
Towards Model Based Adaptive Control for

the Watergy Greenhouse

–

Design and Implementation

Sebastiaan Leonardus Speetjens



Promotor:

Prof.dr.ir. G. van Straten
Hoogleraar Meet-, regel- en systeemtechniek
Wageningen Universiteit

Copromotor:

Dr.ir. J.D. Stigter
Universitair docent, leerstoelgroep Meet-, regel-
en systeemtechniek
Wageningen Universiteit

Leden van de promotiecommissie:

Dr.ing. M. Buchholz
Technische Universität Berlin, Deutschland

Prof.dr.ir. P.M.J. van den Hof
Technische Universiteit Delft

Prof.dr. O. van Kooten
Wageningen Universiteit

Dr. C. Stanghellini
Wageningen Universiteit en Researchcentrum

Dit onderzoek is uitgevoerd binnen de onderzoeksschool Production Ecology
and Resource Conservation.



Towards Model Based Adaptive Control

for the Watergy Greenhouse

–

Design and Implementation

Sebastiaan Leonardus Speetjens

Proefschrift

ter verkrijging van de graad van doctor

op gezag van de rector magnificus

van Wageningen Universiteit,

Prof. dr. M.J. Kropff

in het openbaar te verdedigen

op maandag 23 juni 2008

des morgens te elf uur in de Aula



S.L. Speetjens, 2008. Towards Model Based Adaptive Control for the Watergy
Greenhouse – Design and Implementation

Ph.D. thesis Wageningen Universiteit, Wageningen, The Netherlands
with summaries in English and Dutch.

Keywords: Watergy, Model Predictive Control, Online Parameter Estimation,
Greenhouse Control

ISBN: 978-90-8504-949-4



Preface

This thesis is the final work of the my PhD study at the Systems and Control

Group of Wageningen university. This PhD study was part of the Watergy

project that aims at the development of a technology platform for decentral-

ized supply of energy, water and food. The Watergy project is funded by the

European Union under contract number NNE5/2001/683. The partners in

the project were the Technical university in Berlin (TUB), research station

Las Palmerillas, Almeria, Spain and two groups of Wageningen University and

Research Center; Wageningen UR greenhouse horticulture and the Systems

and Control Group.

This thesis consists of six chapters including introduction and conclusions.

Three of the four main chapters are accepted for publication by international

journals. These chapters describe the methodic design of a measurement and

control system, a lumped parameter greenhouse model, a way to adapt the

parameters online and the optimal control applied to the Watergy greenhouse

system.

Wageningen, May 2008

Bas Speetjens
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Introduction



The research described in this thesis is part of the Watergy project that aims

at the development of a technology platform for decentralized supply of en-

ergy, water and food. The Watergy project consists of two parts; one is to

study possibilities of local energy savings and waste water treatment in an ur-

ban environment. The second part of the project studies a closed greenhouse

where year round plant production is combined with water desalination. The

primary focus of our research is on the second part. The Watergy greenhouse

has the potential to improve water use efficiency in agriculture considerably

as will be demonstrated in this thesis. The importance of increasing water

use efficiency in agriculture is first emphasized in this chapter. Following

that, the second part of this chapter describes the Watergy project in more

detail and it explains the overall functioning of the two prototypes that were

built in Spain and Germany. A brief overview of alternative systems with the

same goals as the Watergy greenhouse is presented in the third section. This

chapter ends with a motivation for the control system that was developed for

the Watergy greenhouse (which lies at the heart of our studies), followed by

a brief outline of the thesis.

1.1 Scope and motivation

A human-being needs 2-4 liters of drinking water per day. Much more water

is needed to produce a persons daily food, depending on his/her diet in the

range of 1000 to over 5400 liters per day (Renault and Wallender, 2000).

Many areas in the world have a limited amount of water available. Figure 1.1

shows a world map that depicts the water stress calculated with a global water

model. The figure depicts the water consumption compared to the minimum

river discharge per region, the so called consumption-to-Q90 ratio1 (Alcamo

et al., 2007).

From figure 1.1 it can be observed that there are large areas with severe

water stress and according to many studies this problem will get worse in the

future due to population growth and climate change. Alcamo and Henrichs

(2002) studied the effects of global climate change to water stress in the world

1Consumption is the average monthly volume of water that is withdrawn, used, evapo-
rated and not directly available for downstream users, and Q90 is a measure of the monthly
river discharge that occurs under dry conditions (monthly discharge is higher than the Q90
value 90% of the time).
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Figure 1.1: Water stress in the world (based on consumption-to-Q90 ratio
(Alcamo et al., 2007))

by looking at changes in water availability and water withdrawals (due to for

example population growth, changes in precipitation, etc). Different scenar-

ios were simulated; in the worst case scenario, 13% of the worlds watershed

surface and approximately 2.6·109 people show a higher sensitivity to global

climate change than others. In the best case scenario, still 7.4% (and about

1.4·109 people) is affected. Another study (Vörösmarty et al., 2000) shows

that the population that lives under severe water stress will rise from 1.2·109

(1985) to over 2·109 (2025). In addition, the number of people that are de-

pendent on irrigation for agriculture will rise from 1.9·109 to over 3·109. The

mildest conclusion that can be drawn from these figures is that there is a

tendency for the water related problems to increase.

One of the consequences of a decreasing water availability is an increase

of water related conflicts and wars. Gleick (2006) gives an extensive overview

of water related wars and conflicts over the past 5000 years. Although his

study does not only focus on wars on water supply but also on hydro-energy

(amongst other matters), it becomes clear that the number of conflicts is

3



bound to increase steadily. Examples include local conflicts over wells and

rivers as well as international conflicts over water sources like rivers and lakes.

Since the water stress will increase in the future, it is therefore likely that the

number of conflicts over water sources also increases.

Productive agriculture in areas with severe water stress is not possible

without irrigation. Agriculture accounts for approximately 70% of the water

use (and even up to 80% in developing countries) (FAO, 2007a). Since 1960,

the irrigated area in the world has gone up from under 150·106 hectares to

almost 300·106. Figure 1.2 shows a map of all irrigated areas in the world.

The water withdrawals for agriculture as a fraction of the total available

amount of water is depicted in figure 1.3. Water withdrawals are especially

high in the Middle East, parts of Asia and Northern Africa. To decrease

the water demand in agriculture the water use efficiency2 clearly should be

substantially enhanced (Postel, 1998, 2000; Gleick, 2003; Rijsberman, 2006;

Renault and Wallender, 2000). Technical solutions such as drip irrigation

have great potential for water savings (Postel et al., 2001).

Figure 1.2: Area equipped with irrigation equipment as a percentage of cul-
tivated land (2003)(FAO, 2007b)

Apart from reducing our water use, desalination is also a possibility to

alleviate fresh water shortage. The production of desalinated water is rising

2water use efficiency is the ratio of dry matter gained to water lost by evapotranspiration.
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Figure 1.3: Agricultural water withdrawals as a percentage of total renewable
water resources (2003) (FAO, 2007b)

fast (figure 1.4). At the end of 2004, the total desalination capacity was

estimated to be 35.6 · 109 l fresh water day−1, produced by a total amount

of 10402 desalination plants. On January 1st 2005, new plants with a total

capacity of 21.4 · 109 l day−1 were either ordered or already under construction

(Wangnick, 2005). This clearly shows that the methods for desalination have

a promising future ahead.

With the picture as sketched in the above in mind, it is clear that some-

thing should be done to improve the current water situation in many parts

of the world and to reduce future risks of water shortage. Since agriculture

is one of the major water consumers, much is to be gained when water use

efficiency is improved upon. The FAO made an assesment to the applicability

of greenhouses for vegetable production (Zabeltitz, 1999), and concluded that

greenhouses have important advantages over open-field vegetable production:

• protection from excessive strong rainfall, high global radiation and wind

• collection and storage of rainwater

• water-saving by drip-irrigation

• water-saving due to lower radiation and wind levels

• yield improvement; clean crops

5



Figure 1.4: Cumulative capacity of desalination plants in the world. (Wang-
nick, 2005)

• erosion is reduced by shielding the soil from strong rain

• plant protection is easier as pesticides are not washed of by strong rain

• work with the crop is (mostly) independent from weather influences

Especially in dry climates, additional advantages are:

• Increased humidities inside the greenhouse reduce water use

• Protection from sandstorms

• Water collection and storage reduces water shortage in dry periods

• Large temperature variations between day and night are leveled out

Also the report recognizes that often brackish (ground) water is available that

can be desalinated by solar energy.

The major disadvantage of using greenhouses in warm, semi-arid regions

is the temperature inside that easily exceeds the outside temperature. This

limits the growing season to autumn, winter, spring, as it gets too hot in-

side the greenhouse in summer to grow plants. The Watergy project is an

initiative to improve water use efficiency in horticulture as well as extending

the growing season by applying greenhouse cooling. This thesis is part of the

project, which is summarized in the next section.
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1.2 The Watergy Project

The Watergy project aims at integrating decentralized functions for supply

of energy, food and water. The integration of these functions should result

in systems that make the best possible use of natural resources. The concept

was first described by (Buchholz, 2000). In the Watergy project, two proto-

types have been designed and built: a greenhouse in Southern Spain, and an

energy preserving building with an integrated glasshouse compartment built

in Germany.

1.2.1 Watergy greenhouse in Spain

An experimental greenhouse with a ground area of 14×14 m was built in

Almeria, Spain (see photograph in figure 1.7(a)). Figures 1.5 and 1.6 give a

cross-section diagrams of the greenhouse and its functionality during day and

night. The photographes in figures 1.13 to and 1.17 give a visual impression

of the inside of the greenhouse and the equipment used to control it.

The most remarkable feature is the double walled tower (4) with a height

of 10 m. During the day, the sun heats the (humid) air inside the plant

compartment (1). The heated air rises through the inner roof compartment

(2), into the outer duct of the tower where it is further heated by the sun

(3). As the tower is closed at the top, the air does not leave the greenhouse

but is cooled with a heat exchanger in the central duct of the tower (4). The

coolant is stored in a heat buffer (7). The cooled air flows back into the

warm greenhouse (5), closing the cycle. During the night, the heat exchanger

heats the air and the air movement reverses; hot air rises through the heat

exchanger to the top of the tower (9, 10) and flows down through the outer

duct (11). The cooled cooling-water returns to the storage for later use (12).

Since the air cycle in the greenhouse is closed, water evaporated by plants

stays inside. During the day, warm, moist air flows into the tower, where

the moisture condenses against the cold surface of the heat exchanger. To

facilitate water desalination it is possible to spray water on the a so-called

inner roof (6). The inner roof has been constructed in such a way that the

water that evaporates from the inner roof follows the air flow and condensates

in the heat exchanger. If this facility is used, clean water is collected from

the bottom of the tower.

The crop (first green bean, later followed by okra) was grown in soil with
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a balanced texture of about 20-30 cm deep. A sand bed with a thickness of

about 10 cm was placed on top of the soil. Drip irrigation was used, controlled

by an autonomous fertigation system. The drain water was recovered and

recycled. For more information see Buchholz and Zaragoza (2004), Zaragoza

et al. (2007) and www.watergy.info for a general description and Jochum and

Buchholz (2005) for a detailed, static model of the system.

The condensate coming from the heat exchanger and from the roof is

recovered, the quantity is measured automatically and it is used again for

irrigation. Temperature and humidity are measured at all vital places inside

and outside the greenhouse and technical installation. Other quantities that

are measured are outside global radiation, wind speed and -direction and the

CO2 concentration. The control inputs for the system are:

• pump speed for the coolant (continuous control)

1

2

4

5

46 6

7

3

Figure 1.5: Functioning of the Watergy greenhouse during the day
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• ventilator to circulate the air through the system (on/off control)

• sprinklers in the inner roof compartment (on/off)

• in/outlet positions for the cold storage

All pumps and valves are controlled by data loggers that are connected to

a personal computer on which a database runs. This enables implementation

of controllers in several software packages, including Matlab and Labview. See

Janssen et al. (2004) and chapter 2 of this thesis for a detailed description of

the control systems layout and equipment.

9

10

11 11

12

8
8

Figure 1.6: Functioning of the Watergy greenhouse during the night
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1.2.2 Watergy house in Germany

The aim of the Watergy building in Berlin is to study ways of making buildings

self sufficient with respect to energy and water use. The control of this house

has not been part of this thesis, although the methods described in this thesis

offer perspectives for use in the Watergy house. As the house is part of the

Watergy project a short introduction is given here.

The building has been constructed based on the known concepts of passive

house insulation standards and solar based near distance heating systems from

seasonal heat storages. A greenhouse is placed in front of a transparent wall

at the southern side of a building and acts as a modified double facade. A

solar heat collector is placed on the roof and inside the house a heat exchanger

and heat storage are installed to meet energy demands over the seasons. A

picture of the house is shown in figure 1.18(a). The appendix shows some of

the sensor and actuators used in the house.

Compared to collector systems using just dry air, the heat transfer from

the collector to the air and from the air to a heat exchanger is increased

by the process of water evaporation and condensation. The greenhouse is

part of the energy collector and offers advantages as a supplementary living

space and for integrated food production. Grey water3 from the building is

used for irrigation in the greenhouse. By using evaporation and condensation

processes, the water is purified and could be re-used in the building. Together

with the collection of rainwater, this is a basis for a self sufficient system that

does not need connections to water supply and a sewage system. The house

is build such that the air and energy can flow through it in many ways, which

are selected by switching valves and air flaps. The appendix gives an overview

of all operation states.

3”Grey water” is the term for all the water that has been used in the home, except water
from toilets.
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(a) Watergy greenhouse, spring 2004.

(b) Watergy house, spring 2005.

Figure 1.7: The two Watergy prototypes
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1.3 Systems with similar goals as the Watergy green-

house

The Watergy greenhouse has two major functions, being growing of plants and

desalination of water. Both functions have a long history as separate systems,

but also attempts have been made in the past to integrate both functions into

one system. Some systems that focus on greenhouse cooling can potentially be

used for desalination too. In this section examples of systems for desalination

and/or cooling are presented.

1.3.1 Desalination systems

The least advanced way of water desalination with solar energy is the single

effect still basin (Fath, 1998a), illustrated in figure 1.8. It consists of a water

basin covered by a transparent cover. The basin is filled with salt or brackish

water, which is heated by the solar radiation. The water evaporates from

the basin and condensates on the cover. After condensation, the water flows

along the cover surface and is collected on the sides.

