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ABSTRACT
In the near future, the advent of large-scale networks of mobile
agents autonomously performing long-term sensing and communi-
cation tasks will be upon us. However, using controlled node mobil-
ity to improve communication performance is a capability that the
mobile networking community has not yet investigated. In this pa-
per, we study mobility as a network control primitive. More specif-
ically, we present the first mobility control scheme for improving
communication performance in such networks. Our scheme is com-
pletely distributed, requiring each node to possess only local infor-
mation. Our scheme is self-adaptive, being able to transparently
encompass several modes of operation, each respectively improving
power efficiency for one unicast flow, multiple unicast flows, and
many-to-one concast flows. We provide extensive evaluations on
the feasibility of mobility control, showing that controlled mobility
can improve network performance in many scenarios. This work
constitutes a novel application of distributed control to networking
in which underlying network communication serves as input to local
control rules that guide the system toward a global objective.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Architec-
ture and Design—wireless communications

General Terms
Algorithms, Performance, Design

Keywords
Mobility Control, Routing, Self-Configuration in Ad Hoc Networks

1. INTRODUCTION
As technology rapidly progresses, diverse sensing and mobility

capabilities will become more readily available to devices. For ex-
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ample, many modern mobile robots are already equipped with var-
ious sensing capabilities. As another example, there are presently
research activities on low-power robotic insects that move in a va-
riety of ways, including flying and skimming across the surface of
water (e.g. [12]).

Once mobility becomes feasible, we envision that large systems
of such mobile autonomous agents performing various important
tasks will be soon to come. Communication will undoubtedly be
one of the essential functionalities of these mobile networks. The
objective of this paper is to explore the novel capability of these net-
works to optimize their communications using controlled mobility.

One can envision many settings in which mobility can potentially
be used to improve network communications. One such scenario is a
long term “bugging” deployment of self-organizing mobile sensors
whose purpose is to intercept or record, and then report as much data
as possible from a target such as an enemy communication tower or
command center. If the sensor nodes are able to move into positions
that minimize the energy cost of reporting this stream of data out
of the network, the amount of useful information the network can
transport would be maximized. Similar arguments for mobility can
apply to long-term concast data gathering [6] or to aggregation of
large data events in a GHT [20].

One can also imagine mobile networks being uniformly deployed
over space with the intention that when a large, geographically dis-
persed user such as a military division moves in and sets up a base,
the network will adapt its configuration in order to best serve the
specific communication demands of that user. Such adaptive wire-
less networks with the capability to autonomously align themselves
to fit user needs would be tremendously useful.

In general, long-term deployments which exhibit persistent or ha-
bitual communication patterns are prime candidates for the appli-
cation of mobility to improve network performance. In such set-
tings, the traffic will be regular enough and high enough in volume
to warrant nodes expending energy moving in order to more cheaply
forward traffic.

There may also exist situations where the power source for mobil-
ity is renewable but separate from a non-renewable power source for
communications. Such situations could exist in hybrid bio-electronic
systems, the simplest example of which is a network of people car-
rying small radios running on unrechargeable batteries. A more fan-
ciful example is a system of simple living organisms such as in-
sects that are outfitted with radio transmitters and whose motion is
controlled by a neuro-electronic interface. In light of the fact that
mobility is a capability already perfected by nature, while wireless
communication is a human work-in-progress, this type of techno-
logical separation of duties might have its merits.
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While the previous discussion has motivated some of the poten-
tial applications of controlled mobility, there are still few studies in
the mobile networking literature on improving communication per-
formance through this capability.

Although mobility has the potential to improve network perfor-
mance in many settings, there may also exist scenarios in which
mobility will be less effective due to various extenuating factors
including hardware limitations and traffic patterns. The objectives
of this paper, therefore, are to 1) analyze when controlled mobility
can improve fundamental networking performance metrics such as
power efficiency and robustness of communications; and 2) provide
initial design for such networks.

One major issue in using mobility is how to effectively control
it. Designing mobility control algorithms for communications is
challenging, because any scheme that would achieve the apparent
potential of the idea should address the following issues.

• First, the precise nature of any effective mobility control will
be application dependent. It is clear that nodes will need to
move differently under different traffic patterns, e.g., a single
source-destination pair (called a single flow), multiple source-
destination pairs (called multiflows), or multiple sources and
single destination (called concast). Is there a single self-adaptive
mobility control scheme that can be applied to such a broad
range of scenarios?

• Second, for scalability and robustness purposes, there should
not be a central entity who computes the movements of all the
nodes. In other words, the mobility-control scheme should
be a totally distributed scheme. Is there a mobility control
scheme such that although each node makes movement de-
cisions for itself informed by purely local information, the
collective system achieves desirable global properties?

• Third, the distributed mobility-control scheme should be able
to self-organize the nodes to optimize a performance metric
while at the same time satisfying other constraints. For ex-
ample, although one major objective of a mobility-control al-
gorithm could be to optimize data reporting power efficiency
after target detection, it may be important that the network
maintain connectivity and/or coverage throughout the opera-
tion of the distributed algorithm. Can we design a general
mobility-control scheme possessing the flexibility to optimize
communication performance while simultaneously conform-
ing to user-imposed connectivity/coverage requirements?

The framework proposed in this paper is the first attempt to design
and analyze a system addressing the above issues.

The foundation of our system’s self-organizing capability is a dis-
tributed descent primitive. One inspiration for this primitive is the
distributed averaging algorithm used in [13, 20]. The averaging
algorithm of Rao et al. [20] operates in virtual space; our system
subsumes such averaging as a special case and operates in physi-
cal space. Another inspiration of our primitive is the rendezvous
algorithm proposed by Lin, Morse and Anderson [17]. The objec-
tive of the rendezvous algorithm is to have all nodes in an arbitrary
connected network converge to a single point in space by using uni-
form, distributed, and locally informed mobility control rules. In
this paper, we generalize elements of the two algorithms to design a
powerful and self-organizing primitive that can achieve diverse con-
figuration goals and that can be gracefully tuned to ensure desirable
network properties such as connectivity, coverage, and power effi-
ciency.

We apply our mobility-control primitive to a broad range of traf-
fic scenarios, under different application requirements. For each
scenario, we present and formally prove the correctness of our al-
gorithm. We perform extensive simulations to evaluate the effec-
tiveness of controlled mobility. Our evaluations show that there are

many scenarios where mobility control can achieve substantial per-
formance gains. For example, in a random network, we simulate a
realistic scenario in which 10 Kbps voice stream data flows over a
single 1 Km long greedily routed multihop path of mobile nodes ca-
pable of moving at around 0.1 m/s. In under a minute, our mobility
control is able to guide the network to its optimal routing configu-
ration in which communication uses as little as 50% of the energy
originally required. Taking into account the cost of mobility, total
energy savings are realized after five minutes.

The remainder of this paper is organized as follows. In Section 2,
we discuss related work and compare our approach with previous
approaches. In Sections 3, 4, 5 respectively, we present algorithms
for optimization of single source-destination pair, multiple source-
destination pair, and many-to-one traffic patterns. In each section,
we include extensive simulation results to analyze when controlled
mobility is effective and demonstrate the effectiveness of the pre-
sented algorithm. We conclude and discuss future work in Section 6.

