
Ontologies should be engineered in a way that enables smooth

and efficient evolution.

R6.
Ontologies should be engineered in a way that allows for the

easy replacement of ontology parts.

Table 2.1. Ontology Engineering Requirements.

As outlined earlier, this thesis is structured in three parts. We specify the

problem, propose a solution, and show an implementation of this solution.

In this chapter, we have specified the ontology engineering challenges and

derived some engineering requirements. Fulfilling these requirements is

the goal of our methodological principles and we present these in the next

part of this thesis.

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Part II

Methodological principles

The term ‘methodology’ means:

“New Latin methodologia, from Latin methodus + -logia –logy

1)a body of methods , rules, and postulates employed by a

discipline : a particular procedure or set of procedures. 2) the

analysis of the principles or procedures of inquiry in a particular

field.”

-(Merriam-Webster Online Dictionary)

In this part, we introduce our methodological principles for ontology

engineering, namely the ontology double articulation principle (chapter 3)

and the ontology modularization principle (chapter 4).

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Chapter 3

Ontology Double Articulation

“Syntax is merely a necessary device by which we attach

semantics to the representation, and it makes little sense to claim

that a representation formalism is semantically more powerful

merely because it has more syntactical constructs …”

-(Robert Meersman, [M95],)

This chapter presents the first engineering principle: ontology double

articulation (a domain axiomatization and its application axiomatizations).

Section 3.1 quickly introduces the double articulation principle. In section

3.2, we present and discuss the general properties of domain

axiomatization. Section 3.3 introduces the notion of ontology base for

capturing domain axiomatizations. In section 3.4 we discuss the nature of

application axiomatizations, and introduce the notion of application

ontological commitments. Finally, section 3.5 summarizes the main

advantages that can be gained and the engineering requirements that can

be fulfilled by the double articulation principle.

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

3.1 Introduction

In this section, we schematically introduce and illustrate the principle and

its general idea. Further details follow.

The goal of the ontology double articulation principle
30

, mainly, is to

fulfill the R2 engineering requirement: The influence of usability

perspectives on ontology axioms should be well articulated, in pursuit of

both reusability and usability.

As we have noted earlier, our research on ontology double articulation is

based on the research conducted by Meersman in [M99a] [M99b] within

the DOGMA project. In this chapter we introduce fundamental changes

and extensions.

The term “double articulation”, in this thesis, simply means expressing

knowledge in a twofold axiomatization. See section 3.2 for the formal

definition and details. The term “articulation” in WordNet means:

“Expressing in coherent verbal form”, “The shape or manner in which

things come together and a connection is made”, etc. In the semiotics and

linguistics literature, the term “double articulation” has been introduced

by [N90][M55]
31

 (which has a different meaning and usage than ours) to

refer to the distinction between lexical and functional unites of language

or between content and expression.

3.1.1 Overview of the double articulation principle

The ontology double articulation principle, in nutshell, is that: an ontology

is doubly articulated into: domain axiomatization and application

axiomatizations. While a domain axiomatization is mainly concerned with

30 In this chapter, we, sometimes, refer to this principle as “the principle” or “this

principle”.
31 We are grateful to Dr. Peter Spyns for drawing our attention to this analogy and

introduction of this term.

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

characterizing the “intended meanings” of domain vocabulary (typically

shared and public), an application axiomatization (typically local) is

mainly concerned with the usability of these vocabularies. The double

articulation implies that all concepts and relationships introduced in an

application axiomatization are predefined in its domain axiomatization.

Multiple application axiomatizations (e.g. that reflect different usability

perspectives, and that are more usable) share and reuse the same

intended meanings in a domain axiomatization.

To translate this principle into software architecture, see DOGMA
32

, we

adopt (and extend) the notion of ontology base [M99a] for capturing

domain axiomatizations; and we introduce the notion of application

axiomatization, by which particular applications commit to an ontology

base. An ontology therefore can be seen as an ontology base and a layer

of ontological commitments, i.e. a domain axiomatization and its

application axiomatizations, see fig. 3.1.

Fig. 3.1. Ontology Double Articulation.

32 See http://www.starlab.vub.ac.be/research/dogma.htm (March 2005)

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

The ontology base is intended to capture domain axiomatizations. It

basically consists of a set of binary conceptual relations [M99a]. The

lexical rendering of a binary conceptual relation is called lexon. A lexon is

described as a tuple of the form <γ: Term1, Role, InvRole, Term2>, where Term1

and Term2 are linguistic terms. γ is a context identifier, used to bound the

interpretation of a linguistic term into a concept. For each context γ and

term T, the pair (γ, T) is assumed to refer to a concept. Role and InvRole

are lexicalizations of the pair roles of a binary relationship R, e.g.

HasType/IsTypeOf.

The commitment layer consists of a set of application axiomatizations.

Particular applications commit to the ontology base through an application

axiomatization. Such a commitment is called application ontological

commitment
33

. Each application axiomatization consists of: (1) a set of

lexons from an ontology base; (2) a set of rules to constrain the usability

of these lexons.

3.1.2 Example

In this example, we revisit the bibliographic example that we presented in

section 2.2. Fig. 3.2 shows a Bibliography ontology base.

33 We sometimes use the notion of “application ontological commitment” and the notion

“application axiomatization” interchangbly in this thesis. It is also worth to note that the

notion of “ontological commitment” as found in [GG95] generally refers to a

“conceptualization”, literally, it is defined as “a partial semantic account of the intended

conceptualization of a logical theory.”

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 3.2. A bibliography ontology base.

The illustrations in figures 2.1 and 2.2 are seen as two application

axiomatizations (Bookstore and Library axiomatizations) by which

particular applications make a commitment to and share the same

Bibliography ontology base (see figure 3.3). Notice that all conceptual

relations in both application axiomatizations correspond to (or are

derived from) lexons in the Bibliography ontology base. In this way,

different application axiomatizations share and reuse the same intended

meaning of domain concepts.

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 3.3. Particular applications committing to an ontology base through their application

axiomatizations.

3.2 Domain Axiomatization

In the previous section, we have briefly introduced the ontology double

articulation principle. In this section, we discuss
34

 the general properties

of domain axiomatization
35

, viz. the nature and the level of details that are

appropriate to characterize domain concepts.

As we have discussed in section 2.2, decreasing the influence of usability

perspectives is a principal engineering requirement when axiomatizing

domain concepts. To capture knowledge at the domain level, one should

focus on characterizing the intended meaning of domain vocabularies (i.e.

domain concepts), rather than on how and why these concepts will be

used. A domain axiomatization becomes an axiomatic theory that only

includes the axioms that account for (i.e. characterize) the intended

meaning of the domain vocabularies.

34 Our style of discussion in this section is inspired by the style used by Nicola Guarino

and Barry Smith to discuss what is an ontology, conceptualization, etc.
35 These properties are summarized at the end of this section.

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

This motivates us to understand the relationship between a domain

vocabulary and the specification of its intended meaning in a logical

theory.

In general, it is not possible to build a logical theory to specify the

complete and exact intended meaning of a domain vocabulary
36

. Usually,

the level of detail that is appropriate to explicitly capture and represent it

is subject to what is reasonable and plausible for domain applications.

Other details will have to remain implicit assumptions. These assumptions

are usually denoted in linguistic terms that we use to lexicalize concepts,

and this implicit character follows from our interpretation of these

linguistic terms.

On the relationship between concepts and their linguistic terms Avicenna

(980-1037 AC) [Q91] argued that:

 “There is a strong relationship/dependence between concepts and

their linguistic terms, change on linguistic aspects may affect the

intended meaning… Therefore logicians should consider linguistic

aspects ‘as they are’. …”
37

.

Indeed, the linguistic terms that we usually use to name symbols in a

logical theory convey some important assumptions, which are part of the

conceptualization that underlie the logical theory. We believe that these

assumptions should not be excluded or ignored (at least by definition) as

indeed they are part of our conceptualization.

Hence, we share Guarino and Giaretta’s viewpoint [GG95], that an

ontology (as explicit domain axiomatization) only approximates its

underlying conceptualization; and that a domain axiomatization should be

36 This is because of the large number of axioms and details that need to be intensively

captured and investigated, such detailed axiomatizations are difficult -for both humans

and machines- to compute and reason on, and might holds “trivial” assumptions.
37 This is an approximated translation from Arabic to English.

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

interpreted intensionally, referring to the intensional notion of a

conceptualization.

Gruber [G95] defined an ontology as an explicit specification of a

conceptualization, referring to the extensional ("Tarski-like") notion of a

conceptualization as found in [GN87]. Guarino and Giaretta pointed out

that this definition per se does not adequately fit the purposes of an

ontology. They argued that according to Gruber’s definition, the re-

arrangement of domain objects (i.e. different state of affairs) corresponds

to different conceptualizations. Guarino and Giaretta argue that a

conceptualization benefits from invariance under changes that occur at the

instance level by transitions between merely different “states of affairs” in

a domain, and thus should not be extensional. Instead, they propose a

conceptualization as an intensional semantic structure (i.e. abstracting

from the instance level), which encodes implicit rules constraining the

structure of a piece of reality
38

. Indeed, this definition allows for the focus

on the meaning of domain vocabularies (by capturing their intuitions)

independently of a state of affairs. See [G98a] for the details and

formalisms.

3.2.1 Definition (double articulation, intended models, legal models)

Given a concept C as a set of rules (i.e. axioms) in our mind about a

certain thing in reality, the set I of “all possible” instances that comply

with these rules are called the intended models of the concept C.

According to the ontology double articulation principle, such concepts are

captured at the domain axiomatization level. An application Ai that is

interested in a subset IAi of the set I (according to its usability

perspectives), is supposed to provide some rules to specialize I. In other

words, every instance in IAi must also be an instance in I:

38 See the definition of “Extensional verses Intensional semantics” in appendix D.

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

IAi ⊆ I

We call the subset IAi: the legal models (or extensions) of the application’s

concept CAi. Such application rules are captured at the application

axiomatization level.

Both domain and application axiomatizations can be seen (or expressed)

as sentences in first order logic.

As we have illustrated in the previous section, bookstore applications that

are interested only in the instances of the concept ‘book’ (that can be sold)

need to declare the Mandatory rule that each instance of book must have

an ISBN value.

In Fig. 3.4 we show three kinds of applications specializing a domain

concept.

Fig. 3.4. An example of three different applications specializing a domain concept.

The differences between the legal models of these application-types

illustrate their different usability perspectives:

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

• The intersection between the legal models of CA2 and the legal

models CA3 shows that IA3 is a subset of IA2. An example of this

case could be the difference between notions of ‘book’ in the

axiomatization of bookstores and libraries: all legal instances of

the bookstores’ notion are legal instances for the libraries, but not

vice versa. For libraries, the instances of e.g. ‘Manual’ or ‘Master

Thesis’ can be instances of a ‘book’; however, they cannot be

instances of ‘book’ for bookstores, unless they are published with

an ‘ISBN’.

• The difference between IA1 and IA3 shows an extreme case: two

types of applications sharing the same concept C while their legal

models are completely disjoint according to their usability

perspectives. An example of this case could be the difference

between notions of ‘book’ in the axiomatization of bookstores’

and museums’: Museums are interested in exhibiting and

exchanging instances of old ‘books’, while bookstores are not

interested in such ‘books’, unless for example, they are re-edited

and published in a modern style.

One may wonder how domain concepts can be agreed upon because of the

difficulty in gaining an objective insight into the nuances of another

person’s thoughts. Many researchers admit that a conceptualization

reflects a particular viewpoint and that it is entirely possible that every

person has his own concepts. For example, Bench-Capon and Malcolm

argued in [BM99] that conceptualizations are likely to be influenced by

personal tastes and may reflect fundamental disagreements. In our

opinion, herein lies the importance of linguistic terms.

3.2.2 Importance of linguistic terms in ontology engineering

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Linguistic resources (such as lexicons, dictionaries, and glossaries.) can be

used as consensus references to root ontology concepts. In other words,

ontology concepts and axioms can be investigated using such linguistic

resources and it can be determined whether a concept is influenced by

personal tastes or usability perspectives. We explain this idea further in

the following paragraphs:

The importance of using linguistic resources in this way lies in the fact

that a linguistic resource renders the intended meaning of a linguistic term

as it is commonly agreed among the community of its language. The set of

concepts that a language lexicalizes through its set of word-forms is

generally an agreed conceptualization
39

[T00]. For example, when we use

the English word ‘book’, we actually refer to the set of implicit rules that

are common to English-speaking people for distinguishing ‘books’ from

other objects. Such implicit rules (i.e. concepts) are learned and agreed

from the repeated use of word-forms and their referents. Usually,

lexicographers and lexicon developers investigate the repeated use of a

word-form (e.g. based on a comprehensive corpus) to determine its

underlying concept(s) [BDVHP00] [RFOGP99].

Given the definition of the term ‘book’ found in WordNet (a written work

or composition that has been published, printed on pages bound together),

one can judge, for example, that an ISBN is not really a necessary

property for every instance of a book (see our discussion in section 2).

Notice that such judgments cannot be based on the literal interpretation of

the term definition, but should be based on the intuition that such short

definitions provide. For more precision, one may use several linguistic

resources to investigate and root ontology concepts.

In short, a way of preventing ontology builders from imposing their

personal viewpoints and usability perspectives at the conceptual level is,

39 Thus, we may view a lexicon of a language as an informal ontology for its community.

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

by investigating and rooting the ontology concepts at the level of a human

language conceptualization. This involves making a distinction between a

personal viewpoint and. a community viewpoint. Notice that by doing

this, we are (indirectly) investigating and rooting our ontology concepts at

the domain level, because the conceptualization of a language emerges

from the repeated use of linguistic terms and their referents in real life

domains.

Taking a step further in this regard, we will discuss and illustrate the

incorporation of existing linguistic resources into the ontology

engineering process in section 3.5 and 6.2.2. We shall show how to link

the vocabulary used in an ontology with term-definitions found in

linguistic resources. In section 3.3.6 we shall introduce the notion of

gloss to capture such definitions, and to define new concepts that may not

exist in linguistic resources.

3.2.3 On representing domain axiomatizations

In this section, we discuss some choices that we think are relevant for

representing domain axiomatizations.

A domain axiomatization merely cannot be a list of linguistic terms, and

their intended meanings cannot be completely implicit. The intended

meaning of linguistic terms should be axiomatized and represented by

means of a formal language.

From a methodological viewpoint, such a formal language should be

content-oriented rather than syntax-oriented. This language should serve

as a theoretical tool which guides ontology builders through its primitives,

and restrict them to focus only on and represent the “kinds” of axioms that

account for the intended meaning of domain vocabularies.

By analogy, the conceptual “data” modeling languages ORM and EER

provide database designers a set of primitives with which they can be

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

guided to build a normalized database schema. Indeed, ORM and EER

can be seen as content-oriented languages, because they restrict the focus

of database designers to the integrity of data models.

An example of the difference between conceptual data modeling

primitives and the kind of primitives that account for the intended

meaning of a vocabulary
40

 is the difference between the “Rigid” and

“Mandatory”. Something can be mandatory but not rigid, as in the case of

‘ISBN’ which is not a rigid property for every instance of a ‘book’ but

could be mandatory for some applications. In other words, to model

something as a rigid property, it should be rigid in all possible

applications, while what can be mandatory for an application might not be

mandatory for another. See [GW00][JDM03][WSW99][GHW02] for

more discussions on such issues.

Current research trends on ontology languages within the Semantic Web

and the description logic communities are mainly concerned with

improving logical consistency and inference services. Such services in our

opinion are more suitable for building knowledge base applications or

expert systems rather than axiomatizing “domain concepts”. Significant

results within the description logic community have indeed been achieved

in the development of expressive and decidable logics, such as DLR

[CDLNR98], SHIQ [HST99], SHOQ [HS01], etc., yet less attention has

been given to the quality of ontological content.

“…I was annoyed by the fact that knowledge representation

research was more and more focusing on reasoning issues, while

the core problems of getting the right representations were not

receiving that much attention…”. (Nicola Guarino
41

).

40 i.e. conceptual data modeling vs. conceptual domain modeling.
41 An interview with Nicola Guarino and Christopher Welty (9 June 2004):
http://esi-topics.com/erf/2004/june04-ChristopherWelty.html

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

An example of a modeling primitive in the SHOQ description logic which

in our opinion, should not be allowed in axiomatizing domain concepts

since it does not account for meaning, is datatypes [P04]. Such a primitive

belongs mainly to the symbolic level. In short, description logics (and

their derivative languages such as DAML+OIL, or OWL) seem to play a

useful role in specifying application (rather than domain) axiomatizations.

We shall return, in section 3.4 to the use of both conceptual data modeling

languages and description logic based languages, for modeling and

representing application axiomatizations.

We observe two possible ways to capture formal domain axiomatizations:

(1) as an arbitrary set of axioms, e.g. using description logic, or (2)

through a knowledge representation model (e.g. a database). The first case

is common within the Semantic Web and Artificial Intelligence

communities; in this case ontology builders are responsible (i.e. unguided)

to decide whether an axiom accounts for the intended meaning of a

vocabulary. This way offers ontology builders more freedom and

expressiveness, but the risk of encoding usability perspectives is still high.

In the second case, ontology builders are restricted only to capturing and

storing the kind of axioms that account for factual meaning; assuming that

the representation model is well studied and designed to pursue such

axioms. This way is less expressive than the first one, but it reduces the

risk of mixing domain and application axioms. The second way offers

scalability in accessing and retrieving axioms, which is usually a

problematic issue in the first way. The second way is mostly used within

the lexical semantics community, e.g. WordNet [MBFGM90],

Termintography [KTT03]. Notice that both ways are (or should be) well

formalized and map-able to first order logic, and thus can be seen as

logical theories.

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

We have chosen the second way for our approach. As we will show in

section 3.3, we have developed a data model for capturing domain

axiomatizations called an ontology base [M99a][M99b].

3.2.4 Summary: properties of domain axiomatization

In this section, we summarize the basic properties of a domain

axiomatization: it is (1) an axiomatized theory (2) that accounts for the

intended meaning of domain vocabularies; (3) it is intended to be shared

and used as a vocabulary space for application axiomatizations. It is

supposed to be (4) interpreted intensionally, (5) and investigated and

rooted at a human language conceptualization.

3.3 The notion of an ontology base

This section introduces the notion of ontology base. An ontology base

[M99a] is a knowledge representation model for capturing domain

axiomatizations. This notion is used as a core component in the DOGMA

project.

Basically, an ontology base consists of a set of lexons. A lexon is a binary

relationship between context-specific linguistic terms, or in other words, a

lexical rendering of a binary conceptual relation.

3.3.1 Definition (Lexon)

A lexon is described in [M99a][M99b] as a tuple of the form:

>ΤΤ< 21 ,',,: rrγ

Where:

γ is a context identifier.

T1 and T2 are linguistic terms from a language L.

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

r and 'r are lexicalizations of the pair roles of a binary conceptual

relationship R; the role 'r is the inverse of the role r . One can

verbalize a lexon as (T1 r T2), and (T2 'r T1). For example, the pair

roles of a subsumption relationship could be: “Is a type of” and “Has

type”; the pair roles of a parthood relationship could be: “is a part of”

and “has part”, and so forth.

 The following is a set of lexons, as a simple example of an ontology base:

<Commerce: Person, Issues, Issued by, Order>

<Commerce: Order, Settled Via, Settles, Payment Method>

<Commerce: Money Order, Is a type of, Has type, Payment Method>

<Commerce: Check, Is a type of, Has type, Payment Method>

<Commerce: Payment Card, Is a type of, Has type, Payment Method>

<Commerce: Credit Card, Is a type of, Has type, Payment Card>

<Commerce: Credit Card, Has, Is of, Expiration Date>

3.3.2 Definition (Concept)

A term T within a context γ is assumed [M99a] to refer to a concept C:

CT →),(γ

Notice, for example, that within the context ‘Commerce’, the linguistic

term ‘Order’ refers to “A commercial document used to request someone

to supply something in return for payment”. It may refer to other concepts

within other contexts, e.g. within the context ‘Military’, the term ‘Order’

refers to “A command given by a superior that must be obeyed”
42

. Further

detail about the notion of context will be discussed in the next section.

As we have discussed earlier, a concept is a set of rules in our mind about

a certain thing in reality. The notion of intended meaning (or word

meaning/sense) can be used alternatively with the notion of concept to

42 These two definitions of the term “Order” are taken from WordNet, (May 2004)

http://www.cogsci.princeton.edu/cgi-bin/webwn.

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

denote something. The set of all possible instances (i.e. in all possible

stats of affairs) that comply with these rules are called intended models.

3.3.3 Definition (Role)

A role within a context is not intended to refer to a concept; thus,

Cr →),(γ is improper. In other words, our notion of role does not refer

to a “stand alone” unary (or binary) concept. Rather, roles only lexicalize

the participation of a “unary concept” in an n-ary conceptual relationship.

As the notion of a lexon is a lexical rendering of a binary conceptual

relationship, we formalize a lexon as two context-specific terms playing

mutual roles, that both refers to a binary concept (typically called binary

conceptual relation):

2),,(),,,(CrTrT →>< γγ

The notation of a context-specific term playing a role ()rT ,,γ is called

concept-role.

For practical purposes, we shall not require for both roles to be explicitly

lexicalized within a lexon. We assume that at least one role is to be

lexicalized, such as <Bibliography, Book, is-a, Written Material>.

An ontology base is intended to capture binary relationships. This does

not deny the existence of ternary (or more) relationships. We believe that

relationships in practice are mainly binary. Moreover, binary relations are

easier for ontology builders to model, extract, or reason with.

3.3.4 Definition (Mapping lexons into first order logic)

Each lexon >ΤΤ< 21 ,',,: rrγ in the ontology base is mapped into three

statements in first order logic, as the following
43

:

43 This mapping was achieved over the course of a fruitful discussion with Stijn

Heymans.

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

))(),(()(21 yTyxryxTx →∀→∀

))(),('()(12 xTxyrxyTy →∀→∀

),('),(. xyryxryx ↔∀

For example, the mapping of the lexon <Commerce: Person, Issues,

IssuedBy, Order> into first order logic can be done as follows:

))(),(()(yOrderyxIssuesyxPersonx →∀→∀

))(),(()(xPersonxyIssuedByxyOrdery →∀→∀

),(),(. xyIssuedByyxIssuesyx ↔∀

Notice that Context is not part of our formal mapping of lexons. As we

shall discuss in the next section, a context is an informal notion used to

bound the interpretation of a linguistic term into a concept. Linguistic

terms, e.g. ‘Person’, ‘Order’, etc. can be seen as unambiguous terms (i.e.

concepts) within the lexon formal mapping. A lexon (or it formal

mapping) is assumed to be true (i.e. axiom) within its context, see section

3.3.5. In section 3.3.7 we shall discuss how to introduce further formal

axiomatizations at the ontology base level, for targeting systematic

ontological quality.

Finally, our formal lexon mapping assumes unique role names. Each role

label (or InvRole) should be unique within the formal mapping of lexons.

As this is might not be the case in practice, one can provide an “internal”

naming convention, for example, by renaming ‘Issues’ as ‘Issues_Order’

and ‘IssuedBy’ as ‘IssuedBy_Person’.

At this point, we have established how that lexons are the basic building

blocks of an ontology base and that they are the basic domain axioms. The

principal role of an ontology base is to be a shared vocabulary space for

application axiomatizations. As sharing lexons means sharing the same

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

concepts and their intended models, semantic interoperability between

classes of autonomous applications can be achieved, basically, by sharing

a certain set of lexons
44

.

3.3.5 The notion of context

The notion of context has been, and still is, the subject of occasionally

intense study, notably in the field of Artificial Intelligence. It has received

different interpretations. Commonly, the notion of context has been

realized as a set of formal axioms (i.e. a theory) about concepts. It has

been used among other things: to localize or encode a particular party’s

view of a domain, cf. C-OWL [BHGSS03]; as a background, microtheory,

or higher-order theory for the interpretation of certain states of affairs

[M93][S00][MVBCFGG04][SGP98][GG0]; and to facilitate the

translation of facts from one context to another, as in KIF [PFP+92].

In our approach, we shall use the notion of context to play a “scoping”

role at the ontology base level. We say a term within a context refers to a

concept, or in other words, that context is an abstract identifier that refers

to implicit (or maybe tacit
45

) assumptions, in which the interpretation of a

term is bounded to a concept.

Notice that a context in our approach is not explicit formal knowledge. In

practice, we define context by referring to a source (e.g. a set of

documents, laws and regulations, informal description of “best practice”,

44

 As we shall show in section 3.4, a class of interoperating applications may need to

agree on and share some rules that constrain the use of a concept, i.e. share the same

legal models.
45 The difference between implicit and tacit assumptions, is that the implicit assumptions

can, in principle, be articulated but still they have not, while tacit assumptions are the

knowledge that cannot be articulated. it consists partially of technical skills -the kind of

informal, hard-to-pin-down skills captured in terms like “know-how”, and “we know

more than we can tell or put in words”. However, even though tacit assumptions cannot

be articulated, they can be transferred through other means over than verbal or formal

descriptions [Inn+03] [N94].

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

etc.), which, by human understanding, is assumed to “contain” those

assumptions. Lexons are assumed (by human understanding) to be “true

within their context’s source”. Hence, a lexon is seen as a domain axiom.

In section 6.2.1, we suggest some “best practices” for defining a context.

In section 7.2.1, we present an example of a context definition in a real-

life case study. The lessons we learnt and our experience with defining

contexts are also reported in this section.

Before proceeding to discuss further formal axiomatizations at the

ontology base level, we introduce the notion of gloss as part of the

ontology base model.

3.3.6 The notion of Gloss

Within an ontology base, each combination of a Context and a Term is

given a unique number, called a ConceptID. Thus, one can alternatively

use ConceptID or (Context, Term) to uniquely refer to a concept
46

 within

an ontology base.

Each concept should be described by a gloss. A gloss is an auxiliary

informal account for the commonsense perception of humans of the

intended meaning of a linguistic term. See fig. 3.5.

46 For some approaches, e.g. [KTT03], the lexicalization of concepts is not necessary -

concepts can be represented and referenced only by ConceptIDs. In our approach

however, this is not allowed. Each concept must be lexicalized by a linguistic term.

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 3.5. A list of concepts described by glosses.

Notice that the information provided in a gloss can be translated, in

principles, into formal logical statements. However, both are seen and

used in complement rather than as alternatives.

The purpose of a gloss is not to provide or catalogue general information

and comments about a concept, as conventional dictionaries and

encyclopedias do [MBFGM90]. A gloss, for formal ontology engineering

purposes, is supposed to render factual knowledge that is critical to

understanding a concept, but that is unreasonable or very difficult to

formalize and/or articulate explicitly.

The following are some guidelines to consider when deciding what should

and should not be provided in a gloss.

1. It should start with the principal/super type of the concept being

defined. For example, “Search engine: A computer program that

…”, “Invoice: A business document that…”, “University: An

institution of …”.

2. It should be written in the form of propositions, offering the reader

inferential knowledge that helps him to construct the image of the

concept. For example, instead of defining ‘Search engine’ as “A

computer program for searching the internet”, it can be defined

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

as, “One of the most useful aspects of the World Wide Web. Some

of the major ones are Google, Galaxy….”. One can also say “A

computer program that enables users to search and retrieve

documents or data from a database or from a computer

network…”.

3. More importantly, it should focus on distinguishing characteristics

and intrinsic properties that differentiate the concept from other

concepts. For example, compare the following two glosses of a

‘Laptop computer’: (1) “A computer that is designed to do pretty

much anything a desktop computer can do. It runs for a short time

(usually two to five hours) on batteries”; and (2) “A portable

computer small enough to use in your lap…”. Notice that

according to the first gloss, a ‘server computer’ running on

batteries can be seen as a laptop computer; also, a ‘Portable

computer’ that is not running on batteries is not a ‘Laptop

computer’.

4. The use of supportive examples is strongly encouraged: (1) to

clarify true cases that are commonly known to be false, or false

cases that are known to be true; and (2) to strengthen and illustrate

distinguishing characteristics (by using examples and counter-

examples). The examples can be types and/or instances of the

concept being defined. For example: “Legal Person: An entity with

legal recognition in accordance with law. It has the legal capacity

to represent its own interests in its own name, before a court of

law, to obtain rights or obligations for itself, to impose binding

obligations, or to grant privileges to others, for example as a

plaintiff or as a defendant. A legal person exists wherever the law

recognizes, as a matter of policy, the personality of any entity,

regardless of whether it is naturally considered to be a person.

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Recognized associations, relief agencies, committees and

companies are examples of legal persons”.

5. It should be consistent with the lexons and formal definitions.

6. It should be sufficient, clear, and easy to understand
47

.

Glosses play a significant role during the ontology development,

deployment, and evolution phases. As we discussed in section 2.3,

ontologies are being developed, reviewed, used, and maintained by many

different people over different times and locations. Indeed, glosses are

easier to understand and agree on than formal definitions, especially for

non-intellectual domain experts. Glosses are a useful mechanism for

understanding concepts individually without needing to browse and reason

on the position of concepts within an axiomatized theory. Further,

compared with formal definitions, glosses help to build a “deeper”

intuition about concepts, by denoting to implicit or tacit assumptions.

Hence, we fulfill the R3 requirement: critical assumptions that make clear

the factual meaning of an ontology vocabulary should be rendered as part

of the ontology, even if informally, to facilitate both users' and developers'

commonsense perception of the subject matter.

3.3.7 Further formal axiomatizations (Incorporating upper level

ontologies)

In order to achieve a systematic ontological quality and precision
48

 on the

specification of the intended meanings of linguistic terms, these

specifications might need to receive more formal restrictions, than just

mapping lexons into logical statements.

47 There is more to say on how to define a gloss; we limited ourselves in this thesis to

present the most relevant issues.
48 The notion of “ontological precision” is defined by Aldo Gangemi in [G04] as “the

ability to catch all and only the intended meaning”.

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

For example, without introducing further formal restrictions to the

following lexons:

<Bibliography: Man, Is-a, Person>

<Bibliography: Author, Is-a, Person>

<Bibliography: Mustafa, Is-a, Person>

The ontological difference (or the misuse of ‘is-a’) cannot be

systematically detected
49

.

In this section, we discuss how a formal axiomatic system can be

introduced into an ontology base.

As we have chosen to represent formal domain axiomatization in a data

model (i.e. ontology base), arbitrary and expressive formal definitions are

restricted (see our discussion on this issue in section 3.2.3). Therefore, we

extend the ontology base model to incorporate primitives of upper level

ontologies. Our incorporation of upper level ontologies in this thesis is

fairly simplistic; deep philosophical argumentations that are necessary for

such incorporation are presented schematically for the sake of simplicity.

It is important to note that the upper ontologies are still very much works

in progress. We have chosen to incorporate the topic in this thesis for the

sake of contextual completeness as we believe that it complements the

general idea of our approach.

Upper level ontologies are formal axiomatic systems that describe the

most general categories of reality. Such ontologies are not only

application and task independent but also domain (and possibly language)

independent axiomatizations [DHHS01] [G98b].

49 By assuming that the ‘is-a’ refers to a subsumption relationship (i.e. Sub-Type of),

only the first lexon is correct. The ‘is-a’ in the second lexon should interpreted as “is role

of”, because ‘Author’ is a role of ‘Person’ and not a type of a ‘Person’; and obviously,

the last lexon refers to ‘is instance of’. See [GW02] for more details on this issue.

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Based on the literature of upper level ontologies as found for example in

[DHHS01] [G98b] [MBGGO03], we introduce, in our approach, the

notion of upper-form. Each term within a context should have an upper-

form, likewise, each lexon should have an upper-form.

Term upper-forms

Term upper-forms are superior types of concepts, such as substantial,

feature, abstract, region, event, process, type, role, particular, etc. The

notation of term upper-form is:

>< ameUpperFormNT :)(γ

For example, Bibliography(Person):Substantial, Bibliography(Author):Substantial,

Bibliography(First-Name):Property, etc.

A term can have several upper-forms; the notation: }{:)(UpperFormTγ . For

example, Bibliography(Person):{Substantial, Type}, Bibliography(Author):{Substantial,

Role}, Bibliography(Mustafa):{Substantial, Instance}, etc.

Lexon upper-forms

Lexon upper-forms are relationship kinds, also called “basic primitive

relations” [MBGGO03], such as parthood, dependence, property-of,

attribution, subsumption, etc. Such relationship kinds are carefully and

formally axiomatized in upper level ontologies, and they are general

enough to be applied in multiple domains. Our notation of a lexon upper-

form is:

><>ΤΤ< ameUpperFormNrr :,',,: 21γ

For example, the lexon “<Bibliography: Book, Is-a, HasType, Written Material>:

Subsumption” is a subsumption relationship where the concept ‘Book’

formally subsumes the concept ‘Written Material’. The lexon

“<Bibliography: Book, Has-Part, Is-Part-Of, Chapter>: Parthood” is a parthood

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

relationship, where an instance of the concept ‘chapter’ is a part of an

instance of the concept ‘Book’. The lexon “<Bibliography: Author, Has, Is-Of,

Name>: Property” is a property-of relationship, where the concept ‘Name’

is a property of the concept ‘Author’, and so forth.

The idea of introducing upper-forms is to bring on or induce the formal

axiomatization of such relation kinds, as defined in upper level ontologies,

into lexons. In other words, upper-forms are used as theoretical tools to

incorporate formal account into lexons. For example, the formal account

of the lexon “<Bibliography, Mustafa, instance-of, Author>: Instantiation” is induced

by the formal axiomatization of the instantiation relationship as found

[GGMO01], see fig 3.6.

)(),(I),(I asymmetryxyyx ¬→

)tivityantitransi(),(),(()),(),((yzIzyIzxIyxI ¬∧¬→∧

)),(()(xyIyxParticular def ¬∃=

)(x)Universal(def xParticular¬=

Fig. 3.6. A formal axiomatization of the instantiation relationship, as found in

[GGMO01].

The formal account of the lexon “<Bibliography: Book, Has-Part, Is-Part-Of,

Chapter>: Parthood” is induced by the formal axiomatization of the parthood

relationship as found in [GGMO01], see fig 3.7.

),(xxP

yxxyPyxP =→∧)),(),((

),()),(),((zxPzyPyxP →∧

Fig. 3.7. A formal axiomatization of the Parthood relationship as found in [GGMO01].

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

By inducing the formal axiomatization of the ‘Subsumption’ relationship, as

found in [GGMO01], the following lexon is incorrect because a ‘Role’

cannot subsume a ‘Type’.

Bibliography(Person):{Substantial, Type}

Bibliography(Author):{Substantial, Role}

<Bibliography: Author, Is-a, Person>: Subsumption

Notice that formal axiomatizations of such upper forms are not necessary

to be used at runtime by applications that use or share lexons. The main

goal is to use these axiomatizations as theoretical tools to achieve a

systematic quality at the development and maintenance time of an

ontology.

Our methodological principles and their implementation prototypes are

independent of a particular upper level ontology. The choice of which

upper level ontology to use is left to ontology builders. In an upcoming

effort, we plan to develop a library of upper-ontology components, so that

ontology builders will be able to plug-in and automatically reason about

the quality of their lexons.

3.4 Application axiomatization

In the previous sections, we have presented and discussed the first part of

the ontology double articulation principle. We have introduced the notion

of an ontology base for capturing domain axiomatizations independently

of usability perspectives. In this section, we introduce the second part of

the ontology double articulation principle: application axiomatizations.

First, we discuss the general properties of these axiomatizations; then, we

introduce the notion of application ontological commitments.

While the axiomatization of domain knowledge is mainly concerned with

the characterization of the “intended models” of concepts, the

axiomatization of application knowledge is mainly concerned with the

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

characterization of the “legal models” of these concepts (see fig. 3.4).

Typically, as domain axiomatizations are intended to be shared, public,

and highly reusable at the domain level, application axiomatizations are

intended to be local and highly usable at the task/application-kind level.

As we have discussed earlier, applications that are interested only on a

subset of the intended models of a concept (according to their usability

perspective) are supposed to provide some rules to specialize these

intended models. Such a specialization is called an application

axiomatization. Notice that this specialization is not seen as two different

concepts subsuming one another through a “subsumption relationship”.

Rather, the vocabulary -of unary and binary concepts- used in application

axiomatization is restricted to the vocabulary defined in its domain

axiomatization. As shall be cleared later in this section, an application

axiomatization becomes a set of rules to constrain a certain use of domain

vocabulary. Formally speaking, these rules declare what should

necessarily hold in any possible world for a class of applications.

A particular application commits to the intended meaning of a domain

vocabulary (i.e. in an ontology base) through its application

axiomatization. This commitment is called application’s ontological

commitment. An application axiomatization typically consists of: (1) an

ontological view that specifies which domain concepts in an ontology base

are relevant to include and represent in this axiomatization. These

concepts can be explicit lexons or derived from lexons, (2) a set of rules to

characterize the legal models of the ontological view, i.e. to formally

declare what should necessarily hold in any possible world for the

applications sharing this axiomatization.

We say that a particular extension of an application (i.e. a set of instances)

commits to an ontology base through an application axiomatization if it

conforms to or is consistent with the ontological view and the rules

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

declared in this axiomatization (cf. model-theoretic semantics). We shall

came back to this issue in section 4.4.2.

3.4.1 Example

This example is based on that presented in section 3.1.2. We show an

application scenario of software agents interoperating through a semantic

mediator to exchange data messages and business transactions. The

interoperation is enabled by the sharing of the same Bookstore

axiomatization, i.e. as a global and legal data model
50

. The data source (or

its “export schema” [ZD04]) of each agent is mapped into the shared

axiomatization. All exchanged data messages (e.g. those formed in XML,

RDF, etc.) can be validated according to whether they conform to the

rules and the ontological view declared in the Bookstore axiomatization

by using for example model-theoretic semantics [R88].

50 This way of sharing and using axiomatizations (as global schema) seems more

applicable to data integration and mediation systems [BB04][ZD04][CBB+04]. They can

also be used to describe web services [NM02]. For example, an axiomatization could be

specified for each web service (to describe the “static” information provided to/by a web

service), so that all agents accessing a web service share the same axiomatization.

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 3.8. Meaningful semantic interoperation between Bookstore applications.

The ontological view of the above bookstore axiomatization specifies

which concepts are relevant for the task(s) of this application scenario.

These concepts correspond to explicit lexons in the ontology base, or they

might be derived from these lexons. One can see in the ontology base that

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

a ‘Book’ is not explicitly a ‘subtype of’ a ‘Product’ as specified in the

Bookstore axiomatization. This subsumption is derived from these lexons:

{<Bibliography: Book, Is-A, Written Material>, <Bibliography: Written Material, Is-A,

Product>}. Based on these subsumptions, some inheritance also might be

drawn; For example, ‘Book’ inherits the relationship <Bibliography: Book,

Written-By, Author> from its ‘Written Material’ supertype. The choice of

which concepts and relations should be included in an axiomatization is

an application-dependent issue or subject to a usability perspective. See

our discussion on this issue in section 2.2.

In this bookstore axiomatization, four rules are declared and can be

verbalized as: 1) each Book must Has at least one ISBN; 2) each Book

Has at most one ISBN; 3) each ISBN Is-Of at most one Book; 4) it is

possible for a Book to be Written-by several Authors, and it is possible for

an Author to write several Books.

Notice that the double articulation principle enables usability perspectives

to be encountered and encoded outside domain axiomatization. In turn,

this indeed increases the usability of application axiomatizations as well

as increases the reusability of domain axiomatization.

Depending on the application scenario, application axiomatizations may

be used in different ways. For example, in the Semantic Web and

information search/retrieval scenarios, declaring rules might be not

important because the main idea of these scenarios is to expand (rather

than to constrain) queries. Filtering the unwanted results (i.e. illegal

models) is the responsibility of the people who usually are involved in

such application scenarios
51

. In chapter 7, we show the application

scenario of an ontology-based user interface, where application

axiomatizations are used as shared data models of complaint web forms.

51 For example, as Google users filter out the unwanted web-pages that appear as a result

of their search.

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

To increase usability of application axiomatizations, they might be

specified in multiple specification languages, such as DAML+OIL, OWL,

RuleML, EER, UML, etc. Figure 3.9 shows the above Bookstore

axiomatization expressed in OWL.

….

<owl:Class rdf:ID="Product" />

<owl:Class rdf:ID="Book">

 <rdfs:subClassOf rdf:resource="#Product" />

</owl:Class>

<owl:Class rdf:ID="Price" />

<owl:Class rdf:ID="Value" />

<owl:Class rdf:ID="Currency" />

<owl:Class rdf:ID="Title" />

<owl:Class rdf:ID="ISBN" />

<owl:Class rdf:ID="Author" />

<owl:ObjectProperty rdf:ID="Valuated-By">

<rdfs:domain rdf:resource="#Product" />

<rdfs:range rdf:resource="#Price" />

</owl:ObjectProperty>

<owl:DataProperty rdf:ID=" Amounted-To .Value">

 <rdfs:domain rdf:resource="#Price" />

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:ObjectProperty>

<owl:DataProperty rdf:ID="Measured-In.Currency">

 <rdfs:domain rdf:resource="#Price" />

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:ObjectProperty>

<owl:DataProperty rdf:ID=“Has.ISBN">

 <rdfs:domain rdf:resource="#Book" />

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#integer "/>

</owl:ObjectProperty>

<owl:DataProperty rdf:ID=“Has.Title">

 <rdfs:domain rdf:resource="#Title" />

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="Written-By">

 <owl:inverseOf rdf:resource="#Writes "/>

 <rdfs:domain rdf:resource="#Book" />

 <rdfs:range rdf:resource="#Author" />

</owl:ObjectProperty>

<owl:Restriction>

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

 <owl:onProperty rdf:resource="# Has.ISBN " />

 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

….

Fig. 3.9. An OWL representation of the Bookstore ontological commitment.

Although both representations share the same intended meaning of

concepts at the domain (/ontology base) level, notice the disparities

between ORM and OWL in representing the Bookstore axiomatization.

For example, ORM does not distinguish between DataProperties and

ObjectProperties as does OWL. This is an example of an epistemological

difference
52

. The ORM uniqueness constraint that spans over “Written-

By/Writes” cannot (or should not) be expressed in OWL, as it is implied

by definition
53

. The other uniqueness and mandatory constraints are

expressed as a one cardinality restriction in OWL.

Such logical and epistemological disparities (which are induced by the

difference between the formalizations and the constructs of both

languages) illustrate different ways of characterizing the legal models of

application axiomatizations. The choice of which language is more

suitable for specifying application axiomatizations depends on the

application scenario and perspectives. For example, ORM and EER are

mainly suitable for database and XML (-based) application scenarios

since they are comprehensive in their treatments of the integrity of data

sets. For inference and reasoning application scenarios, description logic

based languages (such as OWL, DAML, etc.) seem to be more applicable

than other languages, as they focus on the expressiveness and the

decidability of axioms.

52 See the definition of “epistemological” in appendix D.
53 The formalization of ObjectProperties in OWL does not allow the same tuple to appear

twice in the same set, such as Written-By = {<author1, book1>, < author1, book1>,…}.

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Allowing different languages, optimized techniques, or methodologies to

be deployed at the application axiomatization level will indeed increase

the usability of these axiomatizations. A recent application axiomatization

language called Ω-RIDL [VDM04] has been developed within the

DOGMA framework. Its creators claim it is better suited to the database

applications’ commitment to an ontology base.

3.5 Discussion

In this chapter, we have presented the double articulation principle. We

have shown how application verses domain axiomatizations can be well

articulated. We have introduced the notion of an ontology base for

capturing domain axiomatizations, and the notion of application

axiomatizations by which particular applications commit to the intended

meaning of domain vocabulary.