Glass cover

Distillate drain

Brine drain

Filling device

Insulation

Brine

Figure 1.8: Single effect solar still (Fath, 1998a)

The efficiency of a single effect basin is not very high. Examples of im-

provements are (Fath, 1998a): (1) Cooling of the cover (to increase the amount

of condensation). (2) Treatment of cover surface (to increase condensation

yield by avoiding formation of droplets). (3) Use of dye in the water (to im-

prove the absorbance of solar heat into the water). (4) Adding an additional

condenser to the solar still (see figure 1.9(a)). When an additional condenser

is added to the solar still, the system works similarly to the Watergy green-

house (apart from the plants): hot, humid air is transported upward, to the

additional condenser (by natural convection or by fan). In this condenser the

12
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air is cooled, so the water vapor condenses and the air falls back, down into the

still. A review of water desalination systems with humidifying-dehumidifying

is given by Bourouni et al. (2001). They argue that this type of desalination

system is well suited for smaller installations, especially when heat is available

at low cost. The combination of the desalination system with a greenhouse

could be a good way to increase the economic viability.

Muller-Holst et al. (1998, 1999) describe an optimized distillation system

that consists of one box with both evaporator as well as condenser in it (figure

1.9(b)). This results in a robust system that runs with only three days of

maintenance per year.

Still

Brine

Condenser

Distillate

(a) Solar still with additional con-
denser (Fath, 1998a)

Sea water

Pump

Solar collector

Condenser

Evaporator

Brine reflux

Destillate

(b) Low Tech Desalination system (Muller-
Holst et al., 1998, 1999)

Figure 1.9: Two examples of solar stills

A way of cleaning polluted water with the use of solar energy and mem-

branes is described by Zwijnenberg et al. (2005). They study a system that

contains tubes of a membrane. Solar energy heats the water in the tubes and

creates the driving force for water evaporation through the membrane. This

system is capable of filtering polluted water from oil industries as well as sea

or brackish water.

1.3.2 Combined desalination and greenhouse cooling

The classical way to cool greenhouses in practice is with the pad and fan

system. The cooling effect of these systems is based on evaporation of wa-

13



ter, which makes this system particularly useful in regions with low relative

air humidities. However, this requires large amounts of water, which is of-

ten scarce in regions where cooling is needed. A combination of air cooling

and water recovery (and/or desalination) would improve the current practice

tremendously.

Davies (2005) describes an addition to the normal pad and fan cooling

systems; before the outside air is led through the evaporation pad, it is dried

by a salt solution. In this way, the cooling effect of humidifying the air

is enhanced. Compared to traditional greenhouses with fan and pad, the

maximum temperature is lowered by 5 ˚C. It is possible to produce the

desiccant (hygroscopic salt solution) from sea water (Davies and Knowles,

2006).

A more direct way of cooling is the use of cold water that is stored in the

sub-soil. In the Netherlands, efforts are made to ’harvest’ the energy that en-

ters the greenhouse in summer, store it in aquifers and to use the energy during

the cold winter. Several prototypes have been built and the first systems are

commercially available (www.innogrow.nl, www.kasalsenergiebron.nl). Ooteghem

(2007) found that energy consumption in a similar type of ’solar greenhouse’

will be half of that in traditional greenhouses and that crop production will

rise with approximately 40%. Although it is not the primary aim, these sys-

tems recover most of the transpired water in the coolers.

The idea to combine a solar still with a greenhouse is not new. Already

in 1961 Trombe and Foex (1961) described such a system. Although it is

an old idea, the concept has not yet gone beyond the experimental phase

(Chaibi, 2000b). A closed greenhouse with integrated solar water desalination

was developed and evaluated by Strauch (1985), and (Baytorun et al., 1989).

Experiments showed a water productivity of 2 to 2.5 l m−2
greenhouse d−1.

Fath (1998b) described a naturally ventilated greenhouse solar still with

waste heat and mass recovery. The concept consists of a greenhouse with

a chimney on top of it. Water basins are positioned between the roof and

the plants. Water in these basins is heated by solar radiation (the basins are

transparent for PAR, but absorb other wavelengths). From the basins, moist

air flows upward, through the chimney. In the chimney the air is cooled,

so the water condenses. The heat of air is partially recovered by the heat

exchanger in the chimney, where the inlet water is heated.

To recover water in a pad and fan cooling system, it can be combined with
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a condenser. The ‘Seawater Greenhouse’ follows this principle (Davies and

Paton, 2005a; Sablani et al., 2003; Davies and Paton, 2005b; Goosen et al.,

2003; Dawoud et al., 2006; Perret et al., 2005) . At one side of the greenhouse,

evaporative pads are installed (number 1 in figure 1.12). Air is drawn through

the pads into the greenhouse by fans (5). In the middle of the greenhouse,

a second evaporative pad (3) is installed to humidify the air further. The

condenser (4) is located behind this pad and uses cold seawater to condensate

the water out of the wet greenhouse air. To reduce solar radiation loads on

the greenhouse, the roof is equipped with filters to remove non-PAR light (2).

Davies and Paton (2005b) describe how the seawater greenhouse is improved

by placing pipes in the greenhouse roof. Through these pipes, the seawater for

the evaporator in the middle of the greenhouse is heated, so that evaporation

is increased. Also, this layer of pipes provides shading in the greenhouse.

CFD model calculation predict a water production in the range of 14.5 to

31.5 kg water m−2day−1) (Goosen et al., 2003).

The main disadvantage of the seawater greenhouse is that large (outside)

air volumes are required for cooling, making it impossible to supply the plants

with extra CO2 to increase crop growth. The commercially available closed

greenhouse systems are complicated and require (in the Netherlands) sea-

sonal heat storage, which is expensive and not possible in many regions. The

Watergy project makes an attempt to combine the advantages of low-tech,

open cooling systems with the advantages of closed greenhouses into one new

design.
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1.4 Watergy greenhouse control methodology

The previous section shows that much effort has been invested in designing

new systems for (combined) greenhouse cooling and water recovery (and/or

water production). Control of these (often complicated) systems has not been

studied extensively, however, although it is expected that an advanced control

method will increase the performance substantially. Control methods that are

currently often used in normal greenhouse practice, such as the use of low-

level PID controllers that draw their setpoints from heuristic rules inspired

by ‘normal’ use of the greenhouse, are not sufficiently able to deal with multi

criteria goals and couplings between the dynamics of the system. In addi-

tion, the consequences of the various couplings between state variables may

have large effects on the goal for which the system has been developed, while

conventional methods do not take accurate predictions of possible future rev-

enues into account. For example, it is easy to see that high temperatures and

humidity levels could improve water production (which may be our primary

goal), but we know that these requirements for optimal water production are

potentially harmful for plants. Another example for the case of the Watergy

greenhouse in Spain is the possibly limited amount of cooling liquid that is

available for air-cooling of the system. Of course, the cooling liquid should be

used in the best possible way as to maximize water production whilst guar-

anteeing a good climate for the plants in the greenhouse. In fact, these plants

are an important part of the dynamic climate behavior in the greenhouse be-

cause of their evapotranspiration and growth, thereby further complicating

the control task.

Let us further emphasize that model based dynamic control of the Watergy

greenhouse is not an easy task. The climate model developed in this thesis has

some 26 states, a number that is mainly due to the many compartments that

have to be taken into account to facilitate a fairly accurate prediction of the

greenhouse climate. Although one might argue that perhaps simpler models

could have been used, our findings substantiate the minimality of the proposed

model. To include this model, then, into a model predictive controller that

respects all the constraints of actuators, humidity levels, coolant levels, etc,

is quite a daunting task that might explain the limited amount of literature

that can be found on the subject.

With these considerations in mind, it was nevertheless decided to develop
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a model based controller for optimal control of the climate inside the Watergy

greenhouse that provides new setpoints for the actuators at a rate of approx-

imately once every 15 minutes. As argued, the use of a model enables the

controller to explicitly take the couplings and multi criteria goals into account,

which leads to a better performance of the system (more water production in

combination with a better environment for the plants). Unfortunately, this

method has a downside, which is the inevitable limited accuracy of the model

that is embedded in the algorithm. If the predictions of the model are not

accurate enough, then, of course, the control actions that are calculated are

not the best possible. Also, the model must be simple enough as to allow

for fast computation times so that new management strategies can be evalu-

ated quickly. These requirements put heavy constraints on the applicability

of model predictive control (MPC) in practice, especially in changing envi-

ronments such as a greenhouse climate that can vary considerably over the

course of one day.

One way to enhance the model fit of the possibly inaccurate model predic-

tion (and therefor the applicability of MPC in general) is to make some of the

lumped parameters in the model adaptive. This accommodates the possibil-

ity for the model to adapt itself to changing circumstances (like pollution of

the greenhouse cover, and plant growth). Since changes can occur on various

timescales (seconds, minutes, hours, days, weeks, etc), a choice was made for

the Watergy case to adapt to seasonal variations of certain plant parameters

that seem to affect the humidity balance, and thus the fresh-water produc-

tion of the greenhouse unit, most. Systems theory provides useful tools, such

as the well-known extended Kalman filter (Gelb (1974), for example), that

allow on-line ‘observation’ of the system, thereby interpreting the continuous

data stream from the temperature, humidity, and possibly other sensors into

changes of the model’s state and parameter values. Such an approach has

to our knowledge hardly been applied in greenhouse climate control and cer-

tainly not for the case of the Watergy greenhouse in Spain that was built as

part of the project. Admittedly, proper use and tuning of these sophisticated

types of algorithms may be difficult indeed and have in the past shown to

be rather subjective due to initialization errors, such as the improper speci-

fication of the various noise-levels that are assumed to underly the dynamic

climate behavior in the greenhouse (such as spatial inaccuracies) and, also,

the errors in the sensor readings that are corrupted by measurement noise.
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Nevertheless, we feel that the advantages of the adaptive approach taken here

are certainly worthwhile the research we are about to undertake in this thesis.

In addition, there is a certain elegance in our approach to the problem due to

its flexibility and inclusion of intelligence into the management decisions that

have to be taken for an optimal performance of the greenhouse unit.

Finally it must be mentioned that to point to a rather sophisticated solu-

tion for optimal greenhouse climate control of the Watergy greenhouse is one

thing, to build such an advanced control scheme is a completely different thing

and a very challenging task indeed. When consulting with various companies

on hardware that would be capable to achieve model-based optimal control

for the Watergy greenhouse unit in Spain, we found at a very early stage in

the project that these kind of systems simply do not exist on the market.

It was therefore decided to build an advanced control system (that is also

accessible over the internet) ourselves. Much, if not most, of the time in this

project was spend on design, implementation, and testing of the hardware –

both in situ and also from Wageningen University where most of the research

was conducted.

This introductory characterization of the challenges we have been fac-

ing in the Watergy project and also the motivation behind the design of the

two buildings, have dominated our research agenda over the past four years.

Clearly, greenhouse design, management, and climate control has many chal-

lenging aspects that need to be addressed – not only in this thesis, of course,

but also in future (international) projects that will be initiated on these sub-

jects.

Research questions

The main aim of this thesis is “to study a complete model-based control-design

and to move forward towards an experimental setup for adaptive, receding

horizon optimal control in the Watergy greenhouse”. Sub-questions related to

this aim are:

• Given the high computational demands of dynamic optimization, how

can the dynamic behavior of the climate in the Watergy greenhouse

be modeled with a relatively small number of states so that receding-

horizon optimal control becomes feasible for a practitioner?
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• Into what extend does the currently available commercial hardware for

greenhouse climate and irrigation control facilitate adaptive receding

horizon control and, if it does not facilitate our demands, how can we

address this problem in the best possible way?

• Into what extend are the (lumped) parameters in the greenhouse model

changing over the seasons and what influence does this have on the

model fit?

• Given a choice for the goal function in the receding-horizon optimal

controller (which will be studied separately), what does the optimal

control pattern for the Watergy greenhouse look like?

• How does the optimal control pattern change if the model parameters

are changed online?

• What do we really gain if online parameter adaptation in receding hori-

zon optimal control is included?

1.5 Outline of the thesis

This thesis describes the development and application of a model based, adap-

tive control system for the Watergy greenhouse. The hardware (sensors, ac-

tuators and computer equipment) that was installed in the greenhouse and

the functionality of the control system are described in chapter 1. The com-

bination of hardware and software that is chosen enables flexible use of the

greenhouse, required for the research in the Watergy project.

The second chapter describes the development of a physics based model

that mimics the climate in the greenhouse. The model contains some lumped

parameters to avoid laborious modeling of the smallest details, so called ’min-

imal information modeling’. Of course, the values of these lumped parameters

are situation specific, hence they must be calibrated carefully. Calibration is

done with a controlled random search (CRS) algorithm that is used on partial

models, a method we will call ’estimation in parts’.

The lumped parameters change over time. To deal with that, an extended

Kalman filter (EKF) was introduced to estimate the time-varying parameters

over the year, as described in chapter 3. From the figures of the parame-

ter variation shown there, events can be deduced, for example the moment

21



that the plants were pruned, and the moment that the greenhouse roof was

whitened to reduce solar radiation loads on the greenhouse.

With the model and the adaptive mechanism in place, all requirements

are met to develop a model based controller. This process is described in

chapter 4. The gradient method is used to calculate the best possible control

actions to maintain the optimal climate inside the greenhouse. Goal functions

were varied, and the effect of this on the greenhouse climate is shown in this

chapter.

The final chapter contains the conclusions that can be drawn from this

study. The implications for horticultural practice and horticulture in semi-

arid regions are discussed.
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Appendix 1: pictures of the Watergy greenhouse

built in Almeria

Figure 1.13: Front of the Watergy greenhouse, spring 2004
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(a) Backside of the greenhouse; the heat storage tanks are positioned left shielded
from the sun by a cloth

(b) interior of the Watergy greenhouse, seen from above

Figure 1.14: Watergy greenhouse, spring 2004
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(a) View on the inner roof

(b) Interior of the Watergy greenhouse (c) The heat exchanger in the tower, be-
fore the tower was closed

Figure 1.15: Interior of the Watergy greenhouse
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(a) The air velocity sensor in the tower (b) The local weather conditions were
measured on the roof of shed where the
control equipment was located

(c) Temperature and humidity sensor under the heat ex-
changer

Figure 1.16: Equipment in the Watergy greenhouse
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(a) The valves and sensors of the cooling and heating system

(b) A web cam was used to monitor the
crop remotely

(c) Measurement of the condensation
from the walls and roof

Figure 1.17: Equipment in the Watergy greenhouse
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Appendix 2: pictures of the Watergy house built in

Berlin

(a) Exterior of the Watergy house

(b) Swamp in the greenhouse; white boxes contain sen-
sors

Figure 1.18: Watergy house, spring 2005
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(a) Condensate flow sensor (b) Air temperature sensor installed in
the greenhouse

(c) Cabinet with data loggers and relay technique

Figure 1.19: Interior of the Watergy house

29



(a) Valves in the water circuit to enable
flexible experiments

(b) Part of the air circulation system

(c) Air-water heat exchanger

Figure 1.20: Equipment in the Watergy house
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(a) View from the house into the greenhouse

(b) Inside of the solar heat collector

Figure 1.21: Equipment in the Watergy house
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Appendix 3: The Watergy house in Berlin

Although the study described in this thesis focusses on the Watergy green-

house (Spain), also a basic control system for the Watergy house (Germany)

has been developed. The setup of this control system is similar to the control

system of the greenhouse (as described in chapter 2).