2. RELATED WORK
Although mobility has been extensively investigated in the mobile

networking community, the focus so far has been on random mobil-
ity, e.g., [16, 14, 25], instead of controlled mobility. For example,
in [7], Grossglauser and Tse have shown that the random move-
ment of users can be used to improve network throughput. In [2]
Chakraborty, Yau and Lui have studied algorithms that try to predict
user movements to reduce power consumption.

Controlled mobility is an active research area in the control theory
community; for example see [1]. In the last few years much progress
has been made in designing distributed mobile systems and under-
standing both natural and artificial mobile systems. The focus of
these studies, however, is not on network communications. For ex-
ample, in [3], Cortes et al. have shown that mobility can be purpose-
fully controlled to implement network coverage; in [15], Ladd et al.
have shown that mobility can be used to improve the accuracy of
network localization; in DARPA’s self-healing minefield project [5],
mobility is used to improve and maintain network coverage. How-
ever, none of these studies considers routing or power efficiency,
two of the fundamental issues in networking and communications.

Some inspiration for this work came from the averaging algo-
rithm, which is used in various settings, e.g., [13, 20]. With the in-
tention of providing coordinates over which to perform geographic
routing, in [20] Rao et al. let ”virtual positions” of nodes converge
to the potential energy minimizing configuration of an equivalent
network with edges replaced by springs. In the same way in which
the converged virtual configuration of Rao et al. reflects the underly-
ing connectivity of the network, our resulting physical configuration
reflects the connectivity of the portion of the network in active use
i.e. the communicating subgraph. However, there are several major
differences between our work. First, our system operates in phys-
ical space; thus we must guarantee that connectivity is preserved
throughout the actual motions of the nodes. Our nodes also move
to a minimum “potential” configuration, but this time with spring
potentials assigned only to links actively being used for communi-
cation. Lastly, the more general potential functions we minimize are
equivalent to the communication energy usage of a configuration.
Because of this, rather than averaging, we generalize to a weighted
descent method that optimizes realistic transmission cost models
and weights neighbors according to their share of local communi-
cation volume. Furthermore, our algorithms make no assumptions
about the global traffic pattern, wireless environment, or hardware
power usage properties.

Another inspiration of this work is the rendezvous algorithm of
Lin, Morse, and Anderson [17]. They describe distributed local al-
gorithms for guiding a system of multiple nodes to a single point.
In this paper, we combine ideas from the rendezvous algorithm with
the generalized averaging scheme to design a powerful and flexi-
ble tool that can achieve power optimizing configurations and be
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gracefully tuned to ensure desirable network properties such as con-
nectivity, coverage.

There is a large literature on power-efficient topology control and
routing; for example see [22, 19]. A major difference between our
scheme and the previous work is that we leverage mobility while
the previous work assumed that mobility cannot be controlled by the
communication layers of the network. As a precedent to our work,
there was also a previous study [23] on the optimal positions of relay
nodes for a single source-destination pair. Under a link cost model
of P (d) = a+bdα, where d is distance, α a constant between 2 and
6, and a and b other constants, Stojmenovic and Lin [23] show that
over all multihop paths, straight paths are most energy efficient and
further that there is a unique hop count for any distance that min-
imizes the cost of communications. However, the focus of [23] is
not on reaching the optimal configuration using a distributed algo-
rithm. Also, the focus of [23] is on a single source-destination pair
while we consider multiple source-destination pairs while maintain-
ing connectivity during mobility control.

3. MOBILITY CONTROL FOR NETWORK
WITH A SINGLE FLOW

We first present our mobility control algorithm for a network with
a single active flow. This is a simple yet important application sce-
nario.

We make the following assumptions. We assume that a path from
the source to the destination consisting of nodes with a mobility ca-
pability is discovered using a routing protocol, e.g., a greedy routing
protocol or one of the ad hoc routing protocols. We label the nodes
from source to destination 0, 1, . . . , n + 1. We call nodes 1, . . . , n
relay nodes. We assume that there is a link between two nodes iff
their distance is less than a maximum communication radius r. We
also assume that the relay nodes know their positions. This can
be achieved through either GPS [9] or some localization methods.
Note that the above assumptions can be further relaxed; however,
to make our mobility control scheme clear, we do not pursue these
relaxations. Finally, our mobility control algorithm is orthogonal to
the routing discovery protocol.

3.1 Optimal Configuration of Relay Nodes
The objective of the relay nodes is to move to a new configuration

to optimize network performance. We assume that the source and
destination do not move as they are not relay nodes. This is reason-
able in many application scenarios in which the source is reporting
the results of some sensing task or going about some other duties,
while the relay nodes are in fact relay nodes because their energy is
well spent helping the source to communicate with its destination.
We expect that the source or the destination could also be moving,
thus requiring mobile tracking. For this case, we expect that our
mobility scheme is still guaranteed to maintain a multihop commu-
nication link between them as long as the moving speed is below a
threshold.

Without connectivity/coverage constraints, the optimal configu-
ration of the relay nodes depends on the cost model of communi-
cations. One way to derive communication cost as a function of
link distance is to use a link loss model, e.g., [4, 26]. If a node
transmits to another node at distance d away, taking into account
the loss rate of the link and minimizing the expected energy cost
to send one message, we have that the transmission power func-
tion is P (d) = minω{E [ω/S(ω, d)]}, where S(ω, d) is the suc-
cess rate associated with transmitting a message at power ω over
a distance d. We assume that a message is successfully received
precisely in the case that the signal-to-noise ratio at the receiver is
higher than a certain threshold. Under various realistic probability
distributions on noise, we can prove that the power function P (d)
is a non-decreasing convex function of d. As a result, the following
theorem becomes applicable:

THEOREM 1. Assume that the energy cost function P (d) is a
non-decreasing convex function. Then the optimal positions of the
relay nodes must lie entirely on the line between the source and
destination. Furthermore the relay nodes must be evenly spaced
along the line.

PROOF. Let di be the distance from node i to node i + 1, where
i = 0, . . . , n. Let D denote the direct line distance from the source
to the destination. Since P (d) is a non-decreasing convex function,

we have
∑n

i=0 P (di) ≥ (n + 1)P (
∑

n

i=0
di

n+1
) ≥ (n + 1)P ( D

n+1
),

where the first inequality is due to the convexity of P (d), and the
second one holds because P (d) is non-decreasing.

3.2 Mobility Control to Reach Optimality: the
Synchronous Scheme

The previous subsection has established that the optimal configu-
ration of the relay nodes is lying evenly on the line from the source
to the destination. We now introduce a uniform distributed algo-
rithm that allows the relay nodes to move to their optimal positions.

. xi: current position of node i.

. xi−1 and xi+1: positions of nodes i − 1 and i + 1.