In the following paragraphs, we summarize the main advantages of the

double articulation principle:

• Increase reusability of domain axiomatization, as well as usability

of application axiomatizations. As we have shown in this chapter,

the application-independence of an ontology is increased by

separating domain and application axiomatizations. Usability

perspectives have a neglectable influence on the independence of a

domain axiomatization, because ontology builders are prevented

from encoding their application-specific axioms. In other words,

domain axiomatizations are mainly concerned with the

characterization of the “intended models” of concepts, while

application axiomatizations are mainly concerned with the

characterization of the “legal models” of these concepts. Hence,

we fulfill the R2 engineering requirement: The influence of

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

usability perspectives on ontology axioms should be well

articulated, in pursuit of both usability and reusability.

• Allows different communities to create and maintain domain

axiomatization (typically public) and application axiomatizations

(typically local). Indeed, domain experts, lexicographers,

knowledge engineers, and even philosophers, may contribute to

the development, maintenance, and review phases of domain

axiomatizations. It is needless for them to know why and how

these axiomatizations will be used. Application-oriented experts

can also contribute to and focus on the development phases of

application axiomatizations, without needing to know about the

correctness of domain axioms. Hence, we fulfill the R4

engineering requirement: the ontology representation model

should be capable of distributed and collaborative development.

• Allows the deployment of differently optimized technologies and

methodologies to each articulation. For example, relational

database management systems can be used (with high scalability

and performance) to store and retrieve large-scale ontology bases.

Natural language parsing and understanding techniques can be

employed for extracting lexons from texts (see [PSDM03] for an

example of preliminary results on this issue). Different

specification languages can be used to specify application

axiomatizations and these increase the usability of these

axiomatizations.

Furthermore, the importance of linguistic terms in ontology engineering is

observed and incorporated in our approach. Not coincidentally, our

approach allows for the adoption and reuse of many available lexical

resources to support (or to serve as) domain axiomatizations. Lexical

recourses (such as lexicons, glossaries, thesauruses and dictionaries) are

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

indeed important recourses of domain concepts. Some resources focus

mainly on the morphological issues of terms, rather than categorizing and

clearly describing their intended meanings. Depending on its description

of term meaning(s), its accuracy, and maybe its formality
54

, a lexical

resource can play an important role in ontology engineering.

An important lexical resource that is organized by word meanings (i.e.

concepts, or called synsets) is WordNet [MBFGM90]. WordNet offers a

machine-readable and comprehensive conceptual system for English

words. Currently, a number of initiatives and efforts in the lexical

semantic community have been started to extend WordNet to cover

multiple languages. As we have discussed in section 3.2.2, the consensus

about domain concepts can be gained and realized by investigating these

concepts at the level of a human language conceptualization. This can be

practically accomplished e.g. by adopting the informal description of term

meanings that can be found in lexical resources such as WordNet, as

glosses. We shall illustrate this issue in our implementation prototype in

chapter 6.

The notion of gloss as an auxiliary informal account of the intended

meaning of a linguistic term fulfills the R3 engineering requirement:

critical assumptions that make clear the factual meaning of an ontology

vocabulary should be rendered as part of the ontology, even if informally,

to facilitate both users' and developers' commonsense perception of the

subject matter.

In the next chapter, we proceed to present the second methodological

principle for ontology engineering: the ontology modularization principle.

54 i.e., the discrimination of term meanings in a machine-referable manner.

Chapter 3: Ontology double articulation

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Chapter 4

Ontology Modularization

“Modularity is a key requirement for large ontologies in

order to achieve re-use, maintainability, and evolution.”

- (Alan Rector, [R03])

This chapter presents the second engineering principle of our approach:

Ontology Modularization. In section 4.1, we introduce and illustrate the

general idea of the ontology modularization principle. Section 4.2

overviews other approaches to ontology modularization. We describe our

approach to modularity and composition and present the formal details in

sections 4.3 and 4.4 respectively. As an illustration of our approach, in

section 4.5 we present an algorithm for the automatic composition of

modules specified in ORM. Section 4.6 summarizes the main advantages

gained and the engineering requirements fulfilled by the modularization

principle.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

4.1 Introduction

In this section, we introduce and illustrate the general idea of the ontology

modularization principle. Further details follow in the next sections.

The modularization principle aims to fulfill the following ontology

engineering requirements:

• R1. Ontologies should be engineered in a way that allows for the

isolation and identification of the reusable parts of the ontology.

• R4. The ontology representation model should be capable of

distributed and collaborative development.

• R5. Ontologies should be engineered in a way that enables smooth

and efficient evolution.

• R6. Ontologies should be engineered in a way that allows easy

replacement of the axiomatization of ontology parts.

The main idea of the modularization principle is to decompose an

application axiomatization into a set of smaller related modules, which: 1)

are easier to reuse in other kinds of applications; 2) are easier to build,

maintain, and replace; 3) enable distributed development of modules over

different locations and expertise; 4) enable the effective management and

browsing of modules, e.g. enabling the construction of libraries of

application-kind axiomatizations.

To compose modules, we propose a composition operator: all atomic

concepts and their relationships (i.e. lexons) and all constraints, across the

composed modules, are combined together to form one axiomatization

(called modular axiomatization).

4.1.1 A simple example

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

In what follows, we give an example to illustrate the (de)composition of

application axiomatizations. Fig. 4.1 shows two axiomatizations of Book-

Shopping and Car-Rental applications, defined on an e-commerce

ontology base
55

. Notice that both axiomatizations share the same axioms

about the “payment” conceptualization.

Fig. 4.1. Book-shopping and Car-Rental axiomatizations.

Instead of repeating the same effort to construct the axiomatization of the

“payment” part, the modularization principle suggest that we decompose

55 The e-commerce ontology base is not illustrated here for the sake of brevity.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

these axiomatizations into three modules, which can be shared and reused

among other axiomatizations (see fig. 4.2). Each application-type (viz.

Book-Shopping and Car-Rental) selects appropriate modules (from a

library of application axiomatizations) and composes them through a

composition operator. The result of the composition is seen as one

axiomatization
56

.

Fig. 4.2. Modularized axiomatizations.

Engineering application axiomatizations in this way will not only increase

their reusability, but also the maintainability of these axiomatizations. As

56 The illustrated composition in this example is very simplistic, as each pair of modules

overlap only in one concept, i.e. the “Payment Method”. In farther sections, we discuss

more complicated compositions, in which rules in different modules may contradict or

imply each other.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

the software engineering literature teaches us, small modules are easier to

understand, change, and replace [P72] [SWCH01]. An experiment by

[BBDD97] proves that the modularity of object-oriented design indeed

enables better maintainability and extensibility than structured design.

Decomposing axiomatizations into modules also enables the distributed

development of these modules over different location, expertise, and/or

stakeholders. As an analogy, compare the capability of distributing the

development of a program built in Pascal with a program built in JAVA,

i.e. structured verses modular distributed software development. In

chapter 7, we report our practical experience and the maintainability in the

distributed development of a Customer Complaint Ontology

(CContology).

4.2 Related work

The importance of modularity has received limited attention from within

the knowledge representation community [SK03]. Modularity has been

adopted by some researchers to achieve more scalability for reasoning and

inference services. A knowledge base is seen as a set of distributed

knowledge bases, with each base referred to as a module. In this way

reasoning is performed locally in each module, and the results are

propagated toward a global solution. Global soundness and completeness

(i.e. consistency) follows from the soundness and completeness of each

local reasoner [WSG+04]. The performance of such reasoning is claimed

to be linear in the tree structure in most cases [AM04].

Borgida and Serafini have proposed in [BS03] an extension to description

logics to enable more sophisticated distributed reasoning. Objects in

distributed and autonomous data sources are connected through complex

mappings. The authors claim that these mappings form a “global view” of

the connected data sources.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

In [SK03] [SH05], Stuckenschmidt and Klein have proposed an approach

to ontology modularization similar to view-based data integration. A data

source (i.e. a schema and it instances) is seen as a module. All modules, as

such, are connected by conjunctive queries. The result of each mapping

query is computed and added as an axiom to the module using the result.

Reasoning in a module depends on the answer sets of the queries used to

connect it to other modules. A modular ontology in this approach is

defined as a set of modules that are connected by external concepts and

relation definitions.

A quite similar approach to the previous one is proposed by Oberle and

colleagues [VOS03] who defined a view language for connecting RDF

resources to each other.

A recent survey on distributed and modular knowledge representation

(towards scalable reasoning) can be found in [WSG+04].

While the approaches described above are concerned with the modularity

at the deployment phase of ontologies (i.e. distributed reasoning), Rector

[R03] has proposed another approach to modularity that is mainly

concerned with the distributed development of the TBox of an ontology.

Rector’s proposal is to decompose an ontology into a set of independent

disjoint skeleton taxonomies restricted to simple trees. Disjoint

taxonomies (i.e. modules) can then be composed using definitions and

relationships between concepts in the different modules. In contrast to

other approaches, the result of such a composition can be seen as one local

TBox. This approach is motivated by Guarino’s analyses of types [G98b].

Assuming that each type has a distinct set of identity criterion, when a

type specializes another type, it adds further identity criterion to those

carried by the subsuming type. The taxonomy of such types is always a

tree.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

4.3 Our approach

In this section we introduce our approach to ontology modularization and

composition on an abstract level. The formal and technical details will be

provided in the following sections.

In our approach, we are mainly concerned with the modularity at the

development phase of an ontology. Similar to Rector’s proposal, our goal

is to enable the “TBox” of an ontology to be developed as a set of

modules and to later be composed to form one TBox.

However, unlike Rector’s approach, we do not restrict a module to

taxonomic relations between concepts. Modules are expected to include

concepts, relations, and constraints (i.e. a typical TBox). In other words,

we do not distinguish modules according to their level of abstraction, or

according to the nature of their content. Recall that such a distinction (i.e.

“modularization”) is achieved by double articulating an ontology into

domain and application axiomatizations
57

.

The goal of the ontology modularization principle is to enable application

axiomatizations to be developed in a modular manner. A module in our

approach becomes an application axiomatization where the intended

meaning of its vocabulary is defined at the domain axiomatization level,

see fig. 4.2.

4.3.1 Modularity criterion

In what follows, we propose a modularity criterion aimed to help ontology

builders to achieve effective decomposition and to guide them in

why/when to release a part of an axiomatization into a separate module.

The effectiveness of a decomposition can be seen as the ability to achieve

57 While partitioning an ontology based on the abstraction level of the parts might be

called “ontology layering”, we use the term “ontology modularization” to refer to

modules of the same nature and abstraction level.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

a distributed development of modules and maximize both reusability and

maintainability.

Subject: subject-oriented parts should be released into separate

modules
58

. For example, when building an axiomatization for

university applications, one should separate between the financial

aspects (e.g. salary, contract, etc.) and the academic aspects (e.g.

course, exams, etc.). Encapsulating related axioms (on a certain

subject) into one module will not only improve the reusability and

maintainability of modules, but also enable the distributed

development of modules by different people with a distinct expertise

Purpose: the general-purpose (or maybe called task-oriented) parts of

an axiomatization could be released into separate modules. The notion

of “general purpose” axiomatization refers to a set of axioms that are

expected to be repeatedly used by different kinds of applications. For

example, the axiomatization of “payment”, “shipping”, “person”,

“address”, “invoicing”, is often repeated in many e-commerce

applications. The reusability of such application axiomatizations is not

based necessarily on their ontological foundation or abstraction levels

but may be recognized simply from the experience of the creator and

from best practices. For example, the wide adoption (i.e. repeatability)

of the Dublin Core elements
59

 is based mainly on the simplicity of the

encoding of descriptions (i.e. metadata) of networked resources.

Specific-purpose parts could also be modularized and released

separately. In this way, the application-specificity of other modules

will be decreased.

58 This criteria is similar to, the so called “information hiding”, in software engineering,

[P72].
59 http://www.dublincore.org (June 2004).

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Stability: The parts that are expected to be frequently maintained or

replaced could be released in separate modules. This affords other

parts more stability and the unstable parts will themselves be easier to

maintain and replace.

The criterion suggested above cannot be followed rigidly, as it is based on

builders’ best practice and expectation of the reuse, maintenance, and

distributed development of modules. In chapter 7 we present a case study

that illustrates an application of these modularity criterion in the

development of a customer complaint ontology.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

4.3.2 Module composition

To compose modules we define a composition operator. All concepts and

their relationships (i.e. lexons) and all constraints, across the composed

modules, are combined together to form one axiomatization. In other

words, the resultant composition is the union of all axioms in the

composed modules.

As shall be discussed later, a resultant composition might be incompatible

in case this composition is not satisfiable, e.g. some of the composed

constraints might contradict each other.

Our approach to composition is constrained by the following consistency

argument. An ontology builder, when including a module into another,

must expect that all constraints in the included module are inherited by

the including module, i.e. all axioms in the composed modules must be

implied in the resultant composition. Formally speaking, the set of

possible models for a composition is the intersection of all sets of possible

models for all composed modules. In other words, we shall be interested

in the set of models that satisfy all of the composed modules.

In fig. 4.3, we illustrate the set of possible instances (i.e. possible models)

for a concept constrained differently in two modules composed together.

Fig. 4.3(a) shows a compatible composition where the set of possible

instances for M.c is the intersection of the possible instances of M1.c and

M2.c. Fig. 4.3(b) shows a case of incompatible composition where the

intersection is empty.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 4.3. (a) Compatible composition, (b) Incompatible composition.

Notice that our approach to module composition is not intended to

integrate or unite the extensions (i.e. ABoxes) of a given set of modules,

as several approaches to ontology integration
60

 aim to do [SP94]

[SK03][BS03]. Our concern is to facilitate ontology builders (at the

development phases) with a tool to inherit (or reuse) axiomatizations

without “weakening” them. In other words, when including a module into

another module (using our composition operator, which we shall

formalize in the next section) all axioms defined in the included module

should be inherited by (or applied in) the including module.

60 This might be seen as a designation between composition verses integration of

ontological modules.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

4.4 Formal framework

In this section, we introduce the formal framework of our approach to

module composition. The approach is illustrated, in section 4.5, by

developing an algorithm for the automatic composition of modules

specified in ORM.

4.4.1 Definition (Module)

A module is an application axiomatization of the form Μ = <Ρ, Ω>, where

Ρ is a non empty set of lexons, i.e. the set of atomic concepts and their

relationships; Ω is a set of constraints which declares what should

necessarily hold in any possible world of M. In other words Ω specifies

the legal models of M.

4.4.2 Definition (Model, Module satisfiability)

Using the standard notion of an interpretation of a first order theory, an

interpretation I of a module M, is a model
61

 of M iff each sentence of M

(i.e. each ρ ∈ Ρ and each ω ∈ Ω) is true for I.

Each module is assumed to be self-consistent, i.e. satisfiable. Module

satisfiability demands that each lexon in the module can be satisfied

[BHW91]. For each lexon ρ in a given module Μ, ρ is satisfiable w.r.t. to

M if there exists a model I of M such that ρI
 ≠ ∅.

Notice that we adopt a strong requirement for satisfiability, as we require

each role in the schema to be satisfiable. A weak satisfiability requires

only the module itself (as a whole) to be satisfiable [H89][BHW91].

4.4.3 Definition (Composition operator)

61 Also called “legal model”, see section 3.2.1

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Modules are composed by a composition operator, denoted by the symbol

‘⊕’. Let Μ = Μ1 ⊕ Μ2, we say that M is the composition of Μ1 and Μ2.

Μ typically is the union of all lexons and constraints in both modules. Let

Μ1 = <Ρ1, Ω1> and Μ2 = <Ρ2, Ω2>, the composition of (Μ1 ⊕ Μ2) is

formalized as Μ = < Ρ1 ⊕ Ρ2, Ω1 ⊕ Ω2>.

A composition (Μ1 ⊕ Μ2) should imply both Μ1 and Μ2. In other words,

for each model that satisfies (Μ1 ⊕ Μ2), it should also satisfy each of Μ1

and Μ2. Let (Μ1)
I
 and (Μ2)

I
 be the set of all possible models of Μ1 and

Μ2 respectively. The set of possible models of (Μ1 ⊕ Μ2)
I

= (Μ1)
I
 ∩

(Μ2)
I
. A composition is called incompatible iff this composition cannot be

satisfiable, i.e. there is no model that can satisfy the composition, or each

of the composed modules.

In what follow we specify how sets of lexons and sets of constraints can

be composed together.

Composing lexons

When composing two sets of lexons (Ρ = Ρ1 Υ Ρ2), following [M99a], a

concept M1.γ(Τ) in module M1 and a concept M2.γ(Τ) in module M2 are

considered exactly the same concept
62

 iff they are referred to by the same

term T and context γ. Formally, (Μ1.γ(Τ) = Μ2.γ(Τ)) iff (Μ1.γ = Μ2.γ) and

(Μ1.Τ = M2.Τ). Likewise, two lexons are considered exactly the same

(M1.<γ: T1, r, r’, T2> = M2.<γ: T1, r, r’, T2>) iff (M1.γ = M2.γ), (M1.Τ1 =

M2.Τ1), (M1.r = M2.r), (M1.r’ = M2.r’), and (M1.Τ2 = M2.Τ2). Indeed, the

combination of two sets of lexons can be easily achieved as all lexons

62 i.e. refer to the same intended models, see section 3.2. and 3.3.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

share the same definitions of the intended meanings of their vocabularies

at the ontology base level
63

, see fig. 4.6.

In case that M1 and M2 do not share any concept between them (i.e. two

disjoint sets of lexons), the composition (M1 ⊕ M2) is considered an

incompatible operation
64

, as there is no model that can satisfy both M1 and

M2.

Composing constraints

When composing two sets of constraints, first, all constraints need to be

combined together (Ω = Ω1 ⊕ Ω2). Second, a satisfiability reasoning

should be performed in order to find out whether the composition (M =

M1 Υ M2) is satisfiable. Finally, an optional step is to perform an

implication reasoning to eliminate all implied constraints (also called

“entailments”) from the composition.

In the first step, the combination of all constraints (Ω1 ⊕ Ω2) should be

syntactically valid according to the syntax of the constraint specification

language. For example, some constraints need to be syntactically

combined into one constraint. The combination of a set of constraints

should imply all of them. To provide an insight into such combinations, in

fig. 4.4, we show the combination of two UML cardinality constraints.

Fig. 4.5 illustrates several combinations of ORM constraints. Notice that

in case of a constraint contradiction, the composition is terminated and

considered an incompatible operation, as in fig. 4.5 (d).

63 One may notice that another difference between ontology (or schema) integration and

composition is in the homogeneity of the integrated/composed modules. In case of

integration, all ontologies are expected to be totally heterogeneous. However, in case of

composition, modules are expected to have some degree of homogeneity (i.e. evolve

within a certain framework). In our approach, modules are assumed to share the same

ontology base.
64 In some practice cases, we weaken this requirement to allow the composition of

disjoint modules. For example, in case one wishes to compose two disjoint modules and

later compose them within a third module that results in a joint composition.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 4.4. Combining UML constraints.

Fig. 4.5. Examples of several combinations of ORM constraints: (a) combination of two

value constraints, (b) combination of uniqueness, and frequency, (c) combination of

subset and equality, and (d) combinations of equality and exclusion constraints.

The ability to automate this process depends on the complexity of the

constraint specification language. Section 4.5 illustrates how all ORM

constraints can be combined automatically.

4.4.4 Definition (Modular axiomatization)

A modular axiomatization M = {M1, … , Mn, ⊕} is a set of modules with

a composition operator between them, such that P = (P1 ⊕ … ⊕ Pn) and Ω

= (Ω1 ⊕… ⊕ Ωn).

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Notice that cyclic compositions are null operations, as the repetition of the

same proposition has no logical significance. For example, the

composition M = ((M1 ⊕ M) ⊕ M2) equals (M1 ⊕ M2) and the

composition M= ((M1 ⊕ M2) ⊕ (M2 ⊕ M1)) also equals (M1 ⊕ M2).

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

4.5 Composition of ORM conceptual schemes

As an illustration of our formal framework defined in the previous

section, in this section we present an algorithm for automatic composition

of modules specified in ORM
65

. An implementation of this algorithm will

be presented in chapter 6, as part of our DogmaModeler tool prototype
66

.

Each ORM conceptual schema is seen as a module. A concept in the

ORM terminology is called an object type, and a relationship is called a

predicate. The later consists of a set of roles played by object types. In

ORM, a predicate with its associated object types (which we call a lexon),

is called a fact type. Other ORM constructs are called constraints, such as

Value, Mandatory, Uniqueness, Subset, Equality, Exclusion, Totality,

Exclusive and Ring.

We adopt the ORM formalization and syntax as found in [H89][H01],

excluding three things. First, although ORM supports n-ary predicates,

only binary predicates are considered in our approach. Second, our

approach does not support objectification, or the so-called nested fact

types in ORM. Finally, our approach does not support the derivation

constraints that are not part of the ORM graphical notation
67

.

A composition of two modules (M = M1 ⊕ M2) is performed in the

following steps: 1) Combine the two sets of fact types (Ρ = Ρ1 ⊕ Ρ2). 2)

65

It is worth to mention that Vermeir [V83] has proposed an approach for modularizing

large ORM diagrams based on heuristic procedures. However, this approach is not

related to ours, as it is only concerned with how to “view” a one large ORM diagram in

different degrees of abstraction or viewpoints. Another similar approach is proposed by

Shoval [S85]. Other approaches for viewing large EER diagrams can be found e.g. in

[G85] [RS93] [S96]; such approaches are also called clustering methods.

66 See our motivation on why choosing ORM to illustrate modeling and representing

application axiomatization, a long the thesis, in section 5.1.1 and section 3.4.1.
67 A textual representation of the ORM notation (called ORM markup language) will be

presented in chapter 5.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Combine the two sets of constraints, Ω = Ω1 ⊕ Ω2. 3) Reason to find out

whether the composition is satisfiable. Optionally, 4) Reason to eliminate

all implied constraints from the composition. The last step is not presented

in this thesis as it is quite lengthy. We refer to [H89] for a comprehensive

specification of constraint implication in ORM
68

.

The composition is considered an incompatible operation (and thus

terminated) iff the result cannot be satisfied.

Remark: Although we assume in our formal framework, in section 4.4,

that the composition is terminated in case of unsatisfiability, determining

whether a composition is satisfiable depends on the decidability of the

specification language of the composed modules. In case this language is

decidable (it has a complete semantic reasoning tableaux), such as OWL,

our algorithm can then be called a complete algorithm. Otherwise, it is

called incomplete. In our algorithm of composing ORM schemes, though

we reason about the most common unsatisfiability cases, we do not claim

this algorithm to be complete, i.e. it is not necessary for the resultant

composition to be satisfiable. This is because the general problem of

determining consistency for all possible constraint patterns in ORM is

undecidable [H97]. A complete semantic tableaux algorithm for deciding

the satisfiability of ORM schemes (a research topic by itself) is not a goal

of this thesis. We shall build our unsatisfiability cases in this algorithm

based on the so-called “ORM formation rules” proposed by Halpin in

[H89]. We will also base them on the RIDL-A [DMV], and on the

formalization found in [BHW91]. Although these efforts are based on

heuristics and do not claim completeness, they cover the most common

unsatisfiability cases in practice. As an upcoming effort, we plan to map

ORM into the DLR Description Logic [CDLNR98], which is a powerful

68
 These steps can also be trivially applied for composing EER and UML schemas.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

and decidable fragment of first order logic. In this way, the satisfiability of

ORM schemes can be completely verified.

Step 1: Composing fact types.

In what follows, and for the sake of simplicity, we assume that all object

types in all modules have the same context. Two object types of the same

terms are considered the same object type. Two fact types of the same

terms of the two object types and the two roles are considered the same

fact type, i.e. the same lexons. In this way, combing object and fact type

across two modules becomes a simple and direct operation, (Ρ = Ρ1 Υ Ρ2),

see figure 4.6.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 4.6. Combining ORM fact types.

Notice that in case an object type is specified as “lexical” in one module

and as “non-lexical” in another (e.g. ‘Account’), then in the composition,

this object type is considered “non-lexical”. Lexical object types in ORM

are depicted as dotted- ellipsis.

Step 2: Composing constraints.

The goal of this step is to syntactically combine the two sets of

constraints, i.e. (Ω = Ω1 ⊕ Ω2). Some logical (i.e. satisfiability and

implication) validations are also performed in this step, e.g. in case of

combining two constraints that contradict or imply each other.

In the following, we show how all ORM constraints can be combined.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Step 2.1: Combining value constraints

The value constraint in ORM indicates the possible values (i.e. instances)

for an object type. A value constraint is denoted as a set of values {s1, …,

sn} depicted near an object type, see fig 4.7. The formalization of the value

constraint is }]...,,{[nssxAxx 1∈≡∀ . A value in this set can be either a number

or a string. The following are some examples: {1,2,3,4}, {2..30},

{1,3,4,9..21,25,30..10}, {‘Male’, ‘Female’}, {1..10,‘2’,‘3’,‘a’,‘b’}, etc.

Given two value constraints T.v1 and T.v2 on the same object type T, (notice

that v1 and v2 are two sets of values), their combination is the intersection

T.v = v1 ∩ v2, see fig. 4.7(a). If v1 ∩ v2 is empty, then the composition

(M1 Υ M2) is considered as incompatible operation, because the value

constraints contradict each other and thus the object type cannot be

satisfied, see fig. 4.7(b).

Fig. 4.7. Combining value constraints.

Step 2.2: Combining mandatory constraints

The mandatory constraint in ORM is used to constraint a role (played by

an object type) such that each instance of that object type must play this

role at least once. See the mandatory constraint in fig. 4.8, which is

depicted as a dot on the line connecting the role “IssuedBy” with the

object type “Order”.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 4.8. An example of a mandatory constraint.

When composing two modules, all mandatory constraints are included in

the composition without any specific combining operation.

Step 2.3: Combining disjunctive mandatory

Disjunctive mandatory constraint is used on a set of two or more roles

connected to the same object type. It means that each instance of an object

type’s population must occur in at least one of the constrained roles. For

example, the disjunctive mandatory in fig. 4.9 means that “each account

must be owned by a person or a company”.

Fig. 4.9. An example of a disjunctive mandatory constraint.

When composing two modules, all disjunctive mandatory constraints are

included in the composition without any specific combining operation.

See fig. 4.10.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 4.10. An example of combining disjunctive mandatory constraints.

Step 2.4: Combining uniqueness and frequency constraints

There are three patterns of specifying uniqueness constraints in ORM. An

arrow spanning a single role is called “internal” uniqueness, see fig.

4.11(a). It means that “each instance of a book has at most one ISBN”, i.e.

each occurrence is unique. An arrow spanning the two roles in a predicate

is called “predicate” uniqueness, see fig. 4.11(b). It means that “no book

can be written by the same author more than once and that no author can

write the same book more than once”, i.e. a many-to-many constraint
69

.

“Inter-predicate” uniqueness constraints, see fig. 4.11(c), apply to roles

from different predicates that have a common object type. The roles that

participate in a uniqueness constraint uniquely refer to an object type. For

example, different values of (author, title, and edition) refer to different

books. In other words, a book can be identified by the values of its author,

title, and edition all together.

69

 Although this constant has some significance in data modeling, but it is not really a

constraint as repetition of a proposition has no logical significance [H89] especially in

ontology modeling.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 4.11. Example of uniqueness constraints.

The frequency constraint (min-max) on a role is used to specify the

number of occurrences that this role can be played by its object type. For

example, the frequency constraint in fig. 4.12 means, if a car has wheels

then it must have at least 3 and at most 4 wheels. Notice that a frequency

constraint of maximum 1 is equivalent to an internal uniqueness constraint

on this role.

Fig. 4.12. Example of a frequency constraint.

When composing modules, uniqueness and frequency constraints are

combined as follows:

1. As internal uniqueness implies predicate uniqueness [H89], the

combination of these two constraints is internal uniqueness (see

fig. 4.13. (a) and (b)).

2. In case of internal uniqueness and frequency constraints on the

same role (see fig. 4.13(c)), the composition of (M1 Υ M2) is

considered an incompatible operation, because the two

constraints contradict each other [H89], and thus the role cannot be

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

satisfied. Recall that a frequency of maximum 1 is considered

internally uniqueness (see fig. 4.13(d)).

3. In case of two frequency constraints on the same role, FC1(min-max)

and FC2(min-max), the combination FC(min-max) is calculated as

FC.min = Max(FC1.min, FC2.min) and FC.max = Min(FC1.max, FC2.max), see

fig. 4.13(e). In case the FC.min > FC.max, see fig. 4.16(f), then the

composition of (Μ1 ⊕ Μ2) is considered an incompatible

operation, because the two constraints are in conflict each other,

and the role cannot be satisfied.

Fig. 4.13. An example of combining uniqueness and frequency constraints.

4. In other cases, all constraints are included in the composition

without any specific combining operation. Fig. 4.14 shows an

example of combining inter-predicate uniqueness constraints.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 4.14. An example of combining inter-predicate uniqueness constraints.

Step 2.5: Combining set-comparison constraints

The set-comparison constraints (subset, equality, and exclusion) are used

to restrict the way role(s) is/are populated with respect to other role(s).

Fig. 4.15 shows several examples of these constraints. Notice that (only

one) set-comparison constraint can be declared either between single roles

or between sequences of roles.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 4.15. Examples of set-comparison constraints.

Combining set-comparison constraints across two modules is performed

in the following steps:

1. Each exclusion constraint that spans more than two singles or

sequences of roles (called “multiple” exclusion) is converted into

pairs of exclusions
70

, such in Fig. 4.16.

70 This conversion is temporary for reasoning purposes, so it will not appear in the final

result of the composition. Notice that “a single exclusion constraint a cross n roles

replaces n(n-1)/2 separate exclusion constraints between two roles” [H01].

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 4.16. Converting multiple exclusions into pairs of exclusions.

2. When combining a subset (or equality) in one module and an

exclusion in another, the composition of (Μ1 ⊕ Μ2) is considered

an incompatible operation, because the two constraints contradict

each other, and so both roles cannot be satisfied. See fig. 4.17.

Fig. 4.17. Combining subset (or equality) with exclusion.

3. As equality implies subset (but not vice versa) [H89], when

combining a subset in one module and equality in another module,

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

or when combining two subset constraints that are opposite to each

other, the combination is always equality. See Fig. 4.18.

 Fig. 4.18. Combining subset and equality constraints.

Step 2.6: Combining subtype constraints (total, exclusive)

Total and exclusive constraints can only be declared on a set of subtypes

sharing the same supertype, see fig 4.19.

 Fig. 4.19. Examples of subtype constraints: (a) total, (b) exclusive.

When composing two modules, all subtype constraints are included in the

composition without any specific combining operation, see fig. 4.20.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

 Fig. 4.20. Combining subtype constraints.

Notice that constraint implications, such as the exclusive constraint

between (C, D) that is implied by the exclusive constraint between (B, C,

and D), are not resolved in this step.

Step 2.7: Combining ring constraints

ORM allows ring constraints to be applied to a pair of roles that are

connected directly to the same object type in a fact type, or indirectly via

supertypes. Six types of ring constraints are supported by ORM:

antisymmetric (ans), asymmetric (as), acyclic (ac), irreflexive (ir),

intransitive (it), and symmetric (sym) [H01][H99]. Fig. 4.21 shows

several examples of these constraints. Combinations of ring constraints on

the same pair of roles are also allowed, such as in fig. 4.21 (a) and (e).

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

 Fig. 4.21. Examples of ring constraints.

The relationships between the six ring constraints are formalized by [H01]

using the Eular diagram as in fig. 4.22. This formalization helps one to

visualize the implication and incompatibility between the constraints. For

example, one can see that acyclic implies reflexivity, intransitivity implies

reflexivity, the combination between antiasymmetric and reflexivity is

exactly asymmetric, and acyclic and symmetric are incompatible.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 4.22. Relationships between ring constraints [H01].

When composing two modules, ring constraints are combined based on

the formalization in fig. 4.22. Any combination of ring constraints should

be compatible, i.e. there is an intersection between their zones in the Eular

diagram. Otherwise, the composition of (Μ1 ⊕ Μ2) is considered an

incompatible operation, because the combined rings constraints conflict

each other, and thus the role cannot be satisfied.

Based on the Eular diagram, in table 4.1 we derive all possible compatible

combinations of the six ring constraints. Combinations that do not appear

in the table are incompatible, such as (ans) and (ac), (Sym, it) and (Ans),

(Sym, it) and (It, ac), or (Ans, it) and (Ir, sym), etc.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Table 4.1. All possible combatable combinations or ring constraints.

Step 3: Reasoning about the satisfiability of ORM modules

Some unsatisfiability cases were detected in the previous step, in

particular those that emerged when two or more constraints were

combined. In this step, we reason about other cases that may emerge

between different constraints in the composition.

As we noted earlier, as the completeness of our algorithm depends on the

decidability of the modules’ language, it is not necessary for the resultant

composition in this algorithm to be completely satisfiable. This is because

the general problem of determining consistency for all possible constraint

patterns in ORM is un-decidable [H97]. See our discussion on this issue in

the previous section.

In what follows, we present six cases of constraint patterns that lead to

unsatisfiability. These patterns are compiled from [H89][H03][BHW91]

[DMV] and refined to suit our reasoning about module satisfiability.

Although we do not claim completeness, these patterns - in addition to the

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

unsatisfiability cases that we have shown in the previous step - cover the

most common unsatisfiability cases in practice.

Pattern 1 (Top common supertype)

In this pattern, subtypes that do not have a top common supertype are

detected. In ORM, all object types are assumed by definition to be

mutually exclusive, except those that are subtypes. Thus, if a subtype has

more than one supertype, these supertypes must share a top supertype;

otherwise, the subtype cannot be satisfied. In fig. 4.23, the object type C

cannot be satisfied because its supertypes A and B do not share a common

supertype, i.e. A and B are mutually exclusive.

Fig. 4.23. Subtype without a top common supertype.

Formally, for each subtypeT , let persT.DirectSu be the set of all direct

supertypes of T . Let .SuperspersT.DirectSu i be the set of all possible

supertypes of ipersT.DirectSu . If

Φ=∩∩ .supers)ers.DirectSupsupersupers(T.DirectS n1 T , then the object

typeT cannot be satisfied. In this case, the composition (21 MM Υ) is

considered an incompatible operation.

For implementation purposes, the following algorithm is another

presentation
71

 of the above formalisms.

71 We use the object-oriented data structure to write our algorithms for the sake of

brevity, and for the simplicity of implementation in modern programming languages. The

algorithms are written in a simple JAVA-alike pseudo language. We present the

implementation of the six patterns in DogmaModeler in section 6.4.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Algorithm:

For each subtype T[x] {

 Let T[x].DirectSupers = the set of all direct supertypes of T[x].

 n = T[x].DirectSupers.size

 If (n > 1) {

 For (i = 1 to i=n) {

 Let T[x].DirectSupers[i].Supers = the set of all possible supertypes

 of T[x].DirectSupers[i] }

 // if the intersection of all T[x].DirectSupers[i].supers is not empty,

 then the composition is not satisfiable.

 if (Intersection(T[x].DirectSupers[1].supers, … T[x].DirectSupers[n].supers))

 is empty {

 Composition.Satisfiability = false

 Message= (“The subtype T[x].DirectSupers[i] cannot

 be satisfied as its supertypes do not have a top common supertype.“)

 }}

}

Pattern 2 (Exclusive constraint between types)

In this pattern, subtypes of mutually exclusive supertypes (caused by an

exclusive constraint) are detected. Fig. 4.24 shows a case where D cannot

be satisfied because its supertypes are mutually exclusive. The set of

instances of D is the intersection of the instances of B and C, which is an

empty set according to the exclusive constraint between B and C.

Fig. 4.24. Subtype with exclusive supertypes.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Formally, for each exclusive constraint between a set of object types

}T,{T T n1 …= , let .SubsTi be the set of all possible subtypes of the object

type iT , and .SubsTj be the set of all possible subtypes of the object

type jT , where ji ≠ , the set (.SubsT.SubsT ji ∩) must be empty. Otherwise

members in this set are not satisfiable; and hence, the composition of (M1

⊕ M2) is considered an incompatible operation.

For implementation purposes, the following algorithm is another

presentation of the above formalisms.

Algorithm:

For each exclusive constraint Exv[x] {

 Let Exv[x].T = the set of the object types participating in Exv[x].

 //For each pair of object types participating in the exclusion constraint:

 For (i = 1 to i = Exv[x].T.size) {

 For (j = 1 to j = Exv[x].T.size) {

 If (i not equal j) {

 Let Exv[x].T[i].Subs = the set of subtypes of the object type Exv[x].T[i].

 Let Exv[x].T[j].Subs = the set of subtypes of the object type Exv[x].T[j].

 S = IntersectionOf(Exv[x].T[i].Subs, Exv[x].T[j].Subs)

 If (S is not empty) {

 Composition.Satisfiability = false

 Message = (“all subtypes in <S> cannot be

 instantiated because of <Exv[x]>“) }}}}

}

Pattern 3 (Exclusion-Mandatory)

In this pattern, contradictions between exclusion and mandatory

constraints are detected. In Fig. 4.25, we show three examples of

unsatisfiable schemes.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

 Fig. 4.25. Unsatisfiable schemes because of the mandatory and exclusion conflicts.

In the first case (a), the role r3 will never be played. The mandatory and

exclusion constraints restrict that each instance of A must play r1 and the

instance that plays r1 cannot play r3. In the second case (b), both r1 and r3

will never be played. According to the two mandatory constraints, each

instance of A must play both r1 and r3. At the same time, according to the

exclusion constraints, an instance of A cannot play r1 and r3 together.

Likewise, in the third case (c), r3 and r5 will never be played. As B is a

subtype of A, instances of B inherit all roles and constraints from A. For

example, if an instance of B plays r5, then this instance - which is also an

instance of A - cannot play r1 or r3. However, according to the mandatory

constraint, each instances of A must play r1 and according to the

exclusion constrain, it cannot play r1, r3 and r5 all at the same time.

In general, a contradiction occurs if an object type that plays a mandatory

role participates in an exclusion constraint with other roles played by this

object type or one of its subtypes.

Formally, for each exclusion constraint between a set of single roles R ,

let .TRi be the object type that plays the role iR , RRi ∈ . For each (iR , jR),

where ji ≠ and iR is mandatory, if TRTR ji .. = or SubsTRTR ij ... ∈ -where

SubsTRi .. is the set of all subtypes of the object type .TRi - then some

roles in R cannot be populated. Hence, the composition of (M1 ⊕ M2) is

considered an incompatible operation.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

For implementation purposes, the following two alternative algorithms are

another presentation of the above formalism.

Algorithm:

For each exclusion constraint Exs[x] between a set of single roles {

 Let Exs[x].roles = the set of all roles participating in Exs[x].

 For (i=1 to Exs[x].roles.size)

 If (Exs[x].roles[i].Mandatory = true) {

 For (j=1 to Exs[x].roles.size) {

 If (I not equal j){

 Let Exs[x].roles[i].T = the object type that plays the role Exs[x].roles[i]

 Let Exs[x].roles[j].T = the object type that plays the role Exs[x].roles[j]

 Let Exs[x].roles[i].T.Subs = the set of all subtypes of Exs[x].roles[i].T

 If (Exs[x].roles[i].T = Exs[x].roles[j].T) OR

 In(Exs[x].roles[j].T, Exs[x].roles[i].T.Subs) {

 Composition.Satisfiability = false

 Message = (“There are some roles in <Exs[x].roles> that cannot

 be instantiated because of the <Exv[x]>“)}}}}}

An alternative but more compact algorithm can be:

For each exclusion constraint Exs[x] between a set of single roles {

 Let Exs[x].roles = the set of all roles participating in Exs[x].

 Let MandRoles = the set of all mandatory roles from Exs[x].roles.

 If (MandRoles is not empty)

 For (i=1 to ManRoles.size)

 For (j=1 to Exs[x].roles.size)

 Let MandRoles[i].T = the object type that plays the role MandRoles[i]

 Let Exs[x].roles[j].T = the object type that plays the role Exs[x].roles[j]

 Let Exs[x].roles[j].T.Subs = the set of all subtypes of Exs[x].roles[j].T

 If Not In(MandRoles[i].T, Exs[x].roles[j].T.Subs)

 Composition.Satisfiability = false

 Composition.Satisfiability.reason= (“There are some roles in

 <Exs[x].roles> that cannot be populated because of the <Exv[x]>“)}}}}

}

Pattern 4: (Frequency-Value)

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

In this pattern, contradictions between value and frequency constraints are

detected.

Fig. 4.26. Contradiction between value and frequency constraints.

In fig. 4.26, the role r1 cannot be populated. If the frequency constraint (3-

5) on r1 is satisfied, each instance of A must play r1 at least three times,

and thus three different instances of B are required. However, there are

only two possible instances of B, which are declared by the value

constraint {‘x1’, ‘x2’}.

For each fact type (BrA), let c be the number of the possible values of B

that can be calculated from its value constrain, and let (mn −) be a

frequency constraint on the role r , c must be equal or more than n .

Otherwise, the role r cannot be satisfied, as the value and the frequency

constraints contradict each other. Hence, (M1 ⊕ M2) is considered an

incompatible operation.

For implementation purposes, the following algorithm is another

presentation of the above formalisms.

Algorithm:

For each frequency constraint F[x] {

 Let F[x].min = the lower bound of the frequency constraint F[x].

 Let T = the object type that is played by the role holding F[x].

 Let T.Values = the value constraint on T.

 // if there is no value constraint on T, then T.Values = null

 If (T.Values is not null) and (T.Values.size < F[x].min) {

 Composition.Satisfiability = false.

 Message =(“the role <T.r> cannot be instantiated because the

 <F[x]> and the <T.Values> contradict each other”). }

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

}

Pattern 5 (Value-Exclusion)

Contradictions between value and exclusion constraints are detected in

this pattern. Fig. 4.27 shows a contradiction between the exclusion and the

value constraints. This contradiction implies that one of the roles that is

connected to A cannot be populated. According to the exclusion

constraint, there should be at least three different values of A to play r1, r3

and r5. However, according to the value constraint, there are only two

possible values of A.

Fig. 4.27. Contradiction between value and exclusion constraints.

For each exclusion constrain, let }R , ,{R R n1 …= be the set of roles

participating in this constraint, and let n be the number of the roles in R .

Let T be the object type that plays all roles in R . Let C be the number of

possible values of T , according to value constraint. C must always be

more than or equal n. Otherwise, some roles in R cannot be satisfied, and

hence, the composition of (M1 ⊕ M2) is considered an incompatible

operation.

For implementation purposes, the following algorithm is another

presentation of the above formalisms.

Algorithm:

For each exclusion constraint Exs[x] between a set of single roles {

 Let Exs[x].Roles = the set of roles participating in the exclusion Exs[x].

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

 Let O = the object type that plays all roles in Exs[x].Roles.

 Let O.Values = the value constraint on O.

 // if there is no value constraint on O, then O.Values = null

 If (O.Values is not null) and (O.Values.size < Exs[x].Roels.size) {

 Composition.Satisfiability = false.

 Message =(“Some roles in <Exs[x].Roles> cannot be instantiated because

 the <Exs[x]> and the <O.Values> contradict each other”).}

 }

Pattern 6 (Set-comparison constraints)

In this pattern, contradictions between exclusion, subset, and equality

constraints are detected. Fig. 4.28 shows a contradiction between the

exclusion and the subset constraints. This contradiction implies that both

predicates cannot be populated.

 Fig. 4.28. A non fact type populatable schema.

The exclusion constraint between the two roles r1 and r3 means that their

populations should be distinct. However, in order to satisfy the subset

constraint between (r1, r2) and (r3, r4), the populations of r1 and r3 should

not be distinct. In other words, the exclusion constraint between r1 and r3

implies an exclusion constraint between (r1, r2) and (r3, r4) [H89], which

contradicts any subset or equality constraint between both predicates.