The Watergy house is equipped with many air channels to guide the air

through the house in various ways (figure 1.22). This facilitates adjustment

of the airflow to circumstances; during the summer, heat gained in the green-

house is stored into the heat buffer. During winter, the house is heated from

this tank. The building consists of two main areas, the greenhouse (GH) and
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Figure 1.22: Possible air flows in the Watergy house as it is built in Berlin.

the living area (LA). Both areas can be cooled and heated with the central

heat exchanger (hex), which is connected with a heat buffer (HB). To avoid

heat loss by ventilation, a heat recovery unit (HR) is installed. An extensive

control system makes it possible to achieve airflows through the building in

many different ways. The possible air circuits are listed here (the numbers

correspond to the numbers in figure 1.22):

1. fill the heat storage with heat from greenhouse and solar heat collec-
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tor or heat the greenhouse

2. fill the heat storage with heat from the solar heat collector

3. heat/cool the air from the living area with the heat exchanger

4. heat the air in the living area with the heat exchanger and refresh it

with the HR

5. refresh the air in the living area with the heat recovery unit

6. heat the air in the living area with the solar heat collector and refresh

it with the HR

7. heat the air in the living area with the solar heat collector and the

heat exchanger and refresh it with the HR

8. heat the air in the greenhouse with the exhaust air of the house, fresh

air to LA via HR

9. same as 8, but instead of the greenhouse, the bypass is used to heat

the air

10. heat/cool the air in the greenhouse and heat/cool the air in the LA

with hex

11. use the bypass to heat the air for the living area. Refresh the air

with the heat recovery

12. use the greenhouse and solar air collector to heat the air

13. same as 12, but instead of the greenhouse, the bypass is used to

heat the air

14. open the greenhouse windows

15. Open the living area windows

The control system is capable of selecting all these operation modes. To

facilitate this, many air (figure 1.20(b)) and water valves (figure 1.20(a)) are

installed, including the accompanying I/O channels. The software (written

in Labview) enables the users to experiment with the operation modes and

to optimize the systems performance.

The sensors that were used are mostly similar to the ones used in the

greenhouse. Temperature was measured with PT100 sensors (figure 1.19(b)),

humidity with capacitive sensors. Enotemp supplied the air velocity sensors

and the amount of condensation in the heat exchanger was measured with a
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custom made sensor (figure 1.19(a)). The data logger was a Compact Field-

point which was built into a control cabinet together with the relays and

power supplies (figure 1.19(c)).
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Abstract

In the literature many papers describe various applications of advanced con-

trollers in greenhouses. As the control literature focusses on control algo-

rithms, the layout of the measurement and control system is usually under-

exposed. Unfortunately, commercially available greenhouse climate control

systems do not have the necessary flexibility to accommodate these types of

controllers. This paper describes a systematic approach to the design of a

flexible measurement and control system, that can be adjusted to suit most

control research in horticulture. Individual functions within a measurement

and control system are identified and alternative solutions are given. The

design methodology is applied to the design of the measurement and control

system for the Watergy greenhouse. The controllers (in software) are versatile

and setpoints can be generated by an easy-to-use user interface as well as by

external software (like Matlab). Data is centrally stored and the system is

easy to expand. It has been shown that the system has functioned robustly

for the past three years. The flexible control system has the capability to

serve as a basis for research and testing of various advanced control strategies

in the Watergy system with with adaptive model based control as a final goal.

2.1 Introduction

Many research projects study possibilities for improvement of existing green-

houses and/or control systems in these greenhouses. Often, it is necessary

to develop an enhanced measurement and control system to facilitate these

studies, since commercially available systems do not provide the necessary

flexibility for this type of research. For example, it often happens that new

control laws cannot be implemented in the available software, or that the

number of measurements is limited. For instance, in many advanced control

studies it it necessary to have access to the low-level manipulators directly.

This is often not possible.

Apart from developing a completely new control system, one way to han-

dle the limitations of commercially available systems is to connect a PC to

the commercial climate computer. This PC runs advanced algorithms that

generate setpoints, which are send to the climate computer. An example is

the study of Sigrimis et al. (2000), who developed a framework to interface
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between a decision support system and the greenhouse management system.

Another example is the thorough research by Aaslyng et al. (2003) describing

a climate control system that functions as an addition to a generic climate

control computer. Setpoints are generated by mathematical models in their

software tool, IntelliGrow, and send to the climate computer that controls the

actuators. The control system consists of individual components that each

handle a biological, physical or environmental task (like temperature or CO2

control). The communication between PC and climate computer was handled

with a systems integration interface called BipsArch (Aaslyng et al., 2005).

When developing the Watergy greenhouse, the limitations of commercially

available hardware lead to the decision to design a new measurement and con-

trol system that has the required versatility. Surprisingly, only few studies

are found in the literature describing all aspects of an advanced, flexible mea-

surement and control system for climate and irrigation control in horticulture.

Most studies that describe the application of advanced control in horticulture

touch upon the measurement and control system only very briefly (Young

et al., 1994; Chalabi et al., 1996; Blasco et al., 2007). This is the motivation

to describe a generic design for a measurement and control system that serves

the need of horticultural research.

The setting in which the Watergy project was initiated is the general

concern about the limited availability of fresh water in semi arid regions. Im-

provement of water use efficiency is of prominent importance in these regions

and in agriculture a large contribution to sustainable water use can still be

achieved by introducing new ways of growing crops (Postel, 2000; Gleick, 2003;

Renault and Wallender, 2000). In horticulture advanced water-saving meth-

ods are possible, such as desalination of (brackish or salt) water and closing

water cycles in the greenhouse. The aim of the Watergy project is to study

these possibilities by constructing an experimental greenhouse, designed for

(semi)-arid climates (built in Almeria, Southern Spain). The main objec-

tives of the project are water recycling and air cooling inside a potentially

commercial greenhouse.

From a control point of view integrating several functions such as crop

growth, water re-use, and energy conservation pose additional challenges due

to the many interactions and restrictions. Therefore, to exploit the possi-

bilities of such greenhouses, many more sensors than usual are required and

Watergy is no exception. With the available sensors and actuators it is pos-
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sible to operate the greenhouse in many different ways and make it a multi-

functional place for both plant physiological, control theoretical and physics

based experiments. As commercially available measurement and control sys-

tems for horticulture are not suitable for this task, this is another reason for

the design of a new measurement and control system.

A measurement and control system is a complicated system to design,

especially when the number of inputs and outputs is large. It is important

to design the system in a methodic way, such that the system will fulfil the

expectations of the users. Three topics are discussed in this paper: (1) the

design of the hardware, like actuators, computers and sensors, (2) the way

these components are connected and how they communicate, and finally (3)

the functionality of the controllers (mostly software).

The Watergy greenhouse

To understand the requirements set out for the measurement and control

system, a short introduction into the functioning of the Watergy greenhouse

is now presented. More extensive information on the project can be found on

the website www.watergy.info and in the references (Buchholz and Zaragoza,

2004) and (Zaragoza et al., 2007).

The most remarkable feature of the Watergy greenhouse is the double

walled tower (see figure 2.1). The sun heats the (humid) air inside (1), which

rises into the outer duct of the tower (2) where it is further heated by the sun

(3). The tower is closed at the top, so the air does not leave the greenhouse.

Instead the air is cooled with a heat exchanger in the central duct of the

tower (4). The cooled air falls and flows back into the warm greenhouse (5),

closing the cycle. During night, the heat exchanger heats the air and the air

movement reverses. Hot air raises through the heat exchanger (8) to the top

of the tower (9) and falls back into the greenhouse (10+11) due to cooling

at the greenhouse roof . The water used as coolant in the heat exchanger is

heated during the day and cooled during the night, using a tank (7) as storage

buffer.

Because the greenhouse is completely closed, the water evaporated by the

plants stays inside. During daytime, warm and moist air flows into the tower,

where the water condenses against the cold surface of the heat exchanger. Sur-

plus heat load can be reduced by desalination of sea water, which is achieved
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by spraying salt water over the inner roof (6) during the day. The water

evaporates here, follows the air stream into the tower and condenses inside

the heat exchanger. At night, when the heat exchanger is used to heat the air,

salt water is evaporated inside the heat exchanger (9) and condenses against

the (outer) roof. In both cases the condensate is collected for use as irrigation

water or is exported out. This improves the overall water use efficiency of the

greenhouse.
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Figure 2.1: Air flow in the Watergy greenhouse at day-time (left) and at
night-time (right)

2.2 Method

In this section some theory on the design method is introduced, followed by a

short background on the layout of measurements and control systems. Second,

the design methodology is described in detail for the Watergy hardware and

software.

2.2.1 Hardware design – theory

A phase model is used to design the control system hardware. This means that

different phases in the design process are distinguished, each phase with its

own level of abstraction (Kroonenberg and Siers, 1998). The advantage of this

approach is that a wide range of options is considered, thereby minimizing the
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chance of overlooking something, without loosing track of the main objectives.

This design procedure has been used for the design of sophisticated machinery

(see for example Krick (1969) or Bakker et al. (2004)), but its application is

for the design of a measurement and control system is new to the best of our

knowledge.

The design process is performed in four steps (see figure 2.2):

1. Objective. First, an objective for the system is defined.

2. Problem definition phase. With this objective in mind, the problem

definition phase starts, in which the first step is to define fixed and variable

requirements for the system. Fixed requirements must be fulfilled in any

case. Variable requirements determine how good the design is; the better the

variable requirements are met, the better the design is. The second step in

the problem definition phase is to identify all functions of the system and to

represent them in a scheme, the function structure (a function is defined as

an action taken by the system to reach a specific goal).

3. Alternative definition phase. Once both the requirements and the

functions are defined, for each individual function alternative principles are

identified. In this phase, the designers need to be creative to avoid exclu-

sion of potential solutions. Brainstorming methods (Osborn, 1957) can help

with this, for example brain writing (Rohrbach, 1969) and synectics (Gordon,

1961). After identifying a wide range of optional solutions for all individual

functions, several overall concept solutions are chosen. An overall solution is

a set of combined solutions that fulfill all functions in the system.

4. Construction phase. A rating procedure is used to select the best

over-all concept solution. This solution is put to practice in the construction

phase, resulting in a prototype.

2.2.2 Hierarchy and architecture of control systems – theory

Apart from choices for hardware, the way hardware is linked together is an

important consideration in the design of a measurement and control system.

Two concepts are important here: hierarchy and architecture. The hierarchy

describes the layers in the system and their functions and requirements (Kir-

rmann, 2006). The first layer concerns primary technology (see figure 2.3);

the hardware of a system (e.g. pumps, valves, vessels). The second layer
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Start

Figure 2.2: The design process (Kroonenberg and Siers, 1998)

consists of sensors and actuators. The third layer contains the control of in-

dividual actuators (low level control; e.g. pump speed control). The fourth

layer (group control) consists of the control of a well defined part of a system

(e.g. a heating system). The fifth layer supervises the whole system; more

sophisticated tasks are performed here (such as optimization). The sixth and

seventh layers are applicable in large plants and deal with strategies, planning

of resources etc.

Timescales in the hierarchy are increasing from bottom to top; low level

controllers have a much smaller time constant than the supervision layer.

The amount of data decreases from bottom to top; lower levels process more

(raw) data than the upper levels. The man-machine-interface is located at

the supervision layer (layer 5 in figure 2.3) and sometimes at group control

level (layer 4). Two main types of architecture of a measurement and control

system exist, both extensively described in the literature (Doebelin, 1990;

Johnson, 1993; Rijnsdorp, 1991). The first is a centralized control system; a

system where one central computer monitors the system and sends commands

to the low level controllers. Second is the decentralized control system, where

all low level controllers can communicate with each other, without interference

of a central computer at supervisory level.
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Watergy project

grower / scientist

3  low level control

1  primary technology

2  sensors & actuators

4  group control

6  manufacturing 

5  supervision

7   enterprise

database user interfaceoptimisation

valve pos. control pump speed control

T&RH controlCO2 control

temp.RH motorCO2flow solenoid

water pumpsmotor valves magnetic valves window motors

Figure 2.3: Control hierarchy of the Watergy project. On the left are general
names of the layers, the pyramid on the right gives the implementation for
the Watergy project (adopted from Kirrmann (2006)).

2.3 Application of the method

The theoretical steps outlined in section 2.2.1 were applied to the Watergy

case, resulting in the following design procedure:

1. Objective. The objective of the Watergy measurement and control

system is “To measure variables that allow the reconstruction of all relevant

states and to be able to control all actuators in the experimental greenhouse

with advanced control methods”.

2. Problem definition phase. In our case, six fixed requirements have been

defined:

• All variables that are judged relevant for modeling and control of the

greenhouse must be measured automatically (temperature, moisture

content, radiation, flows, etc).

• All actuators (pumps, valves) must be software controllable.

• It must be possible to calculate new settings for the actuators in the

system itself as well as by external software, and to apply both cascade

and direct control.

• All information relevant for modeling and control must be stored for

later analysis.
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• The system must be accessible from the intra- and internet with ade-

quate authorization and security levels.

The variable requirements are defined as follows:

• The system must be flexible in all the points above.

• Testing and troubleshooting should be easy to perform.

• The system should be easy to operate (both software and hardware).

• The system interface should be easy to understand for outsiders.

• Maintenance should be low; the system should be robust.

• The system should use as much as possible standard components and

protocols.

Next, individual functions within the system were identified and grouped into

five tasks; measure, actuate, control, store data and interact with the user.

All groups contain several functions that together perform a task. Table 1 to

table 5 give details on the functions; for example table 1 gives all the tasks

needed to fulfill the function measuring.

3. Alternative definition phase. After identifying the individual functions

for the system, alternative solutions were defined for each function. This

process resulted in a matrix of alternative solutions as shown in tables 1 -

5. The design for the whole system, the concept solution, has been chosen

from tables 1 - 5 by selecting different possible solutions and weighting them

against each other with the variable requirements mentioned before. The

choices for the Watergy measurement and control system are motivated in

the next section and shown in the tables by bold text.

2.4 Design choices

This section elaborates on the functions, tasks and alternative solutions. Con-

siderations for choosing the hardware used to build the measurement and

control system are presented here.
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2.4.1 Functions of the control system

Function: measure

One of the most important tasks of the measurement and control system is to

measure all data needed to study the behavior of the greenhouse and to gain

enough information for modeling of the greenhouse climate and validation

of these models. The sensors installed in the greenhouse and considerations

taken into account when choosing these sensors are given here.