. g ∈ (0, 1]: damping factor.

repeat
send xi to neighbors i − 1 and i + 1
receive xi−1 and xi+1
set x′

i = (xi−1 + xi+1)/2
move to xi + g · (x′

i − xi)
until (convergence)

Figure 1: The distributed, synchronous mobility-control algo-
rithm at relay node i. Node i − 1 and i + 1 are its neighbors on
the routing path.

Figure 1 shows a distributed mobility control algorithm. The al-
gorithm proceeds in globally synchronous rounds of maneuvering
alternating with quiescence. The key ingredient of the algorithm
is the simple averaging step, which we will extend for more com-
plex scenarios and call the target point primitive. Note that although
a node computes the average of its two neighbors, the node only
moves toward this point, instead of reaching it in one step. In other
words, the movement is damped. In some configurations, without
this damping, oscillations can occur that inflate the total distance
traveled by the nodes before convergence. Damping is also useful as
a tool for avoiding node overreaction to ephemeral traffic by setting
the time scale over which convergence takes place to be sufficiently
large.

Next, we prove that our mobility control algorithm has the essen-
tial property that connectivity between communicating neighbors is
never broken. This property ensures that throughout maneuvering,
the communication functionality of the path is never compromised
and that each neighbor always has contact with its two neighbors
necessary for computation of a target point. Furthermore, this prop-
erty can avoid the cost of re-routing, which can be a major source of
overhead for many routing protocols in mobile networks.

1

X 2
X 0

X 12

X’2

X’1

X’0

X 01

X

Figure 2: Illustration of Theorem 2.
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THEOREM 2. Connectivity between communicating neighbors
is not lost in the synchronous algorithm.

PROOF. Without loss of generality, suppose that node 1 at posi-
tion x1 has as communicating neighbors nodes 0 and 2 at positions
x0 and x2. Figure 2 shows the nodes before all nodes on the path
move. Let xij denote the midpoint 1

2
(xi + xj) of the line between

node i and node j. Node 1 then moves to position x′

1 = x02. We
see that

|x′

1 − x01| = |
1

2
(x1 − x2)| ≤

1

2
r,

where r is the communication radius. The new position of node
1 is within half a communication radius away from x01 and sim-
ilarly, x12. Analogous statements must hold for its neighbors as
well: |x′

0 −x01| ≤ r/2, and |x′

2 −x12| ≤ r/2, so all new positions
are within a distance of r from each other. Since nodes move along
straight paths to their target points, we have shown that connectivity
is guaranteed throughout the maneuvering period.

We next establish the convergence of our algorithm; that is, we
prove our algorithm always terminates. Here we define termina-
tion as arrival at a configuration in which all relay nodes are evenly
spaced on the line between the source and destination.

THEOREM 3. Using the distributed synchronous algorithm, all
nodes will eventually be evenly distributed on the line between the
source and destination.

PROOF. Let xi(k) denote the position of node i after k steps of
the algorithm have completed. We will assume unless otherwise
stated that i ∈ {1, 2, . . . , n}. The update equation for xi is given
by

xi(k + 1) = xi(k) + g[
xi−1(k) + xi+1(k)

2
− xi(k)]

for k ∈ {0, 1, . . .} and damping factor g ∈ (0, 1].
We let x̄i = x0 + i

n+1
(xn+1 − x0) be the i-th evenly spaced

point on the line between x0 and xn+1. We will show that this is the
location to which node i converges.

Define the error at step k as ei(k) = xi(k) − x̄i. Observing that
x̄i = 1

2
(x̄i−1 + x̄i+1) = (1 − g)x̄i + g

2
(x̄i−1 + x̄i+1), we have

that for i ∈ {2, 3, . . . , n − 1},

ei(k + 1) = xi(k + 1) − x̄i

= (1 − g)xi(k) +
g

2
(xi−1(k) + xi+1(k)) − x̄i

= (1 − g)ei(k) +
g

2
(ei−1(k) + ei+1(k)).

As for e1 and en, a simple calculation reveals that

e1(k + 1) = (1 − g)e1(k) +
g

2
e2(k)

and

en(k + 1) = (1 − g)en(k) +
g

2
en−1(k).

Define the error vector e = (e1, e2, · · · , en)T . It follows that e(k+
1) = Te(k) = T k+1e(0), where

T =











1 − g g/2 0 0 · · · 0
g/2 1 − g g/2 0 · · · 0
. . . . . .
0 · · · 0 g/2 1 − g g/2
0 · · · 0 0 g/2 1 − g











n×n

and can be rewritten as I + gM , where

M =











−1 1/2 0 0 · · · 0
1/2 −1 1/2 0 · · · 0
. . . . . .
0 · · · 0 1/2 −1 1/2
0 · · · 0 0 1/2 −1











n×n

.

Because M is symmetric, its eigenvalues are real. From the Ger-
schgorin Circle Theorem, −2 ≤ ρ(M) ≤ 0, where ρ(M) is the
largest eigenvalue of M . Simple calculation reveals that neither 0
nor −2 is an eigenvalue of M ; thus −2 < ρ(M) < 0. It follows
from this and the fact that g ≤ 1 that −1 ≤ 1 − 2g < ρ(T ) <
1 − 0g ≤ 1, i.e |ρ(T )| < 1. It follows from a standard result in the
theory of matrix products [10] that limk→∞ T k = 0. This implies
that limk→∞ e(k) = 0, thereby establishing that the algorithm con-
verges to a configuration of nodes evenly spaced on the line between
x0 and xn+1.

3.3 Mobility Control to Reach Optimality: the
Asynchronous Scheme

While the simplicity and functionality of the synchronous algo-
rithm is appealing, the globally synchronous mode of operation is
at odds with the need for distributed algorithms that do not require
any global information. To remedy this violation of the localized
design requirement, we present an asynchronous algorithm, shown
in Figure 3, which uses no global information and requires only that
each node eventually reach its target point in bounded time.

. xi: current position of node i.

. xi−1 and xi+1: positions of nodes i − 1 and i + 1.

. g ∈ (0, 1]: damping factor.

repeat
send xi to neighbors i − 1 and i + 1
repeat listen() until (L ∧ R == True)
send movingi to neighbors i − 1 and i + 1
set L := False, R := False
set x′

i := (xi−1 + xi+1)/2
move toward xi + g · (x′

i − xi)
repeat listen() until (arrive in bounded delay)

until (convergence)

subroutine listen():
upon receive xi−1 do L := True
upon receive xi+1 do R := True
upon receive movingi−1 do L := False
upon receive movingi+1 do R := False

. L and R: internal boolean state variables.

. movingi: message signaling node i starting to move.

Figure 3: The distributed, asynchronous mobility-control algo-
rithm at node i, where i = 2, . . . , n − 1.

The algorithm outlined in Figure 3 defines the operation of all re-
lay nodes other than the two nodes 1 and n respectively connected
to the source and destination. Node 1 has its state variable L per-
manently set to True and node n has R permanently set to True.
Other than this, the operation of nodes 1 and n is identical to that of
all the other relays.