Fig. 4.29 shows the implications for each set-comparison constraint that

might be declared between parts of role sequences. These implications are

taken into account when reasoning for contradictions between the three

set-comparison constraints.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 4.29. Main set-comparison implications [H01].

In addition, an equality constraint is equivalent to two subset constraints.

Hence, we refer to a subset or an equality constraint as a SetPath.

For each exclusion constraint between A and B: If A and B are two

predicates, there should not be any (direct or implied) SetPath between

these predicates; If A and B are single roles, there should not be any

(direct or implied) SetPath between both roles or between the predicates

that include these roles.

Otherwise, the two predicates cannot be populated, as the two constraints

contradict each other. In this case, the composition of (M1 ⊕ M2) is

considered an incompatible operation.

Algorithm:

For each exclusion constraint Exs[x] {

 If (Exs[x] between predicates) {

 Let Exs[x].predicates = the set of all predicates participating in Exs[x].

 \\ For each pair of predicates participating in the exclusion

 For (i = 1 to i = Exs[x].predicates.size) {

 For (j = 1 to j = Exs[x].predicates.size) {

 If (i not equal j) {

 Sp = GetSetPathsBetween(Exs[x].Predicates[i], Exs[x].Predicates[j])

 // Sp is the set of all subset or equality constraints that specify or imply a

 // SetPath between the current tuple of predicates.

 If (Sp is not empty) {

 Composition.Satisfiability = false.

 Message = (“the exclusion constraint <Exs[x]> contradicts some subset

 and/or equality constraints on the predicates in <Sp>”).}}}}}

 Else { // then the Exs[x] is between roles

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

 Let Exs[x].roles = the set of all roles that participate in Exs[x].

 \\ For each pair of roles participating in the exclusion constraint

 For (i = 1 to i = Exs[x].roles.size) {

 For (j = 1 to j = Exs[x].roles.size) {

 If (i not equal j) {

 Sr = GetSetPathsBetween(Exs[x].roles[i], Exs[x].roles[j])

 // Sr is the set of all subset or equality constraints that specify or imply a

 // SetPath between the current tuple of roles.

 Sp = GetSetPathsBetween(Exs[x].Predicates[i], Exs[x].Predicates[j])

 // Sp is the set of all subset or equality constraints that specify or imply a

 // SetPath between the predicates of the current tuple of roles.

 If (Sr is not empty) OR (Sp is not empty) {

 Composition.Satisfiability = false.

 Message = (“the exclusion constraint <Exs[x]> contradicts some Subset

 and/or equality constraints on the predicates in Sp”). }}}}}}

}

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

4.6 Discussion and conclusions

In this chapter, we have presented the ontology modularization principle.

We have shown how application axiomatizations can be developed as

modules and later composed to form one modular axiomatization. In the

following paragraphs, we summarize the main advantages of the ontology

modularization principle:

• Modules are easy to reuse in other kinds of applications. In

addition to our contribution towards the reusability of domain

axiomatizations (which can be achieved by the double-articulation

principle), the reusability of application axiomatizations can also

be improved by modularizing it into a set of compose-able

modules. The two engineering principles indeed complement each

other. By the double-articulation principle, the ontology reusability

is improved by separating between domain and application

axiomatizations based on the abstraction level of axioms.

Correspondingly, the modularization principle contributes to

ontology reusability by enabling parts of application

axiomatizations to be isolated and reused among other application-

kinds. Hence, we fulfill the R1 engineering requirement:

Ontologies should be engineered in a way that allows the isolation

and identification of the reusable parts of an ontology.

• Enable distributed development of modules over different

locations, expertise, and stakeholders. The double-articulation and

modularization principles complement each other also in the

distributed development of ontologies. While the double

articulation principle enables (domain experts, lexicographers,

knowledge engineers, etc.) to contribute to the development of

domain axiomatizations, the modularization principle enables the

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

application axiomatization development to be distributed among

different application-oriented expertise, stakeholders, etc. As we

have shown in our example in section 4.1.1, while the “Payment”

module might be developed and released by a company

specialized in online payment services, the “BookOrder” module

can be developed and released by bookstore companies. Such

modules can be composed later to form one book-shopping

axiomatization. Hence, we claim to fulfill the R4 engineering

requirement: The ontology representation model should be

capable of distributed and collaborative development.

• Modules are easier to build, maintain, and replace. This is

because the internal couplings (e.g. the number of relationships

between concepts) in small modules are fewer than the internal

couplings in large axiomatizations. The development and

maintenance of small modules enable ontology builders a better

focus and easy understanding than large and multi-domain

axiomatizations
72

. The modularity of an axiomatization also

enables ontology users and maintainers to interchange some parts

with others that are for example, more relevant, reliable or

accurate. In short, the modularization principle indeed enables the

evolution life cycle of axiomatizations to be more efficient.

Hence, modularization assists in fulfilling the R5 and R6

engineering requirement. Ontologies should be engineered in a

way that enables smooth and efficient evolution (R5). Ontologies

72 The reader may noticed that our contribution towards ontology maintainability is not

concerned with the consequences of ontology evolution (on running applications), as

versioning mechanisms (cf. [Hj01], [KKOF02], [MMS03])) are intended to resolve. Our

main concern is on how to make the ontology evolution process itself easy and more

efficient. Nevertheless, it would be easier for versioning mechanisms to keep track of

changes in modules than changes in the whole ontology. As we have discussed earlier,

unsteady part of an ontology can be realized into a separate module, which steadies the

other modules.

Chapter 4: Ontology Modularization

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

should be engineered in a way that allows easy replacement of the

axiomatization of ontology parts (R6).

• Enable effective management and browsing of modules. Modules

are easier to store, retrieve, search, index, and master than large

and multi-domain axiomatizations. In chapter 5 and 6, we show a

prototype of a library of modular axiomatizations, where modules

are annotated and indexed using Dublin-Core metadata. In

addition, we will show how axiomatizations can be effectively

browsed and viewed as modules.

This chapter concludes our discussion of the methodological principles of

our thesis. Next, we proceed to present the implementation .

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Part III

Implementation

Implementation (WordNet 1.7.1):

[1]-The act of accomplishing some aim or executing some

order. E.g. “the agency was created for the

implementation of the policy”

[2]-The act of implementing (providing a practical means

for accomplishing something); carrying into effect.”

-(http://wordnet.princeton.edu)

In this part, we present the implementation part of the thesis. The next

chapter defines a conceptual markup language of the ORM graphical

notation. In chapter 6, we present an ontology engineering tool called

DogmaModeler. In chapter 7, we present our experience and

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

achievements on applying our methodological principles and tool in

building a -medium size- costumer complaint ontology.

Chapter 5: ORM Markup Language

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Chapter 5

ORM Markup Language

 “… Quite a number of knowledge representation

techniques are supported by some kind of graphical

formalism, usually called a "semantic network" of

sorts…..Semantic nets allow to construct an explicit

connection between on the one hand “Al-style”

knowledge representation and on the other hand

“classical” database design. ...”.

-(R. Meersman, [M86])

In this chapter, we define a conceptual markup language (ORM-ML) for

the ORM graphical notation. In section 5.1 we provide a brief introduction

and discuss our motives for constructing the ORM markup language

before we present the language itself in section 5.2. To end, section 5.3

draws some conclusions and summarizes the main advantages of ORM-

ML.

Chapter 5: ORM Markup Language

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

5.1 Introduction and motivation

In this chapter, we define a conceptual markup language for the ORM

graphical notation. This language will be used in our DogmaModeler tool

prototype (in chapter 6) for representing application axiomatizations.

The ORM markup language presented in this chapter is an intensively

improved version (Version 2.0) of the language that we have published in

[DJM02a][DJM02b][JDM03].

Although application axiomatizations might be specified in different

specification languages (see section 3.4), we have chosen to illustrate our

approach using ORM.

Indeed, successful conceptual data modeling approaches, such as ORM or

EER, became well known because of their methodological guidance in

building conceptual models of information systems. They are semantically

rich disciplines and support quality checks at a high level of abstraction

[V82] and they provide modeling constructs like integrity, taxonomy, and

derivation rules [H01] [F02]. Merely, conceptual data schemes -also

called semantic data models - were developed to capture the meaning of

an application domain as perceived by its developers [WSW99] [M99a].

This meaning is being represented in diagram formats (which are

proprietary and therefore are limited to use inside specific CASE tools),

and typically used in an off-time mode, i.e. used during the design phases.

Nowadays, the Internet and the open connectivity environments create a

strong demand for sharing and exchanging not only data but also data

semantics. By defining a conceptual markup language (ORM-ML) that

allows for the representation of ORM conceptual diagrams in an open,

textual syntax, we enable ORM schemes to be shared, exchanged, and

processed at run-time.

Chapter 5: ORM Markup Language

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

5.1.1 Why ORM

ORM (Object-Role Modeling) [H01] is a conceptual modeling approach

that was developed in the early 70's. It is a successor of the NIAM

(Natural-language Information Analysis Method) [VB82]. Based on

ORM, several conceptual modeling tools exist, such as Microsoft's

VisioModeler™ and the older InfoModeler. This has the functionality of

modeling a certain Universe of Discourse (UoD) in ORM while

supporting the automatic generation of a consistent and normalized

relational database schema.

ORM schemas can be translated into pseudo natural language statements.

The graphical representation and the translation into pseudo natural

language make it a lot easier, also for non-computer scientists, to create,

check and adapt the knowledge about the UoD needed in an information

system.

The ORM conceptual schema methodology is fairly comprehensive in its

treatment of many "practical" or "standard" business rules and constraint

types. Its detailed formal description, (we shall take ours from

[H01][H89]) makes it an interesting candidate to non-trivially illustrate

our XML based ORM-markup language as an exchange protocol for

representing ORM conceptual models (seen as application

axiomatizations).

Of course, similar to ORM-ML, a markup language could be defined for

any other conceptual modeling method. We have chosen ORM to

illustrate the adoption of conceptual data modeling methods for ontology

engineering purposes because ORM has several strengths over other

methods [H01]: ORM is fairly comprehensive in its treatment of many

“practical” and “standard” rules, (e.g. identity, mandatory, uniqueness,

subtyping, subset, equality, exclusion, frequency, transitive, acyclic, etc.).

Chapter 5: ORM Markup Language

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Furthermore, ORM has an expressive and stable graphical notation since

it captures many rules graphically and it minimizes the impact of change

on the models
73

. ORM has well-defined formal semantics (see e.g. [H89]

[BHW91] [HPW93] [T96] [TM95] [HP95]). In addition, it is perhaps

worthwhile to note that ORM derives from NIAM (Natural Language

Information Analysis Method), which was explicitly designed to play the

role of a stepwise methodology, to arrive at the "semantics" of a business

application's data based on natural language communication.

5.2 ORM-Markup Language

This section presents the ORM markup language (ORM-ML). ORM-ML

is based on the XML syntax, and is defined in an XML-Schema (provided

in Appendix A) that acts as its complete and formal grammar. Hence, any

ORM-ML document should be valid according to this XML-Schema.

ORM-ML is not meant to be written by hand or interpreted by people. It is

meant to be implemented for example, as a “save as” or “export to”

functionality in ORM tools. This shall be illustrated in the next chapter as

a functionality of our tool prototype.

In what follows, we describe the main elements of the ORM-ML grammar

and demonstrate it using a few elementary examples. A more complete

example is provided in Appendix A3. We chose to respect the ORM

structure as much as possible by not “collapsing” it through the usual

relational transformer that comes with most ORM-based tools. ORM-ML

allows the representation of any ORM schema without a loss of

information or a change in semantics, except for the geometry and

topology (graphical layout) of the schema (e.g. location and shapes of the

73 In comparison with other approaches (e.g. ER, UML), ORM models are attribute-free;

so they are immune from changes that cause attributes to be remodeled as entity types or

relationships.

Chapter 5: ORM Markup Language

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

symbols) We include this in a separate graphical style sheet from that of

the ORM Schema (see Appendix B2).

We represent the ORM document as a one node element called the

ORMSchema, which consists itself of two nodes: ORMMeta and

ORMBody. Fig. 5.1 shows an “empty” instance of this schema.

Fig. 5.1. An empty instance of the ORMSchema, as an example of ORM-ML document.

5.2.1 ORM-ML metadata

As a header to an ORM-ML document, an ORMMeta node includes

metadata elements about the ORM document, such as ‘Title’, ‘URI’,

‘Creator’, ‘Version’, etc. A ORMMeta node consists of a set of Meta

elements. Each Meta element has two attributes: name and content. The

main idea of this elementary structure is to enable the flexibility of

adopting existing metadata standards. For example, one may use the 15

well-known Dublin Core Meta elements
74

 - an example of their use

appears in fig. 5.12.

74

 The Dublin Core Metadata Initiative (http://www.dublincore.org , June 2004) is a

cross-disciplinary international effort to develop mechanisms for the discovery-oriented

description of diverse resources in an electronic environment. The Dublin Core Element

Set comprises 15-elements which together capture a representation of essential aspects

related to the description of resources. These 15-elements are namely: title, creator,

subject, description, publisher, contributor, date, type, format, identifier, source,

language, relation, coverage and rights.

Chapter 5: ORM Markup Language

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 5.2. An example of an ORMMeta node, using Dublin Core metadata elements.

To enable the foundation of libraries of application axiomatizations, we

have developed a decent set of 25 metadata elements that better suit the

description of ontological content. These elements are a specialization and

extension of the Dublin Core elements. An example of this metadata

appears in fig. 5.14. Appendix B1 presents a definition of these metadata

elements
75

. We shall come back to this issue in the section 6.5 where we

discuss the enabling of the development of “axiomatization libraries”.

75

 It is perhaps worthwhile to note that our metadata elements (and their definitions) are

adopted in the KnowledgeWeb Network of excellence project (KWEB EU-IST-2004-

507482), and will be proposed as a standard for Ontology Metadata (or also called

Ontology Registries). For more details, see [SGG+05].

Chapter 5: ORM Markup Language

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 5.3. An example of an ORMMeta Node, using DogmaModeler metadata elements.

5.2.2 ORM-ML Body

The ORMBody node consists of these five different (meta-ORM)

elements: Object, Subtype, Predicate, Predicate_Object and Constraint.

Object Types

Object elements are abstract XML elements that are used to represent

Object Types. They are identified by an attribute ‘Name’, which is the

name of the Object Type in the ORM Schema, see fig. 5.4. Objects are

implemented by two XML elements: LOT (Lexical Object Type, called

Value Types in [H01]) and NOLOT (Non-Lexical Object Type, called

Entity Types in [H01])
76

. LOT elements may have a numeric attribute,

which is a boolean and indicates whether we deal with a numeric Lexical

Object Type. NOLOT elements have a boolean attribute called

independent, which indicates whether the Non Lexical Object Type is

76 Informally speaking, the idea of LOT and NOLOT in ORM, is similar the idea of

ValueProperty and ObjectProperty in OWL. LOT represents ValueProperty, and NOLOT

represents ObjectProperty.

Chapter 5: ORM Markup Language

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

independent. NOLOT elements may also have a reference element. A

reference element would indicate how this NOLOT is identified by LOTs

and other NOLOTs in a given application environment. A reference

element has two attributes: ref_name (the name of the reference and

numeric) and a boolean (to indicate whether it is a numeric reference).

Fig. 5.4. ORM-ML representation of an Object Type.

Subtypes

Subtype elements are used to represent subtype relationships between

(non-lexical) object types. A subset element is required to have two

elements: parent and child, where both refer to predefined object type

elements. See fig. 5.5.

Fig. 5.5. ORM-ML representation of subtypes.

Predicates

Predicates consist of at least one Object_Role element. Such an element

contains a reference to an object and may contain a role. They actually

represent the rectangles in an ORM schema. Every Object_Role element

needs a generated attribute 'ID' which identifies the Object_Role (see fig.

5.6). By using this ID attribute, we can refer to a particular Object_Role

Chapter 5: ORM Markup Language

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

element in the rest of the XML document, which for example, we will

need to do when we define constraints.

Predicates can have one or more rule elements. These elements can

contain extra rules that are defined for the predicate.

Predicates also have two boolean attributes that are optional: ‘Derived’

and ‘Derived_Stored’ which indicate whether a predicate respectively is

derived, or derived and stored, or not.

Fig. 5.6. A simple binary predicate and its representation in ORM-ML.

Predicate Objects

Predicate_Objects are actually objectified predicates, which are used in

nested fact types. They contain a predicate element and have an attribute

called ‘Predicate_Name’. So in fact, they are merely predicates that have

received new object type names. In building Object_Roles, the

Predicate_Name can be referenced. In this way we build predicates that

contain objectified predicates instead of object types. See fig. 5.7.

Chapter 5: ORM Markup Language

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 5.7. ORM-ML representation of nested fact types (Objectified predicates).

Constraints

Constraint elements represent the ORM constraints. The Constraint

element itself is abstract, but it is implemented by different types of

constraints, viz. Mandatory, Uniqueness, Subset, Equality, Exclusion,

Value, Frequency, and Ring constraints. As mentioned above, we use the

IDs of the Object_Role elements to define constraints.

Uniqueness and mandatory constraint elements possess only Object_Role

elements. These elements are the object_roles in the ORM diagram on

which the constraint is placed. In this way, there is no need to make a

distinction between the ORM-ML syntax of "external" and "internal"

uniqueness constraints (see [H01]), or between mandatory and disjunctive

mandatory constraints, see fig. 5.8.

Chapter 5: ORM Markup Language

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 5.8. ORM-ML representation of Uniqueness and Mandatory constraints.

The representation for subset, equality, and exclusion constraints is

analogous, so we will only discuss them in general terms. Each of these

constraints has references to (combinations of) object_role elements. For

instance, to represent a subset constraint between two roles, we create a

Subset element, containing two elements, Parent and Child. In the Parent

element, we put references to the subsumed object_role, and in the Child

element, we put references to the subsuming object_role. For equality and

exclusion, we use First and Second elements instead of Parent and Child

elements. Fig. 5.9., fig. 5.10, and fig. 5.11 show the ORM-ML

representation of subset, equality, and exclusion constraints respectively.

Chapter 5: ORM Markup Language

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 5.9. ORM-ML representation of the Subset constraint.

Fig. 5.10. ORM-ML representation of the Equality constraint.

Fig. 5.11. ORM-ML representation of the Exclusion constraint.

The representation for Exclusive and Totality constraints is analogous, and

very simple. Each constrain has one supertype elements and (at least two)

subtypes elements. See fig. 5.12.

Chapter 5: ORM Markup Language

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 5.12. ORM-ML representation of the Exclusive and Totality constraint.

The Value constraint is represented in ORM-ML using the Value and

ValueRange elements. The ValueRange element has two attributes: begin

and end, with obvious meanings. Each of the Value and ValueRange

elements have an additional attribute called “datatype” to indicate the

datatype of the value. See fig. 5.13.

Fig. 5.13. ORM-ML representation of the value constraint.

The Frequency constraint is represented in ORM-ML by two attributes:

Minimum and Maximum, which can defined on Object_Roles. See fig.

5.14.

Chapter 5: ORM Markup Language

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 5.14. ORM-ML representation of the Frequency constraint.

Finally, ring constraint elements are: antisymmetric (ans), asymmetric

(as), acyclic (ac), irreflexive (ir), intransitive (it), symmetric (sym),

acyclic+intransitive (ac+it), asymmetric+intransitive (as+it),

intransitive+symmetric (it+sym), and irreflexive+symmetric (ir+sym).

Ring constraint elements contain references to the object_roles they are

put on. See Fig 5.15.

Fig. 5.15. ORM-ML representation of the Ring constraints.

Remark: ORM-ML also supports modular ORM schemes, which allows

the representation of sub ORM schemes (seen as composed modules). We

postpone the discussion of this issue to section 6.6.

5.3 Discussion and conclusions

In this chapter, we have presented the ORM markup language that

represents ORM conceptual diagrams in an XML-based syntax. Our main

goals of doing this are:

• Enable the ORM conceptual diagrams to be shared, exchanged,

and processed at run-time. ORM-ML as a standardized syntax for

Chapter 5: ORM Markup Language

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

ORM models may assist interoperation tools to exchange, parse or

understand the ORM schemas. Like ORM-ML, any conceptual

modeling approach (e.g. EER, UML, etc.) could have a markup

language.

• Enable conceptual data modeling methods to be (re)used for

ontology engineering purposes. Indeed, as we have discussed in

section 3.4, conceptual data modeling methods suit many (or

maybe most) application scenarios and usability perspectives. In

addition, the large set of existing conceptual modeling methods,

graphical notations, and tools can make ontologies better

understandable, and easier to adopt, construct, visualize and

verbalize. Legacy conceptual schemes can be mined and/or

“ontologized”. In the next chapter, we illustrate these issues by

using ORM for modeling and representing application

axiomatizations, which shall be defined in terms of domain

axiomatizations (ontology base).

In addition, by standardizing such a markup language, several other

advantage are worth noting:

• Interoperability for exchanging and sharing conceptual data

models over the Internet. Facilities are needed to share and

exchange ORM conceptual models in terms of a networked,

distributed computing-driven, and collaborative environment, and

to allow users to browse and edit shared knowledge over the

Internet, intranets and other channels. A conceptual schema

markup language provides a standardizable method to achieve

interoperability among CASE tools that use the conceptual

modeling technique.

Chapter 5: ORM Markup Language

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

• Implementing a conceptual query language over the Web. In open

and distributed environments, the building of queries should be

possible regardless of the internal representation of the data. Query

languages based on ontologies (seen as shared conceptual models)

help users not only to build queries, but also make them easier,

more expressive, and more understandable than corresponding

queries in a language like SQL. Exchanging, reusing, or sharing

such queries efficiently between agents over the web is

substantially facilitated by a standardized markup language.

Consequently, ORM-based query languages (e.g. RIDL [VB82]

[M81], ConQuer [BH96]) would gain from ORM-ML by

representing queries in such an exchangeable representation.

• Building transformation style sheets. Building transformation style

sheets for a given usage or need, for example, for the first order

rewriting of formalisms of ORM-ML documents, or to transform

the XML-based representation into another XML-based

representation. Another important and strategic issue is that one

could write a style sheet to generate the given ORM model

instance into a given rule-engine’s syntax, to allow for run-time

interpretation by that rule engine. It could for instance, perform

instance validation and integrity checks.

• Generating Verbalizations. The verbalization of a conceptual

model is the process of writing its facts and constraints in pseudo

natural language sentences. This assumedly allows non-experts to

check, validate, or even build conceptual schemas. In the next

chapter, we show how to generate the verbalization of ORM

models by building a verbalization template (built as separate

XML-based style sheets) parameterized over ORM-ML

documents.

Chapter 5: ORM Markup Language

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Having concluded this section, we proceed to present the DogmaModeler

ontology engineering tool that constitutes the implementation section of

this thesis.

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Chapter 6

DogmaModeler Ontology

Engineering Tool

“The new tools of ontological engineering might help us

to realize Peirce’s vision of a time when operations upon

diagrams will take the place of the experiments upon real

things that one performs in chemical and physical

research.”

-(Barry Smith, [S02])

In this chapter we present a prototype of an ontology engineering tool. In

section 6.1, we give a quick overview of the tool. The illustration of how

to model a domain and application axiomatizations will be presented in

section 6.2 and section 6.3 respectively. In section 6.4, we give an

overview of the validation types that are supported in the DogmaModeler.

The DogmaModeler’s support of axiomatization libraries is presented and

discussed in section 6.5. In section 6.6., we present the implementation of

module composition. The other functionalities of DogmaModeler will be

briefly explained in section 6.7. To end, some conclusions and final

remarks are made in section 6.8.

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

6.1 Introduction, a quick overview of DogmaModeler

This section briefly outlines our DogmaModeler tool prototype for

ontology engineering. Its implementation is based on the methodological

principles described in this thesis.

The DogmaModeler supports the following functionalities (among other

things that shall be illustrated later):

• Modeling, browsing, and managing both domain and application

axiomatizations;

• Modeling application axiomatizations using the ORM graphical

notation, and generating the corresponding ORM-ML

automatically;

• Verbalizing application axiomatizations into pseudo natural

language (supporting flexible verbalization templates, for e.g.

English, Dutch, Arabic, and Russian);

• Automatic composition of axiomatization modules;

• Validations of the syntax and semantics of axiomatizations;

• An illustration is given of the process of incorporating lexical

resources in ontology modeling; in order to the support the

modeling process of glosses;

• A simple approach to support the multilingual lexicalization of

ontologies;

• Automatic mapping of ORM schemes into X-Forms and HTML-

Forms.

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 6.1 shows a screenshot of DogmaModeler. Notice its three main

windows: the ontology base window, the commitment modeling window,

and the commitment library window.

Fig. 6.1. A general screenshot of DogmaModeler.

Ontology base window (the top left side of fig. 6.1)

Before building ontological commitments (i.e. application

axiomatization), ontology builders should define their lexons in the

ontology base window, in case it is empty. This window presents the set

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

of lexons -{< γ: Term1, Role, InvRole, Term2>}- in a tree-like structure
77

.

The first level, (Ω) represents ontology bases (e.g. Dogma-Ontologybase).

In the second level, each node (γ) represents a context (e.g. Bibliography).

Notice that level 0 () in the tree represents the ontology base server,

where the content of the ontology bases is hosted and managed. All

transactions carried out at the ontology base (e.g. creating contexts,

editing lexons) will be transmitted, verified and executed on the server.

Notice that level 0 () in the tree represents the ontology base server,

where the content of ontology bases is hosted and managed. All

transactions on the ontology base (e.g. creating contexts, editing lexons)

will be transmitted, verified and executed on the server.

Commitment modeling window (the right side of fig. 6.1)

This window consists of three panels: ORM, ORM-ML, and Pseudo NL.

To build an application axiomatization, ontology builders can drag and

drop lexons from the ontology base window into the ORM panel (to

define the ontological view). When doing so, lexons will be mapped

automatically into ORM fact types. Then, in order to define constraints on

these lexons, ontology builders can use the ORM family of constraints

(see icons in the top of the ORM panel).

Commitment library window (Under the ontology base window)

The purpose of this window is to enhance the reusability, management,

and organization of application axiomatizations. The current

implementation allows ontology builders to access and browse application

axiomatizations stored in a library (Θ). Each node () in the first level of

the tree represents an application axiomatization. By expanding an

77 The ontology base tree has advanced features, so it can also be browsed and seen as a

graph.

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

axiomatization node, the set of lexons and the set of constraints that are

subject to this axiomatization will appear in the second level.

Remark: Although in this chapter, we sometimes describe “how” to model

an ontology using the DogmaModeler, our description is intended neither

to be a stepwise methodology nor to serve as a manual of the

DogmaModeler.

6.2 Modeling domain axiomatizations in the Ontology Base

In this section we present how domain axiomatizations can be developed

and represented in the ontology base. We present how, for modeling

purposes, the DogmaModeler supports: Context, Lexon, Term, Gloss, and

Role/InvRole. These are the main building blocks of a domain

axiomatization.

6.2.1 Context Modeling

The first step to developing a domain axiomatization is to specify the

context(s) of the domain. In other words, providing information about the

scope of the axiomatization, in which the interpretation (i.e. the intended

meaning) of the ontology terminology is bounded. In the DogmaModeler,

each context should have a Context ID, and a Context Description. Fig.

6.2 shows the context modeling window and an example of modeling the

‘CustomerComplaint’ context of the CContology
78

.

78 This ontology, and its ‘CustomerComplaint’ context, shall be present in more detail in

chapter 7.

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 6.2. Context modeling window.

In the Context Description field, one may refer to sources such as a set of

documents, laws, regulations and informal descriptions of “best

practices”. The idea is that the interpretation of the terms that will appear

in the lexons within this context is bounded to concepts that might be

referred to (explicitly or intuitively) within these resources. Lexons are

assumed to be “true within their context’s source”.

If an ontology is mined from a corpse of documents, the recommended

best practice is to cite these documents in the context description. In case

an ontology is developed based on (or conforming to) a set of laws,

regulations or constitutions, these rules should be cited.

From a methodological viewpoint, by describing their context, ontology

builders will be encouraged to decide the scope and coverage of their

axioms, especially in the early development phases. A context description

(and the resources cited in it) can be also used for investigating the

correctness of glosses and lexons.

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

The “Deployed” flag, at the bottom of the context modeling window

indicates whether the lexons in this context are “being used” or are still

“under development”. If a context is flaged as deployed, the

DogmaModeler disables all delete and change functions over the

properties of all terms, roles, and lexons.

6.2.2 Concept Modeling

When introducing a new concept (i.e. a term within a given context),

ontology builders should define its gloss. Fig. 6.3 shows the concept-

modeling window with an example of the term ‘Book’ and its gloss,

within the context of a ‘Bibliography’. See our methodological guidelines

for gloss-modeling in section 3.3.6.

Fig. 6.3. Concept modeling window.

Incorporating existing lexical resources in gloss modeling

As we have discussed in section 3.5, many existing lexical resources (such

as lexicons, glossaries, thesaurus, dictionaries, etc.) are indeed important

sources of glosses. To enable the adoption and reusability of such

resources, fig. 6.4 shows a screenshot of a menu of glosses of the term

‘City’, which are retrieved from WordNet. The idea is that after

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

introducing a new term, the DogmaModeler automatically offers a menu

of glosses for this term. Ontology builders can then, choose or define a

new gloss. If an existing gloss has been chosen, a reference to this gloss is

recorded in the “Namespace” field
79

.

Fig. 6.4. Incorporating existing lexical resources in gloss modeling.

Recall that the notion of gloss is not intended to catalog general

information or to provide morphological issues about a term, as

conventional dictionaries usually do. As we have discussed in section

3.3.6, a gloss has a strict intention in our appraoch and not just any lexical

resource can be adopted. The lexicon should provide a clear

discrimination of word/term meaning(s) in a machine-referable manner,

much like the synsets in WordNet.

The “Upper Form” field in the concept-modeling window serves to

declare the term-upper-form of the concept. For example, the Upper Form

of ‘Book’ is ‘Substantial’ according to the DOLCE foundational ontology.

79 Because of time limitations, this functionality is not yet fully implemented in the

DogmaModeler.

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

See our earlier discussion on this issue in section 3.3.7. The full

incorporation of upper level (foundational) ontologies in the

DogmaModeler is considered a future development task.

6.2.3 Lexon Modeling

Lexons are the main axioms in a domain axiomatization. Recall that a

lexon has the form: <Context: Term1, Role, InvRole, Term2> (see section

3.3.). After having introduced a term and its informal definition (i.e. gloss)

into the ontology base, ontology builders can introduce lexons. Fig. 6.5

shows a simplified lexon-modeling window
80

. In this window, for a Term,

within a Context, ontology builders may declare a lexon by introducing its

Role, InvRole, Term2, and then choose the LexonUpperForm of this

lexon.

Fig. 6.5. Lexon-modeling window.

The “lexonUpperFrom” field allows ontology builders to declare the

primitive lexon type (Subsumption, Parthood, Dependence, Property-of,

Attribution etc.), thus committing to an upper level ontology of

80 DogmaModeler supports another more sophisticated window for modeling lexons,

which allows faster and more scalable (search and retrieval) of existing terms and roles.

However, this feature is not presented in this section for the sake of simplicity.

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

relationship kinds, also known as “basic primitive relationships” (see our

discussion on this issue in section 3.3.7.). As the incorporation of upper

level ontologies in our approach is still in progress, the DogmaModeler’s

full support of the LexonUpperForm, is considered a future development

task. At this stage, the DogmaModeler does not impose any restriction on

this field.

Lexon notation and visualization

To simplify the lexon modeling process, the DogmaModeler allows users

to customize the lexon graphical notation. As apparent in the left side of

fig. 6.6, users may choose to hide Role/InvRole labels; and/or they may

introduce their own graphical notation (i.e. lexon icons).

Fig. 6.6. Lexon graphical notation.

In the current version of the DogmaModeler, users have the freedom to

upload and change any lexon icons according to their preference.

However, we plan to restrict this facility by reserving an icon for each

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

lexon kind. Each lexon notation will have fixed semantics and this will

commit to an upper level ontology of relationship kinds.

To simplify the lexon browsing process, DogmaModeler allows users to

customize the browsing settings of the lexon tree. As shown in the left

side of fig. 6.7, users may choose to expand lexon nodes, so that one can

browse the tree as one browses a graph. In the same way, users may also

choose to expand only a specific kind(s) of lexons. For example, one may

wish to expand only lexons that denote transitive-alike relationships such

as subsumption or parthood.

Fig. 6.7. Lexon browsing.

By selecting “Allow expanding lexons…”, users will be able to expand T2

of the Lexon. The expansion will show all lexons where this T2 is T1 for

other lexons, and so on. In this way, users will be able to browse the tree

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

as they browse a graph. Note that expanding a node that is already

expanded in the same sub-tree (i.e. cycle) is not possible. If such an

attempt is made, the focus of the window will be moved to the previous

sub-tree. As a result, users will be able to visit all lexons starting from any

Term (see the right side of fig. 6.7.).

Remark: although the tree-alike representations of lexons are very simple

and easy for ontology builders to understand, the main disadvantage of

such a representation is scalability. Browsing large-scale ontology bases

in this way is obviously not convenient as it requires ontology builders to

perform many search and expand operations and browsing tree-alike

representations is scalable up to several hundred terms or lexons.

Nevertheless, several techniques can be used for modeling, browsing, and

visualizing ontology bases, but these are major research topics on their

own. A promising technique that we plan to incorporate in future is called

LexoVis [P05] as this technique seems to allow scalable visualization of

lexons.

6.3 Modeling application axiomatizations

While an ontology base is intended to be a shared and public

axiomatization (characterizing its intended models) at the domain level,

application axiomatizations are intended to be local and highly usable at

the task/application-kind level. Given an ontology base, applications that

are interested only in a subset of the intended models of a concept in

accordance with their usability perspective are supposed to provide some

rules to specialize these intended models. As we have discussed in chapter

3, we require that the vocabulary used in application axiomatizations be

restricted to the vocabulary defined in its ontology base. An application

axiomatization becomes a set of rules to constrain the particular use of the

domain vocabulary.

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

As particular applications commit to the ontology base through

application axiomatization(s), such axiomatizations are seen as (and also

called) the application’s ontological commitment (see section 3.4.).

The process of modeling such ontological commitments in the

DogmaModeler is designed to be very simple. As appears in fig. 6.8,

ontology builders can drag and drop lexons from the ontology base

window into the ORM Diagram panel. These lexons are mapped and

drawn automatically as fact-types, according to the ORM notation.

Ontology builders then can define new constraints on these lexons (see the

icons of the ORM family of constraints in the top of the ORM Diagram

panel).

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 6.8. Modeling application axiomatizations.

The mapping of lexons as intuitive domain axioms into ORM fact-types

that have predefined formal semantics [V82] is done as follows: a Term

within a context is mapped directly into an Object-Type in ORM and

Roles within a lexon are also mapped directly into ORM Roles within a

fact-type. In the case of ORM Subtype relations that have specific “build-

in” semantics, ontology builders need to customize the “Graph settings”

window in order to specify which roles should be mapped (see fig. 6.9.).

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

The DogmaModeler does not support ORM unary roles and nested fact

types.

Fig. 6.9. Mapping to ORM Subtype relationship.

6.3.1 Generating ORM-ML

Fig. 6.10 shows the ORM markup language corresponding to the ORM

diagram in Fig. 6.1. This language is automatically generated by the tool.

The DogmaModeler supports import-export ORM-ML into text files, and

downloads or uploads it into the ontology server.

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 6.10. The ORM-ML panel window.

The graphical layout of the ORM diagrams (shapes, positions, color, etc.)

is generated by the DogmaModeler into a separate XML-based document,

called the ORM graphical style-sheet. The XML-schema of these

graphical style-sheets is presented in Appendix B2.

6.3.2 Verbalization

Fig. 6.11 shows a verbalization of the ORM diagram presented in Fig. 6.1.

This verbalization is a pseudo natural language (fixed-syntax English

sentences) generated automatically by the DogmaModeler. The

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

DogmaModeler generates such a verbalization by applying predefined

verbalization templates parameterized over an ORM-ML document.

Fig. 6.11. The Pseudo NL panel window.

In our experience
81

, verbalizations greatly assists non-ontology-experts in

building and validating axiomatizations. It is indeed an easily understood

language for domain experts, especially those who are not trained to

understand technical or formal languages. Although it is not a formal

81 ie: Specifically, our experience in building the CContology in cooperation with many

domain experts (about 40 layers, application expertise, etc.). We shall report this

experience in greater detail in chapter 7.

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

language, verbalization templates should be unambiguous and well

structured.

The DogmaModeler supports flexible and multilingual verbalization

techniques. We have developed an easy-to-customize verbalization

template to verbalize ORM-ML documents. We have translated this

template into several languages. If the content of an ORM-ML document

is lexicalized in Italian for example, the DogmaModeler is able to

generate the verbalizations in Italian. Appendix B3 presents five

verbalization templates in English, Dutch, Arabic and Russian
82

. In the

following paragraphs, we illustrate our English verbalization template

using selected examples.

Fig. 6.12 shows the verbalization template of the Mandatory constraint.

Given this template, the verbalization of the mandatory constraint in fig.

6.13 is: “Each Book must Has at least one ISBN”.

Fig. 6.12. Verbalization template for the ORM Mandatory constraint.

Fig. 6.13. Example of ORM mandatory constraint.

82 The support of more languages is designed to be very simple. It requires just the

provision of a new temple for the language.

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Keeping in mind the verbalization template of Exclusive constraint in fig.

6.14, the verbalization of the constraint in fig. 6.15 reads: “Each

Complaint Resolution should be either Economic Resolution or Symbolic

Resolution or Information Correction”.

Fig. 6.14. Verbalization template for the ORM Exclusive constraint.

Fig. 6.15. Example of an ORM Exclusive constraint.

Given the verbalization template of the Subset constraint in fig. 6.16, the

verbalization of the constraint in fig. 6.17 should read: “If a Person Drives

a Car then this Person must be AuthorizedWith a Driving License”.

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 6.16. Verbalization template for the ORM Subset constraint.

Fig. 6.17. Example of ORM Subset constraint.

The complete verbalization templates of all ORM constraints are

illustrated with examples from each of the five translated languages and

presented in appendix B3.

Notice that the verbalization templates (which are typically attached with

the DogmaModeler as “setting-files”) are not intended to be customized

by “normal” ontology builders. Rather, the idea is to equip ontology

engineers and experts with an easy to translate (or improve) verbalization

mechanism.

6.4 Validation of application axiomatization

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

DogmaModeler supports various types of validations. These are logical

validations, ontological validations as well as syntax and lexical

validations.

Logical validations typically are “satisfiability” and “implication

reasoning” validations, which can be used to validate application

axiomatizations. Fig. 6.18 displays these patterns as a menu in the

DogmaModeler Validator Settings window. Users can choose to enable or

disable the enforcement of these validation patterns when reasoning about

the satisfiability of an application axiomatization. The DogmaModeler

typically implements the algorithms of the satisfiability patterns that we

have developed in section 4.5. The specification of the last three

implication patterns is adopted from [H89].

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 6.18. DogmaModeler’s support of Logical validations.

Ontological validation is concerned with ensuring that all fact-types in a

commitment correspond to lexons in a given ontology base. See fig. 6.19.

If an application axiomatization is developed using DogmaModeler, the

result of this validation is always positive, as users are unable to introduce

new terminologies or fact-types unless they are defined in the ontology

base. This validation is important in case application axiomatizations are

modeled or modified using other tools.

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 6.19. DogmaModeler’s support of ontological validations.

Fig. 6.20 shows the menu of the syntax and lexical validations. As is

apparent from the figure, these validation patterns are concerned with

issues relating to grammar and formatting.

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 6.20. DogmaModeler’s support of syntax and lexical validations.

Outlook: Validations at the ontology base level are not yet supported in

the DogmaModeler. This topic is considered in an upcoming paper related

to this thesis (see section 8.3). Validations at the ontology base level

should include, mainly the ontological quality and precision of an

axiomatization. One example is how precisely a given set of lexons

capture all aspects of the intended meaning of the ontology vocabularies

and nothing else (i.e. all and only the intended meaning). As we have

discussed in section 3.3.7 (and illustrated by examples), systematic quality

and precision at the ontology base level can be achieved by incorporating

primitives of upper level or foundational ontologies. Furthermore, some

lessons on how to validate and deal with the lexical issues of the ontology

vocabulary can be learned from the “lexical semantics” research

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

community
83

, such as, the use of nouns and adjectives verses terms, verbs

verses roles, the modeling of idioms, the specific uses of metaphors,

singulars, plurals, etc.

6.5 Axiomatization libraries

In this section, we present the DogmaModeler’s support of axiomatization

libraries.

As the number of axiomatizations is expected to grow rapidly, developing

axiomatization library systems is a recognized need [DF01] [SGG+05].

The main goals of such libraries are to facilitate the reusability,

organization, and management of axiomatizations. Metadata is the key

infrastructure that enables the development of such axiomatization

libraries [SGG+05]. Metadata is a systematic method (used by both

human and machines) for describing axiomatization resources. It provides

potential users of an axiomatization with basic knowledge of this

resource.

A metadata record generally consists of a set of pre-defined elements that

describe a resource (sometimes called tags, or attributes) and each element

can have one or more values.

The DogmaModeler allows different metadata standards (e.g. Dublin-

Core, LOM, etc.) to be used for describing axiomatizations. However, as

such metadata standards are very general in their description of resources

and not concerned with describing ontological resources in particular, we

have developed a set of metadata elements as an extension to (and

specialization of) the Dublin-Core metadata standard. Our metadata

elements are intended to describe ontological resources. Further, by

extending a common standard (i.e. Dublin-Core) we aim to gain more

83 Specially from the emerging WordNet-alike (or so called “mental lexicons”)

communities, such as http://www.globalwordnet.org/ (January, 2005).

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

adoptability of our elements and compatibility with legacy resources and

systems.

In fig. 6.21, we present an ORM representation of our metadata elements.

This specification is used in the DogmaModeler as a meta-model of the

axiomatization library. For the sake of brevity, the definitions of these

elements (i.e. metadata glossary) are presented in appendix B1. Section

5.2.1 shows how these elements can be used in ORM-ML.

Fig. 6.21. DogmaModeler’s a meta-model of the axiomatization library.

In fig. 6.22, we show the commitment library widow. In this window,

DogmaModeler users can add, delete, manage, and brows application

axiomatizations. Notice that an axiomatization may include other

axiomatizations. For example, the “BookShopping” axiomatization is a

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

composition of the “BookOrder” and the “e-Payment” axiomatizations
84

.

Such an axiomatization is called a modularized axiomatization (see

section 4.4.3).

84 See fig. 4.2.

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 6.22. DogmaModeler’s support of axiomatization libraries.

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

6.6 Composition of axiomatization modules

The DogmaModeler supports the automatic composition of

axiomatization modules. It typically implements the composition

algorithm we presented in chapter 4.

When dragging or dropping an axiomatization from the commitment

library window to the commitment modeling window, a menu appears

asking the user whether he/she want to Open, Add, or Compose this

commitment (see fig. 6.23.).

Fig. 6.23. DogmaModeler’s support of axiomatization libraries.

The “Add” choice is merely a copy-paste operation that copies all lexons

and constraints to the axiomatization that is being edited in the

commitment-modeling window. No reasoning steps are attached or

associated with the Add operation.

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

When choosing “Compose”, the DogmaModeler composes the “dragged

axiomatization” with the “opened axiomatization(s)” in the modeling

window. During this composition, the DogmaModeler implements the

composition algorithm and the associated reasoning steps that we

specified in chapter 4. If the result cannot be satisfied, the composition is

considered an incompatible operation and thus terminated.