Temperature is measured outside, in the greenhouse, in the soil and in

the water circuits at various locations. For comparable data the same type

of sensors is used at all locations. Pt-100 sensors were selected, since, at the

same level of accuracy, these sensors offer better reliability and long term

stability than alternatives like thermocouples and thermistors.

Moisture content can be measured very accurately with the principle of

wet/dry bulb temperatures. In our case however most RH sensors are difficult

to reach, which complicates filling the water container of the wet bulb sensor.

Therefor electronic humidity sensors were selected. After calibration their ac-

curacy is good enough for greenhouse experiments and they are more reliable

than other options since no frequent maintenance is required. Most dominant

drawback is that electronic RH sensors do not function when condensation

occurs on the sensor. To avoid these problems, measurement of dew point

temperature is used at points where condensation is expected.

CO2-concentration is measured with a commercially available CO2 sensor

that works according to the infra red measurement principle. These sensors

are small, do not have a long response time (as some centrally placed analyz-

ers) and do not require frequent maintenance.

Air velocity is measured both inside the heat exchanger as well as outdoors

(wind speed). The latter is easy to measure with commercially available wind

sensors (rotating turbine wheel). The air velocity inside the central heat

exchanger is very low (0-0.5 ms−1), and is more difficult to measure. A hot

wire anemometer is a good option, although it is not very robust. An acoustic,

custom built sensor proved to be a better solution (the sensor is water tight,

has a resolution of 1 mms−1 and a good robustness (Enotemp)).

Water flow is measured with commercially available turbine wheels. These

proved to be more accurate than other options at a lower cost level.

Solar radiation is measured with a Kipp solari meter (CM10). A stack of
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thermocouples measures the global solar radiation in Wm−2.

The temperature, CO2 and humidity sensors are mounted in mechanically

ventilated boxes to ensure low time constants when measuring and to limit

the influence of solar radiation on the sensors.

Signal conditioning and A/D conversion. Data is measured with indus-

trial, embedded processors and I/O modules of the compact Field Point series

(National Instruments). These data loggers are a good compromise between

multi purpose data loggers for laboratory use, with high flexibility and accu-

racy but low robustness and side industrial data loggers with lower flexibility

and accuracy but higher robustness. The data loggers are connected to sensors

and actuators via a standard computer network patch panel. Standard com-

puter network cables (UTP CAT5) and standard connectors (RJ45) connect

all sensors and actuators to this patch panel. The advantages of using these

components are high connection density, fast mounting (strip and crimp),

reliable contacts and cost effectiveness. A test box connects easily to every

sensor, actuator and I/O channel to allow for individual testing. The I/O

modules, power supplies, patch panel and network equipment have been built

together in a steel cabinet and form a compact process control unit (PCU).

A built-in un-interruptible power supply improves the continuous availability

and quality of the electric power supply.

Convert raw values to SI units. Measured variables, like ohms, voltage,

etc., are converted to data in SI units by software running on the data loggers.

For reliability, both raw as well as the calculated values are stored in the

database, so re-calibration of sensors is possible.

Function: actuate

Settings are generated on the central computer and the data loggers convert

them to analog signals. Relays are connected to the data loggers that switch

high power currents to drive actuators.

Read settings for actuators is a function performed in the software that

runs in the embedded processors.

D/A convert The compact Field Point embedded processor performs the

D/A conversion. All actuators use either standard 24 V relay technique or

0-20 mA.

Convert low voltage to high power Relay boxes and hard-wired circuits are
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located though the whole greenhouse. This brings them close to the appli-

ances, thus reducing cabling and giving more flexibility during experiments.

Table 2.1: Alternative solutions for the function “measure states”

Function Alternative solutions

Sensors
Temperature Analogue PT100 Thermistor Thermocouple Acoustic
Moisture
content

Hair
hygrometer

Dew point
temp.

Wet & dry
bulb temp.

Electronic
RH sensor

Acoustic

CO2

concentration
infrared Gas chro-

matography
Air velocity
(anemometer)

Hot wire Measuring
fan/turbine

Ultrasonic Pitot tube

Water flow Mass flow
(inductive)

Weighing Ultrasonic Volumetric Rotating
wheel

Solar radiation Solari
meter
300- 3000
nm

PAR
sensor;
300-900 nm

Light
Depending
Resistor

LUX meter

Signal condition-
ing and A/D
convert

Hand mea-
surement

PCI card
computer

Stand alone
data logger,
mp.1

Stand
alone data
logger,
ind.2

Dedicated
ind.
computer

Convert raw value
to SI units

Software in
PC

Software in
data logger
mp.

Software
in data
logger
ind.

Software in
ind.
computer

1 mp.=multi purpose; 2ind.=industrial

Function: control

Settings for the actuators are calculated in the PC that contains the database.

These settings are generated in real time from the measured data and user

requirements. The rules used for this can be changed from a simple time

clock to more sophisticated trajectory settings. Also external programs, such

as Matlab, can be used to provide settings. Section 2.4.2 gives more a detailed

description of the available types of settings and how they are communicated

through the system.
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Table 2.2: Alternative solutions for the function “actuate”

Function Alternative solutions

Read settingsfor
actuators

Software in PC Software in
data logger,
mp.

Software in
data logger,
ind.

Software in ind.
computer

D/A convert Data logger,
PCI card
computer

Data logger,
Stand alone,
mp.

Data logger,
Stand alone,
ind.

Dedicated ind.
computer

Convert low
voltage to high
power

Central relay
technique

Distributed
relays

Actuators with
bus
communication

1 mp.=multi purpose; 2ind.=industrial

Function: store and exchange data

The embedded processor in the PCU makes the measured data available for

clients on the local computer network. The database, located on the central

computer, reads the data and checks if anything has changed. If so, the

new data point is stored, together with a time tag. In this way considerable

computer storage is saved in periods with little activity.

Table 2.3: Alternative solutions for the function “control”

Function Alternative solutions

Read measured
data into software

Software in
PC

Software in
data logger mp.

Software in
data logger ind.

Software in ind.
computer

Read requirements
set by user

Software in
PC

Software in
data logger mp.

Software in
data logger ind.

Software in ind.
computer

Calculate
setpoints

Software in
PC

Software in
data logger mp.

Software in
data logger ind.

Software in ind.
computer

Location Computer Data logger PLC
Software Labview Matlab

Simulink
xPC

dll’s (e.g. C
code)

Complete
SCADA
package

1 mp.=multi purpose; 2ind.=industrial

Function: Interact with the user

To present current data to the users of system, real time data are shown

in an on-screen graphical user interface (GUI), showing the greenhouse in a

schematic drawing (see figure 2.4.1). Other details, like valve positions, pump

rates, flow rates etc. are shown in different parts of the GUI. To present
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historical data, a standard software tool is used enabling the user to access

current and historical data from the database and to export data to text files.

User setpoints for controlled states in the greenhouse (e.g. temperature, hu-

midity, air velocity, CO2-concentration, etc.) can be changed in the graphical

user interface, and sent to the central database after confirmation by the user.

Figure 2.4: Graphical user interface of the control system; measured data is
shown at places where it is measured

Table 2.4: Alternative solutions for the function “store data”

Function Alternative solutions

Read data Software in
PC

Software in
data logger mp.

Software in
data logger ind.

Software in ind.
computer

Store data Text files database
Location Computer Data logger

1 mp.=multi purpose; 2ind.=industrial
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Table 2.5: Alternative solutions for the function “user interaction”

Function Alternative solutions

Present current
data on a screen

GUI on
computer

Text based
interface on
computer

Touch screen Input screen on
data logger

Present historical
data on a screen

GUI on
computer

Text based
interface on
computer

Touch screen Input screen on
data logger

Read user
setpoints

Software in
PC

Software in
data logger mp.

Software in
data logger ind.

Software in ind.
computer

1 mp.=multi purpose; 2ind.=industrial

2.4.2 Hierarchy and architecture in the Watergy control sys-

tem

The layout of the hardware and software in the Watergy control system fol-

lows the hierarchy rules described earlier (see section 2.2.2). Lower layers

contain sensors and actuators. On the hardware level, the functionality of

low level control (level 3) and group control (level 4) are bundled into one

embedded system combined in the PCU. The supervisory level (level 5) is

implemented on the central PC. The top levels in the hierarchy, which deal

with strategy and planning, are not implemented since these levels are not

needed in a medium sized scientific measurement system. To keep the mea-

surement system flexible with respect to requirements of future controllers, it

is possible to bypass the central database and communicate directly from the

supervisory level to the level of the sensors and actuators.

The architecture of our control system is a centralized control system; the

central PC interacts with the user and sends settings to the PCU’s. However

as opposed to a purely centralized system, it is possible for the low level

controllers to communicate over the network with other process control units.

For some control schemes this ’bypass’ of the central computer can prove

useful, for example if the central PC stops functioning, the low level control

can still steer the whole system. This set up combines the structure of a

centralized system with the flexibility of a decentralized architecture.

A local area network connects the server with the embedded processors

and the internet. Ethernet is a non deterministic network, so it is in principle

not suitable for real time applications. Ethernet can be enhanced to meet

real-time requirements of industry (Decotignie, 2005). If the network load is
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low and the real time definition is not too high (e.g. 100 ms) standard ethernet

can still be used for supervisory control tasks. In the Watergy greenhouse,

this is the case as time constants in the system are relatively large. Small

delays in the communication between supervisory and group control level are

allowed in this system design. The central personal computer is accessible

through the internet, meaning that settings can be changed, data can be

viewed and new control algorithms uploaded over the internet. The process

control unit does not communicate over internet, to make sure the controllers

are not affected by delay times (Yang et al., 2002).

2.4.3 Controllers in the software

The generation of settings for the actuators can be done in many ways. First,

there is the possibility for manual control, which allows the user to set all

actuators individually. Second, there is time control, which allows users to

control settings of individual actuators over time. This is especially useful in

the first steps of research because individual actuators can be easily tested.

Third, there is basic automatic control, which allows users to specify setpoint

profiles for output variables of the greenhouse (like temperature and humid-

ity). Elementary automatic control uses well defined, basic controllers (like

PID). Last, there is the possibility to control the greenhouse with advanced

control methods. In this mode external programs (for example Matlab) cal-

culate actuator commands for the system.

The software of the control system is distributed over the same levels as

the hardware. In summary, the system consists of low level, group level and

supervision controllers, each with their own specific task, inputs and outputs.

Typically a control action would look like this: the supervision level calculates

a desired greenhouse temperature, the group level controls the windows and

the heating system with setpoints for window aperture or pump speed. The

low level controller controls the actuators with these setpoints. In this case,

the supervisory level does not influence the actuators directly; cascade control.

However, in some control applications it is required that controllers at higher

levels can directly influence the actuators; direct control. Optimal control

is an example where direct control is applied (Van Straten et al., 2000a;

Van Henten, 2003a). In this framework there is only one controller that

calculates (low level) setpoints for all actuators. In contrast to commercially
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available systems, the control system for the Watergy greenhouse is able to

handle both cascade and direct control strategies.

Low level control

Normally, low level controllers operate in cascade control; single actuators

are controlled according to a setpoint coming from the group control layer.

For example pump speed and window opening are controlled by low level

controllers. Low level controllers realize setpoints in fast control loops without

involving the higher level controllers. Control strategies are typically quite

basic (e.g. proportional position control). In direct control mode the low level

controller accepts setpoints directly from the supervisory level, to facilitate

the direct control mode. In this case, the group control is bypassed.

Another important task of the low level controllers is the security of the

system. When the controllers in the software at higher levels fail, the low level

control detects this and steers systems to a safe situation (e.g. an acceptable

climate for the plants). For extra safety, a hardware security has been built

into the greenhouse; if the temperature becomes too high, the greenhouse

windows and the top of the tower are opened to avoid damage to the crop.

Group control

Group control is implemented on the decentralized process control units and

communicates over the network to the supervisory level. In cascade control

mode, controllers in the group control layer realize settings for states of the

system. For example the CO2 level in the greenhouse is controlled by a group

controller that gets its setpoint (required concentration of carbon dioxide)

from the supervisory level. The group controller sends a setpoint (in this

case a valve position [%]) to one or more low level controller(s). In the direct

control mode, the group level does not play a role. It just passes on the

setpoints from the supervisory level directly to the low level controllers.

Supervisory level

On the supervisory level, settings are generated for either group level (cas-

cade control) or low level controllers (direct control). Interaction with the user

takes place at the supervisory level through graphical user interfaces that al-

low users to supervise the system, change settings, view historical data, etc.
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Most of the measured data is presented to users in schemes that represent the

physical system (see figure 2.4.1). This way of representing the data is the

preferred way according to literature on man-machine interfaces (Shneider-

man, 1997; Wittenberg, 2003) as it allows non-experienced user to understand

and interpret the data.

2.5 Results

After the measurement and control system was built, it was used to control the

Watergy greenhouse. First, relatively simple controllers were used; setpoint

control for the cooling/heating system and a PID control for CO2 concentra-

tion inside the greenhouse. At a later stage, models were developed to be used

for control purposes. In this paper, some results of the basic controllers are

shown to illustrate the functionality of the measurement and control system.

The more advanced controllers will be described in future papers.

Figure 2.5(a) shows the CO2 concentration inside the greenhouse for a

period of two days. The concentration was controlled during daytime, at

night the controller was switched off and the concentration was allowed to

vary freely. To study the behavior of the controller, figure 2.5(b) is useful.

It shows the concentration during one hour at daytime. The dots represent

times at which the CO2 dosing valve was opened for a short period (max 60

s). The measured concentration raises some minutes after a dosing and slowly

decreases afterwards.

The temperature of the coolant, pump operation and the greenhouse tem-

perature are depicted in figure 2.6. The temperature of the plant area in

the greenhouse raises during the day, mostly because of solar radiation. The

returning coolant (from the heat exchanger in the tower) follows this tem-

perature, whereas the incoming water temperature remains more stable. At

night, the water flow reverses (to maintain counterflow in the heat exchanger)

and the water is cooled in the heat exchanger. The next morning, the tem-

perature of water entering the heat exchanger is almost back to its original

value, meaning that the regeneration of the coolant works well (at the time

of measuring; early spring).

The combination of the data logger, power supply, patch panel and net-
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(a) CO2 concentration inside the Watergy greenhouse in the period from the 5th to
the 7th of October 2006
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(b) CO2 concentration on the 5th of October 2006, 14:30h until 15:30h. The dots
depict times when the CO2 valve was opened by the controller .

Figure 2.5: CO2 control in the greenhouse

work equipment in one process control unit (PCU) proved to be quite robust.