A state transition diagram describing the asynchronous algorithm
for nodes 2 through n−1 is shown in Figure 4. We omit the slightly
different but straightforward diagram for nodes 1 and n. The sys-
tem starts in the state in which nodes are stationary and informed of
the positions of their neighbors. The state variables M , L, and R
respectively represent the state of moving and of having fresh posi-
tion information for the left and right neighbors. In the diagram, we
abuse notation a bit and represent by xj the reception of a message
containing the position of node j, signaling that node j has stopped
moving; by mj the reception of a message indicating that node j is
moving; and by \y the action of sending message y.

Since this is an asynchronous protocol, one potential concern is
that it could cause deadlock. The proposition below shows that if
messages can be reliably transmitted, then our asynchronous proto-
col is deadlock free. If messages can be dropped, then we can use
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Figure 4: State transition diagram for the asynchronous algo-
rithm: i = 2, . . . , n − 1.

a reliable transport protocol to guarantee reliability; or if each node
in quiescent mode periodically transmits its position and a transmis-
sion arrives after finite number of retransmissions, there will still be
no deadlock.

PROPOSITION 1. The asynchronous protocol is deadlock free, if
messages are not dropped.

PROOF. Assume the system is deadlocked. Then there is some
node i that is the last to stop moving, say by time ti. By assumption,
no nodes are moving at time ti. We will denote the state of a node j
by Sj and refer to nodes by their index. Without loss of generality,
upon node i stopping, R ∈ Si−1, where i− 1 is the left neighbor of
i. It must be the case then that Si−1 = {L̄, R} or else i−1 would be
able to move, violating our assumption of deadlock. Node i−1’s left
neighbor i−2 must have stopped moving strictly before i−1 did, or
else L ∈ Si−1. Since i−1 stops moving after i−2, R ∈ Si−2. But
by the same argument as before, Si−2 = {L̄, R}. As this process
continues as shown in Figure 5, we reach the node i − k whose
left neighbor is the source and conclude that Si−k = {L̄, R}. But
by our algorithm design, L ∈ Si−k and we have a contradiction.
Hence, the system cannot be deadlocked.

L _

i

L R L R LR

ii−1i−2 i+1

...
X

i−ksource

S ... L R

t

Figure 5: Illustration of deadlock proof contradiction. Node i
must have at least one of L and R as False.

We next prove that no node loses communicating neighbors.

THEOREM 4. Connectivity between communicating neighbors
is not lost in the asynchronous algorithm.

PROOF. At the instant that node i starts moving towards the av-
erage of its neighbors, its neighbors must be stationary, or else it
would have invalidated at least one of its state bits preventing it-
self from leaving. As node i is moving, neither of its neighbors can
move, since they invalidated a state bit upon i’s departure. At the
moment node i stops, it is clear that it will be within distance r/2
from its neighbors.

Finally we prove that the asynchronous algorithm will also con-
verge to an evenly spaced straight configuration. This proof uses
a new proof technique similar to that used in [17]. The translation
of the algorithm into an manageable mathematical model depends
crucially on the invalidation of a state bit upon receiving a moving

signal from a neighbor. Once the model is set up, the convergence
result is a direct consequence of the assumptions that the source and
destination are fixed and that nodes reach their targets in bounded
time.

time

1 t2 t3 t4

t i1 t i2

t j3t j2t j1

{i, j}
time

i
time

j

t

Figure 6: Illustration of event time.

Before we begin our proof, we first establish a preliminary con-
cept. We define an event time to be any real time t̄ik at which some
node i begins to move, where k indicates that it is the k-th time that
node i starts to move. Deleting duplicates, we now arrange the
set of all event times {t̄ik : i ∈ {1, 2, . . . , n}, k ≥ 1}, in increas-
ing order and label the ordered times by ts, s ∈ {1, 2, . . .}. For
i ∈ {1, 2, . . .}, let si(k) denote the value of s for which ts = t̄ik

i.e., the index of the event time at which node i moves for the k-th
time. Because s corresponds to an event time at which node i starts
moving, s is said to be in the image of si, Im{si}. This is illus-
trated in Figure 6 where si(1) = 1, si(2) = 3, sj(1) = 2, sj(2) =
3, sj(3) = 4, Im{si} = {1, 3}, and Im{sj} = {2, 3, 4}.

THEOREM 5. Using the asynchronous algorithm, all nodes will
eventually be evenly spaced on the line between source and desti-
nation, given that there is an upper bound on the time it takes for a
node to move to its target point.

PROOF. (sketch) For the sake of brevity, we will not include the
complete proof but only a sketch. We set the damping constant g =
1 for clarity.

We will first define a discrete model that describes the position of
each mobile node indexed by event time.

At the event time indexed by s, every node i is either starting to
move (if s ∈ Im{si}), in the process of moving, or stationary. We
define xi(s) as the next resting position of node i after ts in the fol-
lowing way. If at time ts, i is starting to move or in the process of
moving, xi(s) represents its target point. If i is stationary at ts, we
define xi(s) to represent the position at which it is resting. This state
variable xi(s) was carefully designed in conjunction with the algo-
rithm to guarantee accurate representation of algorithm behavior as
well as convergence.

If node i does not start moving at event time s, then xi(s) =
xi(s − 1): The next resting location of i is the target of its last
motion. Otherwise, the update equation for xi(s) is given by

x1(s) =
1

2
(x0 + x2(s − 1)),

xn(s) =
1

2
(xn+1 + xn−1(s − 1)),

and

xi(s) =
1

2
(xi−1(s − 1) + xi+1(s − 1)),

for i ∈ {2, 3, . . . , n − 1}.
Note that the design of our algorithm ensures that if s ∈ Im{si},

nodes i − 1 and i + 1 may not be moving at time ts. Assuming
s ∈ Im{si}, then without loss of generality, if node i − 1 was
moving at time ts−1, then by design, node i − 1 must have come to
rest at position xi−1(s− 1) by time ts. If node i− 1 was stationary
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at time ts−1, then at time ts, its position will be xi−1(s − 1), as
by the definition of event time, it could not have moved in-between
consecutive event times. We can see now that xi(s), which is the
target of node i’s incipient motion, is the average of its neighbor’s
positions at the instant it departs. This representation is possible
only because the algorithm dictates that each node invalidate the
position of either of its neighbors who starts moving.

Next,we normalize the distance between source and destination
to be one, and define our equilibrium positions x̄i = i

n+1
. We de-

fine the error as ei(s) = xi(s) − x̄i, and set up the error equation
evolving on the sequence of event times as we did in the conver-
gence proof of the synchronous algorithm. As before, we can put
the error update equations into matrix form e(s) = M(s)e(s − 1),
where e = [e1, e2, . . . , en]. In this case however, instead of the up-
date matrix having a single form, M(s) is now a matrix defined at
an event time in a way which depends on exactly which nodes begin
to move at that event time. This update matrix has the following
form. If node i ∈ [1, . . . , n] does not start moving at event time s
i.e., if i /∈ Im{si}, row i appears as it does in the n × n identity
matrix. If node i does in fact move, row i appears as it does in the
following n × n matrix:











0 1/2 0 0 · · · 0
1/2 0 1/2 0 · · · 0
. . . . . .
0 · · · 0 1/2 0 1/2
0 · · · 0 0 1/2 0











n×n

.