To facilitate simplicity in the viewing and editing of a modular

axiomatization, the DogmaModeler allows users to draw each module in a

different color. Users are also prevented from modifying any of the

composed modules. In other words, users cannot delete or change any

fact-types or constraints that originate from any of the composed

axiomatizations.

When generating the ORM-ML (of a modular axiomatization), the

DogmaModeler allows the users to choose to either 1) refer to the

axiomatizations composed by their URIs, or 2) include the content of

these composed axiomatizations (as sub-commitment) inside the ORM-

ML document. Fig. 6.24 illustrates the ORM-ML representation of a

modular axiomatization using RUIs as references to the composed

modules. In this way, each of the composed modules will be fetched when

opining (or using) the modular axiomatization. The main disadvantage of

this method is that any changes to the modules may influence the

satisfiability of the composition.

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 6.24. An example of the ORM-ML representation of a modular axiomatization,

using URIs.

In the second choice, users can choose to include “a copy” of each module

as a subpart of the ORM-ML document (see fig. 6.25.). In this way,

several problematical issues are prevented, such as the influence of

module changes and broken links. However, the main disadvantage of this

method is that some useful changes, to the original modules, will not be

captured.

The DogmaModeler allows users to decide on the most appropriate

method, given their application scenario, the steadiness of their module

evolution and whether their usage is on or off-line etc.

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 6.25. An example of an ORM-ML representation of a modular axiomatization,

where the content of a module is included as a sub-commitment.

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

6.7 Other functionalities

This section briefly touches on a few other functionalities of

DogmaModeler, for example, those that deal with ontology-driven forms,

and ontology multilingualism.

6.7.1 Ontology-driven forms

DogmaModeler supports the automatic generation of a web form based on

a given ORM-ML axiomatization. This functionality first generates an

XForm
85

 from the given axiomatization, before generating a HTML-form

out of the generated XForm. The purpose of generating an intermediate

XForm is to allow changes to the layout of a form before generating the

HTML-form. This functionality has been successfully used in the

CCFORM thematic-network project for generating customer complaint

web-forms based on the CContology (see chapter 7).

In the following paragraphs, we present this functionality at the abstract

level. For more details, please refer to [JLVM03].

To map an ORM schema into Xform, users should first select the main

Object-Type that they want to build a form about (see fig. 6.26.).

DogmaModeler then maps the ORM schema into a hierarchal structure

based on the previously selected Object-Type that functions as a root. For

85 The classical design of Web forms does not separate the purpose of a form from its

layout. Conversely, Xforms are comprised of separate sections that describe what the

form does, and how it looks. XForms are considered the next generation of web forms

but XForm technology is still a work in progress and is not yet standardized. In the

DogmaModeler, we use the NanoWorks XForm XML form specification (webpage

http://xform.nanoworks.org , January 2005). Some of the preferable features of

NanoWorks XForm are that (1) it generates standard HTML and javascript that works

with any browser, (2) it is open source and requires no special plug-ins (3) it significantly

reduces the coding necessary to build and maintain complex form interfaces, (4) it

insures data integrity by validating user input on the client-side and the server-side, (5) it

reduces the likelihood of error by encapsulating form structure and validation, and (6) it

creates a record of user data as an XML document.

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

example, fig. 6.27 shows the generated hierarchy of the e-Payment

axiomatization that we have presented in fig 4.2.

Fig. 6.26. The step of generating an ontology-based web form.

Before generating the Xform specification, the “Xform Tree” window in

fig. 6.27 enables users to delete the unwanted nodes (so they do not

appear in the generated form), and to sort the nodes according to a desired

order (in the form).

Fig. 6.27. the “Xform Tree” window.

We have adopted the approach presented in [EWHLF02] for mapping an

ORM schema into a hierarchy, and for eliminating the possible cycles in

the schema. This approach is used for generating an XML-scheme out of a

given EER diagram.

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

In the last step, the DogmaModeler maps the generated hierarchy into the

Xform specification which then can be directly mapped into an HTML

specification using a NanoWorks web server.

In fig. 6.28 we show the resultant web form from the above example. For

the sake of brevity, the Xfrom specification is not presented here.

Fig. 6.28. The resultant web form of e-Payment axiomatization.

HTML does not allow for the encoding of all ORM constraints at the

client-side (e.g. to apply integrity constraints when populating a web

form). The NanoWorks server however, does allow the other constraints

to eforced at the server-side. In the DogmaModeler, mandatory constraints

are mapped into (and so can be enforced) using JavaScript at the client-

side. A value constraint is mapped into the “Select” HTML element. In

case the value constraint is not companied with an internal uniqueness,

then the “Multiple” HTML attribute is added. Depending on the

companion of the totality and exclusive constraints, subtypes are mapped

into radio buttons or check boxes. See [JLVM03] for more details and

examples.

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

6.7.2 Ontology Multilingualism

The DogmaModeler supports the multilingual lexicalization of ontologies.

Given an ontology base (lexicalized in a certain language, called the

ontology native language), the DogmaModeler allows ontology builders

to build a list of one-to-one translations into other languages. This list is

not seen as part of the ontology itself. Rather, it belongs to a certain

application scenario or a group of users.

We postpone the discussion on this issue and its DogmaModeler’s support

to section 7.4. We shall illustrate our approach to multilingual

lexicalization of the CContology, discuss multilingual ontologies verses

multilingual lexicalization of ontologies, and provide some

methodological guidelines on the translation of ontology terms.

6.8 Discussion and conclusions

In this chapter, we have presented the DogmaModeler, our prototype

ontology engineering tool. We have shown how to model and represent

both domain and application axiomatizations. We have shown also how

existing lexical resources can be incorporated in concept/gloss modeling.

The adoption of conceptual data modeling techniques for ontology

engineering is illustrated through the use of ORM as a modeling and

specification language of application axiomatizations. We have presented

an easy to customize verbalization template that allows non-ontology

experts to (help) check, validate, or even build application

axiomatizations. DogmaModeler supports and implements the automatic

composition of modules as well as the representation and validation of

modular axiomatizations. A set of carefully defined ontology metadata is

proposed to enable the implementation of axiomatization libraries.

Although the DogmaModeler introduced in this chapter is a prototype, it

has been successfully applied in a number of real-life and large projects

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

such as CCFORM, FFPOIROT, SCOP, etc. It has been acknowledged as

an intuitive tool for non-ontology experts, particularly because of the

graphical and verbalization support it provides. In the next chapter, we

proceed to report our experiences and main achievements in using the tool

in the CCFORM project, specifically, for developing a Customer

Complaint ontology (CContology).

Acknowledgement: I would like to express my sincere gratitude to all my

master’s students and colleagues who have helped me in the

implementation of DogmaModeler. Particularly, I’d like to thank Andriy

Lisovoy who programmed the main architecture and components of the

tool, Jan Demey for his help in programming some components of the

early version, Hai Nguyen Hoang who helped me in the implementation

of the verbalization functionality, and Quoc Hung for implementing

WordNet mapping to DogmaModeler. I am also in debt to all colleagues

and project partners who so generously shared their comments and made

suggestions to improve the tool.

Chapter 6: DogmaModeler Ontology Engineering Tool

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Chapter 7

The CCFORM Case Study

“If customers do not hesitate to use on-line service, it will

facilitate their day to day life. The development of

electronic commerce must not be limited to a group of

people and to an experimental stage. It can, for instance,

become a huge facility for house bound citizens, such as

mothers with small children, or handicapped persons…”

(The CCFORM Project)

In this chapter, we outline our experience in applying the methodological

principles and the tool for developing a Customer Complaint ontology

(CContology). This ontology has been developed within the EU

CCFORM thematic-network project
86

 which is introduced in section 7.1.

The CContology itself is presented in section 7.2, while section 7.3

provides a discussion of the application and the lessons learned in the

process. A methodology for multilingual lexicalization of ontologies is

presented in section 7.4 before conclusions are drawn in section 7.4.

86 (IST-2001-34908), 5th framework.

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

7.1 Introduction

The use of the Internet for cross-border business is growing rapidly.

However, in many cases, the benefits of electronic commerce is not

exploited fully by customers because of the frequent lack of trust and

confidence in online cross-border purchases. To achieve fair trading and

transparency in commercial communications and transactions, effective

cross-border complaint platforms need to be established and involved in e-

business activities [CIHF02] [CW87] [ABA02].

The CCFORM project aims to study and reach a consensus about the

foundation of online customer complaint mechanisms by developing a

standard but extensible form (called CC-form
87

) which has widespread

industry and customer support. This CC-form must facilitate cross-

language communication to support cross-border e-commerce and should

be easy to implement in software tools. The CC-form will raise the basic

standard of complaints management, and should be extended in vertical

markets to provide sector-wide solutions to allow service providers to gain

competitive advantages.

There are several challenges involved in establishing and standardizing

such a CC-form: (1) Legal bases: the sensitivity of cross-border business

regulations and privacy issues. (2) The diversity of language and culture:

controlling and standardizing the semantics of the complaint terminology

so that the intended meaning of the term gets across, even in the different

languages. (3) Consumer sensitivity and business perspectives. (4)

Extensibility: the flexibility of extending the CC-form (perhaps

dynamically) according to market needs and standards. This would mean

for example, extending the kinds of problems that a complainant can

87 We refer to the project as CCFORM and to a customer complaint form as " CC-form".

One may imagine a CC-form as one page web-form, or several pages that can be filled in

several steprs.

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

complain about and extending the kinds of resolutions, managing who

may extend what, etc.

In order to tackle such challenges and to perfect the reference model for

the complaint form, the major work in the CCFORM project has been

divided into six topic panels (TPs), each consisting of 10-15 specialized

members. Each panel has been intensively discussing different issues:

TP1- Legal Affairs, TP2 - Consumer Affairs, TP4 - Standards for SMEs,

TP5 -Alternative Dispute Resolution Systems, TP6 - Ontology and

Extensibility, TP7 - Vertical markets.

This work outlines our main achievements in the “Ontology and

extensibility, including multilingual and cultural issues” topic panel. The

goal of this topic panel, TP6, is to undertake extensibility and multilingual

demands. To approach this, a customer complaint ontology (CContology)

has been developed and lexicalized in multiple languages.

7.2. Customer Complaint ontology

The customer complaint ontology (CContology) intends to capture the

main concepts in the “customer complaint management” domain. Its core

covers a semantic description of complaints that could be issued by any

legal person against any other legal person (NGO, company, natural

person, etc.). The CContology comprises classifications of complaint

problems, complaint resolutions, complainant, complaint-recipient, “best-

practices”, rules of complaint, etc.

The main intended impact of the CCFORM project is the future initiation

of a European online complaint platform that will provide a trusted portal

between consumers and business entities. In this respect, the ontology is

intended to become the basis for a future core ontology in the domain of

customer complaint management (for both humans and machines).

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Applying the CContology in such an European online complaint platform

will facilitate further refinements of the CContology.

The main uses of such an ontology are 1) to enable consistent

implementation (and interoperation) of all software complaint

management mechanisms based on a shared background vocabulary,

which can be used by many stakeholders. 2) to play the role of a domain

ontology that encompasses the core complaining elements and that can be

extended by either individuals or groups of firms; and 3) to generate CC-

forms based on its ontological commitments and to enforce the validity

(and/or integrity) of their population.

Although this CContology has been developed and reviewed by six topic

panels, in its current state, it can only be considered a proposal. The

CCFORM community is representative of a sizable cross-section of the

domain but is not a standardization body. Nor is it in the position to insist

on a de facto enforcement of this ontology as a generally agreed semantic

specification. However, the approach presented in this paper is designed

to initiate and drive such a process.

The CContology consists of a domain axiomatization (i.e. the ontology

base that represents the lexons and the term glossary) and seven

application axiomatization modules: Complaint Problems, Complaint

Resolutions, Complaint, Complainant, Complaint-Recipient, Address, and

Contract.

7.2.1 Customer-complaint domain axiomatization

This axiomatization consists of about 220 concepts and 300 lexons, which

characterize the core concepts in the customer-complaint domain. The

three representation units of this domain axiomatization (i.e. the ontology

base) are: context, terms and their glosses, and the set of lexons.

“Customer Complaint” Context

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

As we have discussed in section 3.3.5 and in section 6.2.1, context is the

first building block for developing a domain axiomatization. It plays a

scoping role, through which the interpretation of the intended meaning of

the ontology terminology is bounded.

In the CContology, the “Content ID” is called the “Customer Complaint”

context, or the CCcontext in short. The “Context Description” is defined

as follows:

Background knowledge (i.e. explicit, implicit, or tacit

assumptions) about all (activities, communications,

institutions, people, places, objects, etc.) that are involved

in consumer-provider relationships, regarding contractual

and non-contractual complaining issues.

These assumptions can be understood (i.e. can be found

explicitly or intuitively) in the following sources:

• European Distance Selling Directive (97/7/EC), on the

promotion of consumers in respect of distance

contracts.

• European e-Commerce Directive (2000/31/EC) on

certain legal aspects of information society services, in

particular, electronic commerce, in the Internal Market

• European Data Protection Directives (95/46/EC and

97/66/EC) on the protection of individuals with regards

to the processing of personal data and on the free

movement of such data.

• European Directive (99/44/EC) on aspects of the sale

of consumer goods and associated guarantees.

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

• European Directive (98/27EC) on Injunctions for the

Protection of Consumers’ Interests.

• CEN/TC331 Postal Services EN 14012:2002 Quality of

Service – Measurement of complaints and redress

procedures.

• “Best practice” guidelines, The Nordic Consumer

Ombudsmen’s position paper on trading and marketing

on the Internet and other similar communication

systems(http://econfidence.jrc.it, June 2002)

• CCFORM Annex 1, (IST-2001-34908, 5
th

 framework).

• CCFORM Report On Copyright And Privacy

Recommendations (Deliverable D.5.3).

• CCFORM user guide and business complaints

(Deliverable D.5.1.1).

• CCFORM Company user guide (Deliverable D.5.1.2).

• CCFORM Web publication of CCform User Guides in

11 languages (Deliverable D6.11).

• Code of Conduct (CCFORM deliverable).

Remark: For the sake of brevity, many resources (regulations

at the European and national levels, best practices, existing

online complaining (plat)forms, etc.) are not mentioned here.

However, references to these resources can be found inside the

resources listed above.

We have learned during the definition process of the above CCcontext

that it is not an easy task, and it cannot be defined rigidly in the early

phases of the development of the CContology. As none of our team was

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

an ontology expert, we provided a draft definition and investigated by

providing many different examples of application scenarios that this

context should cover
88

. For example, we have questioned whether the

context should cover applications such as customer-relationship-

management, market analyses, sales force automation and so forth;

whether it should cover all consumer regulations in any country or only in

Europe; whether it should cover all commercial activity, in any place and

at any time; which documents, laws and regulations should be our main

references, etc. Such questions led not only to the CCcontext definition

(which was achieved after several iterations), but also propelled the team

to discuss deeply and even redefine the scope of the CCFORM goals.

Vocabularies and their glosses

Within the “Customer Complaint” context, we define 220 terms. These

terms and their glosses (Called CCglossary) are provided in appendix C1.

The CCglossary was developed (and reviewed) over several iterations.

The first iteration was accomplished by a few (selected) experts before the

lexon modeling process was started. Further iterations have been carried

out in parallel with the lexon modeling process. The final draft was

reviewed and approved by several topic panels. It is probably worth

noting that intensive discussions were carried out (by legal experts,

market experts, application-oriented experts) for almost every gloss. We

have found that the gloss modeling process is a great mechanism for

brainstorming, domain analyses, domain understanding and for reaching

(and documenting) consensus. Furthermore, it allowed non-ontology

experts to participate actively in the ontology modeling process
89

.

88 This investigation was done to prevent the CContology from being dependent on the

CC-form application scenario which the team had in mind during the early phases.
89 Some CCFORM partners have noted that the CCglossary is the most useful component

in the CContology.

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

As shall be discussed in section 7.4, this CCglossary, which has been

developed in English, has played the role of the key reference for

lexicalizing the CContology into 11 other European languages.

Translators have acknowledged that it guided their understanding of the

intended meanings of the terms and allowed them to achieve better

translation quality.

Lexons

Stemming from the 220 terms within the “Customer Complaint” context,

we have developed 300 lexons, which can be found in appendix C2. Most

of these lexons represent taxonomies of complaint problems, complaint

resolutions, complainant, complaint recipient, etc.

The first draft of the lexons has been developed based on presentations

and discussions between the members of Topic Panel 6 (Ontology and

Extensibility). One of the most important inputs, for the first draft, was the

complaint categorization survey [VS03] that was performed by two of the

panel members. Further, refinements and investigations were performed

during meetings and workshops that we organized in cooperation with

other topic panels.

7.2.2 Customer-complaint application axiomatization

Given the previously presented “customer complaint” domain

axiomatization, seven application axiomatization modules have been

developed. The intended meaning of the terminology used in these

application axiomatization modules is restricted to the terminology

defined at the domain axiomatization level.

The application axiomatization modules are intended to play the role of

conceptual data schema(s) for CC-forms development. Any CC-form,

including its population, should be based on (i.e. commit to) the

CContology through those axiomatization modules. A CC-from can be

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

constructed manually or generated automatically (as has been illustrated

in section 6.7.1); nevertheless, the semantics of all elements in this CC-

from (i.e. the data fields) should be defined in the CContology.

As stated earlier in this chapter, the seven application axiomatization

modules are: Complaint problems, Complaint resolutions, Contract,

Complaint, Complainant, Complaint Recipient, and Address. Depending

on an application’s usability requirements, these modules can be used

individually or composed to form a modular axiomatization(s).

In the following section, we provide a brief description of each module,

including its ORM graphical representation. The ORM-ML representation

of all modules, and their verbalization into pseudo natural language, are

presented in appendix C3.

Complaint Problems

Fig. 7.1 shows the “Complaint Problems” axiomatization module. It

represents a taxonomy of complaint problems.

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 7.1. The “Complaint Problems” application axiomatization module.

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

We distinguish between a ‘Complaint’ and a ‘Problem’. A ‘Complaint’

describes one or more ‘Problems’. While the concept ‘Problem’ is defined

as “A source of difficulty or dissatisfaction”, the concept ‘Complaint’ is

defined as “An expression of grievance or resentment issued by a

complainant against a compliant-recipient, describing a problem(s) that

needs to be resolved”.

Within the “customer complaint” domain, a ‘Problem’ can be a ‘Privacy

Problem’, or either a ‘Contract Problem’ or a ‘Non-contract Problem’. A

‘Contract Problem’ can be a ‘Purchase Phase Problem’, or either a ‘Pre-

purchase Phase Problem’ or a ‘Post-purchase Phase Problem’. It is

mandatory for both ‘Purchase Phase Problems’ and ‘Post-purchase Phase

Problems’ to be associated with a ‘Contract’. For any type of problem,

‘Evidence’ might be provided for investigation purposes.

Remark: In this “Complaint Problems” module, only four classification

levels are presented, all of which are the popular categories in most CC-

forms. Further classifications of complaint problems can be found at the

ontology base level.

Complaint resolutions

Fig. 7.2 illustrates the “Complaint Resolution” module, which present a

taxonomy of ‘Complaint Resolutions’. A ‘Complaint Resolution’ is

defined the CCglossary as “A determination for settling or solving a

complaint problem(s)”. It can be requested by a complainant or offered by

a complaint-recipient. A ‘Complaint Resolution’ can be an ‘Economic

Resolution’, a ‘Symbolic Resolution’, or an ‘Information Correction’.

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 7.2. The “Complaint Resolutions” application axiomatization module.

Contract

A ‘Contract’ is defined in the CCglossary as “a binding agreement,

between two or more legal persons, that is enforceable by law”. Under this

definition, an invoice can also be a contract. Fig. 7.3 illustrates the

“Contract” axiomatization module, which specifies the information that

should be provided for a contract associated with a ‘Purchase Phase

Problem’ or ‘Post-purchase Phase Problem’. Notice that, for a CC-form,

we speak of a ‘Contract’ from the moment there is a ‘Contract Order

Date’.

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 7.3. The “Contract” axiomatization module.

Complaint

A ‘Complaint’ is defined in the CCglossary as “An expression of

grievance or resentment issued by a complainant against a compliant-

recipient, describing a problem(s) that needs to be resolved”.

Fig. 7.4 illustrates the “Complaint” axiomatization module, which

specifies the main concepts that can be associated with the concept

‘Complaint’. A ‘Complaint’ must be issued by a ‘Complainant’ against a

‘Complaint-Recipient’, on a certain ‘Date’. It must describe at least one

‘Problem’, and may request one or more ‘Complaint Resolutions’. A

‘Complaint’ might be identified by a ‘Complaint Number’, which is

typically used as a unique reference in a court or a complaint system.

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 7.4. The “Complaint” application axiomatization module.

Complainant

Fig. 7.5 illustrates the ‘Complainant’ axiomatization module. A

‘Complainant’ is defined in the CCglossary as “A legal person
90

 who

issues a complaint”. In the customer complaint domain, and as commonly

understood in most consumer regulations, a complainant must either be a

‘Natural Person Complainant’
91

 or a ‘Non-Natural Person Complainant’
92

,

each implying a different legal basis for the handling of the complaint.

Fig. 7.5. The “Complainant” application axiomatization module.

90 The concept ‘Legal Person’ is defined in the CCglossary as : “An entity with legal

recognition in accordance with law. It has the legal capacity to represent its own interests

in its own name, before a court of law, to obtain rights or obligations for itself, to impose

binding obligations, or to grant privileges to others, for example as a plaintiff or as a

defendant. A legal person exists wherever the law recognizes (as a matter of policy). This

includes the personality of any entity, regardless of whether it is naturally considered to

be a person. Recognized associations, relief agencies, committees, and companies are

examples of legal persons”.
91 Such as a normal consumer.
92 Such as a business customer.

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

The distinction between natural and non-natural person complainants is

not only based on the variation of their complaint handling regulations,

but also on the legal preference (in any CC-from) for not obligating the

inquiry of private information about the ‘Natural Person Complainant’,

such as his/her ‘Name’, ‘Birth Date’, ‘Mailing Address’, ‘Religion’ etc.

Each ‘Natural Person Complainant’ must have ‘Contact Details’. The

mandatory contact details are an ‘eMail’ and his/here ‘Country’ of

residence. A ‘Non-Natural Person Complainant’ must be denoted by a

certain ‘Registration’
93

 that identifies him.

Complaint recipient

Fig. 7.6 illustrates the “Complaint Recipient” axiomatization module. A

‘Complaint Recipient’ is any legal Person to whom a complaint is

addressed. Typically, when a ‘Complaint’ is issued against a ‘Complaint

Recipient’, the ‘Contact Details’ or the ‘Registration’ of this ‘Complaint

Recipient’ should be denoted
94

.

Fig. 7.6. The “Recipient” application axiomatization module.

Address

93 The concept ‘Registration’ is defined in the CCglossary as: “A certification, issued by

an Administrative authority or an accredited registration agency, declaring the official

enrollment of an entity. Typically, it includes the official name, mailing address,

registration number, VAT number, legal bases, etc.”.
94 Usually, all online customer complaint platforms provide a searchable database of

many “Complaint Recipients”, which enables complainants to easily find the official

names and addresses of ‘complaint recipients’

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 7.7 illustrates the “Address” axiomatization module. The concept

‘Contact Details’, which is a channel of communication, is attributed by

both ‘Name’ and ‘Address’. An ‘Address’
95

 must be either an ‘Electronic

Address’ or a ‘Mailing Address’. An ‘electronic Address’ can be either a

‘Web Site’, ‘Telephone’, ‘eMail’, or ‘Fax’. A ‘Mailing Address’ can have

all the traditional information of postal addresses in the European Union.

Remark: The notion of ‘Address’ can be specified in many different

ways
96

, especially since each country has its own postal information

structure. Hence, this “Address” axiomatization module is considered an

“unsteady” module, and should be replaced by a more sophisticated

module – one that does, for example, consider the compatibility with

online national, European, or international address servers
97

.

95 The concept ‘Address’ is defined in the CCglossary as: “A construct describing the

means by which contact may be made with, or messages or physical objects may be

delivered to a legal entity. An address may contain indicators for a physical or virtual

(i.e. accessed electronically) location or both”.
96 Due to epistemological differences.
97 Such address servers are: http://www.afd.co.uk/tryit/ (February 2004),

http://www.postdirekt.de (February 2004), http://www.usps.com, (February 2004), etc.

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. 7.7. The “Address” application axiomatization module.

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

7.3 Discussion and lessons learnt

This section provides a further discussion on the application of our

methodological principles and tool for the development and engineering

of the CContology.

Extensibility is one of the main requirements (and one of the most

challenging issues) for the development of any CC-form. As we have

mentioned earlier, the main goal of the CCFORM is to reach consensus

about the foundation of a trusted customer complaint portal. Once such a

portal is implemented as a centralized CC-form between customers and

companies, companies may wish to extend "their" CC-form to inquire

about more specific complaint details, e.g. delivery conditions, certain

product attributes, or they might wish to offer the customer a particular

resolution, etc
98

. Such extensions may be a necessity not only for

individual companies but also in so called vertical markets applications

(covered in the “vertical market” topic panel, TP7). In the CCFORM

project, the intention is to allow companies to extend the CC-form content

themselves, within given (e.g. legal) constraints on those extensions. On

the one hand, this will help to achieve a wider adoption of complaint

mechanisms in e-commerce applications. On the other hand, this will

create new challenges such as keeping the new extensions consistent with

the existing CC-form and preventing the misuse of the CC-form. For

example, a company might try to misuse the CC-form by inquiring private

information that violates the privacy regulations, or it may introduce new

terminology and rules that are semantically inconsistent with the existing

content terminology and rules.

98 One can imagine a company providing a link to the CC-form portal. When the link is

clicked, the CC-form appears with the company’s information filled and the details of the

complaints (that are specific to this company) attached to the basic complaint questions.

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

As a solution, we propose that the CC-form not be altered directly.

Instead, extensions should be introduced first into the CContology and the

base of CC-form. Moreover, our modularization of the application

axiomatization part of the CContology offers simplified methodologies for

extending, maintaining, and managing the CC-form:

• Extensions will not be allowed on all axiomatization modules. For

example, the “Complainant” and “Address” axiomatization

modules may be “locked”, so companies will be prevented from

for example, asking privacy-rule-violating questions. Or perhaps,

we can only allow extensions to be made into the “Complaint

Problems” and “Complaint Resolutions” modules. In this way, we

can achieve a “relatively” systematic management of the kinds of

extensions allowed.

• Extensions can be made and treated as separate modules. If a

company wishes to extend one of the seven core modules to

inquire details about, for example, a certain kind of product, a new

module can be constructed to capture these details. Both the core

module(s) and the new module can be composed automatically.

Notice that the specification of our composition operator (see

section 4.4.2) guarantees that the constraints and the complaining

details introduced in a core module will never be dismissed or

weakened. In other words, the constraints and complaint details in

the resultant composition will always imply the constraints and the

complaint details in the core module.

This is in fact a nice illustrative application of our composition

mechanism, especially in the legal domain. From a “legal”

viewpoint, our composition operator means that when including a

module into another module (that has a higher authority, or also

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

called legal weight), all rules and fact-types in the included

module will be inherited by (or applied in) the including module.

• Efficient maintenance and management. A CC-form platform may

need to manage a large number of extensions that target many

different complaining issues. Releasing and treating these

extensions as separate modules will make managing, maintaining

and indexing them more scalable.

• The development of the modules can be distributed among

ontology experts, domain experts and application-oriented experts.

In the case of a vertical market application where one wishes to

develop a set of extensions (i.e. modules), the development and the

review processes can be distributed according to the expertise of

the developers and the subject of the modules.

In the development of the seven core modules we have distributed

the development and review between several specialized topic

panels in accordance with their expertise. Bistra Vassilev acted as

domain expert for the development of the complaint problem and

resolutions modules, even though she was based several thousand

kilometers away. Members from TP1 (legal affairs) have

contributed to the development and review of the “Complaint”,

“Complainant”, “Complaint Recipient”, “Address” and “Contract”

modules. Members from TP2 (consumer affairs) have similarly

contributed to the development and review of the “Complaint”,

“Complainant”, “Complaint Problem” and “Complaint

Resolution” modules, etc.

• Module Reusability. Modularizing the application axiomatization

of the CContology indeed simplifies the reusability of this

axiomatization. One may wish to reuse some of these

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

axiomatization modules in application scenarios other than the

CC-form. For example, the ‘Address’ module can easily be reused

for tasks in other domains such as Mailing, Marketing and Sales

Force Automation. The `Complaint Problems’ module is in the

domains of market analysis, qualitative statistics, etc.

7.4 Multilingual lexicalization of the CContology

As our role in the CCFORM (through Topic Panel 6) was also to

undertake the multilingual and cultural demands of customer complaint

forms, a methodology for multilingual lexicalization of ontologies had to

be developed. This methodology has been applied to lexicalize the

CContology into several natural languages in order to support the

development of a software platform providing cross-language CC-forms.

For complaint platforms, this helps to systematize the translation of all

terms in the generated and filled-in CC-forms that do not contain “free”

text.

As shall be clear later in this section, we distinguish between a

multilingual ontology and multilingual lexicalization of an ontology. The

former refers either: 1) to different monolingual ontologies with an

alignment layer to map between them. Such an alignment layer may

include different kinds of relationships (e.g. ‘equivalence’, ‘subtype-of’,

‘part-of’, etc.) between concepts across the aligned ontologies. All of

these ontologies, in addition to the alignment layer, form a multilingual

ontology. A multilingual ontology can also be 2) a one ontology in which

the terminology (i.e. concept labels) is a mixture of terms from different

languages. For example, some concepts are lexicalized in language L1,

and others are lexicalized in language L2, or maybe even in both L1 and

L2. Yet other concepts may not have terms to lexicalize them. See

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

[KTT03] for a methodology (called “termontography”) that supports such

a process of multilingual ontology engineering
99

.

Multilingual lexicalization of an ontology is our aim in this section. It is

an ontology lexicalized in a certain language (we call this the “native

language”) and a list of one-to-one translations of the ontology terms into

other languages. This list is not seen as part of the ontology itself; rather,

it belongs at the application level or to a group of users.

Our approach to the multilingual lexicalization of ontologies is motivated

by Avicenna’s argument on the strong relationship/dependency between

concepts and linguistic terms
100

, and by the belief [G98a] that an ontology

is language-dependent. Indeed, conceptual equivalence
101

 between terms

in different languages is very difficult to find at the domain level. Hence,

from an engineering viewpoint, multilingual lexicalization (i.e. one-to-one

translation) of ontology terms should not be preserved or generalized at

the domain axiomatization level. Instead, such translations can be fairly

established at the application level for a certain application (e.g. CC-form)

or group of users.

The main goal of providing the multilingual lexicalization of an ontology

is to maximize the usability of this ontology for several cross-language

applications. We believe that this is of ever increasing importance in

today’s global, networked economy.

99 The processes of modeling, engineering, or using multilingual ontologies are still open

(and difficult) research issues. Some related works can be found in [LWP+02][A97a][

V98][B01].
100 See our discussion on this issue in section 3.2
101 Conceptual equivalence between terms in two different languages, means that the two

terms refer exactly to the same concept. This must be the case in all possible applications

and/or situations where the terms appear.

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

In the following paragraphs, we describe our approach to the multilingual

lexicalization of ontologies using the CContology as an illustrative

example.

Our approach requires an ontology to be built and lexicalized completely

in one language, namely, the ontology’s native language. In the case of

the CContology, English is chosen as the native language that then acts as

the reference for translating ontology terms into other languages.

Given the CCglossary (all the terms in the CContology and their glosses),

and given the CC-form as a certain application scenario
102

, the

CContology has been lexicalized into 11 European languages
103

. In fig.

7.8, we provide a sample of these translations, illustrating one-to-one

translation between terms in English, Dutch, and French languages.

Fig. 7.8. An example of multilingual lexicalization of the CContology.

A CC-form can easily switch between different natural languages by

substituting the terms and using the corresponding terms in such a

translation list.

It is important to note that the CCglossary has played a critical role during

the translation process of the CContology. The CCglossary has been used

102 Notice that changing this application scenario may yield different translations.
103 These translations are not provided in this thesis as the distribution of the knowledge

is restricted, and its intellectual property is owned by the CCFORM project.

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

as the principal reference, by the translators
104

, for understanding the

intended meaning of the terms, and thus achieving better quality

translations.

While it is a scalable, pragmatic, easy to use, and systemized approach,

one-to-one translations are not as simple as they appear – they do

sometimes yield imperfect translations. The translator needs to perform

further searches in order to acquire more elegant translations. In the

section that follows, we present some issues and guidelines for greater

convenience and accuracy in the multilingual lexicalization of ontologies:

• Cultural issues. There is a great interdependency between the

language and culture (social activities, religion, region, weather,

interests, etc.) of a people. Thus, within a community of people

speaking the same language, we can find different usage of terms,

even within the same context and situation. For example, within

the “Customer Complaint” and CC-form application scenario,

when translating the term “Complaint” into Arabic, there are two

possible terms: “Mathalem” and “Shakaoa”. In Palestine, the most

commonly used term is “Shakaoa”, while in Saudi Arabia, people

prefer the term “Mathalem”. Seemingly, the ideal solution for such

a problem is to provide a set of rules for the usage of each term,

considering all cultural issues [C98]. However, this does not yield

a scalable approach for our purposes. Thus, we advise that if such

cultural variations are important for a certain application scenario,

it is better to treat each variation as a distinct language e.g.

English-UK, English-USA, Dutch-Belgium, Dutch-Netherlands,

Old-Arabic, Modern-Arabic.

104 It is maybe worth mentioning that the translation process has been subcontracted to an

a translation company whose personnel have been trained to follow our approach.

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

• Word to word translation is not our goal. Usually, the purpose of

building an ontology is to formally represent an agreed

conceptualization of a certain domain, and share its among a

community of users. Thus, lexicalizing the concepts in an ontology

into multiple languages is a way of maximizing the usability of

this ontology. It does not result in a multilingual lexicon. In

lexicons or dictionaries, the purpose is to list only the common

words (e.g. based on the corpus of a language) with a description

and some lexical information. In ontologies, it is normal to find a

concept lexicalized by an expression. For example, “Total Amount

Paid”, “Trying to obtain data improperly”, etc. Such concepts

cannot, in general, be lexicalized into one word - at least not in

English.

To conclude, with the methodology we have presented in this chapter, we

aim to maximize the usability of an ontology over several cross-language

applications. This methodology is useful and easily applicable in

information systems that comprise forms, database schemes, XML and

RDF tags, etc. However, our methodology is not suited for ontology-

based information retrieval and natural language processing applications.

For such application scenarios, multilingual ontologies might be more

suitable. See [GGV97][BCFF04].

7.5 Conclusions

In this chapter we have presented our experiences and main achievements

in the Ontology, Extensibility multilingualism topic panel, a special

interest group in the EU Thematic Network project, CCFORM.

Using ontologies as a foundation for cross-border online complaint

management platforms can greatly improve the effectiveness, scope and

extensibility of such platforms. While offering individual companies,

Chapter 7: The CCFORM Case Study

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

organizations or associations the possibility of advanced customization

(by including ontology extension capabilities) semantic consistency is

maintained through the complaint management terminology. Furthermore,

by restricting extensions to certain parts of the ontology, some legal

constraints such as privacy regulations may be enforced systematically.

The proposed methodology for the multilingual lexicalization of

ontologies is a pragmatic one. It offers a scalable way of offering

multilingual services – a necessity for cross-border complaint

management within the EU. An important goal in our future research is to

develop a formal approach for developing multilingual ontologies which

would for example, allow computers to interpret and disambiguate terms

in different languages.

Chapter 8: Conclusions and Future Work

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Chapter 8

Conclusions and Future Work

The term ‘Conclusion’ has 9 meanings in WordNet:

“[1] The act of ending something. [2] The act of making

up your mind about something. [3] A position or opinion

or judgment reached after consideration. [4] The

proposition arrived at by logical reasoning (such as the

proposition that must follow from the major and minor

premises of a syllogism). … ”

(WordNet 1.7.1)

This final chapter concludes the thesis. We provide some discussion and

concluding remarks in section 8.1 and suggest a list of related topics for

future research in section 8.2.

Chapter 8: Conclusions and Future Work

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

8.1 Summary

In this thesis we have specified three foundational challenges in ontology

engineering, (viz. ontology reusability, ontology application-

independence, and ontology evolution). Based on these challenges, we

have derived six engineering requirements (see section 3.5). To fulfill

these requirements we have proposed two methodological principles for

ontology engineering viz. ontology double articulation and ontology

modularization. We have presented, the ORM-ML, the DogmaModeler

tool prototype, and the CCFORM case study to illustrate the

implementation of our methodological principles
105

.

The first methodological principle suggests that an ontology be built as a

domain axiomatization and its application axiomatizations. While a

domain axiomatization focuses on the characterization of the intended

meaning (i.e. intended models) of a vocabulary at the domain level,

application axiomatizations mainly focus on the usability of this

vocabulary according to certain application/usability perspectives. An

application axiomatization is intended to specify the legal models - a

subset of the intended model - of an application’s interest.

The second methodological principle suggests that application

axiomatizations be built and used in a modular manner. Axiomatizations

should be developed as a set of small modules and later composed to

form, and be used as, one modular axiomatization. Module composition

can be performed automatically through a composition operator to

combine (and imply) all axioms introduced in the composed modules.

105 A prioritized summary of our main contributions to ontology engineering has been

presented in section 1.2.

Chapter 8: Conclusions and Future Work

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

8.2 Discussion and concluding remarks

In the following tables, we present each of the six ontology-engineering

requirements and summarize our methodological and implementation

fulfillments.

R1

Ontologies should be engineered in a way that allows the

isolation and identification of the reusable parts of the

ontology.

Fulfilling this requirement contributes to resolving

the ontology reusability challenge (see section 2. 1)

Methodological fulfillment:

1. The modularization principle enables application axiomatizations to

be developed and used as a set of compose-able modules, which are

easier to reuse for other types of applications and tasks. (See chapter

4)

2. The double articulation principle isolates the most reusable part of an

ontology (i.e. domain axiomatization) from the (more specific)

application axiomatizations. (See chapter 3)

Implementation and illustration:

- The implementation of the composition operator for automating

module composition, simplifies and encourages module reusability.

(See section 6.6)

- Two scenarios for representing modular axiomatizations have been

developed. (See section 6.6)

- The metadata that we have proposed is the key infrastructure for

Chapter 8: Conclusions and Future Work

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

building axiomatization libraries, which enable the search, browse,

management, and reuse of modules. (See our implementation of an

axiomatization library in section 6.5)

- The CCFORM case study illustrates the development of the

CContology in a modular manner. (See chapter 7). Application

axiomatizations in CCFORM consists of seven modules, called core

modules, extensions can be made and treated as separate modules. If a

company wishes to extend one of the seven core modules to inquire

details about, for example, a certain kind of product, a new module

can be constructed to capture these details. Both the core module(s)

and the new module can be composed automatically (i.e. reuse of the

core modules). Notice that the specification of our composition

operator (see section 4.4.2) guarantees that the constraints and the

complaining details introduced in a core module will never be

dismissed or weakened. In other words, the constraints and complaint

details in the resultant composition will always imply the constraints

and the complaint details in the core module. This is in fact a nice

illustrative application of our composition mechanism, especially in

such a legal application. From a “legal” viewpoint, our composition

operator means that when including a module into another module

(that has a higher authority, or also called legal weight), all rules and

fact-types in the included module will be inherited by (or applied in)

the including module.

Chapter 8: Conclusions and Future Work

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

R2

The influence of usability perspectives on ontology axioms

should be well articulated, in pursuit of both reusability and

usability.

Fulfilling this requirement contributes to the resolution of the

ontology application-independence challenge (see section 2. 2)

Methodological fulfillment:

The double articulation principle increases the reusability of domain

axiomatizations and the usability of application axiomatizations.

Usability perspectives have a neglectable influence on the

independency of a domain axiomatization, because ontology builders

are prevented from encoding their application-specific axioms. In

other words, domain axiomatizations are mainly concerned with the

characterization of the “intended models” of concepts, while

application axiomatizations are mainly concerned with the

specification of the legal models -for a certain use- of these concepts.

(See chapter 3)

Implementation and illustration:

- The DogmaModeler illustrates an intuitive approach for double-

articulating axiomatizations. It shows how domain axiomatizations

can be captured in the ontology base and later used to develop

application axiomatizations, i.e. mapping lexons into ORM fact-types

(see section 6. 2 and section 6.3).

- We have also shown how OWL can be used for representing

application axiomatizations. (see section 3.4.1)

- The CCFORM case study illustrates a real-life axiomatization double-

Chapter 8: Conclusions and Future Work

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

articulated as domain and application axiomatizations (see chapter 7).

The CContology is engineered as a domain axiomatization, and seven

modules of application axiomatization. The intended meaning of the

terminology used in these application axiomatization modules is

restricted to the terminology defined at the domain axiomatization

level. The application axiomatization modules are intended to play the

role of conceptual data schema(s) for CC-forms development. So that,

any CC-form, including its population, should be based on (i.e.

commit to) the CContology through those axiomatization modules. A

CC-from can be constructed manually or generated automatically (as

has been illustrated in section 6.7.1). The semantics of all elements in

this CC-from (i.e. the data fields) should be defined in the

CContology.

- Furthermore, modularizing the application axiomatization of the

CContology indeed simplifies the reusability of this axiomatization.

One may wish to reuse some of these axiomatization modules in

application scenarios other than the CC-form. For example, the

‘Address’ module can easily be reused for tasks in other domains such

as Mailing, Marketing and Sales Force Automation. The `Complaint

Problems’ module is in the domains of market analysis, qualitative

statistics, etc.

- Note on the CCcontext: we have learned during the definition process

of the CCcontext that it is not an easy task, and it cannot be defined

rigidly in the early phases of the development of the CContology. As

none of our team was an ontology expert, we provided a draft

definition and investigated by providing many different examples of

application scenarios that this context should cover. For example, we

have questioned whether the context should cover applications such as

customer-relationship-management, market analyses, sales force

Chapter 8: Conclusions and Future Work

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

automation and so forth; whether it should cover all consumer

regulations in any country or only in Europe; whether it should cover

all commercial activity, in any place and at any time; which

documents, laws and regulations should be our main references, etc.

Such questions led not only to the CCcontext definition (which was

achieved after several iterations), but also propelled the team to

discuss deeply and even redefine the scope of the CCFORM goals.

Chapter 8: Conclusions and Future Work

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

R3

Critical assumptions that make clear the factual meaning of an

ontology vocabulary should be rendered as part of the

ontology, even if informally, to facilitate both users' and

developers' commonsense perception of the subject matter.

Fulfilling this requirement contributes to resolving the

ontology evolution challenge (see section 2. 3)

Methodological fulfillment:

1. The notion of gloss as an auxiliary informal account of the intended

meaning of a linguistic term is introduced as part of an ontology. It is

intended to render clearly the critical assumptions, especially those

that are implausible, unreasonable, or very difficult to formalize and

articulate explicitly. See the definition, examples, and guidelines on

how to develop a gloss in section 3.3.6.

2. The importance of using linguistic terms in investigating and rooting

domain concepts is discussed and clarified. The reuse of existing

lexical resources in gloss modeling is emphasized. (See section 3.2.2

and section 6.2.2).

Implementation and illustration:

- The DogmaModeler illustrates the incorporation of existing lexical

resources in gloss modeling. (See section 6.2.2).

- The CCFORM case study illustrates the development of the

CCglossary as part of the CContology (see appendix C1). The

CCglossary indeed shows how critical assumptions about a concept

can be rendered informally as part of a CContology. For example,

compare the gloss of (e.g. ‘Legal Person’, etc.) with its formal

Chapter 8: Conclusions and Future Work

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

definition within the lexons. Our experience is reported in chapter 7. It

is probably worth noting that intensive discussions were carried out

(by legal experts, market experts, application-oriented experts) for

almost every gloss. We have found that the gloss modeling process is

a great mechanism for brainstorming, domain analyses, domain

understanding and for reaching (and documenting) consensus.