The measurement and control system has been running for the last 3 years

to gather data on experiments with control and plant physiology and to con-

trol the climate inside the greenhouse. Results on the cooling and water re-

cycling capabilities of the greenhouse are described by Buchholz et al. (2006)

and Zaragoza et al. (2007). With the data gathered by this measurement

and control system a greenhouse model was developed that is calibrated with

measured data of a time-period of one year (Speetjens et al., 2008b, 2007).
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Figure 2.6: Temperature in the greenhouse (–), water supply (◦) and water
return temperature (⋄) for one day (11th of March 2006). The pump direction
is given by (·–); 10: pump off, <10 and >10: pump on with different flow
direction

2.6 Conclusions

A measurement and control system suitable for advanced control research

and implementation in non-standard greenhouse environments was designed.

The system has the required flexibility and versatility, in contrast to commer-

cial greenhouse climate computers. The hardware of the presented system is

flexible because of the generally available components that are connected in

a modular way. The system was designed with methodic design, a method

normally used for design of machinery. The main advantage of this approach

is that the objective of the system is clearly defined and all functions are sys-

tematically reviewed. This makes it easy to discuss the design with a group of

persons without misunderstandings, resulting in a much shorter construction
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phase than in an ad-hoc approach.

All relevant data are stored in a central database, new setpoints can be

calculated and send to the actuators and the system is accessible through the

internet. The combination of the data logger, power supply, patch panel and

network equipment in one process control unit (PCU) proved to be robust.

Since all sensors are connected to the PCU with standard plugs they can easily

be disconnected, moved and replaced, making the system very flexible. The

low level technical equipment like motor control, relays, etc. are distributed

over the greenhouse. This considerably reduces the cabling and the system

remains more flexible than when all the hardware installation would have

been centralized.

The measurement and control system, the graphical user interfaces and

the data storage in a database are programmed in Labview. The programs

that were developed for the group and low level controllers run in embedded

processors, the software at supervisory level (GUI and database) runs on a

personal computer. It is possible to operate the system both in direct as

in cascade control. In the direct control mode, set points for the low level

controllers are generated at the supervisory level, e.g. when model predictive

controllers are used. In the cascade control mode, setpoints for the group level

are generated at the supervisory level and setpoints for low level controllers

are generated at the group level.

Finally, it must be mentioned that compared to commercially available

greenhouse control systems, the system at hand is very much suited for the

research done with the Watergy greenhouse. Several model based control

strategies are studied based on data gathered with this system. The final

goal of the project is to come to an adaptive model based control.
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Abstract

A new greenhouse type is designed to study ways of decreasing horticultural

water use in semi-arid regions. To control the greenhouse a model based

control design will be applied. To this end a model is needed to predict

the systems behavior (1 day ahead), without much computational effort. A

physics-based model is developed, based on enthalpy and mass balances. The

(lumped) key parameters of the model are identified with a controlled ran-

dom search algorithm. To increase estimation accuracy and reduce computa-

tion time, estimation in parts was applied, meaning that only a part of the

whole model was used in combination with measured data for state values

of neighboring compartments. This method results in parameter estimates

that converge well. In order to keep the model information needs limited,

it was a deliberate choice to aggregate underlying process details into the

lumped parameter description, at the expense of time-varying parameters

over the seasons. The parameter fluctuation over the year was studied by

repeated parameter estimation for each month. Since parameters fluctuate

significantly, further research will focus on the use of adaptive mechanisms to

facilitate model based control.

3.1 Introduction

Water use efficiency is of prominent importance in regions where fresh wa-

ter is scarce. The Watergy project studies possibilities to increase water use

efficiency in horticulture by combining plant production with water desalina-

tion, water recycling and space cooling. An innovative new greenhouse was

designed and built in Almeria (Southern Spain). The greenhouse contains a

plant compartment, a (salt) water evaporation compartment, condensation

compartments and a central heating and cooling system. It is completely

closed, regains 70 % of the irrigation water (as first tests show) and has a low

energy demand.

The envisaged way to control the greenhouse climate is adaptive model

based predictive control. The reason for this advanced method is the fact

that the Watergy greenhouse is a complicated system to control. There are

constraints in the control equipment and the combined goal of producing both

crops and water causes contradictions in control actions. A model predictive
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controller can take these considerations into account and calculate the optimal

control trajectory with respect to various criteria for the output.

The proposed control system needs a model that describes the climate

inside the greenhouse and the functionality of the control equipment. This

model is used intensively, so a model is needed with a limited number of states

to keep computational loads acceptable. To enhance practical applicability it

is also important to keep the information needs of the model as low as possible.

This paper describes the development of this model and the procedure to

estimate the parameters in the model.

Models that describe the climate in traditional greenhouses are well known

from literature (see for example (Ooteghem et al., 2005; Chalabi et al., 1996;

Tap and Willigenburg, 1996; Seginer, 2000). However, since the Watergy

greenhouse is the first of its kind, new challenges have to be addressed. The

model that is developed is physics based with a limited number of states. It

contains lumped parameters that need to be calibrated on measured data. In

a large model, parameter estimation can be laborious due to local minima or

computational inefficient estimation algorithms. In this paper the controlled

random search (CRS) algorithm is used on the parts of the model that contain

the parameters to be estimated; estimation in parts. The data used for this

calibration is collected during a two year period of experiments with the

prototype.

The paper is organized as follows. First, the Watergy greenhouse and

the technical equipment are described. Then the greenhouse climate model

equations are given, together with a discussion on the main assumptions. The

parameters in the model are estimated with the controlled random search

method, using the estimation in parts’ methodology, described in the third

part of the paper. Finally, results are shown and conclusions on the model

and the parameter estimation are given.

3.2 Watergy greenhouse

An experimental greenhouse with a ground area of 14x14 m was built in Alme-

ria, Spain. Figure 3.1 gives a cross-section diagram of the greenhouse. The

most remarkable feature is the double walled tower (4) with a height of 10 m.

During the day, the sun heats the (humid) air inside the plant compartment

(1). The heated air rises through the inner roof compartment (2), into the
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outer duct of the tower where it is further heated by the sun (3). As the tower

is closed at the top, the air does not leave the greenhouse but is cooled with

a heat exchanger in the central duct of the tower (4). The coolant is stored

in a heat buffer (7). The cooled air flows back into the warm greenhouse (5),

closing the cycle. During the night, the heat exchanger heats the air and the

air movement reverses; hot air raises through the heat exchanger to the top of

the tower and flows down through the outer duct. The cooled cooling-water

returns to the storage for later use. Since the air cycle in the greenhouse

is closed, the water evaporated by the plants stays inside. During the day,

warm, moist air flows into the tower, where the moisture condenses against

the cold surface of the heat exchanger. To facilitate water desalination, a so-

called inner roof (6) is used over which (salt) water is sprayed. The water that

evaporates here follows the air flow and condensates in the heat exchanger.
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Figure 3.1: Function of the Watergy greenhouse during the day (left) and the
night (right)

3.3 Watergy climate model

The crop (first green bean, later followed by Okra) is grown in soil with a bal-

anced texture of about 20-30 cm deep. A sand bed with a thickness of about

10 cm is placed on top of the soil. Drip irrigation is used, controlled by an au-

tonomous fertigation system. The drain water is recovered and recycled. For

more information see (Buchholz and Zaragoza, 2004) and www.watergy.info

for a general description.

60



Greenhouse Model

The condensate coming from the heat exchanger and from the roof is

recovered, the quantity is measured automatically and it is used again for

irrigation. Temperature and humidity are measured at all vital places inside

and outside the greenhouse and technical installation. Other quantities that

are measured are outside global radiation, wind speed and -direction and the

CO2 concentration. All pumps and valves are controlled by data loggers that

are connected to a personal computer on which a database runs. This enables

implementation of controllers in several software packages, including Matlab

and LabVIEW. See Janssen et al. (2004) for a detailed description of the

control systems layout and equipment.

Many greenhouse models have been made in the past by various authors.

One of the first to describe the greenhouse climate using physics-based mod-

els was (Bot, 1983). Later others followed, see for example (Jolliet et al.,

1991; Tchamitchian et al., 1992; Jolliet, 1994; Chalabi et al., 1996; Zwart,

1996; Tap, 2000). The model needed for the Watergy greenhouse should con-

tain a limited number of states (to reduce calculation times) and should only

contain the key-dynamics of the system. Minor effects are accounted for in

lumped parameters. The main differences to traditional greenhouse models

are the presence of the central heat exchanger to cool and heat the air in

the greenhouse (1) and the absence of air exchange with the outside air (2).

The greenhouse is divided into six compartments, namely the plant compart-

ment, the inner roof compartment, the solids (meaning soil and greenhouse

construction parts) in both the plant compartment and the inner roof com-

partment, the heat exchanger and the heat storage (see figure 3.2). The first

four are assumed to be homogenous, the heat exchanger and the heat storage

are divided into sub compartments to model the spatial behavior.

The state vector of the model is given by:

[

Tp Ti xp xi xsp xsi
Tha

(n) xh(n) Thw
(n) Ths(m)

]

(3.1)

where the temperature is denoted by T and the moisture content by x. Sub-

scripts give the compartments of the greenhouse: p for the plant compartment,

i for the inner roof compartment, s for the solids in both plant as well as the

inner roof compartment, h for the heat exchanger and hs denotes the heat

storage.

The air velocity inside the greenhouse is coupled to the operation of the

heating/cooling system; if the pump in the heat exchanger works, the air
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Figure 3.2: The greenhouse model. The arrows represent the air flow and the
water flow during the day (–) and during the night (– –)

velocity in the heat exchanger is assumed to be constant at 0.5 m s−1, if

the pump is stopped, the airflow is zero. The direction of the airflow in the

heat exchanger is top-bottom during the day and bottom-top during the night

(figure 3.2). The change in air flow direction makes the model switch between

different sets of equations. Since the model equations for day and night are

equal if the air velocity is zero, the behavior of the model is smooth if the

airflow is set to zero during switching.

Condensation is a process that does not occur constantly. The model

structure changes in case of condensation, since an additional moisture sink

is introduced. Condensation occurs when the saturated moisture content at

surface temperature (xsat (Tsurface)) is smaller than the moisture content of

the air (x). To describe the changes in model structure, the Heaviside unit

step function is used to create a virtual control parameter (ucon) that describes

whether the condensation terms are present (Trp denotes the temperature of

the roof in the plant compartment (similar for the others)):
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ucon
rp

=

{

0
(

xp − xsat(Trp)
)

≤ 0

1
(

xp − xsat(Trp)
)

> 0
(3.2)

ucon
ri

=

{

0 (xi − xsat(Tri
)) ≤ 0

1 (xi − xsat(Tri
)) > 0

(3.3)

ucon
h(n) =

{

0 (xha
(n) − xsat(Tsh

(n))) ≤ 0

1 (xha
(n) − xsat(Tsh

(n))) > 0
(3.4)

The sprinklers in the inner roof compartment can be switched on or off,

which changes the model equations for the air temperature and moisture

content in the inner roof compartment:

ui =

{

0 if sprinklers are off

1 if sprinklers are on
(3.5)

3.3.1 Plant compartment

The energy balance of the plant compartment incorporates only the main

energy flows in the greenhouse, i.e. solar radiation, convection, conduction

and evapotranspiration.

The solar radiation received by the air in the plant compartment is given

by ηpGo, where Go [W m−2] is the global radiation solar energy input and

ηp < 1 an efficiency parameter (that must be calibrated). This description

was preferred over detailed modeling of (long- and shortwave) radiation terms,

to keep the number of states small and because the sky temperature was not

measured (’minimal information modeling’).

The driving force for condensation is the difference in moisture content

between air (xp, [kg kg−1]) and the saturated moisture content at roof tem-

perature (xsat(Trp)). To calculate xsat(Trp), the temperature of the roof (Trp)

must be known. To keep the model simple, Trp is not a state, but is esti-

mated analytically. Since the roof is made of plastic foil it has almost no heat

storage capacity, so its temperature mostly dependents on the temperature

on both sides of the roof (Tp and To) and the heat transfer coefficients of the

air boundary layers around it (Rtot and Rp):
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Trp = Tp −
Rp

Rtot
(Tp − To) (3.6)

With the estimated roof temperature, the condensation flux from the air to

the roof is given by:

Φcon
p = kpo ρa Apo

(

xp − xsat(Trp)
)

(3.7)

if
(

xp − xsat(Trp)
)

> 0

The mass transfer coefficient (k [m s−1]) determines the rate of condensation.

It is derived from the following relation:

k =
αh

ρ cp (a/Dc)2/3
(3.8)

where αh is the heat transfer coefficient [Wm−2K] and a/Dc the Lewis number

[-] (a=thermal diffusivity and Dc the mass diffusivity).

The latent heat released due to condensation (le · Φcon
p ) is assumed to

be transferred outside. The surface of the roof is not heated by this energy

release; an assumption that holds if the heat conduction through the roof is

large. Water that condenses against walls and windows is directly removed

and therefore not available for evaporation again.

Evapotranspiration is described with the Penman-Monteith equation (Mon-

teith, 1973). This empiric formula states that evapotranspiration (E [kg

s−1m−2]) depends on incoming solar radiation (Go [Wm−2]) and vapor pres-

sure deficit (D [Pa]; see appendix 1). The parameters αp and βp are calibration

parameters:

Ep = αp Go + βp Dp (3.9)

During the experiments, the amount of biomass was kept constant by inter-

planting (replacing only a fraction of the plants at the time) so that αp and

βp will not change because of changes in leaf area.

The total energy balance of the plant compartment is given by:
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mp cpa
dTp

dt
= ηp Ap Go + Φconv

p,T + Upo Apo (To − Tp) + . . .

Upsp Apsp

(

Tsp − Tp

)

+ Upi Api(Ti − Tp) − . . .

le Ap (αpGo + βpDp) (3.10)

day: Φconv
p,T = φa cpa (Th,out − Tp)

night: Φconv
p,T = φa cpa (Ti − Tp)

The total moisture balance of the plant compartment is described by the

following function:

mp
dxp

dt
= Φconv

p,x + Ap (αpGo + βpDp) − . . .

ucon
rp

kpr ρa Apr (xp − xsat(Tr,p)) (3.11)

day: Φconv
p,x =φa (xh,out − xp)

night: Φconv
p,x =φa (xi − xp)

3.3.2 Inner roof compartment

The structures of the energy and moisture balances of the inner roof compart-

ment are similar to plant compartment. The amount of evaporation caused

by this installation (Ei) if the sprinklers are on (ui = 1) is modeled in the

same way as the plant evapotranspiration, but with different parameters:

Ei = αi Go + βi Di (3.12)

The temperature of the air in the inner roof compartment is denoted by Ti.