At event time s, the error is given by the product of s matrices of
type M(s) applied to the initial error vector e(0). In our full proof,
we show that after a finite time, the maximal row sum or reduced
infinity norm of this product has an upper bound strictly less than
one precisely because the source and destination are fixed and every
node reaches its destination in finite time. Consequently, e(s) → 0
as s → ∞ and the state variables and therefore the positions of all
nodes converge to their desired locations evenly spaced on a line
between source and destination.

3.4 Maintaining Connectivity
for Non-Communicating Neighbors

In the previous two subsections, we have shown that both the
synchronous and asynchronous algorithms guarantee that commu-
nicating neighbors are never disconnected. However, it is possible
that as a communicating node moves towards its optimal location, it
becomes disconnected from some of its non-communicating neigh-
bors.

In networks where preserving all connectivity is important, we
can introduce a simple constraint on the motion of nodes to guar-
antee permanent connectivity to all nodes connected to it, either
communicating or non-communicating. We call the mobility con-
trol algorithm without this constraint unconstrained mobility con-
trol, and the algorithm with this constraint constrained mobility con-
trol. Specifically, the constraint is that a communicating node does
not move beyond the maximum communication range away from
any of its non-communicating neighbors. This means that the com-
municating node moves to the point closest to its target point that
satisfies all constraints imposed by non-communicating neighbors.

3.5 Evaluations
We now evaluate the performance of the mobility control algo-

rithm.

3.5.1 Simulation Setup
We have implemented a simulator to evaluate the performance of

our mobility-control algorithms. The simulator generates nodes uni-
formly at random, and then randomly chooses a source and a desti-
nation. Next, it runs the greedy geographic routing protocol to locate

a routing path. The nodes on this routing path then move to decrease
the energy usage of the path using our synchronous mobility control
protocol. Our statistics regarding network power consumption are
obtained by running our algorithm on 50 different random network
instantiations for each combination of parameters. It is worth noting
that in uniformly random networks, the performance improvements
through mobility are minimized because the paths chosen by greedy
routing already tend to approximate their optimal straight configura-
tion. Mobility in anisotropic networks or networks with geographic
routing holes will yield greater performance improvements than we
see here, so this study serves to delineate the baseline of the poten-
tial performance enhancements offered by mobility.

A key ingredient of the simulator is the communication cost model.
We assume that the cost of transmission of a single bit over a dis-
tance d is P (d) = a + bdα, where α is between 2 and 6, and a
and b are constants. This is a commonly used power function [21]
where the values of a and b depend on the hardware and algo-
rithms used for transmission, reception, decoding, and encoding.
Typical values, which we adapt for use here, are a = 100 nJ and
b = 0.1 nJ/m2 [8] for a path loss model of α = 2. For a general
path loss model of α ∈ [2, 6], in order to achieve the same receiver
signal-to-noise ratio as for α = 2, we must transmit at a propor-
tionately higher power P ′ ∝ dα. Therefore, we use parameters
a = 100 nJ, b = 0.1 nJ/mα, and α ∈ [2, 6].

By the results of [23], communication under this cost model is
achieved with least power expenditure in a multihop fashion with
hop length (1000/(α − 1))1/αm. Hence, in order to interpret our
simulation results realistically, we scale our simulation distances so
that the hop lengths typically used are of this order of magnitude.

Another key ingredient of our simulation setup is the cost of mo-
bility. We choose to use a distance proportional cost model Pm(d) =
kd. A distance proportional cost model is reasonable for wheeled
vehicles, where the energy used to accelerate can typically be recov-
ered upon braking, neglecting losses due to friction. It is possible
that flying, floating, and swimming vehicles may have to overcome
larger fixed energy costs to initiate motion and less to maintain it,
but we do not consider these details here and abstract to the distance
proportional cost model. So as not to overestimate the potential
benefit of mobility, the values of k that we consider are kept con-
servatively large; ranging from 0.1 J/m to 1 J/m. A one kilogram
wheeled vehicle with rubber tires moving on concrete must over-
come a 0.10 N force of dynamic friction, or expend 0.10 J/m [24],
so an energy cost of 1 J/m does not seem unrealistic.

3.5.2 Simulation Results
Before we report quantitative results, we first present several fig-

ures to visually illustrate the effectiveness of the mobility control
algorithm. Figure 7 shows network configurations before and after
mobility control. In this experiment, we use both greedy routing
and “stingy” routing to find an initial routing path. Stingy routing
is a form of routing that picks the neighbor which makes the least
forward progress [11]. The proved convergence of our mobility con-
trol algorithm to the straight and evenly spaced line is corroborated
by these simulations. Since our algorithm converges from all ini-
tial configurations and requires only local information, it is robust
against both increases in network size and highly irregular paths
such as those produced by stingy routing.

The converged configurations and Theorems 3, 5 have only shown
that our mobility control algorithm will move the relay nodes to
the optimal configurations. However, a mobility control algorithm
could move the nodes along arbitrarily long curves, thus consuming
much energy for mobility. We define blowup as the ratio between
the distance that a node actually travels between its initial and final
positions and the straight line distance. We observe in Figure 8 that
the path blowup for greedy path optimization is small, indicating
that our algorithm does not suffer from large oscillations. In Figure
8, MaxMove is a parameter that expresses the maximum speed of
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(a) unconstrained; greedy (b) constrained; greedy (c) unconstrained; stingy

Figure 7: Network configurations before and after mobility control. The first term of each subcaption indicates whether mobility
control is constrained or unconstrained. The second term indicates the routing protocol used to find an initial routing path.
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Figure 8: Blowup of network path.

node mobility by imposing an upper limit on distance traveled by a
node per round. As one would expect, the path blowup of uncon-
strained optimization is greater than it is in constrained optimiza-
tion; however, the value is still small. Overall, the small blowup
factor of our algorithm indicates that our algorithm consumes close
to optimal energy on mobility.

Having established the convergence and small blowup factor of
our algorithm, now we evaluate whether mobility control can im-
prove the power efficiency of a routing path. We evaluate this under
the cost model [8] P (d) = 10−7 + 10−10d3 and Pm(d) = kd, in
Joules, where d is in meters, scaled from our simulation as described
earlier. Note that we are comparing the power usage of greedy rout-
ing paths before and after mobility throughout. Situations in which
greedy routing paths could not be found were discarded in order to
produce a baseline evaluation of mobility, despite the fact that it is in
precisely those discarded cases that mobility will perform the best.
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Figure 9: Performance improvement of mobility control under
different α values.