Furthermore, it allowed non-ontology experts to participate actively in

the ontology modeling process. Some partners have even noted that

the CCglossary is the most useful component in the CContology. The

CCglossary, which has been developed in English, has played the role

of the key reference for lexicalizing the CContology into 11 other

European languages. Translators have acknowledged that it guided

their understanding of the intended meanings of the terms and allowed

them to achieve better translation quality.

Chapter 8: Conclusions and Future Work

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

R4

The ontology representation model should be capable of

distributed and collaborative development.

Fulfilling this requirement contributes to resolving

the ontology evolution challenge (see section 2. 3)

Methodological fulfillment:

1. The double articulation principle allows different communities to

create and maintain domain and application axiomatizations. Indeed,

domain experts, lexicographers, knowledge engineers, and even

philosophers may contribute to the development, maintenance, and

review phases of domain axiomatizations, without knowing why and

how these axiomatizations will be used. Application-oriented experts

may contribute to and focus on the development phases of application

axiomatizations, without having any knowledge about the ontological

correctness of domain axioms.

2. The modularization principle enables the distributed development of

modules over different locations, expertise, and stakeholders.

Implementation and illustration:

- The DogmaModeler and ORM-ML illustrate how domain and

application axiomatizations can be captured and represented in a

modular and distributable manner (see chapter 5 and 6).

- Our real-life experience in the distribution and collaborative

development of the CContology is reported in chapter 7. The

development of the CContology modules have been distributed among

ontology experts, domain experts and application-oriented experts. In

the case of a vertical market application where one wishes to develop

Chapter 8: Conclusions and Future Work

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

a set of extensions (i.e. modules), the development and the review

processes are distributed according to the expertise of the developers

and the subject of the modules. In the development of the seven core

modules we have distributed the development and review between

several specialized topic panels in accordance with their expertise.

Bistra Vassilev acted as domain expert for the development of the

complaint problem and resolutions modules, even though she was

based several thousand kilometers away. Members from TP1 (legal

affairs) have contributed to the development and review of the

“Complaint”, “Complainant”, “Complaint Recipient”, “Address” and

“Contract” modules. Members from TP2 (consumer affairs) have

similarly contributed to the development and review of the

“Complaint”, “Complainant”, “Complaint Problem” and “Complaint

Resolution” modules, etc.

Chapter 8: Conclusions and Future Work

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

R5

&

R6

Ontologies should be engineered in a way that enables smooth

and efficient evolution.

Ontologies should be engineered in a way that allows easy

replacement of the axiomatization of ontology parts.

Fulfilling these two requirements contribute to resolving

the ontology evolution challenge (see section 2. 3)

Methodological fulfillment:

1. The modularization principle enables application axiomatizations

to evolve as modules which are easier to build, maintain, and replace.

This is because the internal couplings (e.g. the number of relationships

between concepts) in small modules are fewer than the internal

couplings in large axiomatizations. The development and maintenance

of small modules allows ontology builders a better focus and easier

understanding than large and multi-domain axiomatizations. The

modularity of an axiomatization also enables ontology users and

maintainers to interchange some parts with others that are for

example, more relevant, reliable and accurate. In short, the

modularization principle indeed enables the evolution life cycle of

axiomatizations to be more efficient.

2. The double articulation principle enables domain axiomatizations

to grow (i.e. add lexons and glosses) without influencing application

axiomatizations. (See section 6.2)

3. Glosses are a great mechanism for understanding concepts

individually, without having to browse, reason, and understand them

within an axiomatized theory. Further, compared with formal

definitions, glosses help to build a “deeper” intuition about concepts

Chapter 8: Conclusions and Future Work

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

by denoting implicit or tacit assumptions. This indeed makes the

evolution and maintenance of the ontology easier, especially when the

ontology is particularly large-scaled, has different maintainers, or is

developed over different periods (See section 3.3.6).

Implementation and illustration:

- DogmaModeler illustrate how axiomatization modules can be

(de/)composed (see chapter 6).

- Our discussion and experience in the CCFORM case study illustrates

the extensibility (i.e. smooth evolution) of our approach. A CC-form

platform may need to manage a large number of extensions that target

many different complaining issues. Releasing and treating these

extensions as separate modules will make managing, maintaining and

indexing them more scalable. See our discussion and lessons learnt in

chapter 7.

- The unsteadiness of the “Address” axiomatization and the aim of

replacing this module with other alternatives is discussed in section

7.2.

In short, our methodological principles guide ontology builders by

enabling their product, i.e. ontologies, to be highly reusable and usable

and easier to both build and maintain.

Chapter 8: Conclusions and Future Work

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Contribution to ORM

Although it was not a goal of the thesis to contribute to conceptual data

modeling approaches, we have encountered several possible

improvements and extensions to ORM which might be used outside the

ontology engineering context. These include: composition of ORM

schemes; including constraint patterns for reasoning about the

satisfiability of ORM schemes; developing ORM-ML for representing

ORM schemes in a textual manner; developing verbalization templates for

verbalizing ORM schemes into English, Dutch, Arabic, and Russian; the

mapping of ORM schemes into web forms; enabling ORM to be reused

for other purposes than database modeling, viz. ontology engineering.

In the same way, we believe that other conceptual data modeling

approaches (such as EER and UML) can benefit from theses

developments.

Chapter 8: Conclusions and Future Work

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

8.3 Future Research

In relation to the subject matter of this thesis, the following are suggested

as worthy future research topics:

1. Incorporate primitives of Upper Level Ontologies in domain

axiomatizations. As we have shown in section 3.3.7, the

formalization of lexons might be not enough for achieving

systematic ontological quality on the specification of the intended

meanings of linguistic terms. These specifications might need to

receive further formal restrictions. For this, in section 3.3.7 we

have proposed to incorporate upper level ontologies at the domain

axiomatization level. We have introduced the notions of “Term

upper-forms” and “Lexon upper-forms”, so that the formal

definitions of superior types of concepts and relationships (that can

be found in upper level ontologies) can be induced into Terms and

Lexons, respectively. In an upcoming effort, we plan to extend our

DogmaModeler tool by developing a library of upper-ontology

components (especially for DOLCE), so that ontology builders

will be able to plug-in and automatically reason about the quality

of their lexons. See section 6.2.2, and section 6.2.3.

2. Investigate how to validate and deal with the lexical issues of

ontology terms. For example, in the following lexon <Bibliography:

Book, issuedBy, Issues, Publish>, one can spot, lexically, that the

term “Publish” is improper as it is a “verb”. Some lessons on how

to validate and deal with the lexical issues of the ontology

vocabulary can be learned from the “lexical semantics” research

community
106

, such as, the use of nouns and adjectives verses

106 Specially from the emerging WordNet-alike (or so called “mental lexicons”)

communities, such as http://www.globalwordnet.org/ (January, 2005).

Chapter 8: Conclusions and Future Work

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

terms, verbs verses roles, the modeling of idioms, the specific uses

of metaphors, singulars, plurals, classification of ontology roles

verses classification of verbs, term stemming, spell checking, etc.

See section 6.4.

3. Include more lexical resources into DogmaModeler (or its

DogmaStudio
107

 successor) to support the gloss modeling process.

As we have discussed in section 3.5, many existing lexical

resources (such as lexicons, glossaries, thesaurus, dictionaries,

etc.) are indeed important sources of glosses. For adaptation and

reusability of such resources: 1) we would plan to implement a full

adaptation of WordNet-alike lexicons into DogmaModeler. See

section 6.2 for the current support and illustration of this

functionality. In addition, as gloss has a strict intention in our

approach and so that not every lexical resource can be adopted (i.e.

it should provide a clear discrimination of word/term meaning(s)

in a machine-referable manner), 2) we plan to investigate how

other kinds of lexicons and dictionaries such as the Cambridge

dictionary can be ontologized and adopted: extract and re-engineer

their meaning descriptions into machine-referable glosses, and so

excluding the typical morphological and lexical issues. See section

3.5 and section 6.2.

4. Develop a methodology for developing multilingual ontologies.

The methodology that we have presented in section 7.4 is aimed

with the maximization of the usability of an ontology over cross-

language applications. This methodology is useful and easily

applicable in information systems that comprise forms, database

schemes, XML and RDF tags, etc. However, this methodology is

107 DogmaStudio is an initiative to re-implement DogmaModeler using the Eclipse

environment.

Chapter 8: Conclusions and Future Work

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

not suited for other application scenarios such as ontology-based

information retrieval, natural language processing, etc. For such

application scenarios, multilingual ontologies might be more

suitable. A multilingual ontology is an ontology in which the

terminology (i.e. concept labels) is a mixture of terms from

different languages. In the future, we plan to develop a

methodology for building such multilingual ontologies, and we

plan to extend DogmaModeler for this regard. See section 7.4.

5. Develop a step-wise methodology for ontology development. The

ontology engineering approach that have been presented in this

thesis is not yet equipped with a step-wise methodology. Such a

methodology is supposed to provide guide for ontology builders

by dividing the ontology development process (of both domain

and application axiomatizations) into a set of phases and a series

of steps and guidelines to be followed in each phase. This

methodology should take into account 1) the simplicity of the

ontology modeling process, 2) the quality of the ontology content

being modeled (perusing both usability and reusability), 3) the

distribution of ontology evolution, etc. Some lessons can learnt

from the AKEM Methodology [ZKK+04] or other existing

methodologies such as Methontology, On-To-Knowledge [S03b],

Methontology [FGJ97], etc. See section 1.2.

6. Include other languages in the DogmaModeler or its successor for

representing application axiomatizations. At this stage,

DogmaModeler supports the modeling of application

axiomatizations using only ORM as a specification langauge. To

increase the usability of application axiomatizations,

DogmaModeler should allow these axiomatizations to be specified

in multiple specification languages, such as DAML+OIL, OWL,

Chapter 8: Conclusions and Future Work

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

RuleML, EER, UML, Ω-RIDL, etc. Indeed, ORM is mainly

suitable for database and XML (-based) application scenarios since

it is quite comprehensive in its treatment of the integrity of data

sets. For inference and reasoning application scenarios, description

logic based languages (such as OWL, DAML, etc.) seem to be

more applicable than other languages, as they focus on the

expressiveness and the decidability of axioms. See section 3.4.1.

As an upcoming activity, we plan to extend DogmaModeler to

support, at least OWL-Lite, and import-export functionalities into

several languages.

7. Map ORM into the DLR Description Logic. In this way, the

satisfiability of ORM schemes can be completely verified. As we

have noted earlier in section 4.5, the general problem of

determining the consistency for all possible constraint patterns in

ORM is un-decidable [H97], and hence neither our ORM

composition algorithm nor our logical validations in

DogmaModeler can be complete. Therefore, a complete semantic

tableaux algorithm for deciding the satisfiability of ORM schemes

is needed. To achieve this we plan to reformalize ORM by

mapping all of its primitives and constraints into the DLR

Description Logic [CDLNR98]. DLR is a powerful and decidable

fragment of first order logic. It supports general inclusion axioms,

inverse roles, number-restrictions, reflexive-transitive closure of

roles, fixpoint constructs for recursive definitions, relations of

arbitrary arity, etc.

Appendix A

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Appendices

Appendix A

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Appendix A

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Appendix A: ORM Markup Language

This appendix presents the XML-Schema for the ORM Markup

Language, as the grammar reference of ORM-ML documents. This

schema is an intensively improved version (Ver.2) of the ORM-ML

XML-schema that we have published earlier in [DJM02a][DJM02b] and

[JDM03]. In appendix A1 we present a tree view of the ORM-ML XML-

schema, and in appendix A2 we present the ORM-ML XML-schema.

Appendix A3 presents a complete example, as an instance of this schema.

Appendix A1 (tree view of the ORM-ML XML-Schema)

A tree view of the elements in the XML Schema is given in Appendix A2.

Please note the attributes of the elements are omitted here for clarity of

presentation.

Appendix A

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Fig. A.1. A tree view of the elements in the ORM-ML XML Schema.

Appendix A2 (ORM-ML XML-Schema)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Appendix A2 (ORM-ML XML-Schema)

 <?xml version="1.0" encoding="UTF-8" ?>
- <!-- edited with XMLSPY v5 rel. 3 U (http://www.xmlspy.com) by rth77 (rth77)
 -->
- <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:dc="http://purl.org/dc/elements/1.1/" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:import namespace="http://purl.org/dc/elements/1.1/"
schemaLocation="http://www.ukoln.ac.uk/metadata/dcmi/dcxml/xmls/dc.xsd" />
- <xs:element name="ORMSchema">
- <xs:annotation>
 <xs:documentation>Root</xs:documentation>
 </xs:annotation>
- <xs:complexType>
- <xs:complexContent>
- <xs:extension base="ORMType">
- <xs:sequence>
- <xs:element name="ORMMeta" minOccurs="0">
- <xs:complexType>
- <xs:sequence>
- <xs:element name="Meta">
- <xs:complexType>
 <xs:attribute name="Name" type="xs:string" use="required" />
 <xs:attribute name="Content" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
- <xs:element name="ORMBody">
- <xs:complexType>
- <xs:sequence>
- <xs:element name="Object" type="Object" maxOccurs="unbounded">
- <xs:annotation>
 <xs:documentation>Object: LOT or NOLOT</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="Subtype" type="Subtype" minOccurs="0" maxOccurs="unbounded"
/>
 <xs:element name="Predicate" type="Predicate" minOccurs="0"
maxOccurs="unbounded" />
- <xs:element name="Predicate_Object" type="Predicate_Object" minOccurs="0"
maxOccurs="unbounded">
- <xs:annotation>
 <xs:documentation>Objectified Predicate</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="Constraint" type="Constraint" minOccurs="0"
maxOccurs="unbounded" />
- <xs:element name="Subcommitment" minOccurs="0">

Appendix A2 (ORM-ML XML-Schema)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

- <xs:complexType>
- <xs:sequence>
 <xs:element ref="ORMSchema" />
 </xs:sequence>
 <xs:attribute name="order" type="xs:integer" use="optional" />
 <xs:attribute name="URI" type="xs:string" use="optional" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="OntologyBase" type="xs:string" use="required" />
 <xs:attribute name="Context" type="xs:string" use="required" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
- <xs:complexType name="Object" abstract="true">
- <xs:annotation>
 <xs:documentation>Object: LOT or NOLOT</xs:documentation>
 </xs:annotation>
- <xs:sequence>
- <xs:element name="Translation" minOccurs="0" maxOccurs="unbounded">
- <xs:complexType>
 <xs:attribute name="Language" type="xs:string" use="required" />
 <xs:attribute name="Name" type="xs:string" use="required" />
 <xs:attribute name="Description" type="xs:string" use="required" />
 <xs:attribute name="Reference" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="Name" type="xs:ID" use="required" />
 <xs:attribute name="Gloss" type="xs:string" use="optional" />
 <xs:attribute name="Datatype" type="xs:string" use="optional" />
 <xs:attribute name="TermUpperForm" type="xs:string" use="optional" />
 <xs:attribute name="NameSpace" type="xs:string" use="optional" />
 </xs:complexType>
- <xs:complexType name="LOT">
- <xs:annotation>
 <xs:documentation>Lexical Object Type</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Object">
 <xs:attribute name="numeric" type="xs:boolean" use="optional" default="false" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="NOLOT">
- <xs:annotation>
 <xs:documentation>Non Lexical Object Type</xs:documentation>
 </xs:annotation>

Appendix A2 (ORM-ML XML-Schema)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

- <xs:complexContent>
- <xs:extension base="Object">
- <xs:sequence>
- <xs:element name="Reference" minOccurs="0">
- <xs:complexType>
 <xs:attribute name="Ref_Name" use="required" />
 <xs:attribute name="numeric" type="xs:boolean" use="optional" default="false" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="Independent" type="xs:boolean" use="optional" default="false" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Object_Role">
- <xs:annotation>
 <xs:documentation>Object + Role</xs:documentation>
 </xs:annotation>
 <xs:attribute name="ID" type="xs:ID" use="required" />
 <xs:attribute name="Object" type="xs:IDREF" use="required" />
 <xs:attribute name="Role" type="xs:string" use="optional" />
 </xs:complexType>
 <xs:complexType name="ORMType" />
- <xs:complexType name="Predicate">
- <xs:sequence>
 <xs:element name="Object_Role" type="Object_Role" maxOccurs="unbounded" />
 <xs:element name="Rule" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="Derived" type="xs:boolean" default="false" />
 <xs:attribute name="Derived_Stored" type="xs:boolean" default="false" />
 </xs:complexType>
- <xs:complexType name="Constraint" abstract="true">
- <xs:annotation>
 <xs:documentation>Abstract element for constraints</xs:documentation>
 </xs:annotation>
 </xs:complexType>
- <xs:complexType name="Predicate_Object">
- <xs:annotation>
 <xs:documentation>Objectified Predicate</xs:documentation>
 </xs:annotation>
- <xs:sequence>
 <xs:element name="Predicate" type="Predicate" />
 </xs:sequence>
 <xs:attribute name="Predicate_Name" type="xs:ID" use="required" />
 </xs:complexType>
- <xs:complexType name="Subtype">
- <xs:annotation>
 <xs:documentation>SubType</xs:documentation>
 </xs:annotation>
- <xs:sequence>
- <xs:element name="Parent">
- <xs:complexType>

Appendix A2 (ORM-ML XML-Schema)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

 <xs:attribute name="Object" type="xs:IDREF" />
 <xs:attribute name="Role" type="xs:string" />
 </xs:complexType>
 </xs:element>
- <xs:element name="Child">
- <xs:complexType>
 <xs:attribute name="Object" type="xs:IDREF" />
 <xs:attribute name="Role" type="xs:string" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
- <xs:complexType name="Mandatory">
- <xs:annotation>
 <xs:documentation>Mandatory Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Uniqueness">
- <xs:annotation>
 <xs:documentation>Uniqueness Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Subset">
- <xs:annotation>
 <xs:documentation>SubSet Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
- <xs:element name="Parent">
- <xs:complexType>
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
- <xs:element name="Child">
- <xs:complexType>

Appendix A2 (ORM-ML XML-Schema)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Equality">
- <xs:annotation>
 <xs:documentation>Equality Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
- <xs:element name="First">
- <xs:complexType>
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
- <xs:element name="Second">
- <xs:complexType>
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Exclusion">
- <xs:annotation>
 <xs:documentation>Exclusion Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
- <xs:element name="First">
- <xs:complexType>
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
- <xs:element name="Second">
- <xs:complexType>
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />

Appendix A2 (ORM-ML XML-Schema)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Frequency">
- <xs:annotation>
 <xs:documentation>Frequency Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="Minimum" type="xs:integer" />
 <xs:attribute name="Maximum" type="xs:integer" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Irreflexive">
- <xs:annotation>
 <xs:documentation>Irreflexive Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Intransitive">
- <xs:annotation>
 <xs:documentation>Intransitive Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Transitive">
- <xs:annotation>
 <xs:documentation>Transitive Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>

Appendix A2 (ORM-ML XML-Schema)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Acyclic">
- <xs:annotation>
 <xs:documentation>Acyclic Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Type" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Asymmetric">
- <xs:annotation>
 <xs:documentation>Assymetric Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Antisymmetric">
- <xs:annotation>
 <xs:documentation>Antisymmetric Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Symmetric">
- <xs:annotation>
 <xs:documentation>Symmetric Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>

Appendix A2 (ORM-ML XML-Schema)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

 </xs:complexType>
- <xs:complexType name="Reflexive">
- <xs:annotation>
 <xs:documentation>Reflexive Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
 <xs:extension base="Constraint" />
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Total">
- <xs:annotation>
 <xs:documentation>Total constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Supertype" />
 <xs:element name="Subtype" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Exclusive">
- <xs:annotation>
 <xs:documentation>Exclusive constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Supertype" />
 <xs:element name="Subtype" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Value">
- <xs:annotation>
 <xs:documentation>Exclusive constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
- <xs:element name="Value" maxOccurs="unbounded">
- <xs:complexType>
 <xs:attribute name="datatype" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
- <xs:element name="ValueRange" maxOccurs="unbounded">
- <xs:complexType>
 <xs:attribute name="datatype" type="xs:string" use="required" />
 <xs:attribute name="begin" type="xs:string" use="required" />
 <xs:attribute name="end" type="xs:string" use="required" />

Appendix A2 (ORM-ML XML-Schema)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Partition">
- <xs:annotation>
 <xs:documentation>Partition constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Subtype" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="Supertype" type="xs:IDREF" use="required" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Intransitive_symmetric">
- <xs:annotation>
 <xs:documentation>Intransitive + symmetric Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Acyclic_intransitive">
- <xs:annotation>
 <xs:documentation>Acyclic+intransitive Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Asymmetric_intransitive">
- <xs:annotation>
 <xs:documentation>Asymmetric+intransitive Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>

Appendix A2 (ORM-ML XML-Schema)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Irreflexive_symmetric">
- <xs:annotation>
 <xs:documentation>Irreflexive + symmetric Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:schema>

Appendix A3: A complete example

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Appendix A3: Complete Example

A complete example of an ORM schema diagram (Appendix A3.1), with

the associated ORM-ML document (Appendix A3.2), and ORM pseudo

NL generated by the DogmaModeler (Appendix A3.3).

Appendix A3.1: ORM Schema diagram

Fig. A.2. ORM schema diagram example

Appendix A3.2: Corresponding ORM-ML

<?xml version='1.0' encoding='UTF-8'?>
<ORMSchema xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:noNamespaceSchemaLocation='http://www.starlab.vub.ac.be/staff/alisovoy/ormml.xsd'
xmlns:dc='http://purl.org/dc/elements/1.1/' OntologyBase="Publishing" Context="Scientific
Conference">

<ORMMeta>
 <Meta name="DC.title" content="ORM ML example"/>
 <Meta name="DC.creator" content="Mustafa Jarrar"/>
 <Meta name="DC.description" content="A complete example of an ORM ML file"/>
</ORMMeta>
<ORMBody>
<Object xsi:type='NOLOT' Name='Committee'/>

<Object xsi:type='NOLOT' Name='Person'/>
<Object xsi:type='NOLOT' Name='Author'/>
<Object xsi:type='NOLOT' Name='Reviewer'/>
<Object xsi:type='NOLOT' Name='Paper'/>
<Object xsi:type='NOLOT' Name='PaperTitle' />
<Subtype>
 <Parent Object="Person" Role="Types"/>
 <Child Object="Author" Role="IsA"/>
</Subtype>

Appendix A3: A complete example

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

<Subtype>
 <Parent Object="Person" Role="Types"/>
 <Child Object="Reviewer" Role="IsA"/>
</Subtype>
<Predicate>
 <Object_Role ID='ORM ML example:42' Object='Committee' Role='Includes'/>
 <Object_Role ID='ORM ML example:43' Object='Person' Role='IsMemberOf'/>
</Predicate>
<Predicate>
 <Object_Role ID='ORM ML example:44' Object='Committee' Role='ChairedBy'/>
 <Object_Role ID='ORM ML example:45' Object='Person' Role='Chairs'/>
</Predicate>
<Predicate>
 <Object_Role ID='ORM ML example:46' Object='Reviewer' Role='Reviewes'/>
 <Object_Role ID='ORM ML example:47' Object='Paper' Role='ReviewedBy'/>
</Predicate>
<Predicate>
 <Object_Role ID='ORM ML example:48' Object='Author' Role='Writes'/>
 <Object_Role ID='ORM ML example:49' Object='Paper' Role='WrittenBy'/>
</Predicate>
<Predicate>
 <Object_Role ID='ORM ML example:50' Object='Author' Role='Presents'/>
 <Object_Role ID='ORM ML example:51' Object='Paper' Role='PresentedBy'/>
</Predicate>
<Predicate>
 <Object_Role ID='ORM ML example:52' Object='PaperTitle' Role='isOf'/>
 <Object_Role ID='ORM ML example:53' Object='Paper' Role='Has'/>
</Predicate>

<Constraint xsi:type='Mandatory'>
 <Object_Role>ORM ML example:42</Object_Role>
</Constraint>
<Constraint xsi:type='Mandatory'>
 <Object_Role>ORM ML example:44</Object_Role>
</Constraint>
<Constraint xsi:type='Mandatory'>
 <Object_Role>ORM ML example:46</Object_Role>
</Constraint>
<Constraint xsi:type='Mandatory'>
 <Object_Role>ORM ML example:49</Object_Role>
</Constraint>
<Constraint xsi:type='Mandatory'>
 <Object_Role>ORM ML example:48</Object_Role>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:42</Object_Role>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:44</Object_Role>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:43</Object_Role>

Appendix A3: A complete example

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

</Constraint>
<Constraint xsi:type='Subset'>
 <Parent>
 <Object_Role>ORM ML example:42</Object_Role>
 <Object_Role>ORM ML example:43</Object_Role>
 </Parent>
 <Child>
 <Object_Role>ORM ML example:44</Object_Role>
 <Object_Role>ORM ML example:45</Object_Role>
 </Child>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:50</Object_Role>
 <Object_Role>ORM ML example:51</Object_Role>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:48</Object_Role>
 <Object_Role>ORM ML example:49</Object_Role>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:46</Object_Role>
 <Object_Role>ORM ML example:47</Object_Role>
</Constraint>
<Constraint xsi:type='Exclusion'>
 <First>
 <Object_Role>ORM ML example:48</Object_Role>
 <Object_Role>ORM ML example:49</Object_Role>
 </First>
 <Second>
 <Object_Role>ORM ML example:46</Object_Role>
 <Object_Role>ORM ML example:47</Object_Role>
 </Second>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:48</Object_Role>
 <Object_Role>ORM ML example:52</Object_Role>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:53</Object_Role>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:52</Object_Role>
</Constraint>
<Constraint xsi:type='Subset'>
 <Parent>
 <Object_Role>ORM ML example:48</Object_Role>
 <Object_Role>ORM ML example:49</Object_Role>
 </Parent>
 <Child>
 <Object_Role>ORM ML example:50</Object_Role>
 <Object_Role>ORM ML example:51</Object_Role>
 </Child>

Appendix A3: A complete example

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

</Constraint>
</ORMBody>
</ORMSchema>

Appendix A3: A complete example

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Appendix A3.3: Corresponding ORM Verbalization

The following are Pseudo NL sentences, generated by the

DogmaModeler, as verbalizations of the ORM schema diagram.

 Each Committee must ChairedBy at least one Person.

 Each Committee must Includes at least one Person.

 Each Reviewer must Reviewes at least one Paper.

 Each Author must Writes at least one Paper.

 Each Paper must WrittenBy at least one Author.

 Each Paper must Has at most one PaperTitle.

 Each PaperTitle must isOf at most one Paper.

 Each Committee must ChairedBy at most one Person.

It is disallowed that the same Committee Includes the same Person

more then once, and it is disallowed that the same Person IsMemberOf

the same Committee more then once.

It is disallowed that the same Author Presents the same Paper more

then once, and it is disallowed that the same Paper PresentedBy the

same Author more then once.

It is disallowed that the same Author Writes the same Paper more then

once, and it is disallowed that the same Paper WrittenBy the same

Author more then once.

It is disallowed that the same Reviewer Reviewes the same Paper more

then once, and it is disallowed that the same Paper ReviewedBy the

same Reviewer more then once.

 Each Person who Chairs a Committee must also IsMemberOf that

Committee.

 Each Paper who WrittenBy a Author must also PresentedBy that

Author.

 Each Paper which is WrittenBy a Person must not ReviewedBy with that

Person.

 Each (PaperTitle, Author) as a combination refers to at most one Paper.

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Appendix B: DogmaModeler

Appendix B1: DogmaModeler Ontology Metadata

In this appendix we present the glossary of the DogmaModeler Metadata

elements.

Element Name Gloss

Acronym An abbreviation formed from the initial letter or

letters of words in the ontology title. E.g.

‘CCOntology’, or ‘DOLCE’.

Title The full and official heading or name of the

ontology. It gives a brief summary of the

matters it deals with. E.g. ‘Customer Complaint

Ontology’, or ‘Descriptive Ontology for

Linguistic and Cognitive Engineering’.

Version

Information about the edition of this ontology.

Typically, it includes the version number, label,

and date. Whenever the ontology is enhanced,

updated or improved, it is often assigned a new

version. Although versions represent the

different states of an ontology during its life

cycle, different versions are seen as different

ontologies.

Number A unique code assigned to the ontology for

identification. This number is usually assigned

by an ontology registration entity.

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

URI Uniform Resource Identifier, the W3C's

codification of the address syntax of an

ontology. In its most basic form, a URI consists

of a scheme name (such as file, http, ftp)

followed by a colon, followed by a path whose

nature is determined by the scheme that

precedes it (see RFC 1630). URI is the umbrella

term for URNs, URLs, and all other Uniform

Resource Identifiers.

Genericity The level of generalization of an the ontology.

The genericity level of an ontology is typically

one of the {‘Application’, ‘task’, ‘Domain’,

‘Core’, ‘Foundational’, ‘Linguistic’,

‘Metamodel’}. Examples: The CCOntology is a

‘core’ ontology; DOLCE is a ‘foundational’

ontology; “WordNet” is a ‘Linguistic’

Ontology. etc.

Language The human language in which the ontology

terms (i.e. labels of concepts, roles, etc) is

expressed. In case this terminology is expressed

in more than one language, the value of this

attribute is ‘Multilingual’. The best practice

recommended is the use of RFC 3066

[RFC3066] which, in conjunction with ISO639

[ISO639]), defines two- and three-letter primary

language tags with optional subtags. Examples

include "en" or "eng" for English, "akk" for

Akkadian", and "en-GB" for English as it is

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

used in the United Kingdom.

DevelopmentStatus The completion status or condition of this

ontology, typically one of {Draft, Final,

Revised, Unavailable}.

DomainSubject A heading descriptor indicating the subject

matter and the domain of the ontology. For

example, e-business, sport, book-shopping and

car-rental. Typically, doman subjects are

expressed as keywords, key phrases, or

classification codes. The recommended best

practice is to select a value from a controlled

vocabulary or formal classification scheme.

Context Information about of the scope of the ontology,

in which the interpretation (i.e. the intended

meaning) of the ontology terminology is

bounded. For example: the context of the

WordNet ontology could be the English

language, the context of the “CCOntology” is

the EU complaint regulations, etc.

Description

Further information about the ontology. It may

include but is not limited to: an abstract,

reference to a graphical representation, a free-

text account of the content, the methodology

used to build this ontology, documentation, etc.

Creator An entity primarily responsible for creating the

ontology. Examples of creators include persons,

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

organizations and services. Typically, the name

of a creator should be used to indicate the

entity.

Contributor An entity responsible for making contributions

to the ontology content. Examples of a

Contributor include a person, an organization,

and a service. Typically, the name of a

contributor should be used to indicate the entity.

CreationDate The date that is associated with the creation of

the ontology. In other words, the first date in

the ontology lifecycle. Recommended best

practice for encoding the date value is defined

in a profile of ISO 8601 [W3CDTF] and

includes (among others) dates of the form

YYYY-MM-DD.

Rights Information about rights held in and over the

ontology. Typically, rights will contain a

copyrights statement and other restriction for

the ontology, and the cost description in case

the use of this ontology requires payment. If the

Rights element is absent, no assumptions may

be made about any rights held in or over the

resource.

SpecificationLangua

ge

The formal language in which the ontology is

being specified; for example, OWL, DAML-

OIL, ORM-ML, UML, KIF, etc.

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Validation An evidence about the testing activities of the

ontological content. Such tests might be

conceptual or ontological quality, syntax

validation, etc. Typically, one should indicate

the validation methodology and comments

about the results.

Tool The name of the tool by which the ontology has

been developed, e.g. Protégé, DogmaModeler,

etc.

Application Citation to the application(s) using/has used this

ontology. Typically, one should provide the

name, URL, and some description about the

application.

NumberOfConcepts Statistics about the number of concepts in the

ontology.

NumberOfRelations Statistics about the number of relations in the

ontology.

NumberOfAxioms Statistics about the number of axioms in the

ontology - an axiom is typically a formal

definition/expression.

NumberOfInstances Statistics about the number instances in the

ontology.

IncludesOntology/

IncludedInOntology

A reference to another ontology, which is

supposed to be included as part of this

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

ontology. Examples of such relations between

ontologies include “Imports” in OWL,

“inclusion” in Ontolingua and “Compose” in

DogmaModeler. The formal semantics of such

relationships are necessarily the same.

StepVersionOf/

PreviousVersionOf

A reference to the step/previous version of this

ontology.

Appendix B2: XML-Schema of ORM-ML graphical style sheets

 <?xml version="1.0" encoding="UTF-8" ?>
- <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:dc="http://purl.org/dc/elements/1.1/" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:import namespace="http://purl.org/dc/elements/1.1/"
schemaLocation="http://www.ukoln.ac.uk/metadata/dcmi/dcxml/xmls/dc.xsd" />
- <xs:element name="ORMGSSchema">
- <xs:annotation>
 <xs:documentation>Root</xs:documentation>
 </xs:annotation>
- <xs:complexType>
- <xs:complexContent>
- <xs:extension base="ORMType">
- <xs:sequence>
- <xs:element name="ORMMeta" minOccurs="0">
- <xs:complexType>
- <xs:sequence>
 <xs:element ref="dc:title" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:creator" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:subject" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:description" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:publisher" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:contributor" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:date" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:type" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:format" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:identifier" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:source" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:language" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:relation" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:coverage" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:rights" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

- <xs:element name="ORMBody">
- <xs:complexType>
- <xs:sequence>
 <xs:element name="Object" type="Object" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="Predicate" type="Predicate" minOccurs="0"
maxOccurs="unbounded" />
 <xs:element name="ORConnector" type="ORConnector" minOccurs="0"
maxOccurs="unbounded" />
 <xs:element name="Subtype" type="Subtype" minOccurs="0" maxOccurs="unbounded"
/>
 <xs:element name="Subset" type="Subset" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="Text" type="Text" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="ExUniqueness" type="ExUniqueness" minOccurs="0"
maxOccurs="unbounded" />
 <xs:element name="ExMandatory" type="ExMandatory" minOccurs="0"
maxOccurs="unbounded" />
 <xs:element name="Mandatory" type="Mandatory" minOccurs="0"
maxOccurs="unbounded" />
 <xs:element name="Equality" type="Equality" minOccurs="0" maxOccurs="unbounded"
/>
 <xs:element name="Exclusion" type="Exclusion" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
- <xs:complexType name="Object" abstract="true">
 <xs:attribute name="name" type="xs:ID" use="required" />
 <xs:attribute name="x" use="required" />
 <xs:attribute name="y" use="required" />
 <xs:attribute name="width" use="required" />
 <xs:attribute name="height" use="required" />
 <xs:attribute name="ColorRGB" use="required" />
 </xs:complexType>
- <xs:complexType name="Predicate">
 <xs:attribute name="ID" type="xs:ID" use="required" />
 <xs:attribute name="x" use="required" />
 <xs:attribute name="y" use="required" />
 <xs:attribute name="width" use="required" />
 <xs:attribute name="height" use="required" />
 <xs:attribute name="ColorRGB" use="required" />
 </xs:complexType>
- <xs:complexType name="ORConnector">
- <xs:sequence>
- <xs:element name="Predicate" minOccurs="1" maxOccurs="1">
- <xs:complexType>
 <xs:attribute name="ID" type="xs:IDREF" use="required" />
 <xs:attribute name="PortType" use="required" />

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

 </xs:complexType>
 </xs:element>
- <xs:element name="Object" minOccurs="1" maxOccurs="1">
- <xs:complexType>
 <xs:attribute name="name" type="xs:IDREF" use="required" />
 </xs:complexType>
 </xs:element>
- <xs:element name="Mandatory" minOccurs="0" maxOccurs="1">
- <xs:complexType>
 <xs:attribute name="RoleID" type="xs:IDREF" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="ID" type="xs:ID" use="required" />
 </xs:complexType>
- <xs:complexType name="SubType">
 <xs:attribute name="ID" type="xs:ID" use="required" />
 <xs:attribute name="ChildObjectID" type="xs:IDREF" use="required" />
 <xs:attribute name="ParentObjectID" type="xs:IDREF" use="required" />
 </xs:complexType>
- <xs:complexType name="Subset">
- <xs:sequence>
- <xs:element name="Predicate" minOccurs="2" maxOccurs="2">
- <xs:complexType>
 <xs:attribute name="ID" type="xs:IDREF" use="required" />
 <xs:attribute name="PortType" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="ID" type="xs:ID" use="required" />
 </xs:complexType>
- <xs:complexType name="Text" abstract="true">
 <xs:attribute name="ID" type="xs:ID" use="required" />
 <xs:attribute name="content" type="xs:string" use="required" />
 <xs:attribute name="x" use="required" />
 <xs:attribute name="y" use="required" />
 <xs:attribute name="width" use="required" />
 <xs:attribute name="height" use="required" />
 </xs:complexType>
- <xs:complexType name="ExUniqueness">
- <xs:annotation>
 <xs:documentation>External Uniqueness</xs:documentation>
 </xs:annotation>
- <xs:sequence>
- <xs:element name="Predicate" minOccurs="2" maxOccurs="2">
- <xs:complexType>
 <xs:attribute name="ID" type="xs:IDREF" use="required" />
 <xs:attribute name="PortType" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="ID" type="xs:ID" use="required" />

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

 <xs:attribute name="x" use="required" />
 <xs:attribute name="y" use="required" />
 </xs:complexType>
- <xs:complexType name="ExMandatory">
- <xs:annotation>
 <xs:documentation>External Mandatory</xs:documentation>
 </xs:annotation>
- <xs:sequence>
- <xs:element name="Predicate" minOccurs="2" maxOccurs="2">
- <xs:complexType>
 <xs:attribute name="ID" type="xs:IDREF" use="required" />
 <xs:attribute name="PortType" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="ID" type="xs:ID" use="required" />
 <xs:attribute name="x" use="required" />
 <xs:attribute name="y" use="required" />
 </xs:complexType>
- <xs:complexType name="Mandatory" abstract="true">
 <xs:attribute name="RoleID" type="xs:IDREF" use="required" />
 </xs:complexType>
- <xs:complexType name="Equality">
- <xs:sequence>
- <xs:element name="Predicate" minOccurs="2" maxOccurs="2">
- <xs:complexType>
 <xs:attribute name="ID" type="xs:IDREF" use="required" />
 <xs:attribute name="PortType" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="ID" type="xs:ID" use="required" />
 </xs:complexType>
- <xs:complexType name="Exclusion">
- <xs:sequence>
- <xs:element name="Predicate" minOccurs="2" maxOccurs="2">
- <xs:complexType>
 <xs:attribute name="ID" type="xs:IDREF" use="required" />
 <xs:attribute name="PortType" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="ID" type="xs:ID" use="required" />
 <xs:attribute name="x" use="required" />
 <xs:attribute name="y" use="required" />
 </xs:complexType>
 </xs:schema>

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Appendix B3: ORM Verbalization Templates

In this appendix, we provide 3 verbalization templates for English, Dutch,

Arabic, and Russian, respectively. Each template is illustrated with an

ORM diagram and its resultant constraint verbalizations, as generated by

DogmaModeler.

English verbalization template

<?xml version='1.0' encoding='UTF-8'?>

<ORMSchema xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'

xsi:noNamespaceSchemaLocation='http://www.starlab.vub.ac.be/staff/mustafa/orm/verbalization/'>

<ORMNLMeta>

 <Meta name="DC.Title" content="English verbalization template"/>

 <Meta name="DC.Version" content="0.3"/>

 <Meta name="DC.Creator" content="Mustafa Jarrar"/>

 <Meta name="DC.Language" content="English"/>

 </ORMNLMeta>

<ORMNLBody>

<Constraint xsi:type="Lexical">

 <Text> -Lexical concepts are :{</Text>

 <Object index="0"/>

 <Loop index="1">

 <Text>,</Text>

 <Object index="n"/>

 </Loop>

 <Text>}</Text>

</Constraint>

<FactType xsi:type="FactType">

 <Text> -</Text>

 <Object index="0"/>

 <Role index="0"/>

 <Text>/</Text>

 <Role index="1"/>

 <Object index="1"/>

</FactType>

<Constraint xsi:type="Mandatory">

 <Text> -[Mandatory] Each</Text>

 <Object index="0"/>

 <Text>must</Text>

 <Role index="0"/>

 <Text>at least one</Text>

 <Object index="1"/>

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

</Constraint>

<Constraint xsi:type="Backward Mandatory">

 <Text> -[M] For each</Text>

 <Object index="0"/>

 <Text>there is at least one</Text>

 <Object index="1"/>

 <Text>that</Text>

 <Role index="1"/>

 <Text>this</Text>

 <Object index="0"/>

</Constraint>

<Constraint xsi:type="Disjunctive Mandatory">

 <Text> -[Mandatory] Each</Text>

 <Object index="0"/>

 <Text>should be</Text>

 <Role index="0"/>

 <Object index="1"/>

 <Loop index="1" >

 <Text>or</Text>

 <Role index="n"/>

 <Object index="n"/>

 </Loop>

</Constraint>

<Constraint xsi:type="Uniqueness">

 <Text> -[Uniqueness] Each</Text>

 <Object index="0"/>

 <Text>must</Text>

 <Role index="0"/>

 <Text>at most one</Text>

 <Object index="1"/>

</Constraint>

<Constraint xsi:type="Backward Uniqueness">

 <Text> -[Uniqueness] For each</Text>

 <Object index="0"/>

 <Text>there must be at most one</Text>

 <Object index="1"/>

 <Text>that</Text>

 <Role index="1"/>

 <Text>this</Text>

 <Object index="0"/>

</Constraint>

<Constraint xsi:type="Many Uniqueness">

 <Text> -[Uniqueness] It is possible that </Text>

 <Object index="0"/>

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

<Role index="0"></Role>

 <Text>more than one</Text>

 <Object index="1"/>

 <Text>, and vice versa</Text>

</Constraint>

<Constraint xsi:type="External Uniqueness">

 <Text> -[Uniqueness] The combination of {</Text>

 <Object index="1"/>

 <Loop index="1">

 <Text>and</Text>

 <Object index="n"/>

 </Loop>

 <Text>} must refer to at most one</Text>

 <Object index="0"/>

</Constraint>

<Constraint xsi:type="Subtype">

 <Text> -[Subtype] Each instance of</Text>

 <Object index="child"/>

 <Text>is also an instance of</Text>

 <Object index="parent"/>

</Constraint>

<Constraint xsi:type="Value">

 <Text> -[Value] The possible instances of </Text>

 <Object index="0"/>

 <Text> are :{</Text>

 <Value index="0"/>

 <Loop index="1">

 <Text>,</Text>

 <Value index="n"/>

 </Loop>

 <Text> }</Text>

 </Constraint>

<Constraint xsi:type="Exclusive">

<Text> -[Exclusive] Each</Text>

<Object index="0"/>

<Text>should be either</Text>

<Object index="1"/>

<Loop index="1">

 <Text>or</Text>

 <Object index="n"/>

</Loop>

</Constraint>

<Constraint xsi:type="Total">

 <Text> -[Totality] Each</Text>

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

 <Object index="0"/>

 <Text>must be, at least, </Text>

 <Object index="1"/>

 <Loop index="1">

 <Text>or</Text>

 <Object index="n"/>

 </Loop>

</Constraint>

<Constraint xsi:type="Partition">

 <Text> -[Partition] Each</Text>

 <Object index="0"/>

 <Text>is at least one of</Text>

 <Object index="1"/>

 <Loop index="1">

 <Text>or</Text>

 <Object index="n"/>

 </Loop>

 <Text>but not all</Text>

</Constraint>

<Constraint xsi:type="Subset">

 <Text> -[Subset] If</Text>

 <Object index="0"/>

 <Role index="child"/>

 <Object index="child"/>

 <Text>then this</Text>

 <Object index="0"/>

 <Role index="parent"/>

 <Object index="parent"/>

</Constraint>

<Constraint xsi:type="Subset FactType">

 <Text> -[Subset] If</Text>

 <Object index="0"/>

 <Role index="child"/>

 <Object index="child"/>

 <Text>then this</Text>

 <Object index="1" />

 <Role index="parent"/>

 <Text>that</Text>

 <Object index="parent"/>

</Constraint>

<Constraint xsi:type="Equality">

 <Text> -[Equality] </Text>

 <Object index="0"/>

 <Role index="first"/>

 <Object index="first"/>

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

 <Text>if and only if</Text>

 <Text>this </Text>

 <Object index="0"/>

 <Role index="second"/>

 <Object index="second"/>

</Constraint>

<Constraint xsi:type="Equality FactType">

 <Text> -[Equality] </Text>

 <Object index="0"/>

 <Role index="First"/>

 <Object index="First"/>

 <Text>if and only if</Text>

 <Text>this</Text>

 <Object index="1"/>

 <Role index="Second"/>

 <Text>that</Text>

 <Object index="Second"/>

</Constraint>

<Constraint xsi:type="Exclusion">

 <Text> -[Exclusion] No</Text>

 <Object index="0"/>

 <Role index="first"/>

 <Object index="first"/>

 <Text>and also</Text>

 <Role index="second"/>

 <Object index="second"/>

</Constraint>

<Constraint xsi:type="Exclusion FactType">

 <Text> -[Exclusion] No</Text>

 <Object index="0"/>

 <Role index="first"/>

 <Object index="first"/>

 <Text>and also</Text>

 <Role index="second"/>

 <Text>that</Text>

 <Object index="second"/>

</Constraint>

<Constraint xsi:type="Frequency">

 <Text> -[Frequency] If </Text>

 <Object index="0"/>

 <Role index="0"/>

 <Object index="1"/>

 <Role index="0"/>

 <Text>, then this </Text>

 <Object index="0"/>

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

 <Role index="0"/>

 <Text>at least </Text>

 <Minimum/>

 <Text> and most most </Text>

 <Maximum/>

 <Role index="0"/>

 <Text>(s)</Text>

</Constraint>

<Constraint xsi:type="Irreflexive">

 <Text> -[Irreflexive] No</Text>

 <Object index="0"/>

 <Role index="0"/>

 <Text> it/him self</Text>

</Constraint>

<Constraint xsi:type="Symmetric">

 <Text> -[Symmetric] If</Text>

 <Object index="0"/>

 <Text>X</Text>

 <Role index="0"/>

 <Object index="0"/>

 <Text>Y</Text>

 <Text>, it must be vice versa</Text>

</Constraint>

<Constraint xsi:type="Asymmetric">

 <Text> -[Symmetric] If</Text>

 <Object index="0"/>

 <Text>X</Text>

 <Role index="0"/>

 <Object index="0"/>

<Text> Y, it cannot be be vice versa</Text>

</Constraint>

<Constraint xsi:type="Acyclic">

 <Text> -[Acyclic] </Text>

 <Object index="0"/>

 <Text> cannot be directly (or indirectly through a chain)</Text>

 <Role index="0"/>

 <Text> it/him self</Text>

</Constraint>

<Constraint xsi:type="Transitve">

 <Text> -[Intransitve] If</Text>

 <Object index="0"/>

 <Text>X</Text>

 <Role index="0"/>

 <Object index="0"/>

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

 <Text>Y, and Y</Text>

 <Role index="0"/>

 <Text> Z, then it cannot be that X</Text>

 <Role index="0"/>

 <Text>Z</Text>

</Constraint>

</ORMNLBody>

</ORMSchema>

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Example (Verbalizations in English)

Fig. B.1. ORM-Diagram, English.