The heat balance in given by:

mi cpa
dTi

dt
= ηi Ai Go + Φconv

i,T + . . .

Uio Aio (To − Ti) + Uisi
Aisi

(Tsi
− Ti) . . .

Upi Api (Tp − Ti) − ui le Apo (αiGo + βiDi) (3.13)

day: Φconv
i,T = φa cpa (Tp − Ti)

night: Φconv
i,T = φa cpa (Th,out − Ti)
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The moisture balance of the inner roof is given by:

mi
dxi

dt
= Φconv

i,x + ui Apo (αiGo + βiDi) − . . .

ucon
ri

kir ρa Air (xi − xsat(Tr,i)) (3.14)

day: Φconv
i,x = φa (xp − xi)

night: Φconv
i,x = φa (xh,out − xi)

3.3.3 Heat exchanger

A spatially distributed model is needed to model the heat and moisture trans-

fer in the heat exchanger accurately. The heat exchanger is divided into a

number of compartments (n) for which the air temperature, moisture content

and water temperature are described. The heat exchanger always works in

counter flow. Condensation in the heat exchanger is calculated in the same

way as the condensation on the roof. To keep the heat exchanger model sim-

ple, the wall temperature is assumed to be equal to the water temperature in

the same compartment. This is a valid assumption since the heat resistance

of the air boundary layer in the heat exchanger is orders of magnitude higher

than the heat resistance of both the boundary layer on the water side and

the resistance of the wall material. The latent heat released due to condensa-

tion is assumed to be transferred directly into the water and not to heat the

surface.

The heat balance of the air in a heat exchanger compartment is given by:

mha,n cpa
dTha,n

dt
= Φconv

h,T − Uha−w
Ah(n)

(

Tha(n) − Thw(n)

)

(3.15)

day: Φconv
h,T = φa cpa

(

Tha(n−1) − Tha(n)

)

for n=1 : Tha(n−1) = Ti

night: Φconv
h,T = φa cpa

(

Tha(n+1) − Tha(n)

)

for n = nh : Tha(n+1) = Tp

The moisture balance of a compartment in the heat exchanger is given by:
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mha,n

dxha(n)

dt
=Φconv

h,x − ucon,h,n ka−s ρa Ah,n

(

xha(n) − xhw,sat(n)

)

day: Φconv
h,x =φa

(

xha(n−1) − xha(n)

)

(3.16)

for n = 1 : xha(n−1) = xi

night: Φconv
h,x =φa

(

xha(n+1) − xha(n)

)

for n = nh : xha(n+1) = xp

The heat balance of the water in a compartment in the heat exchanger is

given by:

mhw,ncpw

dThw(n)

dt
= Φconv

h,w + Uha−w
Ah(n)

(

Tha(n) − Thw(n)

)

+ . . .

ucon,h,n le ka−s ρa Ah(n)

(

xha(n) − xha,s(n)

)

(3.17)

day: Φconv
h,w = φwcpw

(

Thw(n+1) − Thw(n)

)

for n = nmax : Thw(n+1) = Thswout

night: Φconv
i,x = φwcpw

(

Thw(n−1) − Thw(n)

)

for n = nmin : Thw(n−1) = Thswout

3.3.4 Solids

The solid materials in the plant compartment and the inner roof compartment

are both modeled as one body with a certain heat capacity (cpsp or cpsi
) that

exchanges energy with the air through an overall heat transfer coefficient (Upsp

or Uisi
). For the plant compartment this means that the influence of the soil

and the greenhouse construction parts are combined.

Long wave radiation is not explicitly taken into account, but incorporated

in Upsp and Uisi
– which is another example of ’minimal information modeling’.

Given these approximations it may be better to view the solids as virtual

components. The heat balance of the virtual solids in the plant compartment

is given by:

msp cpsp

dTsp

dt
= ηsp Asp Go + Usp Asp

(

Tp − Tsp

)

(3.18)

The heat balance of the solids in the inner roof compartment is given by:
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msi
cpsi

dTsi

dt
= ηsi

Asi
Go + Usi

Asi
(Ti − Tsi

) (3.19)

3.3.5 Heat storage

The main assumption for the model of the heat storage is that no mixing

between water layers occurs. Or, in other words, free convection in tank can

be neglected with respect to forced convection. The number of compartments

in the heat storage model is chosen according to empiric rules by Kleinbach

et al. (1993); the minimum number of compartments (m) to reach enough

accuracy in a one-dimensional multi-compartment model is given by: m =

45.8 tu−1.218 (where tu is the mean number of tank turnovers in one day).

This relation is valid for fixed in/outlets in the tank and keeps relative errors

in the estimated amount of energy in the tank within 5%. In the Watergy

system, the number of tank turnovers is estimated around three, so that the

number of compartments in the heat storage model is set to 12.

The flow direction through the tanks is top-down during the day and

bottom-up during the night (to keep the stratification in the tanks). The

compartment number is noted by m, the numbering convention is according

to figure 3.2 (i.e. m=1 is the top compartment):

mhs,n cpw

dThs(m)

dt
= Φconv

hs + Uhs o Ahs(m)

(

Ths(m) − To

)

+ ηhs Aradhs(m) Go

(3.20)

day: Φconv
hs = φw cpw

(

Ths(m−1) − Ths(m)

)

for m = 1 : Ths(m−1) = Thout
= Th(1)

night: Φconv
hs = φw cpw

(

Ths(m−1) − Ths(m)

)

for m = mhs : Ths(m+1) = Thout
= Th(mmin)

3.4 Parameter estimation

All parameters in the model have physical meanings and most of them can

be given values from literature. Values for some lumped parameters cannot

be taken from literature, since they encompass aggregated sub-processes that

are specific for our situation. These parameters are Usp , Usi
, cpsp , cpsi

, φa,
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ηp, ηi, ηsp , ηsi
and (evapo)transpiration parameters αp, αi, βp and βi. To

estimate values for these parameters, a controlled random search algorithm

(CRS) was used (Price, 1976).

The controlled random search first randomly chooses a number (N) of

values for the parameters (n) from the search domain (V ). A goal function

(fp) is calculated for all trial points and stored in a matrix (A). Then, the

search starts by choosing each iteration a new trial point (P ) from the set

(A), and calculating the goal function (fp) for this point. When fp is smaller

than the trial point with the maximum goal function (M), P replaces M .

This process continues until the set in A has converged.

The search domain is determined by an educated guess based on literature

values and trial runs with the model. There are many ways to choose the new

trial point P. Price chooses to take P as the centroid of n + 1 values from

matrix A. Because the CRS scans through the whole parameter space the

risk of local optima is low. The major drawback of the method is the long

calculation time required compared to other parameter estimation methods.

In our case, the goal function was chosen to be the sum of squared errors

between measurements (ymeas) and simulated data (ysim). The choice of

outputs is explored in section 3.4.2.

fp =
1

N

t=tend
∑

t=1

(ysim − ymeas)
2 (3.21)

3.4.1 Data

The prototype greenhouse was operational at the end of the summer of 2004

and was operated by manual control at that time. Data was collected in the

period autumn 2004 to winter 2006. The available data includes measure-

ments of temperature and humidity inside and outside the greenhouse (at

various locations). Also air, water and condensation flows were measured in

the heat exchanger and in the inner roof system. See Speetjens et al. (2008a)

for more details on the measurement system and the measured data.

Most data sets for the parameter estimation are generated during the

manual experimentation period. During this period, many ways of operating

the greenhouse were tested, so data of many different situations is available.

This is favorable as it gives rich excitation for the parameter estimation.
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The parameters are estimated with data sets that are independent from the

validation data sets. For the estimation of the heat transfer coefficient of

the heat exchanger special experiments were performed to make the estimate

more accurate.

The accuracy of the data is an important consideration when they are used

for parameter estimation and validation. The measurements of temperature

and humidity inside the greenhouse are quite accurate (± 0.1 K or ± 2%

RH). The relative humidity is translated into moisture content [kg kg−1] to

compare the model with the data. The measurements of the air velocity and

water flow in the heat exchanger have accuracies of ± 0.02 m s−1 and ± 50

m3h−1. The measurements of the condensation on the roof and in the heat

exchanger are less accurate. The accuracy is estimated at ± 5%, which is

approximately ± 6 l day−1. Care was taken to place the sensors such that

the measured values represent the average value in the compartments as well

as possible.

3.4.2 Parameter estimation in parts

The CRS algorithm is computational intensive. To reduce the complexity of

the problem it is possible to use only the compartment of the model that

contains the parameters to be estimated (see figure 3.3). Measured values are

used to replace the inputs at the boundaries of the compartment.
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Figure 3.3: Principle of estimation in parts; the four partial models that are
used to estimate the parameters are numbered 1 to 4.

The main advantage of estimation in parts is that inaccuracies in other

compartments of the model do not influence the parameter estimation. In

addition, computational load decreases.
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Four partial models (as numbered in figure 3.3) are used to estimate twelve

parameters, namely (the context dependent inputs are denoted by u and the

output is denoted by y):
1. Temperature plant comp.: ηp y = Tp

θ1 = cpsp
msp

u = [Ti, Th, xp, xi, xh]

θ2 = ηsp
Asp

θ3 = Upsp
Apsp

2. Moisture content plant comp.: αp y = xp

βp u = [Tp, xi, xh]

3. Temperature inner roof comp.: ηi y = Ti

θ5 = cpsi
msi

u = [Tp, Th, xi, xp, xh]

θ6 = ηsi
Asi

θ7 = Upsi
Apsi

4. Moisture content inner roof comp.: αi y = xi u = [Ti, xp, xh]

βi

ad 1. The temperature of the air and the solids in the plant compartment

cannot be simulated separately because they influence each other and cannot

be separated due to the lack of measurements of the solids temperature. Since

the plant evapotranspiration has an important influence on the air tempera-

ture, parameters αp and βp were estimated first (alternatively, it is possible

to estimate the parameters with experiments in an empty greenhouse). The

fraction of solar energy received by the air is given by ηp. The heat capacity

of the solids is given by θ1. (it is not necessary to estimate the unknown mass

(msp) and specific heat (cpsp) of the solids separately). The surface of the

solids (Asp) is also unknown, so it is estimated in combination with the con-

version factor for solar radiation (ηsp) in the new parameter θ2, and combined

with the heat exchange coefficient Upsp in θ3.

ad 2. Both parameters in the evapotranspiration model are crop and

situation specific. To estimate these parameters, only the model equation

for the moisture content for the plant compartment was used. The inputs

(air temperature and incoming moisture content) as well as the disturbances

(solar radiation) were taken from the measured data.

ad 3. The parameters in the model for inner roof compartment temper-

ature were estimated in exactly the same way as the parameters in the plant

compartment model.

ad 4. The parameters in that describe the water evaporation on the inner

roof (αi and βi) are estimated similar to αp and βp.
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Apart from the twelve parameters that were estimated with the CRS al-

gorithm, two parameters were estimated in special experiments using least

squares, namely the heat transfer coefficient in the heat exchanger (Utot) and

the air velocity in the heat exchanger (vair)

3.5 Results and discussion

The search process of the CRS for αp and βp is depicted in figure 3.4 (for a

data set of 1 day with measurement interval of 1 minute, obtained in April

2006). The figure shows the parameter values and the accompanying goal

function (fp) that were added to the set stored in matrix A every iteration.

The search converges to the final value of αp = 0.012 and βp = 0.034.
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Figure 3.4: Example of the controlled random search history for αp and βp.
The dots represent the sample point that were added to the set A (data from
13th and 14th of April 2006)
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When the search is finished (if the goal function does not improve any-

more), histograms are plotted of the parameter set (A). The price algorithm

does not provide information about the confidence interval of the estimates,

but the histograms of the distribution have been used to check the unimodal-

ity of the estimates (figure 3.5). The same procedure was followed for all

twelve parameters.
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Figure 3.5: Histograms of final values for αp and βp (data from 13th and 14th

of April 2006)

As said before, the parameter values were estimated with partial mod-

els. The results for the partial models were studied; an example is shown in

figure 3.6. The figure shows the output of the partial model for the plant

compartment temperature using the calibration data (13th and 14th of April

2006) and the validation data (15th and 16th of April 2006). The model fits

the validation data quite well, despite the fact that the solar pattern on the

validation day was very different from the calibration day.

After the parameter estimation with the partial models, the whole model

is run with the same data set (13th to 16th of April 2006) that was used

to estimate the parameters. This is shown in figure 3.7 and figure 3.8. As

expected, the fit is quite good at the same date as was used to calibrate

the model (13th and 14th), only the moisture content of the air in the inner

roof compartment is somewhat underestimated. To test the model further,

validation data is used from the same period, but with a very different solar

radiation pattern (15th and 16th of April 2006; see the same figures). At
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(b) validation (15th and 16th of April 2006)

Figure 3.6: Temperature of the air and the solids in the plant compartment,
(legend: Tpmeasured value (gray), Tpsimulated value (–), Tsp

simulated value (. . .))

these times, the model predicts both the temperatures as well as the air

moisture content well (as with the 13th of April 2006 data set), the moisture

content of the inner roof compartment is again slightly underestimated. The

model predicts fast fluctuations in the plant compartment and inner roof

compartment temperature due to the fast dynamics in solar radiation input.

In the measured data, these fast fluctuations cannot be seen (at a sample

interval of 1 minute). Probably the fast changes in the model output are

caused by the fact that the solar radiation is added mostly to the air instead
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of the solids (adding the solar energy to the solids is more physically sound,

but simulations showed a worse over-all model fit). These results suggest that

the calibrated model gives a fair description of the system behavior on other

days nearby the day used for the calibration.

When the model was tested on data sets obtained in other seasons, the

fit was not too good. This lead to the conclusion that the model parameters

must be fluctuating over the year. To test this, the CRS algorithm was used

to estimate parameter values on data sets of each month (on the 15th and 16th

day). The parameter values fluctuate from month to month, as is shown in

figures 3.9 and 3.10. The fluctuations are caused by changes in circumstances

(like transmissivity of the roof due to whitening and pollution, plant stage

(Jemaa et al. (1995), etc). When the simulation was run for the 5th and 6th

day of each month, similar values were obtained.
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Figure 3.7: Validation of the model (data of 13th to 16th of April 2006)
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(b) Moisture content in the inner roof compartment legend: (gray) xi,
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Figure 3.8: Validation of the model (data of 13th to 16th of April 2006)
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Figure 3.9: Parameter value estimates, estimated every 5th and 6th day of
each month
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Figure 3.10: Parameter value estimates, estimated every 5th and 6th day of
each month
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The sensitivity (S) of the goal function (fp as given in equation 3.21) for

a change in parameter values (θ) provides a way to judge the quality of the

estimated parameter values. It is given by:

S (N, θ) =

(

δfp (N, θ)

δθ

)

(3.22)

A high sensitivity indicates that the estimated value is influential in the

model. The sensitivity of the goal function for a change in parameter value

is plotted in figure 3.11 (note the log scale). The fluctuation in sensitivity

over the months is due to changing circumstances (like plant stage, radiation

pattern, etc). The sensitivity of the moisture model that contains (αp and βp)

is larger than the partial model of the temperature in the plant compartment.