We first evaluate the effectiveness of mobility control for a wide
range of communication environments. We control this effect by
varying the value of α, the exponent of path loss and power depen-

dency on distance. Figure 9 shows the performance improvements
of unconstrained and constrained mobility control. The x-axis is the
exponent while the y-axis is the percentage improvement computed
as 100∗(E−Em)/E, where E is the energy cost of the routing path
before mobility control and Em is the energy cost of the path after
mobility control. For constrained mobility control, as we increase
α from 2 to 6, the improvement is increased from around 10% to
around 50%, translating into a potential improvement in lifetime of
from 10% to 100%. The performance improvement when there is no
connectivity constraint is even higher (note that the connectivity of
communicating neighbors is always maintained). We observe that
the typical performance improvement when there is no connectiv-
ity constraint almost doubles that with the connectivity constraint.
One conclusion we can draw is that mobility control will be more
effective in improving power efficiency for larger values of α.

 0

 10

 20

 30

 40

 50

 60

 4  6  8  10  12  14  16  18  20

Pe
rc

en
t I

m
pr

ov
em

en
t

Average Number of Neighbors

Unconstrained
Constrained

Figure 10: Effect of node density (number of neighbors) on per-
formance improvement.

Network density, expressed through average number of neigh-
bors, also plays a role in the effectiveness of mobility control. Fig-
ure 10 shows the result for α = 3. We observe that with increas-
ing density, the performance improvement decreases. This is as ex-
pected given that as density increases, greedy routing finds paths
that more closely approximate the straight line. Thus one conclusion
we can draw is that mobility control will increase in effectiveness as
the density and regularity of networks decreases. As network den-
sity increases, it is likely that the requirement that relay nodes not
lose connectivity with their static neighbors will become less es-
sential. This may justify the use of unconstrained mobility, which
produces robust energy savings even for highly dense networks.

The previous results evaluate only the total energy consumption
of a path. However, a path becomes disconnected if any one of the
nodes runs out of battery. From this perspective, mobility control
has the further advantage that since one of its functions is to pro-
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Figure 11: Distribution of distance moved.

duce paths with equal hop length, the problem of premature path
disconnection due to imbalanced power usage along a path is re-
duced. A potential problem with this claim however, is that nodes
may move varying total distances, thus consuming unequal amounts
of mobility energy. In other words, it could be possible that an un-
equal communication burden be reduced at the expense of unequal
mobility energy cost. Figure 11 shows that the distances traveled by
mobile nodes are quite balanced. We do not observe the heavy tails
that would indicate some nodes spending an inordinate amount of
energy on mobility relative to average.

Next, we will summarize the trade-off between mobility energy
cost and communication energy cost. We assume that nodes com-
municate with their neighbors during mobility periods as if they are
aware of the maximum distance to their neighbor over the period
and send at the exact power required. In a realistic setting how-
ever, this is not possible and nodes may do one of two things. First,
they may send traffic to a neighbor during mobility periods as if it is
r/2 + di units away, where di is the separation from the neighbor
during the previous quiescent period. The alternative is that nodes
send the coordinate of their target point before they begin moving.
In this way, every pair of neighbors can determine the maximum po-
tential separation between them over each mobility period and send
at the appropriate minimum power level. As we will see, the tran-
sient period before the network converges is relatively short, so such
details will not affect the salient properties of our simulation results.

The total energy usage was calculated using our previously de-
scribed transmission power model with a path loss exponent of α =
3 for a 10 Kbps flow1 along a path of mobile relays approximately
1 Km long. Each maneuvering period lasts 10 seconds and during
these periods, a node typically moves no more than a meter, result-
ing in reasonable speeds of about 0.1 m/s. We ran a trace of the
evolution of the system under unconstrained mobility and another
under constrained mobility. These were distinct network instantia-
tions, resulting in the disparate total power usage.

Our results are shown in Figure 12. The slope of the lines is the
energy used per MB. We can see that the slope of the line corre-
sponding to the static network is always greater than the slope of the
lines corresponding to the mobile networks, as expected. Note that
also consistent with earlier simulation results, the slope of the con-
strained mobile traces shown in part (b) exhibits proportionately less
decrease from the static case than the unconstrained mobile traces
shown in (a). The higher slopes of the mobility traces close to the
origin are due to the energy used on movement before convergence.
We can see that the energy usage of the mobile network is substan-
tially higher than that of the static network in the early stages of its
development, meaning that mobility can incur high energy penalties
if a flow is short-lived.

However, there is a number of bits sent after which the energy
usage of the static network permanently outstrips that of the mobile
network. For flows sending more than this number of bits, mobility
saves energy. We plot this crossing point in part (c). Clearly, the
value of the crossing point depends on the cost of mobility. As mo-
bility becomes more expensive, the crossing point becomes larger.

110 Kbps is a rate appropriate for minimal voice streaming.

Another feature to notice is that the crossing point is always lower
for constrained mobility than it is for unconstrained mobility. This
is due to the fact that the nodes move less distance and converge
faster to their final positions. So we can see distinct advantages to
constrained mobility besides the intended functionality of preserva-
tion of path connectivity with static neighbors. First, a performance
improvement is achieved for a smaller amount of traffic sent than in
unconstrained mobility. Second, a smaller maximum energy penalty
for prematurely ending flows is incurred than in unconstrained mo-
bility. The disadvantage to constrained mobility is of course that the
energy savings to be gained are more modest than they are through
unconstrained mobility.

4. MOBILITY CONTROL FOR NETWORK
WITH MULTIPLE FLOWS

Controlled mobility can also be applied to a network consisting of
multiple flows. For nodes that are on the path of only one flow, the
averaging algorithm described in the previous section is still valid;
that is, in each step a relay node moves to the average position of
its two neighbors. However, in a network with multiple flows, some
relay nodes will be on the routing paths of multiple flows; we call
such nodes junction nodes. Applying the averaging algorithm from
the previous section in the presence of junction nodes can raise sev-
eral issues.

4.1 Issues of Multiple Flows

j

1

S 2 D2

D1

i

S

Figure 13: Illustration that moving to average can cause junc-
tion nodes i and j to disconnect, where i and j are on the paths
from S1 to D1 and S2 to D2.

The first issue that arises in the application of averaging to multi-
flow networks is that junction nodes may become disconnected from
their communicating neighbors. An example of this is shown in Fig-
ure 13. Nodes i and j start out separated by the maximum commu-
nication radius. As soon as one of them moves toward the average
of its neighbors, connectivity between them is lost.

qp

Figure 14: Effect of α on the optimal configuration; the point p
is the average of the four empty circles, while the point q is the
center of the minimum enclosing circle of the four empty circles.

The next issue is that the optimal position of a junction node may
not be the average of its neighbors. This is the case because the op-
timal position of a node serving as a relay between more than two
neighbors depends on the power model. Consider the power model
P (d) = dα. For α = 2, we can show that the energy minimiz-
ing position for a relay node between multiple sources and desti-
nations carrying equal amounts of traffic is always the average of
the positions of its neighbors. However, this is only a special case.
For α > 2, the average is no longer always an optimal solution.
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Figure 12: Trade-off between mobility energy cost and communication energy cost.