Verbalization

-[Mandatory] Each Person must Has at least one PassPortNr.

-[Mandatory] Each Person must Has at least one BirthDate.

-[Mandatory] Each Account should be Owned-By Person or Owned-By Company.

-[Uniqueness] Each Person must Has at most one BirthDate.

-[Uniqueness] Each Person must Has at most one Name.

-[Uniqueness] Each Person must Has at most one PassPortNr.

-[Uniqueness] Each PassPortNr must IsOf at most one Person.

-[Uniqueness] It is possible that Person teaches more than one Course , and vice versa.

-[Uniqueness] It is possible that Person Reviews more than one Book , and vice versa.

-[Uniqueness] It is possible that Person Writes more than one Book , and vice versa.

-[Uniqueness] It is possible that Person Drivers more than one Car , and vice versa.

-[Uniqueness] The combination of { Name and BirthDate } must refer to at most one Person.

-[Exlusive] Each Person should be either Woman or Man.

-[Totality] Each Person must be, at least, Woman or Man.

-[Subset] If Person Drivers Car then this Person AuthorisedWith Driving Licence.

-[Subset] If Manager manages Company then this Person WorksFor that Company.

-[Equality] Person WorksFor University if and only if this Person teaches Course.

-[Equality] Person AffiliatedWith Company if and only if this Person WorksFor that Company.

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

-[Exclusion] No Account Owned-By Person and also Owned-By Company.

-[Exclusion] No Person Reviews Book and also Writes that Book.

-[Value] The possible instances of Country are :{ Belgium, France, Germany}

-[Irreflexive] No Person ColleagueOf it/him self.

-[Symmetric] If Person X ColleagueOf Person Y, it must be vice versa.
-[Acyclic] Person cannot be directly (or indirectly through a chain) ParentOf it/him self.
-[Acyclic] Person cannot be directly (or indirectly through a chain) SuperiorOf it/him self.
-[Asymmetric] If Person X WifeOf Person Y, it cannot be vice versa.
-[Intransitve] If Person X ParentOf Person Y, and Y ParentOf Z, then it cannot be that X ParentOf Z.
-[Frequency] If Person teaches Course, then this Person teaches at least 2 and most most 3

Course(s).

Dutch verbalization template

<?xml version='1.0' encoding='UTF-8'?>
<ORMSchema xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:noNamespaceSchemaLocation='http://www.starlab.vub.ac.be'>

<ORMNLMeta>
 <Meta name="DC.Title" content="Dutch verbalization template (Ver0.3)"/>
 <Meta name="DC.Version" content="0.2"/>
 <Meta name="DC.Creator" content="Mustafa Jarrar"/>
 <Meta name="DC.Contributor" content="Pieter Verheyden"/>
 <Meta name="DC.Language" content="Dutch"/>
</ORMNLMeta>

<ORMNLBody>

<FactType xsi:type="FactType" >
<Text>Een</Text>
<Object index="0" />
<Role index="0" />
<Text>/</Text>
<Role index="1" />
<Text> een</Text>
<Object index="1" />
</FactType>

<Constraint xsi:type="Mandatory" >
 <Text> -[Mandatory] Elk(e)</Text>
 <Object index="0" />
 <Role index="0" />
 <Text> tenminste 1</Text>
 <Object index="1" />
</Constraint>

<Constraint xsi:type="Backward Mandatory" >
 <Text> -[Mandatory] Voor elk(e)</Text>
 <Object index="0" />
<Text>is er tenminste 1</Text>
<Object index="1" />
 <Text> dat</Text>
<Role index="1" />
 <Text> dit/deze</Text>

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

 <Object index="0" />
</Constraint>

<Constraint xsi:type="Disjunctive Mandatory" >
<Text> -[Mandatory] Elk(e)</Text>
<Object index="0" />
<Text>ofwel</Text>
<Role index="0" />
<Text>een</Text>
<Object index="1" />
<Loop index="1" >
 <Text>ofwel </Text>
 <Role index="n" />
 <Text>een</Text>
 <Object index="1" />
</Loop>
</Constraint>

<Constraint xsi:type="Uniqueness" >
<Text> -[Uniqueness] Elk(e)</Text>
<Object index="0" />
<Role index="0" />
<Text> ten hoogste 1 </Text>
<Object index="1" />
</Constraint>

<Constraint xsi:type="Backward Uniqueness" >
 <Text> -[Uniqueness] Voor elke </Text>
<Object index="0" />
<Text>is er ten hoogste een </Text>
<Object index="1" />
<Text> dat/die </Text>
<Role index="1" />
<Text> dit/deze </Text>
<Object index="0" />
</Constraint>

<Constraint xsi:type="External Uniqueness" >
<Text> -[Uniqueness] Elke combinatie van</Text>
<Object index="1" />
<Loop index="1">
 <Text>en</Text>
 <Object index="n" />
</Loop>
<Text>is gerelateerd met slechts 1</Text>
<Object index="0" />
</Constraint>

<Constraint xsi:type="Many Uniqueness" >
<Text> -[Uniqueness] Het is mogelijk dat een </Text>
<Object index="0" />
<Role index="0"></Role>
<Text>meer dan 1</Text>
<Object index="1" />
<Text>, en omgekeerd </Text>
</Constraint>

<Constraint xsi:type="Subtype" >

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

<Text> -[Subtype] Elk(e)</Text>
<Object index="child" />
<Text>is ook een</Text>
<Object index="parent" />
</Constraint>

<Constraint xsi:type="Exclusive" >
<Text> -[Exclusive] Elk(e)</Text>
<Object index="0"/>
<Text> kan ofwel een</Text>
<Object index="1"/>
<Loop index="1">
 <Text>ofwel een</Text>
 <Object index="n" />
</Loop>
<Text>zijn</Text>
</Constraint>

<Constraint xsi:type="Total" >
<Text> -[Total] Elk(e)</Text>
<Object index="0" />
<Text>is tenminste een</Text>
<Object index="1" />
<Loop index="1" >
 <Text>of een</Text>
 <Object index="n" />
</Loop>
</Constraint>

<Constraint xsi:type="Subset" >
<Text> -[Subset] Als een</Text>
<Object index="0" />
<Role index="child" />
<Text>een</Text>
<Object index="child" />
<Text>dan moet ook dit/deze</Text>
<Object index="1" />
<Role index="parent" />
<Text>een</Text>
<Object index="parent" />
</Constraint>

<Constraint xsi:type="Subset FactType" >
<Text> -[Subset] Als een </Text>
<Object index="0" />
<Role index="child" />
<Text>een</Text>
<Object index="child" />
<Text>dan moet ook dit/deze </Text>
<Object index="1" />
<Role index="parent" />
<Text> dat </Text>
<Object index="parent" />
</Constraint>

<Constraint xsi:type="Equality" >
<Text> -[Equality] Een </Text>
<Object index="0" />

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

<Role index="first" />
<Text>een </Text>
<Object index="first" />
<Text>dan en slechts dan als</Text>
<Text>dit/deze </Text>
<Object index="0" />
<Role index="second" />
<Text>een </Text>
<Object index="second" />
</Constraint>

<Constraint xsi:type="Equality FactType" >
<Text> -[Equality] Een</Text>
<Object index="0" />
<Role index="0" />
<Object index="1" />
<Text>dan en slechts dan als</Text>
<Text>dit/deze </Text>
<Object index="0" />
<Role index="1" />
<Text>dat/die</Text>
<Object index="2" />
</Constraint>

<Constraint xsi:type="Exclusion" >
<Text> -[Exclusion] Geen </Text>
<Object index="0" />
<Role index="0" />
<Text>een </Text>
<Object index="1" />
<Text>en ook</Text>
<Role index="1" />
<Text>Een </Text>
<Object index="2" />
</Constraint>

<Constraint xsi:type="Exclusion FactType" >
<Text> -[Exclusion] Geen </Text>
<Object index="0" />
<Role index="0" />
<Text>een </Text>
<Object index="1" />
<Text>en ook</Text>
<Role index="1" />
<Text>datzelfde </Text>
<Object index="2" />
</Constraint>

<Constraint xsi:type="Frequency">
 <Text> -[Frequency] If </Text>
 <Object index="0"/>
 <Role index="0"/>
 <Object index="1"/>
 <Role index="0"/>
 <Text>, then this </Text>
 <Object index="0"/>
 <Role index="0"/>
 <Text>at least </Text>

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

 <Minimum/>
 <Text> and most most </Text>
 <Maximum/>
 <Role index="0"/>
 <Text>(s)</Text>
</Constraint>

<Constraint xsi:type="Irreflexive">
 <Text> -[Irreflexive] Geen enkel(e)</Text>
 <Object index="0"/>
 <Role index="0"/>
 <Text> zichzelf/hemzelf</Text>
</Constraint>

<Constraint xsi:type="Symmetric" >
<Text>-[Symmetric] Indien</Text>
<Object index="0"/>
<Text> X</Text>
<Role index="0"/>
<Object index="0"/>
<Text> Y</Text>
<Text> , dan ook vice-versa</Text>
</Constraint>

<Constraint xsi:type="Asymmetric">
 <Text> -[Asymmetric] Indien</Text>
 <Object index="0"/>
 <Text> X</Text>
 <Role index="0"/>
 <Object index="0"/>
<Text> Y, dan kan het niet vice-versa</Text>
</Constraint>

<Constraint xsi:type="Acyclic">
 <Text> -[Acyclic]</Text>
 <Object index="0"/>
 <Text> kan niet rechtstreeks (of onrechtstreeks door een aaneenschakeling)</Text>
 <Role index="0"/>
 <Text> zichzelf/hemzelf</Text>
</Constraint>

<Constraint xsi:type="Transitve">
 <Text> -[Intransitve] Indien</Text>
 <Object index="0"/>
 <Text>X</Text>
 <Role index="0"/>
 <Object index="0"/>
 <Text>Y, en Y</Text>
 <Role index="0"/>
 <Text> Z, dan is het niet mogelijk dat X</Text>
 <Role index="0"/>
 <Text>Z</Text>
</Constraint>

</ORMNLBody>
</ORMSchema>

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Example (Verbalizations in Dutch)

Fig. B.2. ORM-Diagram, Dutch.

Verbalization

-[Mandatory] Elk(e) Persoon Heeft tenminste 1 PaspoortNr.

-[Mandatory] Elk(e) Persoon Heeft tenminste 1 Geboortedatum.

-[Mandatory] Elk(e) Rekening ofwel BeheerdDoor een Persoon ofwel BeheerdDoor een Bedrijf.

-[Uniqueness] Elk(e) Persoon Heeft ten hoogste 1 Geboortedatum.

-[Uniqueness] Elk(e) Persoon Heeft ten hoogste 1 Naam.

-[Uniqueness] Elk(e) Persoon Heeft ten hoogste 1 PaspoortNr.

-[Uniqueness] Elk(e) PaspoortNr IsVan ten hoogste 1 Persoon.

-[Uniqueness] Elke combinatie van Naam en Geboortedatum is gerelateerd met slechts 1 Persoon.

-[Uniqueness] Het is mogelijk dat een Persoon Onderricht meer dan 1 Vak , en omgekeerd .

-[Uniqueness] Het is mogelijk dat een Persoon Recenseert meer dan 1 Boek , en omgekeerd .

-[Uniqueness] Het is mogelijk dat een Persoon Schrijft meer dan 1 Boek , en omgekeerd .

-[Uniqueness] Het is mogelijk dat een Persoon RijdtMet meer dan 1 Wagen , en omgekeerd .

-[Exclusive] Elk(e) Persoon kan ofwel een Man ofwel een Vrouw zijn.

-[Total] Elk(e) Persoon is tenminste een Vrouw of een Man.

-[Subset] Als een Persoon RijdtMet een Wagen dan moet ook dit/deze Persoon BeschiktOver een

Rijbewijs.

-[Subset] Als een Beheerder beheert een Bedrijf dan moet ook dit/deze Persoon WerktVoor dat

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Bedrijf.

-[Equality] Een Persoon WerktVoor een Universiteit dan en slechts dan als dit/deze Persoon

Onderricht een Vak.

-[Equality] Een Persoon GeaffilieerdMet Bedrijf dan en slechts dan als dit/deze Persoon WerktVoor

dat/die Bedrijf.

-[Exclusion] Geen enkel(e) Account Owned-By Person and also Owned-By Company.

-[Exclusion] No Person Reviews Book and also Writes that Book.

-[Value] De mogelijke instanties van Land zijn :{ Belgium, France, Germany}

-[Irreflexive] Geen enkel(e) Persoon CollegaVan zichzelf/hemzelf.

-[Symmetric] Indien Persoon X CollagaVan Persoon Y, dan ook vice-versa.
-[Acyclic] Persoon kan niet rechtstreeks (of onrechtstreeks door een aaneenschakeling) OversteVan

zichzelf/hemzelf .

 -[Acyclic] Vrouw kan niet rechtstreeks (of onrechtstreeks door een aaneenschakeling) ZusVan

zichzelf/hemzelf .

-[Asymmetric] Indien Vrouw X EchtgenoteVanVrouw Y, dan kan het niet vice-versa .

-[Intransitve] Indien Persoon X OuderVan Persoon Y, en Y OuderVan Z, dan is het niet mogelijk dat
X OuderVan Z.
-[Frequency] Indien Persoon Onderricht Vak, dan deze/dit Persoon Onderricht tenminste 2 en ten

hoogste 3 Vak.

Acknowledgement: I am very grateful to Pieter Verheyden for his help in

translating the Dutch verbalization template and the provided example.

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Arabic verbalization template

<?xml version='1.0' encoding='UTF-8'?>
<ORMSchema xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:noNamespaceSchemaLocation='http://www.starlab.vub.ac.be/staff/mustafa/orm/verbalization/'>

<ORMNLMeta>
 <Meta name="DC.Title" content="Arabic verbalization template"/>
 <Meta name="DC.Version" content="0.2"/>
 <Meta name="DC.Creator" content="Mustafa Jarrar"/>
<Meta name="DC.Language" content="Arabic"/>
 </ORMNLMeta>
<ORMNLBody>

<FactType xsi:type="FactType" >
<Object index="0" />
<Role index="0" />
<Text>/</Text>
<Role index="1" />
<Object index="1" />
 </FactType>

<Constraint xsi:type="Mandatory" >
 <Text> آل </Text>
 <Object index="0" />
 <Role index="0" />
 <Object index="1" />
 <Text> واحد على الاقل</Text>
</Constraint>

<Constraint xsi:type="Backward Mandatory" >
 <Text>لكل</Text>
 <Object index="0" />
<Text>يوجد</Text>
<Object index="1" />
<Text>واحد على الاقل</Text>
<Role index="1" />
 <Text> هذا</Text>
 <Object index="0" />
</Constraint>

<Constraint xsi:type="Disjunctive Mandatory">
 <Text> -[Mandatory] آل </Text>
 <Object index="0"/>
 <Text>يجب ان يكون </Text>
 <Role index="0"/>
 <Object index="1"/>
 <Loop index="1" >
 <Text>او </Text>
 <Role index="n"/>
 <Object index="n"/>

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

 </Loop>
</Constraint>

<Constraint xsi:type="Uniqueness">
 <Text> -[Uniqueness] لكل </Text>
 <Object index="0"/>
 <Role index="0"/>
 <Object index="1"/>
 <Text>واحد على الاآثر </Text>
</Constraint>

<Constraint xsi:type="Backward Uniqueness" >
<Text>لكل </Text>
<Object index="0" />
<Text> يوجد </Text>
<Object index="1" />
<Text> واحد على الاآثر</Text>
<Role index="1" />
 <Text> هذا</Text>
 <Object index="0" />
</Constraint>

<Constraint xsi:type="Many Uniqueness" >
<Text>آل </Text>
<Object index="0" />
<Text>يمكن ان </Text>
<Role index="0"></Role>
<Text> اآثر من </Text>
<Object index="1" />
<Text> والعكس صحيح </Text>
</Constraint>

<Constraint xsi:type="External Uniqueness" >
<Text>اتحاد آل من</Text>
<Object index="1" />
<Loop index="1">
<Text>و</Text>
<Object index="n" />
</Loop>
<Text>يشير الى</Text>
<Object index="0" />
<Text> واحد على الاآثر</Text>
</Constraint>

<Constraint xsi:type="Subtype" >
<Text>آل</Text>
<Object index="child" />
<Text>هو</Text>
<Object index="parent" />
 </Constraint>

<Constraint xsi:type="Value">

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

 <Text> -[Value] اليقيم الممكنة ل </Text>
 <Object index="0"/>
 <Text> {: هي </Text>
 <Value index="0"/>
 <Loop index="1">
 <Text>,</Text>
 <Value index="n"/>
 </Loop>
 <Text> {</Text>
 </Constraint>

<Constraint xsi:type="Subtype" >
 <Text>آل</Text>
 <Object index="child" />
 <Text>هو</Text>
 <Object index="parent" />
</Constraint>

<Constraint xsi:type="Exclusive" >
<Text>آل</Text>
<Object index="0"/>
<Text> يمكن ان يكون اما</Text>
<Object index="1"/>
<Loop index="1">
 <Text>او</Text>
 <Object index="n"/>
</Loop>
 </Constraint>

<Constraint xsi:type="Total" >
 <Text>آل </Text>
<Object index="0" />
<Text> ان يكونيجب </Text>
<Object index="1" />
<Loop index="1" >
 <Text> او </Text>
 <Object index="n" />
</Loop>
</Constraint>

<Constraint xsi:type="Partition" >
<Text>آل </Text>
<Object index="0" />
<Text> يجب ان يكون اما </Text>
<Object index="1" />
<Loop index="1" >
 <Text> او </Text>
 <Object index="n" />
</Loop>
</Constraint>

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

<Constraint xsi:type="Subset" >
<Text>اذا </Text>
<Object index="0" />
<Role index="child" />
<Object index="child" />
<Text> فان هذا </Text>
<Object index="0" />
<Role index="parent" />
<Object index="parent" />
</Constraint>

<Constraint xsi:type="Subset FactType">
 <Text> -[Subset] اذا </Text>
 <Object index="0"/>
 <Role index="child"/>
 <Object index="child"/>
 <Text> فان هذا </Text>
 <Object index="1" />
 <Role index="parent"/>
 <Text> هذة </Text>
 <Object index="parent"/>
</Constraint>

<Constraint xsi:type="Equality" >
<Text>آل </Text>
<Object index="0" />
<Role index="first" />
<Object index="first" />
<Text>اذا و فقظ اذاهذا ال </Text>
<Object index="0" />
<Role index="second" />
<Object index="second" />
</Constraint>

<Constraint xsi:type="Equality FactType" >
<Text>آل </Text>
<Object index="0" />
<Role index="0" />
<Object index="1" />
<Text>اذا و فقظ اذاهذا ال</Text>
<Object index="1" />
<Role index="second" />
<Text>هذة ال</Text>
<Object index="second" />
</Constraint>

<Constraint xsi:type="Exclusion" >
<Text>لا يمكن ان يكون </Text>
<Object index="0" />

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

<Role index="first" />
<Object index="first" />
<Text> و في نفس الوقت </Text>
<Role index="second" />
<Object index="second" />
</Constraint>

<Constraint xsi:type="Exclusion FactType" >
<Text>لا يمكن ان يكون </Text>
<Object index="0" />
<Role index="first" />
<Object index="first" />
<Text>و في نفس الوقت </Text>
<Role index="second" />
<Text>ذلك </Text>
<Object index="second" />
 </Constraint>

<Constraint xsi:type="Frequency">
 <Text> -[Frequency] اذا ال</Text>
 <Object index="0"/>
 <Role index="0"/>
 <Object index="1"/>
 <Role index="0"/>
 <Text>فان هذا ال </Text>
 <Object index="0"/>
 <Text>يجب ان </Text>
 <Role index="0"/>
 <Text>بين </Text>
 <Minimum/>
 <Text> الى </Text>
 <Maximum/>
 <Role index="0"/>
</Constraint>

<Constraint xsi:type="Irreflexive" >
<Text>لا يجوز ل </Text>
<Object index="0"/>
<Text> ان يكون </Text>
<Role index="0"/>
<Text> لنفسه </Text>
</Constraint>

<Constraint xsi:type="Symmetric" >
<Text>اذا</Text>
<Object index="0"/>
<Text> س</Text>
<Role index="0"/>
<Object index="0"/>
<Text> ص</Text>
<Text> فانه العكس بالعكس</Text>

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

</Constraint>

<Constraint xsi:type="Asymmetric">
 <Text> -[Symmetric] اذا</Text>
 <Object index="0"/>
 <Text>س </Text>
 <Role index="0"/>
 <Object index="0"/>
 <Text> </Text>
 <Text> فان العكس غير صحيح, ص </Text>
</Constraint>

<Constraint xsi:type="Acyclic">
 <Text> -[Acyclic] لايمكن ل</Text>
 <Object index="0"/>
 <Text>)بطريقة مباشرة او غير مباشرة(ان يكون </Text>
 <Role index="0"/>
 <Text> نفسه</Text>
</Constraint>

<Constraint xsi:type="Transitve">
 <Text> -[Intransitve] اذا </Text>
 <Object index="0"/>
 <Text>س </Text>
 <Role index="0"/>
 <Object index="0"/>
 <Text> و ص , ص </Text>
 <Role index="0"/>
 <Text> فانه لايمكن ان يكون س, ج </Text>
 <Role index="0"/>
 <Text>ج </Text>
</Constraint>

</ORMNLBody>
</ORMSchema>

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Example (Verbalizations in Arabic)

Fig. B.3. ORM-Diagram, Arabic.

Verbalization

 -[Mandatory] له إِنْسانآل رَقْم جَوَازُ سَفَر واحد على الاقل

 -[Mandatory] آل إِنْسان له تارخ مِيلاد واحد على الاقل

 -[Mandatory] آل حساب يجب ان يكون مملوك ل انسان او مملوك ل شرآة

 -[Uniqueness] تاريخ ميلاد واحد على الاآثرلهآل انسان

 -[Uniqueness] اسم واحد على الاآثرلهان آل انس

 -[Uniqueness] رقم جواز سفر واحد على الاآثرلهآل انسان

 -[Uniqueness] آل رقم جواز سفر ل انسان واحد على الاآثر

 -[Uniqueness] آل انسان يمكن ان يدرس اآثر من مادة والعكس صحيح

 -[Uniqueness] آتابآل انسان يمكن ان يؤلف اآثر من والعكس صحيح

 -[Uniqueness] اآثر من آتاب والعكس صحيحيعلق علىآل انسان يمكن ان

 -[Uniqueness] سيارة والعكس صحيحآل انسان يمكن ان يقود اآثر من

 -[Uniqueness] اتحاد آل من تاريخ ميلاد واسم يشير الى انسان واحد على الاآثر

جل او اِمْرَأَةآل انسان يمكن ان يكون اما ر [Exclusive]-

 -[Totality] آل انسان يجب ان يكون رجل او اِمْرَأَة

 -[Subset] اذا انسان يقود سيارة فان هذا الانسان مخول ب رخصة سياقة

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

 -[Subset] اذا مديريدير شرآة فان هذا المديريعمل في هذة الشرآة

 -[Equality] آل مادةانسان يعمل في جامعة اذا و فقط اذا هذا الانسان يدرس

 -[Equality] آل انسان منسوب لشرآة اذا و فقط اذا هذا الانسان يعمل في هذة الشرآة

 -[Exclusion] لا يمكن ان يكون حساب مملوك لا نسان و في نفس الوقت مملوك لشرآة
آتابذلك يؤلف في نفس الوقت ويعلق على آتاب انسانلا يمكن ان يكون [Exclusion]-

{ المانيا, فرنسا, بلجيكا{ :القيم الممكنة ل دولة هي [Value]-

 -[Irreflexive] لا يجوز ل انسان ان يكون زميل لنفسه

,فانه العكس بالعكس -[Symmetric] ص لاذا انسان س زميل
اب او ام لنفسه) بطريقة مباشرة او غير مباشرة(لايمكن لانسان ان يكون [Acyclic]-

نفسهمشرف على) بطريقة مباشرة او غير مباشرة(ان ان يكون لايمكن لانس [Acyclic]-
فان العكس غير صحيح, اذا انسان س زوجة لانسان ص [Asymmetric]-
 -[Intransitve] جل فانه لايمكن ان يكون س اب او ام, و ص اب او ام لانسان ج, اذا انسان س اب او ام لانسان ص

 -[Frequency] مادة3 الى 2 هذا الانسان يجب ان يدرس بين فان, اذا الانسان يدرس مادة

Russian verbalization template

<?xml version='1.0' encoding='UTF-8'?>

<ORMSchema xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'

xsi:noNamespaceSchemaLocation='http://www.starlab.vub.ac.be'>

<ORMNLMeta>

 <Meta name="DC.Title" content="Russian verbalization template"/>

 <Meta name="DC.Version" content="0.1"/>

 <Meta name="DC.Creator" content="Mustafa Jarrar"/>

 <Meta name="DC.Contributor" content="Andriy Lisovoy"/>

 <Meta name="DC.Language" content="Russian"/>

</ORMNLMeta>

<ORMNLBody>

<Constraint xsi:type="Lexical" >

<Text>Лексическими концепциями являются :{</Text>

 <Object index="0" />

<Loop index="1">

<Text>,</Text>

 <Object index="n" />

</Loop>

 <Text> }</Text>

 </Constraint>

<Constraint xsi:type="Value" >

<Object index="0" />

<Text> может быть представлен как :{</Text>

<Value index="0" />

<Loop index="1">

<Text>,</Text>

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

 <Value index="n" />

</Loop>

 <Text> }</Text>

 </Constraint>

<Constraint xsi:type="Mandatory" >

 <Text>Kаждый</Text>

 <Object index="0" />

 <Role index="0" />

 <Text> по краней мере один</Text>

 <Object index="1" />

</Constraint>

<Constraint xsi:type="Backward Mandatory" >

 <Text>Для каждого</Text>

 <Object index="0" />

<Text> существует по крайней мере один </Text>

<Object index="1" />

 <Text> который </Text>

<Role index="1" />

 <Text> этот</Text>

 <Object index="0" />

</Constraint>

<Constraint xsi:type="Disjunctive Mandatory" >

<Object index="0" />

<Text>either</Text>

<Role index="0" />

<Text>или</Text>

<Object index="1" />

<Loop index="1" >

 <Text>или </Text>

 <Role index="n" />

<Object index="n" />

</Loop>

</Constraint>

<Constraint xsi:type="Uniqueness" >

<Text>Каждый</Text>

<Object index="0" />

<Role index="0" />

<Text> максимум один </Text>

<Object index="1" />

 </Constraint>

<Constraint xsi:type="Backward Uniqueness" >

<Text>Для каждого </Text>

<Object index="0" />

<Text> существует по максимум один </Text>

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

<Object index="1" />

<Text> который </Text>

<Role index="1" />

<Text> этот</Text>

<Object index="0" />

</Constraint>

<Constraint xsi:type="External Uniqueness" >

<Text>Каждая комбинация </Text>

<Object index="1" />

<Loop index="1">

<Text>и</Text>

<Object index="n" />

</Loop>

<Text> относится только к одному </Text>

<Object index="0" />

</Constraint>

<Constraint xsi:type="Many Uniqueness" >

<Text>возможно, что</Text>

<Object index="0" />

<Role index="0"></Role>

<Text> больше, чем один </Text>

<Object index="1" />

<Text> и, что</Text>

<Object index="1" />

<Role index="1"></Role>

<Text> больше, чем один </Text>

<Object index="0" />

</Constraint>

<Constraint xsi:type="Subtype" >

<Text>Kаждый</Text>

<Object index="child" />

<Text> также является </Text>

<Object index="parent" />

</Constraint>

<Constraint xsi:type="Exclusive" >

<Text>Kаждый</Text>

<Object index="0"/>

<Text> может быть </Text>

<Object index="1"/>

<Loop index="1">

 <Text>или</Text>

 <Object index="n"/>

</Loop>

</Constraint>

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

<Constraint xsi:type="Total" >

 <Text>Kаждый</Text>

<Object index="0" />

<Text> является либо </Text>

<Object index="1" />

<Loop index="1" >

 <Text> или </Text>

 <Object index="n" />

</Loop>

</Constraint>

<Constraint xsi:type="Partition" >

<Text>Each </Text>

<Object index="0" />

<Text> по крайней мере является одним из </Text>

<Object index="1" />

<Loop index="1" >

 <Text> или </Text>

 <Object index="n" />

</Loop>

<Text>но не всеми сразу</Text>

</Constraint>

<Constraint xsi:type="Subset" >

<Text>Если </Text>

<Object index="0" />

<Role index="child" />

<Object index="child" />

<Text>, то </Text>

<Object index="0" />

<Role index="parent" />

<Object index="parent" />

</Constraint>

<Constraint xsi:type="Equality" >

<Object index="0" />

<Role index="first" />

<Object index="first" />

<Text>если и только если</Text>

<Text>этот </Text>

<Object index="0" />

<Role index="second" />

<Object index="second" />

<Text>, и наоборот</Text>

</Constraint>

<Constraint xsi:type="Equality FactType" >

<Object index="0" />

<Role index="First" />

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

<Object index="First" />

<Text>если и только если</Text>

<Text>этот </Text>

<Object index="1" />

<Role index="Second" />

<Object index="Second" />

</Constraint>

<Constraint xsi:type="Subset FactType" >

<Text>Если </Text>

<Object index="0" />

<Role index="child" />

<Object index="child" />

<Text>, то этот </Text>

<Object index="1" />

<Role index="parent" />

<Text> тот </Text>

<Object index="parent" />

</Constraint>

<Constraint xsi:type="Exclusion" >

<Text>Не существует </Text>

<Object index="0" />

<Text>, который </Text>

<Role index="first" />

<Object index="first" />

<Text> и </Text>

<Role index="second" />

<Object index="second" />

</Constraint>

<Constraint xsi:type="Exclusion FactType" >

<Text>Не существует </Text>

<Object index="0" />

<Text>, который </Text>

<Role index="first" />

<Object index="first" />

<Text>и</Text>

<Role index="second" />

<Text>тот </Text>

<Object index="second" />

 </Constraint>

<Constraint xsi:type="Reflexive" >

<Text>Каждый</Text>

<Object index="0"/>

<Role index="0"/>

<Text> </Text>

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

</Constraint>

<Constraint xsi:type="Irreflexive" >

<Text>No</Text>

<Object index="0"/>

<Role index="0"/>

<Text> самого себя</Text>

</Constraint>

<Constraint xsi:type="Symmetric" >

<Text>Если</Text>

<Object index="0"/>

<Text> x</Text>

<Role index="0"/>

<Object index="0"/>

<Text> y</Text>

<Text> то наоборот</Text>

</Constraint>

<Constraint xsi:type="Transitve" >

<Text>Если</Text>

<Object index="0"/>

<Text>x</Text>

<Role index="0"/>

<Object index="0"/>

<Text>y и y</Text>

<Role index="0"/>

<Text> x то x</Text>

<Role index="0"/>

<Text>y</Text>

</Constraint>

</ORMNLBody>

</ORMSchema>

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Example (Verbalizations in Russian)

Fig. B.4. ORM-Diagram, Russian.

Verbalization

 Kаждый Человек Имеет по краней мере один НомерПасспорта.

 Kаждый Человек Имеет по краней мере один ДатаРождения.

 Каждая комбинация ДатаРождения и Имя относится только к одному Человек.
 Kаждый Человек может быть Женщина или Мужчина.

 Kаждый Человек является либо Женщина или Мужчина.

 Если Человек Водит Автомобиль , то Человек Авторизирован ВодительскиеПрава.

Человек РаботаетНаУниверситет если и только если этот Человек ПреподаетKурс , и

наоборот.
 Человек СвязанС Kомпания если и только если этот Человек РаботаетНа Kомпания.

 Если Управляющий Управляет Kомпания , то этот Человек РаботаетНа тот Kомпания.

 Не существует Счет , который принадлежитЧеловек и принадлежитKомпания.

 Не существует Человек , который Пишет Kнига и Просматривает тот Kнига..

 Счет either принадлежит или Человек или принадлежит Kомпания.

 Каждый Человек Имеет максимум один ДатаРождения.

 Каждый Человек Имеет максимум один Имя.

 Каждый Человек Имеет максимум один НомерПасспорта.

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

 Каждый НомерПасспорта IsOf максимум один Человек.
 возможно, что Человек Преподает больше, чем один Kурс и, что Kурс Преподает больше,

чем один Человек.
 возможно, что Человек Просматривает больше, чем один Kнига и, что Kнига Просматривает
больше, чем один Человек.
 возможно, что Человек Пишет больше, чем один Kнига и, что Kнига Пишет больше, чем

один Человек.
 возможно, что Человек Водит больше, чем один Автомобиль и, что Автомобиль Водит
больше, чем один Человек.

Acknowledgement: I am very grateful to Andriy Lisovoy for his help in

translating the Russian verbalization template and the provided example.

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Appendix C: Customer Complaint Ontology

In this appendix, we present the CContology. In appendix C1, we present

all terms and their glosses (CCglossary). The set of lexons are presented

in appendix C2.

Appendix C1: The CCglossary

In this appendix, we present the CCglossary, which includes all terms and

their glosses that have been used in the CContology. This CCglossary will

be shared and used by people who wish to translate or extend the

CContology.

Terms are listed in the alphabetical order.

Context Term Gloss

Customer

Complaint

Access cost

unreasonable

A private data access problem related to

unreasonable access cost.

Customer

Complaint

Access

provision

denied

A private data access problem related to denied

access provision.

Customer

Complaint

Access

timeliness

delayed

A private data access problem related to delayed

access timeliness.

Customer

Complaint
Action Request

An economic complaint resolution not related to

financial issues, such as delivery, repair, etc.

Customer

Complaint
Address

A construct describing the means by which

contact may be taken with, or messages or

physical objects may be delivered to; an address

may contain indicators for a physical or virtual

(i.e. accessed electronically) location or both.

Customer

Complaint

Advance

withheld

A contract termination problem related to

advance payment was withheld unjustifiably at

the termination of the contract, or not accounted

properly against the payments during the

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

contract.

Customer

Complaint

Advertiser not

identified

A advertising problem related to advertisements

where the advertiser is not known or identified.

Customer

Complaint
Advertising

Incorrect marketing practices problem related to

advertisements of products or services.

Customer

Complaint

After Sales

Service

Problem

A problem related to after sale service not

actioned or not properly actioned.

Customer

Complaint

Apartment

Number

A number assigned to an apartment

(flat/studio/office/room etc.) within a building.

Customer

Complaint
Apologize

A symbolic resolution concerned with

acknowledge faults, or shortcomings or failing.

Customer

Complaint

Billing or

Payment

Problem

A purchase phase problem linked to billing or

payment.

Customer

Complaint
Billing Request A financial request concerned with billing issues.

Customer

Complaint

Breach of

contract

A contract termination problem related to a

breach of contract.

Customer

Complaint
Building Name

A name assigned to a building or construction in

or adjacent to which a delivery point is located.

Customer

Complaint

Building

Number

A number denoting a delivery point within a

street; examples: house number, construction

plot number.

Customer

Complaint

Cancellation or

withdrawal

refused

A contract termination problem linked to a

request of the consumer to withdraw from the

contract is refused by the supplier.

Customer

Complaint

Charge

exceeds

estimate

A repair problem related to charges exceeds the

estimate.

Customer

Complaint
City

(WordNet) An incorporated administrative district

established by state charter.

Customer

Complaint

Compensation

inadequate

A guarantee problem related to inadequate

compensation.

Customer

Complaint

Compensation

refused

A guarantee problem related to refusal of

compensation.

Customer

Complaint

Competitor

cheaper

A competitor offers the same product or service

at a lower price.

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Customer

Complaint
Complainant The legal person who issues a complaint.

Customer

Complaint
Complaint

An expression of grievance or resentment issued

by a complainant against a compliant-recipient,

describing a problem(s) that needs to be

resolved.

Customer

Complaint
Complaint Date The issue date of a complaint.

Customer

Complaint

Complaint

Number

A code used to uniquely refer to a complaint in a

court or a complaint system.

Customer

Complaint

Complaint

Recipient

A legal person to whom a complaint is

addressed.

Customer

Complaint

Complaint

Resolution

A determination for settling or solving a problem

in a consumer-provider relationship.

Customer

Complaint
Conduct

A non-problem problem concerned with the

conduct of the recipient's staff, agents or sub-

contractors.

Customer

Complaint
Contact Details A channel of communication

Customer

Complaint
Content

A non-problem problem concerned with harmful

or illegal content.

Customer

Complaint
Contract

A binding agreement between two or more legal

persons that is enforceable by law; an invoice

can be a contract.

Customer

Complaint

Contract

Effective Date

The date on which the contract comes into effect,

e.g. the date for the start of service.

Customer

Complaint

Contract Order

Date

The date on which the order was placed or the

contract was signed.

Customer

Complaint

Contract

Problem

Problem linked to a contract in a customer-

provider relationship, it may occar before or after

the contract effective date.

Customer

Complaint

Contract

Reference

Reference to Contract, indicator to a certain

contract

Customer

Complaint

Contract

rescinded
The recipient has rescinded the contract.

Customer

Complaint

Contract

Termination

Problem

A problem concerned with the proper termination

or completion of the contract.

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Customer

Complaint

Contract Terms

Problem

A purchase phase problem linked to contracts

terms and conditions.

Customer

Complaint
Copyright

A non-contract problem concerned with exclusive

and registered rights.

Customer

Complaint
Country (WordNet)The territory occupied by a nation.

Customer

Complaint
County

(WordNet) A region created by territorial division

for the purpose of local government

Customer

Complaint
Damage

A non-contract problem concerned with damage

suffered.

Customer

Complaint

Damage

Assessment

An action request concerned with judging or

estimating a damage.

Customer

Complaint
Data Collection

A privacy problem regarding all activities and

purposes of private data collection

Customer

Complaint

Data correction

denied

Data correction was denied or executed

incorrectly or delayed.

Customer

Complaint

Data unrelated

to purpose

A data collection problem concerned with Data

unrelated to purpose in a customer-provider

relationship.

Customer

Complaint

Defective item

not accepted

for repair

A repair problem related to defective item not

accepted for repair.

Customer

Complaint

Delete the

unnecessary

data

A privacy request for delete private information

specially that is unnecessary for the agreed

purpose.

Customer

Complaint
Delivery

The act of delivering or distributing goods or

services.

Customer

Complaint

Delivery and

Installation

Problem

A purchase phase problem related to

dissatisfaction regarding delivery or Installation

of goods or services.

Customer

Complaint

Delivery charge

problem
An unexpected delivery charge problem.

Customer

Complaint

Delivery

Consideration

Information denoted in a contract about a

delivery agreements and circumstances, such as

delivery address, date, loss or responsibility

given, suffered or undertaken by the other.

Customer

Complaint

Delivery

problem

A purchase phase problem related to

dissatisfaction regarding the delivery of goods or

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

services.

Customer

Complaint

Delivery

Request

An action request concerned with delivery and

distribution issues.

Customer

Complaint

Deposit

withheld

A contract termination problem linked with a

deposit was withheld and not refunded.

Customer

Complaint

Documentation

in wrong

language

The documentation or instructions were provided

but are in the wrong language

Customer

Complaint

Documentation

Problem

A product problem concerned with the product or

service documentation or instructions.

Customer

Complaint

Economic

Resolution

A complaint resolution concerned with goods and

services, such as payment, delivery, damage

repair, etc.

Customer

Complaint

Electronic

Address

The address that can be accessed electronically

(i.e. virtually), such as email, fax, pager,

telephone, website, etc.

Customer

Complaint
eMail

An electronic Address for transmission of letters

and other documents from one computer to

another through a telecommunications or

wireless network.

Customer

Complaint

Environmental

damage

A damage problem related to environmental

issues.

Customer

Complaint
Evidence

(WordNet) all the means by which any alleged

matter of fact whose truth is investigated at

judicial trial is established or disproved

Customer

Complaint

Excessive data

requested

A data collection problem related to excessive

data requested.