This is caused by the fact that there are more parameters in the latter model,

that can partly compensate for each other (or, in other words, the model

might be slightly over-parameterized).
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Figure 3.11: Sensitivity of the goal function for changes in the parameters

The combination of the model and parameter estimation presented in this

paper yield a suitable model for control applications. The model is relatively

simple, yet does describes the dynamic behavior of the greenhouse well. As

shown, the lumped parameters tend to change over the seasons, which in itself

limits the applicability of the model for longer simulations. In our view, when

the model is used in control, its parameters must be continuously adapted.
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In this framework, the initial parameters are estimated with the method de-

scribed here and are adapted with methods like an extended Kalman filter.
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3.6 Conclusions

A relatively simple model is developed to be used in a model based control

system for the Watergy greenhouse. The model describes the main dynamic

behavior of the Watergy greenhouse with a limited number of states. Lumped

parameters are used to describe less important physic processes to reduce the

model’s complexity. Also the complex biological processes of plant evapo-

transpiration are described in a simplified, lumped model. The key model

parameters are identified with a controlled random search algorithm. This

results in a model that mimics the real behavior of the greenhouse well on

the short term (several days).

On the longer term, lumped parameters tend to change due to for example

plant growth and pollution of the roof. Instead of expanding the model and

demanding information inputs from the user it is more practical to cope with

time varying parameters automatically via adaptive estimation techniques (as

recursive estimation or extended Kalman filters. In chapter 4 online parame-

ter estimation is described that is finally used in chapter 5 to build an adaptive

receding horizon optimal controller.

The estimation of lumped parameters with the controlled random search

algorithm only works well when the number of parameters to be varied is

small and computing time to evaluate the model is short. It has been shown

that (for this compartmental model) estimation in parts, meaning that only

a part of the whole model is used in combination with measured input data

for neighboring compartments, can serve the purpose. The method results in

parameter estimates that converge well and computation time reduces signif-

icantly as compared to calibration of the full model.

Concluding, the model, with properly estimated parameters, is suitable for

its intended use in a model predictive controller. Computation time (a main

issue in model based controllers) is short because of the limited complexity of

the model due to a limited number of states and lumped parameters.
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Appendix 1: Vapor pressure deficit

The vapor pressure deficit (Dp [Pa]) calculated from the saturated vapor

pressure (Psat, [Pa]) and the actual vapor pressure of the air (Pact, [Pa]):

D = Psat (Ta) − Pact (3.23)

NB. Ta must be given in K in this formula.

The saturated vapor pressure is calculated from the empirical formula

given below:

Psat = 133.32 ∗ e
1.0887∗Tk−276.4

0.0583∗Tk−2.1938 (3.24)

The actual vapor pressure is calculated from the moisture content (x, [kg

kg−1]):

Pact =
pressure ∗ x

Mw/Ma + x
(3.25)

where pressure is a constant of 101325 Pa, Mw is the molar mass of wa-

ter (18.01528 g mol−1) and Ma is the molar mass of air (28.9645 g mol−1).

Moisture content x must be given in [kg kg−1].
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Abstract

Application of advanced controllers in horticultural practice requires detailed

models. Even highly sophisticated models require regular attention from the

user due to changing circumstances like plant growth, changing material prop-

erties and modifications in greenhouse design and layout. Moreover, their cal-

ibration is data demanding and laborious. This study explores the suitability

of the extended Kalman filter (EKF) for automatic, on-line estimation and

adaptation of parameters in a physics-based greenhouse model. The method

was tested with measured data recorded over a period of one year, and with a

model that describes the air temperature and moisture content in the Watergy

greenhouse. In order to keep the parameters estimation problem tractable,

and to improve the local accuracy of the parameters, separate EKFs are ap-

plied to sub-systems, using observation data at the sub-system boundaries.

The filter adequately adjusts parameter values, thus significantly improving

the model fit as compared to simulations with no-varying parameters. It ap-

pears that the filter is robust with respect to sudden changes in the system;

when a disturbance occurs, such a pruning of plants or emergency opening of

the windows, the EKF changes the parameter values accordingly. The result

suggests that the extended Kalman filter is, indeed, a suitable method to pro-

vide the required automatic adaptation to time-varying phenomena for when

modeling is impractical.

4.1 Introduction

Climate control in commercial greenhouses is mostly based on heuristic rules

(Van Straten et al., 2000a). Many alternative control methods are known

which show, in well described situations, a better performance than heuristic

rules for typical horticultural applications. One of these alternatives is re-

ceding horizon optimal control (RHOC) (for example Ooteghem (2007); Tap

(2000); Chalabi et al. (1996)). However, the application of RHOC in com-

mercial greenhouses is hampered by the need for laborious calibration of the

model that, essentially, is part of the initialization of the model-based control

scheme. Careful calibration is needed to fit the model in the controller to the

situation in which it is used. This means that for each individual greenhouse

the models must be calibrated first. In addition, in practice, the greenhouse
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is a lively system that will almost never remain entirely the same as origi-

nally planned. For instance, the type of crop may vary over time, the crop is

subject to manual action, such as pruning, and the greenhouse is a working

place. Also design modifications occur frequently. A model whose parameter

values adjust themselves automatically would be a large improvement since

it reduces both the time needed for initial calibration and, in addition, the

adjusted model increases the accuracy of the model-prediction resulting in an

improved controller performance.

Currently, adaptive models and adaptive control are not commonly used

in horticultural practice. This despite the fact that adaptive mechanisms are

used in many industrial applications and are potentially quite promising for

the design of models and controllers that really work in commercial green-

house control. As an adaptive model can account for errors both in model

structure as well as errors in the parameter estimates, the model does not

have to mimic reality for 100 %. This may reduce the modeling effort for

individual cases substantially. Also the model parameters are automatically

adjusted for changes in layout, maintenance, wear, etc, and this is a significant

benefit for the controller implementation in practice.

This paper utilizes the well-known extended Kalman filter for adaptation

of the model parameters over time (seasons). It is applied to a special type of

water-saving greenhouse, i.e. the Watergy greenhouse, which is described in

the next section. This greenhouse has been built in Almeria, Spain, to study

possibilities for extension of the growing season and increasing water use effi-

ciency in horticulture by combining plant production with water desalination,

water recycling and space cooling.

To optimize the operation of the Watergy greenhouse an adaptive model

based controller is developed to take into account the complicated structure of

the control system and the multi-criteria goals (production of both water and

plants). The proposed control system uses a physics based model. For the

sake of model simplicity and to reduce computational loads for the controller,

the number of states is limited. Details of sub-processes are encapsulated in

aggregated (lumped) parameters. However, these parameters tend to change

over time, making an adaptation mechanism inevitable to keep the model fit

accurate over a longer time period. The model should be capable of predicting

the climate inside the greenhouse accurately over the prediction horizon of 1-2

days, during a whole year, without external adjustment of the model structure
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or parameter values.

This chapter consists of four parts; first a short description is given of the

Watergy greenhouse and the climate model. Second, the extended Kalman

filter and its application in the Watergy climate model are given. Third, the

filter is applied to estimate parameters with real data from a one-year period

in the Watergy greenhouse showing some interesting results. Forth, general

conclusions concerning the adaptive model and its applicability for greenhouse

climate control are drawn.

1

2

4

5

46 6

7

3

Figure 4.1: Model and functioning of the Watergy greenhouse. Five compart-
ments are distinguished; plant compartment(A), inner roof compartment (B),
heat exchanger (C), solids in the plant compartment (D), solids in the inner
roof compartment (E) and the heat buffer (F). The numbers 1 to 7 refer to
the functions as described in the text.

4.1.1 Function of the Watergy greenhouse

The Watergy project and the details of the prototype greenhouse are described

in Buchholz and Zaragoza (2004) and Zaragoza et al. (2007). Here, only

the basic idea of the greenhouse is briefly explained. The aim of the newly

88



Parameter Adaptation for a Greenhouse Climate Model

designed greenhouse is to provide a closed, cooled environment for the crop,

so that the growing season can be extended. The excess heat is used to make

fresh water from gray or salt water. The most remarkable feature of the

experimental greenhouse is the double walled tower (see figure 4.1). During

the day, the sun heats the (humid) air inside (1), which rises along the inner

roof (2), into the outer duct of the tower where it is further heated by the sun

(3). As the tower is closed at the top the air does not leave the greenhouse

but is cooled with a heat exchanger in the central duct of the tower (4). The

coolant is stored in a heat buffer (7). The cooled air flows back into the warm

greenhouse (5), closing the cycle. During night, the heat exchanger heats the

air and the air movement reverses; hot air rises through the heat exchanger

to the top of the tower and flows down through the outer duct. The ground

surface of the prototype greenhouse is 14x14 meters, the height of the tower

10 meters. Temperature and humidity are measured at all vital places inside

and outside the greenhouse. Other measured quantities are outside global

radiation, wind speed and -direction and the CO2 concentration. See Janssen

et al. (2004) and Speetjens et al. (2008a) for a detailed description of the

control system.

4.1.2 Climate model of the Watergy greenhouse

A model is developed that describes the dynamic behavior of the Watergy

greenhouse with a limited number of states. The greenhouse is divided into

compartments A to F (see figure 4.1 and figure 4.2). The heat storage (F) and

the heat exchanger (C) are divided into sub-compartments. For each compart-

ment, energy and moisture balances are determined from the key (physical)

processes. Lumped parameters are used to avoid laborious modeling of small

details and to keep the model simple, which is required to keep computational

loads for the controller low. The complete model is described in Speetjens

et al. (2008b) and is not repeated here. For the sake of illustration of the

adaptive mechanisms, the part of the model that describes the temperature

and moisture content in the plant area is briefly explained.

The states of the model as a whole are given by:

[

Tp Ti xp xi xsp xsi
Tha

(n) xh(n) Thw
(n) Ths(m)

]

(4.1)

where T and x are temperature and moisture content, respectively, and sub-
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Figure 4.2: Layout of the greenhouse model. The arrows represent the airflow
during the day (—) and during the night (– –).

scripts indicate plant compartment (p), inner roof compartment (i), and solids

in the plant (sp) and inner roof compartment (si). T (n) is a vector denoting

the temperature in the heat exchanger (on water (hw) and air side (ha)), and

xh(n) is the moisture content in the air in the heat exchanger. Ths(m) is a

vector that denotes the temperature in the heat storage.

Plant evapo-transpiration is described by the Penman-Monteith equation

(Monteith, 1973). This empiric formula states that evapo-transpiration (E

[kg s−1m−2]) depends on incoming solar radiation (Go [Wm−2]) and vapor

pressure deficit (D [Pa], given in the appendix of chapter 3). Parameters αp

and βp are calibration parameters:

Ep = αp Go + βp Dp (4.2)

The energy balance of the plant compartment (eq. 4.3) incorporates the

main energy flows in the greenhouse, i.e. solar radiation, convection, conduc-

tion and evapo-transpiration. The solar radiation received by the air in the

plant compartment is given by ηp Go, where Go [W m−2] is the global radia-

tion and ηp < 1 an efficiency parameter. As the airflow direction reverses at

night, the convective term (Φconv
p,T ) in the equation changes. The total energy

balance of the plant compartment is given by:
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mp cpa
dTp

dt
= ηp Ap Go + Φconv

p,T + Upo Apo (To − Tp) + . . .

Upsp Apsp

(

Tsp − Tp

)

+ Upi Api(Ti − Tp) − . . .

le Ap (αpGo + βpDp) (4.3)

day: Φconv
p,T = φa cpa (Th,out − Tp)

night: Φconv
p,T = φa cpa (Ti − Tp)

Condensation is driven by the difference in moisture content between

air (xp, [kg kg−1]) and the saturated moisture content at roof temperature

(xsat(Trp)). Latent heat release due to condensation (le · Φ
con
p ) is assumed to

be transferred outside, so the surface of the roof is not heated by this energy

release. The total moisture balance of the plant compartment is described

by:

mp
dxp

dt
= Φconv

p,x + Ap (αpGo + βpDp) − . . .

ucon
rp

kpr ρa Apr (xp − xsat(Tr,p)) (4.4)

day: Φconv
p,x =φa (xh,out − xp)

night: Φconv
p,x =φa (xi − xp)

The solid materials in the plant compartment are modeled as one body

with a certain heat capacity (cpsp) that exchanges energy with the air through

an overall heat transfer coefficient (Upsp). As with the air, ηsp Asp Go gives

the total amount of solar energy received (eq. 4.5). The heat balance of the

solids in the plant compartment is given by:

msp cpsp

dTsp

dt
= ηsp Asp Go + Usp Asp

(

Tp − Tsp

)

(4.5)

The initial values of the lumped parameters are identified with a controlled

random search algorithm (Price, 1976). This results in a model that mimics

the real life behavior of the greenhouse well, especially in the same period

as was used for parameter estimation. In other periods, the model fit is

less good, indicating that parameters change slowly (Speetjens et al., 2008b).

This motivates the study described in this paper to adapt parameters with
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the extended Kalman filter (EKF).

4.2 Background and theory of the EKF

The lumped parameters in the greenhouse model vary over time, so they

should be adjusted to keep the model fit accurate over time. One way to

adjust parameters online is the use of an extended Kalman filter (EKF). This

section first describes literature on application of adaptive parameter methods

in horticulture, followed by the theoretical background of the EKF and the

application to the Watergy greenhouse model.

4.2.1 Previous studies

The number of studies that investigate the use of adaptive mechanisms in

greenhouse climate and plant models is fairly limited. In other fields of science

the EKF is widely applied, both for state and parameter estimation and shows

good results that suggest that application in horticulture could be fruitful.

An example of the use of the EKF as an observer for state estimation

is described by Piñón et al. (2005). They use an EKF to estimate the leaf

temperature (not measured directly) from other measurement data.

Of the few references that describe parameter adaptation in greenhouse

models, Udink ten Cate and van de Vooren (1978) describe an early statistical

climate model of which the parameters are estimated online. Later Davis

(1984) describes the use of a control ARMAX model in combination with

a Kalman filter. This control law was tested in practice against P and PI

controllers, leading to the conclusion that the adaptive ARMAX controller

yielded the better results.