Figure 14 illustrates this point with an example of placing a single
relay between four nodes. To minimize total energy usage under
a cost function quadratic in distance, the optimal point is p; but as
α → ∞ the optimal point approaches the point q which minimizes
the distance of the maximum distance node. This point q lies at the
center of the smallest circle which contains all the nodes i.e., the
point minimizing the l∞ norm. Keep in mind however, that for non-
junction nodes, the average of the neighbors’ positions is the energy
minimizing point for all convex energy cost functions, as we showed
in the previous section.

Another reason that the average is not in general the optimal tar-
get point is that a single link to a neighbor may be on any number of
paths, and further, there may simply be different amounts of traffic
along different flows. We need to weight the importance of neigh-
bors by the amount of communication done with them. Note that
in a line topology however, the weights of neighbors of a relay are
equal due to flow conservation. Thus, in order to define a general
scheme capable of adapting to these varying optimality conditions,
we must devise an algorithm that yields an optimal configuration
under varying power usage environments and which allows flexible
weighting.

4.2 Mobility Control for Multiple Flows
To address the above two issues with multiple flows, we gen-

eralize the averaging algorithm in two ways. First, for a general
power cost function and number of neighbors, instead of having
nodes move toward a known minimizer, as we were doing in the
line topology by moving toward the neighbors’ average, nodes must
now descend along a local-minimization direction in order to de-
crease communication cost. Our descent direction algorithm prov-
ably converges, but we omit the proof here. For a large class of
power functions, the descent direction can be computed easily us-
ing only local information; even further, such algorithms can be ex-
tended to be adaptive to channel conditions such as multipath and
interference.

More precisely, assume that the link cost function of a junction
node to its i-th neighbor is Pi(di). Assume that the relative amount
of traffic to and from neighbor i is wi. For example, in Figure 13, if
each source sends the same amount of traffic to its destination, the
weight of link ij is 2 while the weight of the other links is 1. Then
the descent direction can be computed as ∆x = xn − xo, where xo

is the current position of the junction node, and xn can be computed
as follows. Let x(k) denote the k-th dimension of the vector x. We
have

x(k)
n =

∑n
i=1

wi

di

∂Pi

∂di

x
(k)
i

∑n
i=1

wi

di

∂Pi

∂di

,

where xi is the position of the i-th neighbor.

For the particular power function P (d) = a + bdα, we have

x(k)
n =

∑n
i=1 wid

α−2
i x

(k)
i

∑n
i=1 wid

α−2
i

.

Note that when α = 2 and all neighbors have the same amount
of traffic, this descent direction is a constant pointing directly to the
average of the neighbors’ positions. In a line topology with any
α > 2, the optimal configuration of relays is at the average of their
neighbors but the descent direction is no longer a constant. This
results in a curved path leading to the same eventual destination as
averaging. Thus the previous averaging algorithm is just a special
case of this more general descent algorithm. For α > 2, nodes must
locally follow the descent direction with sufficiently small step size
to guarantee convergence. For line topologies however, a small opti-
mization is found in simply having nodes move toward the average
of their neighbors regardless of the value of α, resulting in their
moving along a shorter path before convergence than using the gen-
eral descent direction.

To address the disconnection issue, we impose a pairwise con-
straint on every moving node. The pairwise constraint, shown in
Figure 15, holds between two potentially mobile nodes that are neigh-
bors. It makes explicit the intuition behind the disconnection impos-
sibility proofs for the single path case by dictating that in order to
stay connected to a neighbor, a node must not move outside the disk
of radius r/2 centered at the midpoint of the line between itself and
that neighbor. A separate pairwise constraint is enforced for every
mobile neighbor, thereby restricting a node’s motion to the inter-
section of a number of disks. The less restrictive static constraint
that a node must stay within communication range r of all of its
non-mobile neighbors may also be enforced. A node is potentially
mobile if and only if it is actively communicating.

This pairwise constraint in conjunction with the static constraint
guarantees that all pre-existing connectivity is preserved throughout
any mobility.

D1

D2

S 2
r/2

i

S

j

1

Figure 15: Illustration of pairwise constraint: nodes i and j may
not move outside of their respective shaded regions.

THEOREM 6. If the pairwise constraint is satisfied, communi-
cating neighbors will not become disconnected.
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As an illustration of the generality of this updated scheme, note
that in the case of a single flow, merely moving to the average of
one’s neighbors implicitly satisfies the pairwise constraint.

Since moving to the average for the general case may not satisfy
the pairwise constraint for junction nodes (nodes that are on multiple
flows), our algorithm has every junction node move as far as it can
within its allowable region; namely the intersection of the allowed
disks defined by pairwise constraints with every mobile neighbor
and static constraints due to every non-communicating neighbor.

One potential concern in the use of the pairwise constraint is that
it may hamper a node from reaching its optimal position. How-
ever, our observations show that the pairwise constraints are almost
never active at system convergence. Thus, in practice, both the non-
junction nodes and junction nodes are not held back by the pairwise
constraints; as a result our multiflow algorithm leads in most cases
to a globally optimal configuration of relay nodes.

Before we proceed to empirically evaluate the performance of the
multiflow algorithm, we observe that our descent algorithm has a
desirable self-adaptive property. That is, although this algorithm is
completely uniform, namely each node runs the same algorithm, in
regions of space containing multiple flows, all nodes move as far as
they can along the descent direction defined by the positions of their
neighbors and weights determined by traffic volume while never vi-
olating their pairwise constraints; on the other hand, in regions of
space containing only one flow, nodes move to the same target points
as they did in the single flow algorithm as if they are unconstrained
and their neighbors unweighted. This self-adaptive property means
that there need be no global coordination such as ordering a global
mode change from multiflow mode to single flow mode. Such local
self-adaptation means that our algorithm can respond to changes in
the environment, evolution of the network, and traffic events auto-
matically, be it the path loss exponent changing as a node moves, a
node changing from a junction node to a non-junction node, or large
fluctuations in traffic volume.

4.3 Evaluations

(a) initial configuration (b) final configuration

Figure 16: Comparison of network configurations before and
after mobility control.

In this subsection we evaluate the mobility control algorithm for
multiple source-destination pairs. The settings of these evaluations
are similar to those of the previous section, except that now we have
multiple communicating source-destination pairs. As a simplifying
assumption, all flows carry the same amount of traffic. Thus, in our
algorithm, the number of flows passing through both a node and one
of its neighbors determines the weight assigned by the node to that
particular neighbor.

We first present the network configurations before and after relay
nodes move to their new positions. In these figures, only communi-
cating nodes are shown. The network in fact has a uniform density
of nodes. Figure 16 (a) shows the initial configuration of a network
with 10 randomly chosen source-destination pairs, and Figure 16
(b) shows the configuration after the mobility algorithm converges.
We can clearly see that the mobility control algorithm straightens
the lines of communication. For a flow sharing no nodes with other

flows (see the flow in the lower left corner), the behavior of the mul-
tiflow algorithm is the same as that of a single flow.