Customer

Complaint
False statement

An advertising problem regarding a false (or not

in accordance with the fact or reality or actuality)

statement.

Customer

Complaint
Fax

An electronic address used to transfer copies of

documents, over a phone line.

Customer

Complaint

Financial

Reqeust

An economic complaint resolution concerned

with financial issues, such as payments, billing,

etc.

Customer

Complaint
Function

The actions and activities assigned to or required

or expected of one to play, such as sales agent,

delivery driver, etc.

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Customer

Complaint

General Terms

Problem

A contract terms problem with the general terms

and conditions.

Customer

Complaint

Gift defective or

not received

with product

A delivery problem regarding a gift defective or

not received with product.

Customer

Complaint
Goods

Durable or consumable articles of commerce

including equipment, food, furniture, etc.

Customer

Complaint

Guarantee

Problem

An after sales service problem related to a legal

or contractual guarantee; particularly a problem

related to a responsibility on the recipient

consequent to the guarantees directive.

Customer

Complaint

Guarantee

refused
Refusal to apply a legal or contractual guarantee.

Customer

Complaint

Harmful

Content
A content problem related to harmful issues.

Customer

Complaint
Hidden charges

A sales promotion problem regarding hidden

charges.

Customer

Complaint

High pressure

selling

A sales methods problem concerned with using

high pressure selling style.

Customer

Complaint

Home selling

problem

A personal selling problem regarding home

selling practices.

Customer

Complaint
Illegal Content

A content problem related to illegal content

issues.

Customer

Complaint
Illegal lottery

A sales promotion problem regarding illegal

lottery.

Customer

Complaint

Inadequate

charge details

Details provided for a monetary charge are

inadequate to identify that the charge is due.

Customer

Complaint

Inadequate

contact details

Details describing the contact details are

inadequate to meet the requirements of

European law, for example those required by the

e-commerce directive or the data protection

directive…

Customer

Complaint

Inadequate

privacy

information

The privacy information provided is

inadequate/not compliant with legal

requirements.

Customer

Complaint

Inadequate

specification

Specification of the product or service are not

adequate for the complainant to make an

informed purchasing decision.

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Customer

Complaint

Incorrect

privacy

information

A privacy information problem regarding the

incorrectness of the privacy information.

Customer

Complaint

Incorrect

amount

An unexpected charge problem regarding

incorrect amounts.

Customer

Complaint

Incorrect

assessment of

a damage

A damage problem related to incorrect or not-

acceptable assessment of damage.

Customer

Complaint
Incorrect date

An unexpected charge problem regarding

incorrect dates.

Customer

Complaint

Incorrect

interest charge

An unexpected charge problem regarding

Incorrect interest charge.

Customer

Complaint

Incorrect

Marketing

Practices

A pre-purchase problem related to marketing

practices not in conformity with legal

requirements.

Customer

Complaint

Incorrect

privacy

information

A privacy information problem denoting

incorrectness of information.

Customer

Complaint

Incorrect

quantity
A delivery problem of incorrect quantities.

Customer

Complaint

Information

Correction

A complaint resolution related to improvement to

replace a mistake in the information collected in

a consumer-provider relationship.

Customer

Complaint

Information not

comprehensible

An information problem linked to

comprehensibility or understandability of

Information.

Customer

Complaint

Information not

easily available
An information problem of not easily available.

Customer

Complaint

Information

Problem

A negotiation of terms problem related to

information provided is incorrect, inadequate, or

insufficient.

Customer

Complaint

Installation

delayed

An Installation problem related to delay in

Installation.

Customer

Complaint

Installation

improper

An Installation problem denoting improper

Installation.

Customer

Complaint

Installation

problem

A purchase phase problem related to

dissatisfaction regarding the installation of goods

or services.

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Customer

Complaint

Instructions

inadequate

The instructions do not adequately indicate how

some function works or some maintenance

operation should be performed.

Customer

Complaint

Instructions

missing

Instructions for use or maintenance were not

provided with the product.

Customer

Complaint

Jurisdiction

inappropriate

The jurisdiction specified is inappropriate

because it is not aligned with the contract

delivery or participants.

Customer

Complaint

Legal

information

missing

An information problem denoting missing legal

information.

Customer

Complaint
Legal Person

#An entity with legal recognition in accordance

with law, it has the legal capacity to represent its

own interests in its own name, before a court of

law, to obtain rights or obligations for itself, to

impose binding obligations, or to grant

privileges…

Customer

Complaint

Lewd or

Immoral

conduct

A conduct problem related to Lewd and immoral

issues.

Customer

Complaint
Mailing Address

The address where a person or organization can

be communicated with for providing physical

objects. It is broadly equivalent to a postal

address as described in standards CEN 14132

or UPU S42, but has different functional

definition

Customer

Complaint

Misleading

advertising

An advertising problem regarding misleading

advertisements.

Customer

Complaint

Misrepresented

needs

A repair problem related to misrepresented

needs.

Customer

Complaint
Money Request

A financial request concerned with money and

currency issues, such as returning the money

paid back, discount, etc.

Customer

Complaint
Name

Name of a person (whether a natural or other

legal person or a person without legal

personality) to whom the contact details refer

Customer

Complaint

Natural Person

Complainant

A human being as distinguished from a person

(as a corporation) created by operation of law,

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

who issues a complaint.

Customer

Complaint

Negotiation of

Terms

A pre-purchase problem related to negotiation of

the terms and conditions of a contract

Customer

Complaint
No Discount

An unfair price problem related to not offering

discounts.

Customer

Complaint

No discount

(usual one not

offered)

An unfair price problem related to not offering

discounts.

Customer

Complaint

Non-Contract

Problem

A Problem where there is no contract regarding a

purchase in a customer-provider relationship.

Customer

Complaint

Non-Natural

Person

Complainant

A legal person who is not a natural person (i.e.

no a human being), and who issues a complaint.

A non-natural person is also sometimes called

"artificial person".

Customer

Complaint
Not best offer

The contract is offered at a price that is not the

best offer that the supplier is known to make in

similar circumstances

Customer

Complaint

Obtained data

improperly

Some private data was obtained by

improper/illegal means

Customer

Complaint
Offensive

An advertising problem causing anger or

annoyance because of violating or tending to

violate or offend in advertisements.

Customer

Complaint
Offer Problem

A negotiation of terms problem related to offer is

not in compliance with legal requirements

Customer

Complaint

Passed to an

unauthorized

country

A Purpose and permission privacy problem

related to distributing private data to a country

without authorization.

Customer

Complaint

Passed to

others without

permission

A purpose and permission privacy problem

related to distributing private data to others

without permission or authority

Customer

Complaint

Payment

Consideration

Information denoted in a contract about a

payment agreements and circumstances, such

as, amounts, payment schedules, some right,

interest, profit or benefit accruing to the one party

suffered or undertaken by the other.

Customer

Complaint

Payment details

not provided

A payment problem related to no providing

enough details about payment.

Customer Payment A billing or payment problem related to

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Complaint Problem dissatisfaction regarding payments.

Customer

Complaint

Payment

refused

A payment problem regarding to refusal of

payment.

Customer

Complaint
Personal selling

Incorrect marketing practices problem related to

personal selling of products or services.

Customer

Complaint
PO Box

A mailing address attribute denoting a

designated box number for a delivery point

provided by a postal operator; it may be provided

for collection from a point operated by the postal

operator or to facilitate bulk delivery to an

organization.

Customer

Complaint
Poor Advice

A personal selling problem related to poor

advice.

Customer

Complaint
Postal Code

(WordNet) A code of letters and digits added to a

postal address to aid in the sorting of mail

Customer

Complaint
PostalCode

A mailing address attribute denoting a code of

letters and digits added to a postal address to aid

in the sorting of mail

Customer

Complaint

Post-purchase

Phase Problem
A problem arising after a purchase.

Customer

Complaint

Pre-purchase

Phase Problem
A problem during the pre-contractual phase.

Customer

Complaint
Price increase

An unexpected charge problem related to price

increase.

Customer

Complaint

Price

unacceptable
Price is too high

Customer

Complaint
Price Unfair

A contract terms problem related to price offered

is not in accordance with price offered to other

actual or potential purchasers; for example price

is not in accordance with an advertised price.

Customer

Complaint

Privacy

Information

A privacy problem related to provision of private

data

Customer

Complaint

Privacy

Problem

A problem related to the collection, storage,

handling, use or distribution of private data,

violating the data protection directives.

Customer

Complaint

Privacy

Request

A symbolic resolution related to the collection,

storage, handling, use, distribution, access to or

correction of private data.

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Customer

Complaint

Private Data

Access

A privacy problem related to access and

correction of private data

Customer

Complaint

Prize not

received

A sales promotion problem related to a prize no

received.

Customer

Complaint
Problem

A source of difficulty or dissatisfaction in a

consumer-provider relationship.

Customer

Complaint

Product

delivery

delayed

A delivery problem related to delay in product

delivery.

Customer

Complaint

Product fails

standards

compliance

A product quality (or delivery delayed) problem

related to product fails standards compliance.

Customer

Complaint

Product is

defective

A product quality (or delivery delayed) problem

related to Product defectiveness.

Customer

Complaint

Product not

delivered

A delivery problem regarding a product not

delivered.

Customer

Complaint

Product not in

conformity to

order

A delivery problem regarding a product not in

conformity to order.

Customer

Complaint

Product not

ordered

A delivery problem regarding a product not

ordered.

Customer

Complaint

Product

performance

below

expectations

A product quality problem related to performance

below expectations.

Customer

Complaint

Product

Problem

A problem linked a product provided by the

provider.

Customer

Complaint

Product Quality

Problem

A product problem related to with the product

quality.

Customer

Complaint

Product unfit for

purpose

A product delivery delayed problem related to

unfit for purpose.

Customer

Complaint
Product unsafe

A product quality problem related to product

unsafe.

Customer

Complaint

Property

damage
A damage problem related to properties.

Customer

Complaint

Provide access

to the data
A privacy request of accessing the private data.

Customer Provide the A privacy request of making the necessary

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Complaint necessary

privacy

information

privacy information and policies clearly visible.

Customer

Complaint

Psychological

damage

A damage problem related to psychological

issues.

Customer

Complaint

Purchase

Phase Problem
A problem arising during the purchase phase.

Customer

Complaint

Purpose and

Permission

A privacy problem regarding access, collect,

handle, distribute, etc. of private data without

asking a permission or clarifying the purpose.

Customer

Complaint

Receipt not

confirmed

A payment problem regarding a receipt not

confirmed.

Customer

Complaint
Refund refused A guarantee problem regarding a refused refund.

Customer

Complaint

Refusal

Problem

A negotiation of terms problem related to a

provider refusing to take or cease some action

which complainant could reasonably expect

recipient to take.

Customer

Complaint

Refusal to

provide service

Recipient or another has refused to provide or

continue to provide a services contracted directly

or needed for another purchase, contract or

guarantee to be effective..

Customer

Complaint
Refusal to sell

Recipient or another has refused to sell goods or

services to complainant or another

Customer

Complaint
Registration

A certification, issued by an administrative

authority or an accredited registration agency,

declaring the official enrollment of an entity.

Typically, it includes the official name, mailing

address, registration number, VAT number, legal

bases, etc.

Customer

Complaint

Repair (ed

item) not

returned

A repair problem regarding a repair (ed item) not

returned.

Customer

Complaint
Repair delayed

The repair time, either delivered or proposed, is

too long

Customer

Complaint

Repair

inadequate
The repair made was inadequate

Customer Repair Problem An after sales service problem related to a

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Complaint repair.

Customer

Complaint
Repair refused A repair under guarantee was refused

Customer

Complaint

Replacement

refused
A replacement under guarantee was refused

Customer

Complaint

Reputation

damage

A damage problem related to reputation, esteem,

and honor of people and institutions.

Customer

Complaint

Right to object

denied

A private data access problem regarding a

denied right to object.

Customer

Complaint
Rights infringed

The legal or moral rights ofa party have been

infringed

Customer

Complaint
Rudeness

A conduct problem related to rudeness in a

customer-provider relationship and

communication.

Customer

Complaint

Sales and

contract

Request

An action request concerned agreements and

contract issues.

Customer

Complaint

Sales Contact

Method

A method by which one is contacted with respect

to an actual or potential purchase or contract;

examples: shop, direct mail, e-mail, web site,

direct response advertisement, telephone, fax,

door step, in the street.

Customer

Complaint
Sales Methods

A non-contract problem concerned with sales

methods

Customer

Complaint
Sales Office

Location where the staff responsible for the sale

or contract are normally working or to which they

report; examples: shop, branch, field sales office

, etc.

Customer

Complaint

Sales

promotion

Incorrect marketing practices problem related to

promotions of products or services.

Customer

Complaint
Schedule

(WordNet) An ordered list of times at which

things are planned to occur.

Customer

Complaint

Secondary

purpose

permission

refusal denies

primary service

A purpose an permission problem regarding

secondary purpose permission refusal denies

primary.

Customer Service A service problem regarding a service cancelled

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Complaint cancelled by

provider

by provider.

Customer

Complaint

Service

inadequately

per-formed

A service problem regarding a service

inadequately per-formed.

Customer

Complaint

Service not

ordered

A service problem regarding a service not

ordered.

Customer

Complaint

Service not

provided

A service problem regarding a service not

provided.

Customer

Complaint

Service partially

provided

A service problem regarding a service not

partially provided.

Customer

Complaint

Service

Problem

An after sales service problem related to

provision of a service.

Customer

Complaint

Service

provision

delayed

A service problem regarding a delayed service

provision.

Customer

Complaint
Services

A commercial work done by one that benefits

another.

Customer

Complaint

Spare part not

available

A repair problem related to a spare part not

available.

Customer

Complaint

Specification

not adequate

Specification of the product or service are not

adequate for the complainant to make an

informed purchasing decision

Customer

Complaint
State

(WordNet) The territory occupied by one of the

constituent administrative districts of a nation

Customer

Complaint

Stop

processing and

transmission of

private data

A privacy request to stop collecting, storing,

handling, distributing, publishing, accessing, etc.

of private data.

Customer

Complaint
Street

(WordNet) A thoroughfare (usually including

pavements) that is lined with buildings

Customer

Complaint

Street selling

problem
A personal problem regarding street selling.

Customer

Complaint

Supplementary

(charge

problem)

An unexpected charge problem related to

supplementary charges.

Customer

Complaint

Switching or

Churning
A contract termination problem

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Customer

Complaint

Symbolic

Resolution

A complaint resolution concerned with emotional,

moral, social, or privacy issues. Such as

apology, provide access, stop processing, etc.

Customer

Complaint
Telephone

An electronic address used for transmitting and

receiving voice-frequency signals at a distance.

Customer

Complaint

Terms and

Conditions

The financial and management conditions under

which venture capital limited partnerships are

structured.

Customer

Complaint
Terms modified

The terms and conditions have been modified

without agreement

Customer

Complaint
Third Party

(WordNet) Someone other than the principals

who are involved in a transaction.

Customer

Complaint

Third Party

Name
The name of a third party.

Customer

Complaint
Time Limit An offer problem denoting too short time limits.

Customer

Complaint

Time limit (too

short)

Limit in time duration or date imposed by

contract or mandated by law; for example the

time limit available for repudiation of a contract

made under conditions of the distance selling

directive;

Customer

Complaint

Total Amount

Asked

The total of all amounts asked of the purchaser

by the seller.

Customer

Complaint

Total Amount

Paid

The total of all amounts paid by the purchaser to

the seller.

Customer

Complaint

Trying to obtain

data improperly

Some attempt was improperly made to acquire

some personal data

Customer

Complaint

Unacceptable

terms
The contract terms offered are unacceptable

Customer

Complaint

unauthorized

comparative

advertising

An advertising problem related to unauthorized

comparative advertising.

Customer

Complaint

unauthorized

repair

A repair problem related to unauthorized repair

issues.

Customer

Complaint

Unexpected

charge

A billing or payment problem related to

dissatisfaction regarding unexpected charge.

Customer

Complaint
Unfair contest

A sales promotion problem related to unfair

contests.

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Customer

Complaint

Unfair Contract

Terms

A contractual term which has not been

individually negotiated and causes a significant

imbalance in the parties rights and obligations

arising under the contract, to the detriment of the

consumer..

Customer

Complaint

Unfair

packaging

A sales promotion problem related to unfair

packaging.

Customer

Complaint

Unjustified

payment

demand

An unexpected charge problem related to

unjustified payment demand.

Customer

Complaint

Unnecessary

Purpose

A purpose and permission problem denoting

unnecessary purpose.

Customer

Complaint

Unproven

health claim

An advertising problem related to unproven

health claim.

Customer

Complaint

Unsolicited

commercial

communication

s

A sales methods problem concerned with

unsolicited commercial communications

Customer

Complaint

Unsolicited

merchandise

A sales methods problem concerned with

unsolicited merchandises.

Customer

Complaint

Unsolicited

service

A sales methods problem concerned with

unsolicited services.

Customer

Complaint
Untruthlness

A conduct problem to related to untruthlness in a

customer-provider relationship and

communication.

Customer

Complaint

Used for

purpose without

permission

The personal data was used for some purpose

for which permission was denied or withdrawn

Customer

Complaint
Web Site

An electronic address on the World Wide Web

network; normally formatted as a URL (universal

resource locator) describing a virtual or physical

web server, often a host name referenced within

the domain name system (e.g.

http://www.ccform.org)

Customer

Complaint

Wrong

Language

A documentation problem regarding the

language of the attached documentations.

Appendix C1: Customer Complaint Ontology (Glossary)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Appendix C2: Customer Complaint Ontology (Lexons)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Appendix C2: Lexons in the CContology

In this appendix, we present the set of lexons in the CContology. Lexons

are presented in the alphabetical ordered of Term1.

Context Term1 Role InvRole Term2

Customer

Complaint

Action

Request
Types Subtypeof

Delivery

Request

Customer

Complaint

Action

Request
Types Subtypeof

Sales and

contract

Request

Customer

Complaint

Action

Request
Types Subtype-Of

Damage

Assessment

Customer

Complaint
Address Types Subtype-Of

Electronic

Address

Customer

Complaint
Address Types Subtype-Of

Mailing

Address

Customer

Complaint
Advertising Types Subtype-Of

Advertiser not

identified

Customer

Complaint
Advertising Types Subtype-Of

False

statement

Customer

Complaint
Advertising Types Subtype-Of

Misleading

advertising

Customer

Complaint
Advertising Types Subtype-Of Offensive

Customer

Complaint
Advertising Types Subtype-Of

Unauthorized

comparative

advertising

Customer

Complaint
Advertising Types Subtype-Of

Unproven

health claim

Customer

Complaint

After Sales

Service

Problem

Types Subtype-Of
Guarantee

Problem

Customer

Complaint

After Sales

Service

Problem

Types Subtype-Of Repair Problem

Appendix C2: Customer Complaint Ontology (Lexons)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Customer

Complaint

After Sales

Service

Problem

Types Subtype-Of
Service

Problem

Customer

Complaint

Billing or

Payment

Problem

Types Subtype-Of
Payment

Problem

Customer

Complaint

Billing or

Payment

Problem

Types Subtype-Of
Unexpected

charge

Customer

Complaint
Complainant Types Subtype-Of

Natural Person

Complainant

Customer

Complaint
Complainant Types Subtype-Of

Non-Natural

Person

Complainant

Customer

Complaint
Complaint against receives

Complaint

Recipient

Customer

Complaint
Complaint describes described_by Problem

Customer

Complaint
Complaint Has is-of Complaint Date

Customer

Complaint
Complaint Has is-of

Complaint

Number

Customer

Complaint
Complaint issued_by issues Complainant

Customer

Complaint
Complaint requests requested_by

Complaint

Resolution

Customer

Complaint

Complaint

Resolution
denoted_by denotes Contact Details

Customer

Complaint

Complaint

Resolution
denoted_by denotes Registration

Customer

Complaint

Complaint

Resolution
Types Subtype-Of

Economic

Resolution

Customer

Complaint

Complaint

Resolution
Types Subtype-Of

Information

Correction

Customer

Complaint

Complaint

Resolution
Types Subtype-Of

Symbolic

Resolution

Customer

Complaint
Conduct Types Subtype-Of

Lewd or

Immoral

Appendix C2: Customer Complaint Ontology (Lexons)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

conduct

Customer

Complaint
Conduct Types Subtype-Of Rudeness

Customer

Complaint
Conduct Types Subtype-Of Untruthlness

Customer

Complaint

Contact

Details
comprised_of comprises Address

Customer

Complaint

Contact

Details
Has is-of Name

Customer

Complaint
Content Types Subtype-Of

Harmful

Content

Customer

Complaint
Content Types Subtype-Of Illegal Content

Customer

Complaint
Contract Has -

Contract Order

Date

Customer

Complaint
Contract Has -

Contract

Effective Date

Customer

Complaint
Contract Has is-of

Contract

Reference

Customer

Complaint
Contract Has is-of

Sales Contact

Method

Customer

Complaint
Contract Has is-of Sales Office

Customer

Complaint
Contract Has is-of

Terms and

Conditions

Customer

Complaint
Contract involves involved_in Third Party

Customer

Complaint
Contract reports -

Payment

Consideration

Customer

Complaint
Contract reports -

Delivery

Consideration

Customer

Complaint

Contract

Problem
Types Subtype-Of

Post-purchase

Phase Problem

Customer

Complaint

Contract

Problem
Types Subtype-Of

Pre-purchase

Phase Problem

Customer

Complaint

Contract

Problem
Types Subtype-Of

Purchase

Phase Problem

Customer Contract Types Subtype-Of Advance

Appendix C2: Customer Complaint Ontology (Lexons)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Complaint Termination

Problem

withheld

Customer

Complaint

Contract

Termination

Problem

Types Subtype-Of
Breach of

contract

Customer

Complaint

Contract

Termination

Problem

Types Subtype-Of

Cancellation or

withdrawal

refused

Customer

Complaint

Contract

Termination

Problem

Types Subtype-Of
Deposit

withheld

Customer

Complaint

Contract

Termination

Problem

Types Subtype-Of
Switching or

Churning

Customer

Complaint

Contract

Terms

Problem

Types Subtype-Of
General Terms

Problem

Customer

Complaint

Contract

Terms

Problem

Types Subtype-Of Price Unfair

Customer

Complaint
Damage Types Subtype-Of

Environmental

damage

Customer

Complaint
Damage Types Subtype-Of

Incorrect

assessment of

a damage

Customer

Complaint
Damage Types Subtype-Of

Property

damage

Customer

Complaint
Damage Types Subtype-Of

Psychological

damage

Customer

Complaint
Damage Types Subtype-Of

Reputation

damage

Customer

Complaint

Data

Collection
Types Subtype-Of

Data unrelated

to purpose

Customer

Complaint

Data

Collection
Types Subtype-Of

Excessive data

requested

Customer

Complaint

Data

Collection
Types Subtype-Of

Obtained data

improperly

Customer Data Types Subtype-Of Trying to obtain

Appendix C2: Customer Complaint Ontology (Lexons)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Complaint Collection data improperly

Customer

Complaint
Delivery

Considered_b

y
Considers

Delivery

Consideration

Customer

Complaint
Delivery Has is-of Address

Customer

Complaint
Delivery Has is-of Goods

Customer

Complaint
Delivery Has is-of Schedule

Customer

Complaint
Delivery Has is-of Services

Customer

Complaint

Delivery and

Installation

Problem

Types Subtype-Of
Delivery

problem

Customer

Complaint

Delivery and

Installation

Problem

Types Subtype-Of
Installation

problem

Customer

Complaint

Delivery

problem
Types Subtype-Of

Gift defective or

not received

with product

Customer

Complaint

Delivery

problem
Types Subtype-Of

Incorrect

quantity

Customer

Complaint

Delivery

problem
Types Subtype-Of

Product

delivery

delayed

Customer

Complaint

Delivery

problem
Types Subtype-Of

Product not

delivered

Customer

Complaint

Delivery

problem
Types Subtype-Of

Product not in

conformity to

order

Customer

Complaint

Delivery

problem
Types Subtype-Of

Product not

ordered

Customer

Complaint

Documentati

on Problem
Types Subtype-Of

Instructions

inadequate

Customer

Complaint

Documentati

on Problem
Types Subtype-Of

Instructions

missing

Customer

Complaint

Documentati

on Problem
Types Subtype-Of

Wrong

Language

Appendix C2: Customer Complaint Ontology (Lexons)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Customer

Complaint

Economic

Resolution
types subtypeof

Financial

Reqeust

Customer

Complaint

Economic

Resolution
Types Subtype-Of Action Request

Customer

Complaint

Electronic

Address
Types Subtype-Of eMail

Customer

Complaint

Electronic

Address
Types Subtype-Of Fax

Customer

Complaint

Electronic

Address
Types Subtype-Of Telephone

Customer

Complaint

Electronic

Address
Types Subtype-Of Web Site

Customer

Complaint

Financial

Reqeust
types subtypeof Billing Request

Customer

Complaint

Financial

Reqeust
types subtypeof Money Request

Customer

Complaint

General

Terms

Problem

Types Subtype-Of
Contract

Rescinded

Customer

Complaint

General

Terms

Problem

Types Subtype-Of
Jurisdiction

inappropriate

Customer

Complaint

General

Terms

Problem

Types Subtype-Of Rights Infringed

Customer

Complaint

General

Terms

Problem

Types Subtype-Of Terms Modified

Customer

Complaint

General

Terms

Problem

Types Subtype-Of
Unfair Contract

Terms

Customer

Complaint

Guarantee

Problem
Types Subtype-Of

Compensation

inadequate

Customer

Complaint

Guarantee

Problem
Types Subtype-Of

Compensation

Refused

Customer

Complaint

Guarantee

Problem
Types Subtype-Of

Guarantee

Refused

Customer Guarantee Types Subtype-Of Refund

Appendix C2: Customer Complaint Ontology (Lexons)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Complaint Problem Refused

Customer

Complaint

Guarantee

Problem
Types Subtype-Of Repair Refused

Customer

Complaint

Guarantee

Problem
Types Subtype-Of

Replacement

Refused

Customer

Complaint

Incorrect

Marketing

Practices

Types Subtype-Of Advertising

Customer

Complaint

Incorrect

Marketing

Practices

Types Subtype-Of
Personal

selling

Customer

Complaint

Incorrect

Marketing

Practices

Types Subtype-Of
Sales

promotion

Customer

Complaint

Information

Problem
Types Subtype-Of

Inadequate

Charge Details

Customer

Complaint

Information

Problem
Types Subtype-Of

Inadequate

Contact Details

Customer

Complaint

Information

Problem
Types Subtype-Of

Inadequate

Specification

Customer

Complaint

Information

Problem
Types Subtype-Of

Information not

comprehensibl

e

Customer

Complaint

Information

Problem
Types Subtype-Of

Information not

easily available

Customer

Complaint

Information

Problem
Types Subtype-Of

Legal

information

missing

Customer

Complaint

Installation

problem
Types Subtype-Of

Installation

delayed

Customer

Complaint

Installation

problem
Types Subtype-Of

Installation

improper

Customer

Complaint
Legal Person Types Subtype-Of Complainant

Customer

Complaint
Legal Person Types Subtype-Of

Complaint

Recipient

Customer

Complaint

Mailing

Address
Has is-of

Apartment

Number

Appendix C2: Customer Complaint Ontology (Lexons)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Customer

Complaint

Mailing

Address
Has is-of Building Name

Customer

Complaint

Mailing

Address
Has is-of

Building

Number

Customer

Complaint

Mailing

Address
Has is-of City

Customer

Complaint

Mailing

Address
Has is-of Country

Customer

Complaint

Mailing

Address
Has is-of County

Customer

Complaint

Mailing

Address
Has is-of PO Box

Customer

Complaint

Mailing

Address
Has is-of PostalCode

Customer

Complaint

Mailing

Address
Has is-of State

Customer

Complaint

Mailing

Address
Has is-of Street

Customer

Complaint

Natural

Person

Complainant

denoted_by denotes Registration

Customer

Complaint

Negotiation

of Terms
Types Subtype-Of

Information

Problem

Customer

Complaint

Negotiation

of Terms
Types Subtype-Of Offer Problem

Customer

Complaint

Negotiation

of Terms
Types Subtype-Of

Refusal

Problem

Customer

Complaint

Non-Contract

Problem
Types Subtype-Of Conduct

Customer

Complaint

Non-Contract

Problem
Types Subtype-Of Content

Customer

Complaint

Non-Contract

Problem
Types Subtype-Of Copyright

Customer

Complaint

Non-Contract

Problem
Types Subtype-Of Damage

Customer

Complaint

Non-Contract

Problem
Types Subtype-Of Sales Methods

Customer Non-Natural denoted_by denotes Contact Details

Appendix C2: Customer Complaint Ontology (Lexons)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Complaint Person

Complainant

Customer

Complaint

Offer

Problem
Types Subtype-Of

Price

Unacceptable

Customer

Complaint

Offer

Problem
Types Subtype-Of

Specification

not Adequate

Customer

Complaint

Offer

Problem
Types Subtype-Of Time Limit

Customer

Complaint

Offer

Problem
Types Subtype-Of

Unacceptable

Terms

Customer

Complaint

Offer

Problem
Types Subtype-Of

Unfair Contract

Terms

Customer

Complaint

Payment

Consideratio

n

Has is-of
Total Amount

Asked

Customer

Complaint

Payment

Consideratio

n

Has is-of
Total Amount

Paid

Customer

Complaint

Payment

Problem
Types Subtype-Of

Payment

details not

provided

Customer

Complaint

Payment

Problem
Types Subtype-Of

Payment

refused

Customer

Complaint

Payment

Problem
Types Subtype-Of

Receipt not

confirmed

Customer

Complaint

Personal

selling
Types Subtype-Of

Home selling

problem

Customer

Complaint

Personal

selling
Types Subtype-Of Poor Advice

Customer

Complaint

Personal

selling
Types Subtype-Of

Street selling

problem

Customer

Complaint

Post-

purchase

Phase

Problem

refers_to
Associated_wit

h
Contract

Customer

Complaint

Post-

purchase

Phase

Types Subtype-Of

After Sales

Service

Problem

Appendix C2: Customer Complaint Ontology (Lexons)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Problem

Customer

Complaint

Post-

purchase

Phase

Problem

Types Subtype-Of

Contract

Termination

Problem

Customer

Complaint

Post-

purchase

Phase

Problem

Types Subtype-Of
Product

Problem

Customer

Complaint

Pre-purchase

Phase

Problem

Types Subtype-Of

Incorrect

Marketing

Practices

Customer

Complaint

Pre-purchase

Phase

Problem

Types Subtype-Of
Negotiation of

Terms

Customer

Complaint
Price Unfair Types Subtype-Of

Competitor

Cheaper

Customer

Complaint
Price Unfair Types Subtype-Of No Discount

Customer

Complaint
Price Unfair Types Subtype-Of Not Best Offer

Customer

Complaint

Privacy

Information
Types Subtype-Of

Inadequate

privacy

information

Customer

Complaint

Privacy

Information
Types Subtype-Of

Incorrect

privacy

information

Customer

Complaint

Privacy

Problem
Types Subtype-Of Data Collection

Customer

Complaint

Privacy

Problem
Types Subtype-Of

Privacy

Information

Customer

Complaint

Privacy

Problem
Types Subtype-Of

Private Data

Access

Customer

Complaint

Privacy

Problem
Types Subtype-Of

Purpose and

Permission

Customer

Complaint

Privacy

Request
Types Subtype-Of

Delete the

unnecessary

data

Appendix C2: Customer Complaint Ontology (Lexons)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Customer

Complaint

Privacy

Request
Types Subtype-Of

Provide access

to the data

Customer

Complaint

Privacy

Request
Types Subtype-Of

Provide the

necessary

privacy

information

Customer

Complaint

Privacy

Request
Types Subtype-Of

Stop

Processing and

transmission of

private data

Customer

Complaint

Private Data

Access
Types Subtype-Of

Access cost

unreasonable

Customer

Complaint

Private Data

Access
Types Subtype-Of

Access

provision

denied

Customer

Complaint

Private Data

Access
Types Subtype-Of

Access

timeliness

delayed

Customer

Complaint

Private Data

Access
Types Subtype-Of

Data correction

denied

Customer

Complaint

Private Data

Access
Types Subtype-Of

Right to object

denied

Customer

Complaint
Problem testified_by - Evidence

Customer

Complaint
Problem Types Subtype-Of

Contract

Problem

Customer

Complaint
Problem Types Subtype-Of

Non-Contract

Problem

Customer

Complaint
Problem Types Subtype-Of

Privacy

Problem

Customer

Complaint

Product

delivery

delayed

Types Subtype-Of

Product fails

standards

compliance

Customer

Complaint

Product

delivery

delayed

Types Subtype-Of
Product is

defective

Customer

Complaint

Product

delivery
Types Subtype-Of

Product

performance

Appendix C2: Customer Complaint Ontology (Lexons)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

delayed below

expectations

Customer

Complaint

Product

delivery

delayed

Types Subtype-Of
Product unfit

for purpose

Customer

Complaint

Product

delivery

delayed

Types Subtype-Of Product unsafe

Customer

Complaint

Product

Problem
Types Subtype-Of

Documentation

Problem

Customer

Complaint

Product

Problem
Types Subtype-Of

Product Quality

Problem

Customer

Complaint

Product

Quality

Problem

Types Subtype-Of

Product fails

standards

compliance

Customer

Complaint

Product

Quality

Problem

Types Subtype-Of
Product is

defective

Customer

Complaint

Product

Quality

Problem

Types Subtype-Of

Product

performance

below

expectations

Customer

Complaint

Product

Quality

Problem

Types Subtype-Of
Product unfit

for purpose

Customer

Complaint

Product

Quality

Problem

Types Subtype-Of Product unsafe

Customer

Complaint

Purchase

Phase

Problem

refers_to
Associated_wit

h
Contract

Customer

Complaint

Purchase

Phase

Problem

Types Subtype-Of

Billing or

Payment

Problem

Customer

Complaint

Purchase

Phase

Problem

Types Subtype-Of
Contract Terms

Problem

Customer Purchase Types Subtype-Of Delivery and

Appendix C2: Customer Complaint Ontology (Lexons)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Complaint Phase

Problem

Installation

Problem

Customer

Complaint

Purpose and

Permission
Types Subtype-Of

Passed to an

unauthorized

country

Customer

Complaint

Purpose and

Permission
Types Subtype-Of

Passed to

others without

permission

Customer

Complaint

Purpose and

Permission
Types Subtype-Of

Secondary

purpose

permission

refusal denies

primary service

Customer

Complaint

Purpose and

Permission
Types Subtype-Of

Unnecessary

Purpose

Customer

Complaint

Purpose and

Permission
Types Subtype-Of

Used for

purpose

without

permission

Customer

Complaint

Refusal

Problem
Types Subtype-Of

Refusal to

Provide Service

Customer

Complaint

Refusal

Problem
Types Subtype-Of Refusal to Sell

Customer

Complaint

Repair

Problem
Types Subtype-Of

Charge

exceeds

estimate

Customer

Complaint

Repair

Problem
Types Subtype-Of

Defective item

not accepted

for repair

Customer

Complaint

Repair

Problem
Types Subtype-Of

Misrepresented

needs

Customer

Complaint

Repair

Problem
Types Subtype-Of

Repair (ed

item) not

returned

Customer

Complaint

Repair

Problem
Types Subtype-Of Repair delayed

Customer

Complaint

Repair

Problem
Types Subtype-Of

Repair

inadequate

Appendix C2: Customer Complaint Ontology (Lexons)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Customer

Complaint

Repair

Problem
Types Subtype-Of

Spare part not

available

Customer

Complaint

Repair

Problem
Types Subtype-Of

unauthorized

repair

Customer

Complaint

Sales

Methods
Types Subtype-Of

High pressure

selling

Customer

Complaint

Sales

Methods
Types Subtype-Of

Unsolicited

commercial

communication

s

Customer

Complaint

Sales

Methods
Types Subtype-Of

Unsolicited

merchandise

Customer

Complaint

Sales

Methods
Types Subtype-Of

Unsolicited

service

Customer

Complaint
Sales Office located_in is-of Address

Customer

Complaint

Sales

promotion
Types Subtype-Of Hidden charges

Customer

Complaint

Sales

promotion
Types Subtype-Of Illegal lottery

Customer

Complaint

Sales

promotion
Types Subtype-Of

Prize not

received

Customer

Complaint

Sales

promotion
Types Subtype-Of Unfair contest

Customer

Complaint

Sales

promotion
Types Subtype-Of

Unfair

packaging

Customer

Complaint

Service

Problem
Types Subtype-Of

Service

cancelled by

provider

Customer

Complaint

Service

Problem
Types Subtype-Of

Service

inadequately

per-formed

Customer

Complaint

Service

Problem
Types Subtype-Of

Service not

ordered

Customer

Complaint

Service

Problem
Types Subtype-Of

Service not

provided

Customer

Complaint

Service

Problem
Types Subtype-Of

Service

partially

Appendix C2: Customer Complaint Ontology (Lexons)

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

provided

Customer

Complaint

Service

Problem
Types Subtype-Of

Service

provision

delayed

Customer

Complaint

Symbolic

Resolution
Types Subtype-Of Apologize

Customer

Complaint

Symbolic

Resolution
Types Subtype-Of

Privacy

Request

Customer

Complaint
Third Party Has is-of Address

Customer

Complaint
Third Party Has is-of Function

Customer

Complaint
Third Party Has is-of

Third Party

Name

Customer

Complaint

Unexpected

charge
Types Subtype-Of

Delivery charge

problem

Customer

Complaint

Unexpected

charge
Types Subtype-Of

Incorrect

amount

Customer

Complaint

Unexpected

charge
Types Subtype-Of Incorrect date

Customer

Complaint

Unexpected

charge
Types Subtype-Of

Incorrect

interest charge

Customer

Complaint

Unexpected

charge
Types Subtype-Of Price increase

Customer

Complaint

Unexpected

charge
Types Subtype-Of

Supplementary

(charge

problem)

Customer

Complaint

Unexpected

charge
Types Subtype-Of

Unjustified

payment

demand

Appendix D: Thesis Glossary

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Appendix D: Thesis Glossary

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Appendix D: Thesis Glossary

In this appendix, we present the definitions of some important

terminology that we use in this thesis.

Axiomatization: an articulation or specification of knowledge (about a

certain subject-matter) as a set of axioms.

Alternative axiomatization: are different formalizations of the same

subject-matter.

Ontology rule: an axiom, a well-formed formulae in order to specify and

constrain the legal models on an ontology. In conceptual data

modeling, they are commonly called “constraints”. Notice that rules

can be used for e.g. enforce integrity, derivation and inference,

taxonomy, etc.

Conceptual relation: we use the terms ‘Conceptual relation’, ‘relation’, or

‘relationship’ to refer to n-ary relation. In this thesis, the term

‘concept’ commonly refers to a unary conceptual relation such as

Person(Mustafa); also the term ‘relation’ is commonly used to refer to

a binary or more conceptual relations such as WorksFor(Person,

University).

Concept: a set of rules in our mind about a certain thing in reality.

Conceptualization: an intensional semantic structure, which encodes the

implicit rules constraining the structure of a piece of reality [G98a].

Domain level: commonly accepted assumptions (i.e. understanding) about

a piece of the reality. This term is often interchanged with the term

“ontology level” to mean the same thing.

Epistemology level: The level that deals with the knowledge structuring

primitives (e.g. concept types, structuring relations, etc.). [B79] [G94].

Appendix D: Thesis Glossary

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Extrinsic properties: “Extrinsic properties are not inherent, and they have

a relational nature, like “being a friend of John”. Among these, there

are some that are typically assigned by external agents or agencies,

such as having a specific social security number, having a specific

customer id., even having a specific name” [GW00].

Generic task: a highly reusable kind of task.

Intrinsic properties: “An intrinsic property is typically something inherent

to an individual, not dependent on other individuals, such as having a

heart or having a fingerprint” [GW00].

Extensional verses Intensional semantics: “The extensional semantics

(value or denotation) of the expressions of a logic are relative to a

particular interpretation, model, or situation. The extensional

semantics of CarPool World, for example, are relative to a particular

day. The denotation of a proposition is either True or False. If P is an

expression of some logic, we will use [[P]] to mean the denotation of

P. If we need to make explicit that we mean the denotation relative to

situation S, we will use [[P]]S. The intensional semantics (or intension)

of the expressions of a logic are independent of any specific

interpretation, model, or situation, but are dependent only on the

domain being conceptualized. If P is an expression of some logic, we

will use [P] to mean the intension of P. If we need to make explicit

that we mean the intension relative to domain D, we will use [P]D.

Many formal people consider the intension of an expression to be a

function from situations to denotations. For them, [P]D(S) = [[P]]S.

However, less formally, the intensional semantics of a wfp can be

given as a statement in a previously understood language (for

example, English) that allows the extensional value to be determined

in any specific situation.” [S95].

Appendix D: Thesis Glossary

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Ontology reusability: the ability of using an ontology (or part of it) among

several kinds of (autonomously specified) tasks.

Ontology usability: the ability of using an ontology among applications

that perform the same kind of task.

State of affairs: A state of affairs refers to a particular instance of reality,

or also called a possible world [WG03].

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Bibliography

[A97a] Agnesund, M.: Representing culture-specific knowledge in a

multilingual ontology. Proceedings of the IJCAI-97 Workshop on

Ontologies and Multilingual NLP (1997)

[A97b] Appleton, B.: Patterns and Software: Essential Concepts and

Terminology. Object Magazine Online. Vol. 3, No 5. May, (1997)

[ABA02] ABA Task Force on Electronic Commerce And Alternative

Dispute Resolution. Final Report August, (2002)

[ACFOH03] Abdelali, A., Cowie, J., Farwell, D., Ogden, B., Helmreich,

s.: Cross-Language Information Retrieval using Ontology.

Proceedings of TALN Batz-sur-Mer. France. (2003)

[AKS04] Angelova,G., Kalaydjiev, O., Strupchanska, A.: Domain

Ontology as a Resource Providing Adaptivity in eLearning.

Proceedings of On the Move to Meaningful Internet Systems 2004:

OTM 2004 Workshops, LNCS 3292, Cyprus. (2004) pp. 700–712

[AM04] Amir E., McIlraith s.: Partition-based logical reasoning for first-

order and propositional theories. Artificial Intelligence Journal. (2004)

[AR00] Aitken, S., Reid, s.: Evaluation of an Ontology-Based Information

Retrieval Tool. Proceedings of ECAI’00. Berlin, Germany. (2000)

[B01] Bryan, M. (eds.): MULECO -- Multilingual Upper-Level Electronic

Commerce Ontology. MULECO draft CWA. At the CEN/ISSS

Electronic Commerce Workshop (2001)

http://xml.coverpages.org/Bryan-CWA-12-01.pdf (January 2004).

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

[B79] Brachman., R.: On the Epistemological Status of Semantic

Networks,” In: Findler,N. (ed.). Associative Networks: Representation

and Use of Knowledge by Computers. Academic Press, New York.

(1979)

[BB03] Borgida, A., Brachman, R.: Conceptual Modeling with

Description Logics. In: Baader, F., Calvanese, D., McGuinness, D.,

Nardi, D., Patel-Schneider, P., (eds.): The Description Logic

Handbook, Theory, Implementation and Applications. ISBN:

0521781760 (2003)

[BB04] Beneventano, D., Bergamaschi, S.: The MOMIS methodology for

Integrating Heterogeneous Data Sources. IFIP World Computer

Congress. Toulouse, France. August (2004)

[BBB+98] Baker, G., Brass, A., Bechhofer, S., Goble, C., Paton, N.,

Stevens, R.: TAMBIS: Transparent Access to Multiple Bioinformatics

Information Sources. In: Glasgow, J., Littlejohn, T., Major, F.,

Lathrop, R., Sankoff D., Sensen, S. (eds.): 6th Int. Conf. on Intelligent

Systems for Molecular Biology. AAAI Press, Menlo Park. Montreal,

Canada. (1998) pp 25–34

[BBDD97] Briand, L.C., Bunse, C., Daly, J.W. and Differding, C.: An

Experimental Comparison of the Maintainability of Object-Oriented

and Structured Design Documents. In: Empirical Software

Engineering, Vol. 2, No. 3. (1997) pp. 291–312.

[BBH96] Beys, P., Benjamins, R., van Heijst, G.: Remedying the

reusability-usability trade-off for problem solving methods. In: B.R.

Gaines and M. Mussen, (eds.): Proceedings of the KAW’96. Banff,

Ca, (1996)

[BC88] Bylander, T., Chandrasekaran, B.: Generic tasks in knowledge-

based reasoning: The right level of abstraction for knowledge

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

acquisition. In: Gaines B., Boose, J. (eds.): Knowledge Acquisition for

Knowledge Based Systems. Vol. 1. Academic Press, London. (1988)

pp. 65–77

[BCD01] Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on

UML Class Diagrams using Description Logic Based Systems.

Workshop on Applications of Description Logics - ADL’01. (2001)

[BCFF04] Bonino, D., Corno, F., Farinetti, L., Ferrato, A.: Multilingual

Semantic Elaboration in the DOSE platform. ACM Symposium on

Applied Computing, SAC’04. Nicosia, Cyprus. March (2004)

[BCMNP03] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-

Schneider, P. (eds.): The Description Logic Handbook. Cambridge

University Press. (2003)

[BCW02] Brewster, C., Ciravegna, F., Wilks, Y.: User-Centred Ontology

Learning for Knowledge Management. Proceedings of the 7th

FInternational Conference on Applications of Natural Language to

Information Systems, Stockholm, Lecture Notes in Computer Science

2553, Springer Verlag. June (2002)

[BCW97] Barley, M., Clark, P., Williamson, K., Woods, S.: The neutral

representation project. Proceedings of AAAI’97 Spring Symposium

on Ontological Engineering. AAAI Press. (1997)

[BDMW95] Birmingham, W., Durfee, E., Mullen, T., Wellman, M.: The

Distributed Agent Architecture Of The University of Michigan Digital

Library (UMDL). AAAI Spring Symposium Series on Software

Agents. (1995)

[BDVHP00] Brejova, B., DiMarco, C., Vinar, T., Hidalgo, S. R., Holguin,

G. and Patten, C. Finding Patterns in Biological Sequences.

Unpublished project report for CS798G, University of Waterloo, Fall

2000.

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

[BF99] Berners-Lee, T., Fischetti, M.: Weaving the Web : The Original

Design and Ultimate Destiny of the World Wide Web by its Inventor.

Harper, San Francisco. (1999)

[BH96] Bloesch, A., Halpin, T.: ConQuer: a Conceptual Query Language.

In: Thalheim, B. (ed.): Proceedings of Conceptual Modeling - ER’96.

Lecture Notes in Compute Science, Springer-Verlag. (1996) pp. 121–

33

[BHGSS03] Bouquet, P., van Harmelen, F., Giunchiglia, F., Serafini, L.,

Stuckenschmidt H.: C-OWL: Contextualizing ontologies. Proceedings

of the second International Semantic Web Conference - ISWC’03,

Sanibel Island, Florida. October (2003)

[BHW91] van Bommel, P., ter Hofstede, A.H.M. , van der Weide, Th.P. :

Semantics and verification of object role models. Information

Systems, 16(5). October (1991) 471–495

[BLA+05] de Bruijn, J., Lara, R., Arroyo, S., Gomez, J., Han, S., Fensel,

D.: A Unified Semantic Web Services Architecture based on WSMF

and UPML. The International Journal of Web Engineering and

Technology (IJWET). (2005)

[BM99] Bench-Capon T.J.M., Malcolm G.: Formalising Ontologies and

Their Relations. Proceedings of DEXA’99. (1999) pp. 250–259

[BS03] Borgida A., Serafini L.: Distributed Description Logics:

Assimilating Information from Peer Sources. In: Aberer K., March S.,

and Spaccapietra S., (eds.): Journal on Data Semantics, Vol. 2800.

LNCS, Springer, ISBN: 3-540-20407-5. October (2003) pp. 153–184

[BVW97] Breuker, J., Valente, A., Winkels, R.: Legal ontologies: a

functional view. In: Visser, P., Winkels, R. (eds.): Legal Ontologies.

ACM, New York. (1997) pp. 23–36

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

[C92] Clancey W.J., “Model construction operators”. Artificial

Intelligence, 53(1):1-115, (1992).

[C98] Chalabi, C.: Sakhr Arabic-English Computer-Aided Translation

System. AMTA’98. (1998) pp. 518–521

[CBB+04] Collet, C., Belhajjame, K., Bernot, G., Bobineau, C., Bruno,

G., Finance, B., Jouanot, F., Kedad, Z., Laurent, D., Tahi, F., Vargas-

Solar, G., Tuyet-Trinh V.: Towards a mediation system framework for

transparent access to largely distributed sources. Proceedings of the

International Conference ICSNW. (2004)

[CC03] Chia-Wei, W., Chao-Lin, L.: Ontology-based Text Summarization

for Business News Articles. Computers and Their Applications.

(2003) pp. 389–392

[CDLNR98] Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D.,

Rosati, R.: Information integration: Conceptual modeling and

reasoning support. In Proceedings Of the 6th International Conference

on Cooperative Information Systems (CoopIS'98). (1998) pp. 280-291

[CG01] Corcho, O., Gmez-Prez, A.: Solving Integration Problems of E-

Commerce Standards and Initiatives through Ontological Mappings.

Proceedings of IJCAI01. (2001)

[CHP01] Cranefield, S., Haustein, S., Purvis, M.: UML-Based Ontology

Modelling for Software Agents. Proceedings of the Workshop on

Ontologies in Agent Systems, 5th International Conference on

Autonomous Agents. Montreal. (2001) pp. 21–28

[CIHF02] Cho, Y., Im, I., Hiltz, S., Fjermestad, J.: An Analysis of Online

Customer Complaints: Implications for Web Complaint Management.

Proceedings of the 35th Annual Hawaii International Conference on

System Sciences (HICSS’02). Volume 7. Hawaii. (2002)

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

[CJ93] Chandrasekaran, B., Johnson, T.: Generic Tasks and Task

Structures: History, Critique and New Directions. In: David, J.,

Krivine, J., Simmons, R. (eds.): Second Generation Expert Systems,

Springer. (1993) pp. 233–272

[CJB99] Chandrasekaran, B., Johnson, R., Benjamins, R.: Ontologies:

what are they? why do we need, them?. IEEE Intelligent Systems and

Their Applications. 14(1). Special Issue on Ontologies. (1999) pp. 20–

26.

[CP99] Cranefield, S., Purvis, M.: UML as an ontology modelling

language. Workshop on Intelligent Information Integration, 16th

International Joint Conference on Artificial Intelligence, IJCAI’99,

(1999)

[CW87] Claes, F., Wernerfelt, B.: Defensive Marketing Strategy by

Customer Complaint Management: A Theoretical Analysis. Journal of

Marketing Research, No. 24. November (1987) pp. 337–346

[DF01] Ding, Y., Fensel, D.: Ontology library systems: the key for

successful ontology reuse. Proceedings of the first Semantic Web

Working Symposium, Stanford, CA, USA. August (2001)

[DHHS01] Degen, W., Heller, B., Herre, H. and Smith, B.: GOL:

Towards an Axiomatized Upper-Level Ontology. In: Welty, C., Smith

B. (eds.): Formal Ontology in Information Systems. Proceedings of

the Second International Conference (FOIS 2001). ACM Press. New

York: October (2001) pp. 34–46

[DJM02a]: Demey, J., Jarrar, M., Meersman, R.: A Conceptual Markup

Language that supports interoperability between Business Rule

modeling systems. Proceedings of the Tenth International Conference

on Cooperative Information Systems (CoopIS 02). Springer Verlag

LNCS 2519. (2002) pp. 19–35

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

[DJM02b]: Demey, J., Jarrar, M., Meersman, R.: Markup Language for

ORM Business Rules. In: Schroeder M. & Wagner G. (eds.),

Proceedings of the International Workshop on Rule Markup

Languages for Business Rules on the Semantic Web (RuleML’02).

(2002) pp. 107–128

[DMV] De Troyer, O., Meersman, R., Verlinden, P.: RIDL* on the CRIS

case: A Workbench for NIAM. Technical report. INFOLAB, Tilburg

University, The Netherlands.

[DW00] Deridder, D., Wouters, B.: The Use of an Ontology to Support a

Coupling between Software Models and Implementation. European

Conference on Object-Oriented Programming (ECOOP’00),

International Workshop on Model Engineering. (2000)

[E05] Embley, D.: Toward Tomorrow's Semantic Web -- An Approach

Based on Information Extraction Ontologies. Position Paper for

Dagstuhl Seminar. January (2005)

[EN99] Elmasri, R., Navathe, S.: Fundamentals of Database Systems. (3rd

Edition). Addison-Wesley Publishing. (1999)

[EWHLF02] Elmasri, R., Wu, Y., Hojabri, B., Li, C., Fu, J.: Conceptual

Modeling for Customized XML Schemas. In: Spaccapietra, S., March,

s., Kambayashi, Y. (Eds.): Proceedings of 21st International

Conference on Conceptual Modeling (ER’02). Tampere, Finland.

Lecture Notes in Computer Science 2503 Springer. ISBN 3-540-

44277-4. October (2002) pp. 429–443

[F02] Franconi, E.: Tutorial on Description Logics for Conceptual Design,

Information Access, and Ontology Integration: Research Trends.

Proceedings of the 1st International Semantic Web Conference (2002)

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

[F97] Frank, A.: Spatial Ontology: A Geographical Point of View. In:

Stock, O. (eds.): Spatial and Temporal Reasoning., Kluwer Academic

Publishers, Dordrecht, The Netherlands. (1997) pp. 135–153

[FE99] Fonseca, F., Egenhofer, M.: Ontology-Driven Geographic

Information Systems. In: the 7th ACM Symposium on Advances in

Geographic Information Systems. Kansas City, MO: ACM Press, N.Y.

(1999)

[FGJ97] Fernandez, M., Gomez-Perez, A., Juristo, N.:

METHONTOLOGY: From Ontological Art Towards Ontological

Engineering. Workshop on Ontological Engineering. Spring

Symposium Series. AAAI97 Stanford, USA. (1997)

[FLS96] Falasconi, S., Lanzola, G., Stefanelli. M.: Usingontologies in

multi-agent systems. In: Proceedings of Tenth Knowledge Acquisition

for Knowledge-BasedSystems Workshop (KAW’96). (1996)

[G02] Guarino, N.: Ontology-Driven Conceptual Modelling. Tutorial at

21st International Conference on Conceptual Modeling (ER’02).

Tampere, Finland.. (2002)

[G04] Gangemi, A.: Some design patterns for domain ontology building

and analysis. An online presentation at (http://www.loa-

cnr.it/Tutorials/OntologyDesignPatterns.zip April 2004)

[G85] Gilberg, R.:A Schema methodology for Large Entity-Relationship

Diagrams. Proceedings of the 4th International Conference on Entity-

Relationship Approach. Chicago, Illinois. ISBN O-13186-0645-2.

October (1985) pp. 320–327

[G94] Guarino, N.: The Ontological Level. In R. Casati, B. Smith and G.

White (eds.), Philosophy and the Cognitive Science. Hölder-Pichler-

Tempsky, Vienna: 443-456. (1994)

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

[G95] Gruber, T.: Toward principles for the design of ontologies used for

knowledge sharing. International Journal of Human-Computer

Studies, 43(5/6) (1995)

[G97] Guarino, N.: Understanding, building, and using ontologies: A

commentary to “Using Explicit Ontologies in KBS Development”, by

van Heijst, Schreiber, and Wielinga." International Journal of Human

and Computer Studies No. 46. (1997) pp. 293–310

[G98a] Guarino, N.: Formal Ontology in Information Systems.

Proceedings of FOIS’98, IOS Press, Amsterdam. (1998) pp. 3–15

[G98b] Guarino, N.: Some Ontological Principles for Designing Upper

Level Lexical Resources. In: A. Rubio, N. Gallardo, R. Castro and A.

Tejada (eds.): Proceedings of First International Conference on

Language Resources and Evaluation. ELRA - European Language

Resources Association, Granada, Spain. (1998)

[GAC+04] Glaser, H., Alani, H., Carr, L., Chapman, S., Ciravegna, F.,

Dingli, A., Gibbins, N., Harris, S., schraefel, m. c. Shadbolt, N.: CS

AKTive Space: Building a Semantic Web Application. In: Bussler, C.,

Davies, J., Fensel, D. and Studer, R. (Eds.): First European Web

Symposium (ESWS’04). Springer Verlag. (2004) pp. 417–432

[GB99] Gomez-Perez, A., Benjamins, R.: Overview of Knowledge

Sharing and Reuse Components: Ontologies and Problem-Solving

Methods. Proceedings of the IJCAI-99, Workshop on Ontologies and

Problem-Solving Methods (KRR5), MorganKaufmann (1999)

[Gene00] Gene Ontology: tool for the unification of biology. The Gene

Ontology Consortium Nature Genet. No. 25. (2000) pp. 25–29

[GG01] Giunchiglia, F., Ghidini, C.: Local Models Semantics, or

Contextual Reasoning = Locality + Compatibility. Artificial

Intelligence journal, 127(2). (2001) pp. 221–259

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

[GG95] Guarino, N. and Giaretta, P., “Ontologies and Knowledge Bases:

Towards a Terminological Clarification”` in: Towards Very Large

Knowledge Bases: Knowledge Building and Knowledge Sharing, N.

Mars (ed.), pp 25-32, IOS Press, Amsterdam (1995).

[GG95] Guarino, N. and Giaretta, P.: Ontologies and Knowledge Bases:

Towards a Terminological Clarification. In: Mars, N. (eds.): Towards

Very Large Knowledge Bases: Knowledge Building and Knowledge

Sharing. IOS Press. Amsterdam (1995) pp. 25–32

[GGMO01] Gangemi, A., Guarino, N., Masolo, C., and Oltramari, A.:

Understanding toplevel ontological distinctions. Proceedings of

IJCAI-01 Workshop on Ontologies and Information Sharing. AAAI

Press. Seattle, USA, (2001) pp. 26–33

[GGO02] Gangemi, A., Guarino, N., Oltramari A., Borgo, S.: Cleaning-up

WordNet's top-level. Proceedings of the 1st International WordNet

Conference. January (2002)

[GGV97] Gilarranz, J., Gonzalo, J., Verdejo, F.: Language-independent

text retrieval with the EuroWordNet multilingual semantic database.

The Second Workshop on Multilinguality in the Software Industry:

The AI Contribution. August (1997)

[GHW02] Guizzardi, G., Herre, H., Wagner G.: Towards Ontological

Foundations for UML Conceptual Models. proceedings of the 1st

International Conference on Ontologies, Databases and Application of

Semantics (ODBASE’02), Lecture Notes in Computer Science, Vol.

2519, Springer-Verlag, Berlin. (2002) pp. 1100–1117

[GMV99] Guarino, N., Masolo, C., Vetere, G.: OntoSeek: Content-Based

Access to the Web. IEEE Intelligent Systems. June (1999) pp. 70–80.

[GN87] Genesereth, M.R., Nilsson, N.J.: Logical Foundation of Artificial

Intelligence. Morgan Kaufmann. Los Altos, California. (1987)

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

[GP01] Gangemi A., Pisanelli DM., Steve G.: A formal Ontology

Framework to represent Norm Dynamics. Proceedings of Second

International Workshop on Legal Ontologies, Amsterdam, NL. (2001)

[GP03] Guarino, N., Persidis A.: Evaluation Framework for Content

Standards. Deliverable 3.5, OntoWeb EU project (IST-2000-29243),

(2003)

[GPB99] Gomez-Perez, A., Benjamins, R.: Overview of Knowledge

Sharing and Reuse Components: Ontologies and Problem-Solving

Methods. Proceedings of the IJCAI-99 Workshop on Ontologies and

Problem-Solving Methods. Morgan-Kaufmann (1999)

[GW00] Guarino, N., Welty, C.: A Formal Ontology of Properties.

Proceedings of the ECAI-00 Workshop on Applications of Ontologies

and Problem Solving Method. Berlin, Germany. (2000) pp. 12.1–12.8

[GW02] Guarino, N. and Welty, C.: Evaluating Ontological Decisions

with OntoClean. Communications of the ACM, 45(2). (2002) pp. 61–

65

[H01] Halpin, T.: Information Modeling and Relational Databases. 3rd

edn. Morgan-Kaufmann. (2001)

[H89] Halpin, T.: A logical analysis of information systems: static aspects

of the data-oriented perspective. PhD thesis, University of

Queensland, Brisbane. Australia. (1989)

[H97] Halpin, T.: An Interview- Modeling for Data and Business Rules.

In: Ross, R. (eds.): Database Newsletter. vol. 25, no. 5. (Sep/Oct

1997). -This newsletter has since been renamed Business Rules

Journal and is published by Business Rules Solutions, Inc.

[H99] Halpin, T.: UML data models from an ORM perspective: Part 7.

Journal of Conceptual Modeling. InConcept. February (1999)

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

[Hj01] Heflin, J.: Towards the Semantic Web: Knowledge Representation

in a Dynamic, Distributed Environment. Ph.D. Thesis, University of

Maryland, College Park. (2001)

[HP95] Halpin, T., Proper, H.: Subtyping and polymorphism in object-

role modeling. Data & Knowledge Engineering 15(3). (1995) pp. 251–

281

[HPW93] ter Hofstede, A., Proper, H., van der Weide, T.: Formal

definition of a conceptual language for the description and

manipulation of information models. Information Systems 18(7).

October (1993) pp. 471–495

[HS01] Horrocks I., Sattler, U.: Ontology reasoning in the SHOQ(D)

description logic. In: Nebel, B. (eds.): Proceedings of the 17th Int.

Joint Conf. on Artificial Intelligence (IJCAI’01). Morgan Kaufmann.

(2001) pp. 199–204

[HST99] Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for

expressive description logics. In: Ganzinger, H., McAllester, D.,

Voronkov, A. (eds.): Proceedings of the 6th International Conference

on Logic for Programming and Automated Reasoning (LPAR’99).

Lecture Notes in Artificial Intelligence 1705, Springer-Verlag. (1999)

pp. 161–180.

[HSW97] van Heijst, G., Schreiber, A., Wielinga, B.: Using Explicit

Ontologies in KBS Development. International Journal of Human-

Computer Studies, 46. (1997) pp. 183–292

[HV93] Hemmann, T., Voss, H.: A Reusable and Specializable

Interpretation Model for ModelBased Diagnosis. In: Luckenhoff, C.,

Fensel, D., Studer, D. (eds.): Proceeding 3rd KADS Meeting Siemens

AG. Munich. March (1993) pp. 189–205

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

[Inn+03] Persidis A., Niederée C., Muscogiuri C., Bouquet P., Wynants

M.: Innovation Engineering for the Support of Scientific Discovery.

Innovanet Project (IST-2001-38422), deliverable D1. (2003)

[JDM03] Jarrar M., Demy J., Meersman R.: On Using Conceptual Data

Modeling for Ontology Engineering. In: Aberer K., March S., and

Spaccapietra S., (eds.): Journal on Data Semantics, Special issue on

"Best papers from the ER/ODBASE/COOPIS 2002 Conferences",

LNCS Vol. 2800, Springer. ISBN: 3-540-20407-5. October (2003) pp.

185–207

[JLVM03] Jarrar, M., Lisovoy, A., Verlinden, R., Meersman, R.:

"Ontoform" Ontology based CCForms demo. Deliverable 6.3,

CCForm Project (IST-2001-34908), 5th framework. Brussels (2003)

[JM02a] Jarrar, M., Meersman, R.: Formal Ontology Engineering in the

DOGMA Approach. In: 1st International Conference on Ontologies,

Databases and Application of Semantics (ODBASE’02). Lecture

Notes in Computer Science, Vol. 2519, Springer-Verlag. Berlin (2002)

pp. 1238–1254

[JM02b] Jarrar, M., Meersman, R.: Scalability and Knowledge

Reusability in Ontology Modeling. Proceedings of the International

conference on Infrastructure for e-Business, e-Education, e-Science,

and e-Medicine (SSGRR’2002s) (2002)

[JS03] Jarrar, M., Salaun, A. (eds.): Proceedings: Regulatory ontologies

and the modeling of complaint regulations (WORM CoRe 2003).

Workshop held at the "On the Move to Meaningful Internet Systems

2003” conference (OTM’03). Catania, Sicily, Italy. Springer LNCS.

November (2003)

[JVM03] Jarrar, M., Verlinden, R., Meersman, R.: Ontology-based

Customer Complaint Management. In: Jarrar M., Salaun A., (eds.):

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Proceedings of the workshop on regulatory ontologies and the

modeling of complaint regulations, Catania, Sicily, Italy. Springer

Verlag LNCS. Vol. 2889. November (2003) pp. 594–606

[K03] Khosla, R.: Multi-Layered Distributed Agent Ontology for Soft

Computing Systems. Proceedings of the 17th International Conference

on Knowledge-based Intelligent Information and Engineering

Systems. Oxford, U.K. September (2003) pp. 445–52

[K04] Keet, M.: Aspects of ontology integration. Technical report. School

of Computing, Napier University. January (2004)

[K96] Mahesh, K.: Ontology development for machine translation:

Ideology and Methodology. Technical report MCCS-96-292.

Memoranda in Computer and Cognitive Science. New Mexico State

University, Computing Research Laboratory, Las Cruces, NM. (1996)

[KF01] Klein, M. and Fensel, D.: Ontology Versioning on the Semantic

Web. The First International Semantic Web Working Symposium

(SWWS’01) (2001)

[KKOF02] Klein, M., Kiryakov, A., Ognyanov, D., Fensel, D.: Ontology

versioning and change detection on the web. The 13th International

Conference on Knowledge Engineering and Knowledge Management

(EKAW’02). Sig uenza, Spain. October (2002)

[KN03] Klein, M., Noy.: A component-based framework for ontology

evolution. Technical Report IR-504, Department of Computer

Science, Vrije Universiteit Amsterdam. March (2003)

[KRS+02] Karp, P.D., Riley, M., Saier, M., Paulsen, I.T., Paley, S.,

Pellegrini-Toole, A.: The Ecocyc Database. Nucleic Acids Research,

30(1):56. (2002)

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

[KTT03] Kerremans, K., Temmerman, R. and Tummers, J.: Representing

multilingual and culture-specific knowledge in a VAT regulatory

ontology: support from the termontography approach. In: Meersman,

R., Tari, Z. (eds.) OTM 2003 Workshops. Tübingen: Springer Verlag.

(2003)

[LWP+02] Lauser, B., Wildemann, T., Poulos, A., Fisseha, F., Keizer, J.,

Katz, S.: A Comprehensive Framework for Building Multilingual

Domain Ontologies: Creating a Prototype Biosecurity Ontology.

Proceedings of the International Conference on Dublin Core and

Metadata for e-Communities. Firenze University Press. Florence, Italy

October (2002) pp. 113–123

[M00] Meersman R.: Can Ontology Theory Learn from Database

Semantics?. Proceedings of the Dagstuhl Seminar 0121 'Semantics on

the Web' (2000)

[M01a] Meersman, R.: Ontologies and Databases: More than a Fleeting

Resemblance. In: d'Atri A., Missikoff, M. (eds.): OES/SEO 2001

Rome Workshop, Luiss Publications (2001)

[M01b] Meersman R.: New Frontiers in Modeling Technology: The

Promise of Ontologies. Proceedings of the SISO ESM Conference on

Simulation (2001)

[M04] Mika, P.: Social Networks and the Semantic Web.

IEEE/WIC/ACM International Conference on Web Intelligence

(WI’04). IEEE Computer Society. ISBN 0-7695-2100-2. Beijing,

China. (2004) pp. 285–291

[M55] Martinet, A.: Economie des changements phonétiques, Berne:

Francke, (1955) pp. 157-158

[M81] Meersman, R.: Languages for the High-Level End User. InfoTech

State of the Art Report. Pergamon Press. (1981)

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

[M86] Meersman, R.: Knowledge and Data: A Survey in the Margin of

the IFIP DS-2 Conference. In: Spacapietra, S., (eds.): Entity-

Relationship Approach: Ten Years of Experience in Information

Modeling, Proceedings of the Fifth International Conference on

Entity-Relationship Approach. North-Holland. Dijon, France (1986)

pp. 25–34

[M93] McCarthy, J.: Notes on Formalizing Context. Proceedings of

IJCAI’93. Morgan-Kaufmann. (1993)

[M95] Meersman, R.: An essay on the Role and Evolution of Data(base)

Semantics. In: Meersman, R., Mark L. (eds.): Proceeding of the IFIP

WG 2.6 Working Conference on Database Applications Semantics

(DS-6). CHAPMAN & HALL. Atlanta, USA. (1995)

[M98] Musen, M.: Domain Ontologies in Software Engineering: Use of

Protege with the EON Architecture. Methods of Information in

Medicine, No. 37. (1998) pp. 540–550

[M99a] Meersman R.: The Use of Lexicons and Other Computer-

Linguistic Tools. In: Zhang Y., Rusinkiewicz M, & Kambayashi Y.

(eds.): Semantics, Design and Cooperation of Database Systems, The

International Symposium on Cooperative Database Systems for

Advanced Applications (CODAS’99). Springer Verlag. Heidelberg.

(1999) pp. 1–14

[M99b] Meersman R., Semantic Ontology Tools in Information System

Design. In, Ras, Z. & Zemankova, M.,(eds.), Proceedings of the

ISMIS 99 Conference, LNCS 1609, Springer Verlag. (1999) pp. 30–

45

[MBFGM90] Miller, G. Beckwith, R., Fellbaum, F., Gross, D., Miller, K.:

Introduction to wordnet: an on-line lexical database. International

Journal of Lexicography, 3(4). (1990) pp. 235–244

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

[MBGGO03] Masolo, C., Borgo, S., Gangemi, A., Guarino, N.,

Oltramari, A.: WonderWeb Deliverable D18, Ontology Library. IST

Project 2001-33052 WonderWeb, Deliverable D18. (2003)

[MC02] Meisel, H., Compatangelo, E.: EER-ConcepTool: a “reasonable”

environment for schema and ontology sharing. Proceedings of the 14th

IEEE International Conference on Tools with Artificial Intelligence

(ICTAI’02), IEEE Computer Society Press. (2002) pp. 527–534

[MMS03] Maedche, A., Motik B., Stojanovic L.: Managing multiple and

distributed ontologies on the Semantic Web. The International Journal

on Very Large Data Bases. Springer-Verlag New York, Vol. 12,

number 4, issn: 1066-8888. (2003) pp. 286–302

[MVBCFGG04] Masolo, C. Vieu, L., Bottazzi, E., Catenacci, C., Ferrario,

R., Gangemi, A., Guarino, N.: Social Roles and their Descriptions.

Proceeding of the Ninth International Conference on the Principles of

Knowledge Representation and Reasoning (KR’04). Canada. (2004)

[N90] Nöth, W.: Handbook of Semiotics. Bloomington, IN : Indiana

University Press (1990)

[N94] Nonaka, I: A dynamic theory of organizational knowledge creation.

In: Organizational Science, Vol. 5, No. 1. (1994) pp. 14–37

[NCMSC00] da Nóbrega, M., Castro, E., Malbos, P., Sallantin, J., Cerri,

A.: A framework for supervised conceptualizing. In: Benjamins, V.

R., Gómez Pérez, A., Guarino, N., Uschold, M. (eds.): Workshop on

Applications of Ontologies and Problem-Solving Methods (ECAI–00).

Berlin, Germany. (2000)

[NM02] Nakhimovsky, A., Myers, T.: Web Services: Description,

Interfaces and Ontology. In: Geroimenko, V., Chen, C. (eds.):

Visualizing the Semantic Web. Springer. ISBN 1-85233-576-9. (2002)

pp. 135–150.

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

[P04] Pan, J.: Description Logics: Reasoning Support for the Semantic

Web. Ph.D. Thesis, School of Computer Science, the University of

Manchester. (2004)

[P05] Pretorius, A. J.: Visual Analysis for Ontology Engineering. Journal

of Visual Languages and Computing. (2005)

[P72] Parnas, D. L.: On the criteria to be used in decomposing system into

modules. Communications of the ACM, Vol. 15, No. 12. December

(1972) pp. 1053–1058

[P96] Polany, M.: The Tacit Dimension. Doubleday, Garden City-N.Y.

(1996)

[PFP+92] Patil, R., Fikes, R., Patel-Schneider, P., McKay, D., Finin, T.,

Gruber, T., Neches, R.: The DARPA Knowledge Sharing Effort:

Progress Report. Proceedings of Knowledge Representation and

Reasoning. (1992) pp. 777–788

[PSDM03] Reinberger M.-L., Spyns P., Daelemans W. Meersman R.:

Mining for lexons: applying unsupervised learning methods to create

ontology bases. In: Meersman R., Zahir T., Schmidt D. et al.,(eds.),

On the Move to Meaningful Internet Systems 2003: CoopIS, DOA,

and ODBASE, LNCS 2888, Springer Verlag. (2003) pp. 803–819

[Q91] Qmair, Y.: Foundations of Arabic philosophy. Dar al-Shoroq.

Bairut, ISBN 2-7214-8024-3. (1991)

[R00] Richards. D. "The Reuse of Knowledge: A User-Centered

Approach", International Journal of Human Computer Studies, (2000).

[R03] Rector, A.: Modularisation of domain ontologies implemented in

description logics and related formalisms including OWL.

Proceedings of the international conference on Knowledge

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

captureIsland. ACM Press. ISBN:1-58113-583-1. FL, USA. (2003)

pp. 121–128

[R70] Royce, W.: Managing the development of large software systems:

Concepts and techniques. Proceedings of WESCON. August (1970)

[R88] Reiter, R.: Towards a Logical Reconstruction of Relational

Database Theory. In: Mylopoulos, J., Brodie, M.L. (eds.): Readings in

AI and Databases. Morgan Kaufman. (1988)

[RFOGP99] Rigoutsos, I., Floratos, A., Ouzounis, C., Gao, Y. & Parida,

L.: Dictionary building via unsupervised hierarchical motif discovery

in the sequence space of natural proteins. Proteins: Struct. Funct.

Genet. 37. (1999) pp. 264–277.

[RS93] Rauh, O., Stickel, E.: Searching for Compositions in ER Schemes.

In: Elmasri R., Kouramajian, V. (eds.): Proceeding of the 12th Int.

Conference on Entity Relationship Approach. Arlington, Texas.

December (1993) pp. 75–86

[RSV98] Roberto, C., Smith, B., Varzi A.: Ontological tools for

geographic representation. In: N. Guarino (eds.): Formal Ontology in

Information Systems, Proceedings of the First International

Conference (FOIS’98). Amsterdam IOS Press. Trento, Italy. June

(1998) pp. 77–85

[RVMS99] Russ, T., Valente, A., MacGregor, R., Swartout, W.: Practical

Experiences in Trading Off Ontology Usability and Reusability.

Proceedings of the Twelfth Banff Knowledge Acquisition for

Knowledge-based Systems Workshop. (1999) pp. 4.11.1–4.11.20

[S00] Sowa, J.F.: Ontology, metadata, and semiotics. In: Ganter, B.,

Mineau, G.W., (eds.): Conceptual structures: logical, linguistic and

computational issues: 8th international conference on conceptual

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

structures (ICCS’00). Darmstadt Germany. Lecture Notes in Artificial

Intelligence, 1867, Springer-Verlag Berlin. August (2000) pp. 55–81

[S02] Smith B.: Ontology and information systems. Stanford

Encyclopedia of Philosophy (2002)

http://ontology.buffalo.edu/ontology(PIC).pdf (January 2005)

[S03a] Smith, B.: Ontology. In: Floridi, L. (eds.): Blackwell Guide to the

Philosophy of Computing and Information. Oxford: Blackwell. (2003)

pp. 155–166

[S03b] Sure, Y.: Methodology, Tools and Case Studies for Ontology

based Knowledge Management. PhD Thesis, University of Karlsruhe,

Department of Economics and Business Engineering. (2003)

[S85] Shoval, P.: Essential information structure diagrams and database

schema design. Information Systems, 10(4). (1985) pp. 417-423

[S93] Steels, L., “The componential framework and its role in

reusability”, in: Second Generation Expert Systems, J.-M. David, J.-P.

Krivine & R.Simmons, (eds.), pp. 273-298. Berlin: Springer-Verlag

(1993).

[S95] Shapiro, S.: Propositional, First-Order And Higher-Order Logics:

Basic Definitions, Rules of Inference, Examples. In: Iwanska, L.,

Stuart, S., Shapiro, (eds.): Natural Language Processing and

Knowledge Representation: Language for Knowledge and Knowledge

for Language. AAAI Press/The MIT Press, Menlo Park, CA. (1995)

[S96] Siirtola: Managing Large Entity-Relationship Diagrams. In:

Thalheim, B., Yigitbasi, S., (eds.): Proceeding of the Workshop ER

CASE Tools. Cottbus, Germany. October (1996) pp. 29–42

[SGG+05] Suárez-Figueroa, M., García-Castro, R., Gómez-Pérez, A.,

Palma R., Nixon, L., Paslaru, L., Hartmann J., Jarrar, J.: Identification

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

of standards on metadata for ontologies. Deliverable D1.3.2. EU-IST

Network of Excellence (NoE) IST-2004-507482 (KWEB),

Luxemburg (2005)

[SGP98] Steve G., Gangemi A., Pisanelli D.M.: Integrating Medical

Terminologies with the ONIONS Methodology. In: Kangassalo, H.,

Charrel, J.P. (eds.): Information Modeling and Knowledge Bases VIII.

Amsterdam IOS Press (1998)

[SH05] Stuckenschmidt, H., van Harmelen, F.: Information sharing on the

semantic Web. Springer. Berlin. ISBN 3-540-20594-2 (2005)

[SK03] Stuckenschmidt H., Klein M.: Modularization of Ontologies -

WonderWeb: Ontology Infrastructure for the Semantic Web.

Deliverable 21. WonderWeb Project (IST 2001-33052) (2003)

[SKC02] Sampson, D., Karagiannidis C., Cardinali, F.: An Architecture

for Web-Based e-Learning Promoting Re-usable Adaptive Educational

e-Content. Educational Technology & Society Journal of International

Forum of Educational Technology & Society and IEEE Computer

Society Learning Technology Task Force, ISSN 1436-4522, Special

Issue on Innovations in Learning Technologies, 5(4), August (2002)

[SKKM03] Sunagawa, E., Kozaki, K., Kitamura, Y., and Mizoguchi R.:

An Environment for Distributed Ontology Development Based on

Dependency Management. Proceedings of the Second International

SemanticWeb Conference (ISWC’03). Springer-Verlag, LNCS 2870.

FL, USA. ISBN: 3-540-20362-1. (2003) pp. 453–468

[SM93] Swartout, W.R. and Moore, J.D., ”Explanation in Second

Generation Expert Systems”, in: Second Generation Expert Systems,

J.-M. David, J.-P. Krivine and R. Simmons (eds),. Berlin: Springer-

Verlag (1993).

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

[SMD00] Shum, S., Motta, E., Domingue, J.: ScholOnto: an ontology-

based digital library server for research documents and discourse. Int.

J. on Digital Libraries 3(3). (2000) pp. 237-248

[SOV+02] Spyns, P., Oberle, D., Volz, R., Zheng, J., Jarrar, M., Sure, Y.,

Studer, R., Meersman, R.: OntoWeb - a Semantic Web Community

Portal. In: Karagiannis, D., Reimer, U., (eds.): Proceedings of the

Fourth International Conference on Practical Aspects of Knowledge

Management (PAKM’02), LNAI 2569, Springer Verlag. (2002) pp.

189–200

[SP94] Spaccapietra, S., Parent, C.: View Integration: A Step Forward in

Solving Structural Conflicts. IEEE Transactions on Data and

Knowledge Engineering 6(2). (1994)

[SWCH01] Sullivan, k., William, G., Cai, Y., Hallen, B.: The structure

and value of modularity in software design. Journal SIGSOFT

Software Engineering Notes. Vol. 26, number 5. ACM Press. Issn:

0163-5948. (2001) pp. 99–108

[T00] Temmerman, T.: Towards New Ways of Terminology Description,

the sociocognitive approach. John Benjamins Publishing Company.

Amsterdam. ISBN 9027223262. (2000)

[T96] de Troyer, O.: A Formalization of the Binary Object-Role Model

based on Logic. Data & Knowledge Engineering 19, North-Holland

Elsevier. (1996) pp. 1–37

[TB01] Tamma, V., Bench-Capon, T.: A conceptual model to facilitate

knowledge sharing in multi-agent systems. Proceedings of the

Autonomous Agents 2001 Workshop on Ontologies in Agent Systems

(OAS’01). Montreal. May (2001) pp. 69–76

[TM95] de Troyer, O., Meersman, R.: A Logic Framework for a

Semantics of Object-Oriented Data Modelling. In: Papazoglou, M.P.

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

(eds.): Proceedings of 14th International Conference Object-

Orientation and Entity-Relationship Modelling (OO-ER’95), Lecture

Notes in Computer Science 1021, Springer. (1995) pp. 238–249

[TSC01] Tzitzikas, Y., Spyratos, N., Constantopoulos, P.: Mediators over

Ontology-based Information Sources. Proceedings of the Second

International Conference on Web Information Systems Engineering

(WISE’01). (2001)

[TTN97] Takaai, M., Takeda, H., Nishida, T.: Distributed ontology

development environment for multi-agent systems. Working Notes for

AAAI’97. Spring Symposium Series on Ontological Engineering.

(1997) pp. 149–153

[U01] Uitermark, H.: Ontology Based Geographic Data Set Integration.

PhD Thesis, Twente University. (2001)

[U96] Uschold, M.: Building ontologies: Towards a Unified

Methodology. Proceedings of Expert Systems, the 16th Annual

Conference of the British Computer Specialist Group of Expert

Systmes (AIAI-TR’97). Cambridge. December (1996)

[UG96] Uschold, M. and Gruninger, M: Ontologies: principles, methods

and applications. Knowledge Engineering Review, vol. 11, no. 2

(1996)

[V82] Van Griethuysen, J.J., (Eds.): Concepts and Terminology for the

Conceptual Schema and Information Base. International

Standardization Organization, Publication No. ISO/TC97/SC5- N695.

(1982)

[V83] Vermeir D.: Semantic Hierarchies and Abstraction in Conceptual

Schemata. Journal of Information Systems. Vol. 8, No. 2. (1983) pp.

117–124

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

[V98] Vossen, P. (eds.): EuroWordNet: A Multilingual Database with

Lexical Semantic Networks. Kluwer Academic Publishers, Dordrecht.

(1998)

[VB82] Verheijen, G., van Bekkum, P.: NIAM, aN Information Analysis

Method. In: Olle, T.W., Sol, H., Verrijn-Stuart, A. (eds.), IFIP

Conference on Comparative Review of Information Systems

Methodologies, North-Holland. (1982) pp. 537–590

[VDM04] Verheyden, P., De Bo, J., Meersman, R.: Semantically

unlocking database content through ontology-based mediation . In,

Bussler C. & Tannen V.,(eds.), Proceedings of the 2nd Workshop on

the Semantic Web and Databases (in conjuction with the 30th

International Conference on Very Large Databases), LNCS 3372,

Springer Verlag. (2004)

[VDZ04] Verlinden R., De Bo J., Zhao G.: Ontology Alignment and

Merging Components. Deliverable 5.1.3. FF-Poirot project. IST – EU,

5th Framework (IST-2001-38248). (2004)

[VH91] Ventrone, V., Heiler, S.: Semantic Heterogeneity as a Result of

Domain Evolution. SIGMOD Record 20(4). (1991) pp. 16–20

[VKMND04] Verbert, K., Klerkx, J., Meire, M., Najjar, J., Duval, E.:

Towards a Global Component Architecture for Learning Objects: An

Ontology Based Approach. Proceeding of On the Move to Meaningful

Internet Systems: OTM 2004 Workshops, LNCS 3292, Cyprus. (2004)

pp. 713–722

[VOS03] Volz R., Oberle D., Studer R.: Views for light-weight web

ontologies. Proceedings of the ACM Symposium on Applied

Computing (SAC’03). (2003)

[VS03] Vassileva, B., Scoggins, P.: Consumer Complaint Forms: An

Assessment, Evaluation and Recommendations for Complaint

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Categorization. Technical report, CCForm Project (IST-2001-34908),

5th framework. Brussels (2003)

[W02] Welty, C.: Ontology-Driven Conceptual Modeling. Invited talk at

the Fourteenth International Conference on Advanced Information

Systems Engineering (CAiSE), Toronto, Canada. (2002)

[W90] Wintraecken, J.J.V.R.: The NIAM Information Analysis Method:

Theory and Practice. Kluwer, Deventer. (1990)

[W97] Wiederhold, G.: Value-added Mediation in Large-Scale

Information Systems. DS-6. (1995) pp. 34–56

[W98] Weinstein, P.C.: Ontology-Based Metadata: Transforming the

MARC Legacy. ACM Digital Libraries. Pittsburgh, USA. (1998)

[WF99] Welty, C., Ferrucci, D.: A Formal Ontology for Re-Use of

Software Architecture Documents. Proceedings of The 1999

International Conference on Automated Software Engineering. IEEE

Computer Society Press. October (1999) pp. 259–262

[WG01] Welty, C., Guarino, N.: Support for Ontological Analysis of

Taxonomic Relationships. Journal of Data and Knowledge

Engineering. 39(1). October (2001) pp. 51–74

[WG03] Welty, C., Guarino, N.: An Overview of OntoClean. In: Staab,

S., Studer, R., (eds.): The Handbook of Ontologies. Springer Verlag.

(2003)

[WJ99] Welty, C., Jessica, J.: An Ontology for Subject. J. Data and

Knowledge Engineering. 31(2). Elsevier. (1999) pp. 155–181

[WSG+04] Wache H., Serafino L., Garcia Castro R., Groot P., Jarrar M.,

Kompatsiaris Y., Maynard D., Pan J., Roelofsen F., Spaccapietra S.,

Stamou G., Tamilin A, Zaihrayeu I.: Scalability - State of the Art.

Bibliography

Publ ished As:
Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD

thesis, Vrij e Universit eit Brussel, 2005.

-eD Jarrar©2005

Deliverable D2.1.1, EU-IST Network of Excellence (NoE) IST-2004-

507482 (KWEB). Luxemburg (2005)

[WSW99] Wand, Y., Storey, V., Weber, R.: An Ontological Analysis of

the relationship Construct in Conceptual Modelling. ACM

Transactions on Database Systems, Vol. 24, No. 4. (1999) pp. 494–

528

[ZD04] Ziegler, P., Dittrich, K.: User-Specific Semantic Integration of

Heterogeneous Data: The SIRUP Approach. In: M. Bouzeghoub, C.

Goble, V. Kashyap, S. Spaccapietra, (eds.): Proceeding of the

International Conference on Semantics of a Networked World. LNCS,

Springer, Paris, France. June (2004) pp. 14–44 .

[ZKK+04] Zhao G., Kingston J., Kerremans K., Coppens F., Verlinden

R., Temmerman R. & Meersman R., Engineering an Ontology of

Financial Securities Fraud. In, Meersman R., Tari Z. et al.,(eds.), On

the Move to Meaningful Internet Systems 2004: OTM 2004

Workshops, LNCS 3292, pp. 605 - 620, 2004. Springer Verlag.