While the descent algorithm theoretically performs better than
averaging method, we have found empirically that the method re-
sults in at best scant power savings over the far simpler averaging
rule. This is because there are few junction nodes, these junction
nodes typically have at most three neighbors, and our power ex-
ponents used are relatively small (3 to 6). In these cases, the tar-
get point computed with averaging is very close to the target point
reached through the descent direction. For this reason, we use av-
eraging throughout our multiflow evaluations. In nonuniform net-
works where certain nodes may be choke points for many flows from
many asymmetrically located neighbors, we expect the performance
improvement from the descent method to be more marked.

We now quantitatively evaluate the performance gain of mobil-
ity control for multiple flows. Figures 17 (a) and (b) show the
percentage gain in energy efficiency of mobility control of a net-
work with 10 source-destination pairs, under constrained and uncon-
strained mobility. We observe that even under constrained mobility,
the performance improvement is still substantial. The performance
improvement is measured as the percent reduction from the energy
cost required to send one bit between each source-destination pair
in the original network configuration to the cost in the converged
post-mobility network. Note that we test here on relatively dense
networks communicating over greedy paths. The performance im-
provements will be substantially higher on sparser networks and on
non-greedily determined paths.

Finally, we evaluate the trade-off between mobility energy cost
and communication energy cost in networks with multiple source-
destination pairs. Figure 17 (c) shows the results for a 15 source-
destination pair network. The system traces for the multiflow net-
work look very similar to Figures 12 (a) and (b) so we omit them
here. The crossing times show similar behavior to the single flow
case in that the cost of mobility is paid off with a small amount
of traffic. As before, the constrained rule realizes its performance
gains earlier than the unconstrained rule realizes its comparatively
larger gains. The crossing times are larger than in the single flow
case because there are now more flows, but still correspond to sim-
ilar numbers of bits per flow before mobility results in performance
gains.

5. MOBILITY CONTROL FOR CONCAST
NETWORKS

In this section we apply our mobility control algorithm to the mul-
tiflow scenario called concast in which the destination of all flows
is a single sink node. Concast matches many notable sensornet ap-
plications. For example, concast describes traffic patterns of appli-
cations that involve data aggregation or reporting from distributed
sensors to a central sink, e.g., [6]. For sensor networks running a
geographic hash table [20], all data events of a particular type will
be stored at a single location in the network. The traffic pattern we
will see in this case is a multisink concast.

5.1 Mobility Control in Concast Network
Concast is simpler than the general multiple source-destination

pair case because of the single direction of traffic flow. In this case,
we can more easily determine the weight of each link. A junction
node need only keep track of the amount of traffic sent to it from
each of its upstream neighbors and assign these flow rates directly
to its upstream weights. The weight of the downstream neighbor is
then set to be the sum of all the upstream weights. It is clear that the
optimal position of concast junctions sags toward its sink side.

Below, we evaluate the performance of mobility control for con-
cast. The settings of the evaluation in this section are similar to those
of previous sections. We again send the same amount of traffic along
each flow so that the weight of an upstream neighbor is simply the
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Figure 17: Trade-off between mobility energy cost and communication energy cost for multiple unicast flows.

(a) initial configuration (b) final configuration

Figure 18: Network configurations before and after apply-
ing concast mobility control: a single concast session with 50
sources.

total number of flows passing through it. Accordingly, the weight of
the downstream neighbor is the sum of all upstream weights.

We first evaluate the scenario of a single sink which can be a
good model for a surveillance network with a global sink. Figure 18
shows the network configurations before and after applying concast
mobility control. The network has a single concast session with 50
sources. We observe that the initially highly irregular concast tree
converges to a sharp and regular tree with nodes evenly spaced along
its branches.

The effect of the weighting in our algorithm can be seen at the
node connected directly to the left of the sink in the final configura-
tion. This node aggregates three flows into one outgoing link. With-
out weighting, the node would converge to a position much closer
to its three upstream neighbors than to the sink. However, because
the weight of the downstream neighbor is equal to the sum of the
weights of all upstream neighbors, the node converges instead to a
central location. Another example of the effect of weighting can be
seen in the node connected directly above the sink. This node has
two upstream neighbors: the one at left aggregating 10 flows and
the one at right aggregating 1. We can see that the converged posi-
tion of the node is only slightly affected by the presence of its right
upstream neighbor.

Figures 19 (a) and (b) quantify the performance gain of mobil-
ity control on concast networks. We observe that compared with
random source-destination pairs, concast has slightly lower perfor-
mance gain, due to concentrated traffic patterns. However, the per-
formance gain is still substantial. This substantial improvement in
communication cost translates into a lax design requirement for low
mobility cost. Figure 19 (c) shows the trade-off between mobility
energy cost and communication cost. We observe similar behaviors
as those of multiple source-destination pairs. A notable difference
however, is that performance gains are realized through mobility af-
ter relatively little traffic has been sent. This concast consists of 50
flows, yet exhibits crossing times as little as 10 times those of the
single flow scenario. This makes sense if one considers the fact that
in concast, many nodes are junction nodes, and their movement si-

multaneously helps many flows. Hence, in concast, small amounts
of mobility tend to result in strikingly large performance gains.

(a) initial configuration (b) final configuration

Figure 20: Network configurations before and after mobility:
multisink concast without connectivity constraint: each concast
has 30 sources.

Next, we evaluate the performance improvement of mobility con-
trol when there are multiple concast sinks. This can be a good model
for many scenarios, for example GHT [20]. Figure 20 shows how
configuration changes through mobility and Figure 21 charts the
crossing times. We observe similar behaviors to those of a single
concast sink.

Overall, these results show that our algorithm is very robust against
diverse network environments, achieving performance gains in a
wide range of scenarios.
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Figure 21: Crossing time: 3 concast sessions with 15 sources in
each session.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented the first mobility control scheme for

improving communication performance in wireless networks. Our
full mobility scheme is completely distributed, requiring each node
to possess only local information. The scheme is self-adaptive, be-
ing able to transparently encompass several modes of operation. In
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Figure 19: Performance of concast: using averaging for networks of a single concast session, with the session having 50 sources.

particular, we showed how our single scheme improves power effi-
ciency for one flow, multiple flows, and many-to-one concast flows.
In addition to empirical verification, we have also formally proved
the correctness and convergence of our scheme under mild condi-
tions. We also provided evaluations of the feasibility of mobility
control and showed that there are many scenarios where controlled
mobility can provide substantial performance improvement.

Although the full strength of controlled mobility can only be demon-
strated by completely functional prototypes, the initial design and
analysis in this paper show that mobility can be used as one of the
effective control primitives to improve network performance.

The focus of this paper is on power efficiency but one can envi-
sion that controlled mobility can be also used to improve many other
aspects of network performance. The proposed algorithmic frame-
work in this paper can serve as starting point for such further explo-
rations. For example, one possibility with good potential is to use
controlled mobility to improve wireless network capacity. Looking
beyond communication, we imagine that our mobility algorithms
could be used in conjunction with trajectory-based routing [18] or
other routing methods as a communication-driven approach to dis-
tributed formation of arbitrary spatial layouts of nodes.

In closing, we have elucidated some of the potential uses of con-
trolled mobility in improving network communications. This inter-
face between networking and control theory has been little explored
until now and is sure to be a promising and important area for future
exploration.
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