Cunha et al. (1997) found that parameter values in their model changed

due to variation in operational conditions. They found that the value of the

solar efficiency of a greenhouse changes over the day as well as over a growing

season due to changes in the optical properties of the transparent materials,

the angle of incoming radiation, etc. Since it was difficult to derive a physics

based model for these phenomena, they choose to develop a data based (ARX)

model in combination with recursive parameter estimation, extended with a

forgetting factor and windup protection.

Sigrimis et al. (1999) describe the use of multi-rate-output controllers in
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an adaptive framework to deal with changing, un-modeled, circumstances.

The adaptive mechanism estimates three process parameters online, resulting

in a globally stable control scheme.

Berenguel et al. (2003) describes the use of a recursive least squares (RLS)

method to estimate parameters online in a simplified, physics based green-

house model and parameters in a PI controller. Each time step, model param-

eters are estimated with a RLS scheme combined with a variable forgetting

factor and a supervisory module. This module checks conditions under which

identification has to be stopped, like saturation of the control signal, low ex-

citation, etcetera. Also, the controller parameters are estimated each time

step, after which the controller output is calculated, checked by the supervi-

sory module and subsequently effectuated in the greenhouse by the actuators.

In summary, the available literature describes studies that use an EKF

with statistical models and one study shows a RLS method with a physics

based model. No studies in the greenhouse horticulture literature are known

to the authors in which an EKF is combined with a complex, physics based

greenhouse climate model for parameter adaptation.

4.2.2 Theoretical background

The extended Kalman filter is a popular state and parameter re-construction

algorithm for (non)linear systems. It is described in many books and pa-

pers, for example Gelb (1974); Ljung and Söderström (1983); Lewis (1986).

Although originally intended for state estimation it can also be used for pa-

rameter estimation by augmenting the states with the parameters:

ẋ(t) = f (x(t), u(t), θ(t)) (4.6)

θ̇(t) = 0 (4.7)

ẋa(t) =

[

ẋ(t)

θ̇

]

(4.8)

This results in the following sampled data, continuous state model:
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ẋa(t) = f (x(t), u(t)) + ξ(t) (4.9)

ξ(t) ∼ N(0, Q(t))

yk =hk (xa(tk), u(tk)) + η(tk) k = 1, 2, . . . (4.10)

νk ∼ N(0, Rk)

The system noise (ξ(t)) and the measurement noise (ηk) are assumed to

be white and independent. The spectral density matrix Q and the variance-

covariance matrix R for system and measurement noise, respectively, first

have to be guessed before the filter can actually be used. This, in fact, is

one of the well-known drawbacks of the EKF, since it is especially difficult

to obtain a good educated guess of the spectral density matrix Q ‘a-priori’

(Stigter JD, 1997). The EKF first obtains a prediction of the state by solving

x̂−k = x̂+
k−1 +

∫ tk

tk−1

f (x(t), u(t)) dt (4.11)

where u(t) is a vector of all input signals and x̂+
k−1 is the estimate of

the state vector from the previous time step. Subscript a is dropped to sim-

plify the notations. Next, the state vector is corrected by the weighted error

between model and measurements (yk − ŷk):

x̂+
k = x̂−k + K (yk − ŷk) (4.12)

The Kalman gain K, that weights the error, is given by:

K = P−k Hk

[

HkP
−

k HT
k + Rk

]

−1
(4.13)

where Hk is given by:

Hk

(

x̂−k
)

=
∂hk(x̂

−

k , uk)

∂x̂−k
(4.14)

Matrix P is the covariance matrix, estimated by:
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P−k = ΦkP
+
k−1Φ

T
k + Qk (4.15)

where the state transition matrix Φk follows from the Jacobi matrix:

Φk = exp(Fk∆t) (4.16)

Fk

(

x̂−k
)

=
∂f

(

x̂−k , uk

)

∂x̂−k
(4.17)

The final step is to update the error covariance matrix P (here in Joseph

form to guarantee symmetry):

P+
k = (I − KkHk) P−k (I − KkHk)

T + KkRkK
T
k (4.18)

4.3 Application of the EKF in the Watergy green-

house model

The EKF is used to both reconstruct the states of the Watergy model and

to estimate the (lumped) parameters online. Estimation of the parameters is

performed on sub-models, meaning that only the subsystem that contains the

parameter(s) of interest is simulated and observations are used on the sub-

system boundaries (embedded in the large system). This process is explained

in more detail in the next section.

4.3.1 Parameter estimation with sub-models

The use of the EKF for recursive parameter reconstruction in large models is

computational intensive and the estimations do not necessary converge to the

correct parameter values due to, for example, wrong ‘a priori’ noise assump-

tions. Under certain conditions it is possible to reduce the complexity of the

problem by using only the part of the model that contains the parameters

to be estimated. This is possible when accurate measurements are available

at the boundaries of the sub-system that contains the parameters to be esti-

mated. Figure 4.3 shows this principle: the partial model estimates the value

of one or more parameters and the whole (deterministic) model is updated
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every time step.
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θk−2 θk−1 θk

x̂ ([k − 1, k − 1 + hor] |k − 1)

x̂ ([k, k + hor] |k)

x̂ ([k + 1, k + 1 + hor] |k + 1)

Figure 4.3: EKF for parameter estimation. (legend: x=state variables;
u=input variables, d=disturbances, θ=parameters, hor=prediction horizon
of the model)

The main advantage of estimation in parts in practical situations is that

inaccuracies in other compartments of the model do not influence the pa-

rameter estimation. This improves the accuracy of the estimated values. In

addition, computational load decreases.

In this study, four parameters are estimated that have a large influence on

the fit of the model for the plant compartment; ηp, αp, βp and θ2 = ηsp Asp .

The part of the total greenhouse model that describes the energy balance of

the air (eq. 4.3) and solids (eq. 4.5) in the plant compartment are used to

estimate ηp (the parameter that describes the fraction of the solar energy that

is added to the plant compartment air) and θ2 = ηcp Acp (the amount of solar

energy added to the solids in the plant compartment). Since the surface of

the solids that receives the solar radiation is unknown and could change due

to plant growth, a new parameter (θ2) is introduced that combines both solar

energy efficiency (ηcp) and surface (Acp). Apart from measured weather data,

extra inputs for this sub-model are the temperature and moisture content of
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the air flowing into the plant compartment from the heat exchanger (Th and

xh) or from the inner roof (Ti and xi) and the moisture content in the plant

compartment itself (xp).

The parameters in the plant evapo-transpiration model (αp and βp) are

estimated with the sub-model that describes the moisture balance of the plant

compartment. Additional inputs for this model are the moisture content of

the air flowing into the plant compartment from the heat exchanger (xh) or

from the inner roof (xi) and the temperature in the plant compartment itself

(xp).

Table 4.1: Parameters estimated with the EKF, and the inputs (u) and out-
puts (y) used in the estimation procedure

1. Model of energy balance in plant compartment:
parameters: ηp y = Tp

θ2 = ηsp Asp u = [Ti, Th, xp, xi, xh]
2. Model of moisture balance in plant compartment:
parameters: αp y = xp

βp u = [Tp, xi, xh]

4.3.2 Tuning of measurement noise covariance matrix (R)

The matrix R in the extended Kalman filter is the measurement noise co-

variance matrix and is deduced from the accuracy of the sensors. A different

value for R is given for each measured state, resulting in a m x m matrix,

with the noise covariance on the diagonal and the off-diagonal elements equal

to zero. Our sensors have accuracies of about ± 0.14 ˚C for the temperature

sensors and ± 0.5 g kg−1 for the humidity sensors. This results in a R-matrix

with (0.142=) 0.02 and 0.25 on the diagonal for the respective measurement

data.

4.3.3 Tuning of spectral density matrix (Q)

The spectral density matrix (Q) contains the noise in the model. This noise

is more difficult to quantify than the noise in the measurements, since it is a
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collection of factors like errors in model structure, errors in the parameter val-

ues, spatial distribution, etc. These factors change from one state to another

resulting in a matrix Q that has different values on the diagonal. Off-diagonal

elements relate to the correlation between state errors. As nothing is known

about these error densities they are set to zero, hence Q has only elements on

its diagonal.

Since Q cannot be directly deduced from the data, it must be tuned. It

is clear from equation 4.9 that the system noise ξ(t) has units of the rate of

change of the associated estimation variable. Hence, the units of the elements

of Q are (˚C s−1)2 for temperature, (g kg−1 s−1))2 for moisture content and

can similarly be derived for the augmented states representing the model pa-

rameters. By changing the values of Q model parameters can be forced to

change faster (hours) or slower (days/weeks). In our case, the parameters

should adapt slowly, so Q should be chosen small. As the structure of the

greenhouse model for the Watergy greenhouse is reasonably trustworthy, Q is

tuned such that more emphasize lays on parameter estimation than on state

estimation. This is done by choosing the matrix elements of Q for the states

fairly small compared to the matrix elements that correspond to the param-

eters. This forces the parameter estimates to react to the difference between

model output and observations. A good compromise appeared to be the choice

diag(Q)=[1·10−12 1·10−13 1·10−13] in the EKF for plant evapo-transpiration

and diag(Q)=[0 0 1·10−10 1·10−6] in the sub-model for the energy balance of

the plant compartment.

4.4 Results and discussion

The sub-models for both moisture and temperature are simulated for a period

of almost 1 year (1st of January 2006 - 18th of December 2006), both with the

EKF to vary parameter values as well as a simulation without time-varying

parameters. The EKF for estimation of ηp and θ2 was tuned such that the

fluctuations in the parameter values are relatively slow, since the parameter

values are not expected to show high frequent behavior. To estimate αp and

βp, the EKF was tuned on a shorter timescale, so that daily fluctuations are

taken into account in the parameter adjustments.

The results are presented in figures 4.4 and 4.5 for the thermal sub-model

and figures 4.6 and 4.7 for the moisture balance, split for reasons of readability
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Table 4.2: Main events in the Watergy greenhouse that influenced the param-
eter values during the year 2006

Nr Date Event

1 14 March 2006 Whitening of the greenhouse roof
and start of the experiment

2 7 April Pruning of the plants (green bean)
3 12 April Pruning of the plants (green bean)
4 21 April Greenhouse windows open for 1 day
5 15 May Greenhouse windows open for 1 day
6 31 May Installation of internal shadow screen
7 1 June Part of the plants removed
8 9 June New plants sown (Okra)
9 14 June Greenhouse windows open for 1 day
10 28 July Internal shadow screen removed
11 31 July Okra plants pruned
12 25 August Greenhouse windows open for 1 day
13 13 September Greenhouse windows open for 1 day
14 28 September Whitening removed from greenhouse
15 21 November Electrical problems in greenhouse
16 11 December End of test; greenhouse is emptied

over the first and second half year.
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Figure 4.4: Parameter estimates for ηp (b) and θ2 (c) and residuals (a) over
the period 1 January – 1 July 2006, using the sub-model for temperature
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Figure 4.5: Parameter estimates for ηp (b) and θ2 (c) and residuals (a) over
the period 1 July – 18 December 2006, using the sub-model for temperature
(legend: - time-varying parameters; -. fixed parameters)

101



According to figures 4.4(b), 4.5(b), 4.4(c) and 4.5(c) the radiation effec-

tiveness varies over the year. A physical explanation is the changing light

transmissivity of the greenhouse cover, which changes due to pollution by

dust, whitening for shading, etc. Table 4.2 gives an overview of the most

important events that have large influence on the parameter estimates. The

model residuals for ηp and θ2 are shown in figures 4.4(a) (first half year) and

4.5(a) (second half of the year). The residuals are defined as the mean differ-

ence between measured and simulated data (with time-varying parameters),

over the whole day 1
1440

∑24:00h
00:00h (ym − ysim). The residuals are plotted both

for a simulation with fixed values for the parameters as well as for a simulation

with time-varying parameters (as estimated by the EKF). When parameters

ηp and θ2 are varied, the model fits the data better than when a constant

value is used for these parameters, especially during the first half of the year.

Figures 4.6(b) and 4.6(c) show the values of parameters αp and βp for

the period of 1st of January to 1st of July. Figures 4.7(b) and 4.7(c) show

the values for the period of 1st of July to 18st December 2006. The beans

that were grown inside the greenhouse were planted in the second week of

March (number 1 in the superscript of the graph). Before that time the

greenhouse was empty. Some of the largest jumps in parameter values are

explained by the opening of the greenhouse windows (numbers 4, 5, 12 and

13 in the graphs). This effect is not included in the greenhouse model, so

the model structure fails in describing this situation (which can be noticed

in the residuals plot, especially at numbers 4 and 12). It may be better not

to continue the estimation process in these periods to avoid windup effects

in the filter. However, after the windows were closed, the model residuals

quickly recover so the EKF seems quite robust for major disturbances. The

parameter estimate after these disturbances does not immediately return to

the old value, which might point at an over-parameterized system. Number

11 shows pruning of the plants, where the values of αp and βp decrease due

to reduced evapo-transpiration because of reduction of the leaf area. In the

period after number 1 and after number 8, the plant growth is clearly seen in

the increase of values for αp and βp. It is interesting that beta remains virtu-

ally zero until plants are put in the greenhouse, and then gradually increases

until a plateau is reached. As beta is related to vapor pressure deficit, the

increase of beta might indicate that the term represented by beta is largely

determined by the evaporation from the soil and the base evapotranspiration
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of the growing plants associated with nutrient transport. This term seems

less sensitive to pruning than the term represented by α, which is related to

the evapotranspiration from the sun-lit leaves to cool the plant.

The model residuals for αp and βp are shown in figures 4.6(a) and 4.7(a).

The model run with fixed parameters used values estimated with a controlled

random search at the 15st of April 2006 (Speetjens et al., 2008b). The model

fit in the case with EKF is slightly better than the model fit without parameter

adjustment by the EKF. When the EKF is tuned differently, the parameters

were fluctuating faster, resulting in decreased model residual. However, these

fast changing values are not useful for predictions (as they showed large fluc-

tuations, even over 24 hours).

103



time [month]

R
es

id
u
es

[g
k
g
−

1
]

1

2

3

4

5

6

7

8

9

Jan Feb Mar Apr May Jun Jul
-15

-10

-5

0

5

(a) Daily mean residuals (= 1
1440

∑24:00h

00:00h
(ym − ysim)). Legend:

gray = fixed parameters, black = varying parameters

time [month]

α
p

1

2

3

4

5

6

7

8

9

Jan Feb Mar Apr May Jun Jul
0

0.003

0.006

0.009

0.012

0.015

(b) Evaporation parameter αp

time [month]

β
p

1
2
3

4
5

6
7

8
9

Jan Feb Mar Apr May Jun Jul
0

0.01

0.02

0.03

0.04

(c) Evaporation parameter βp

Figure 4.6: Parameter estimates for αp and βp over the period 1 January – 1
July 2006, using the sub-model for moisture content
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Figure 4.7: Parameter estimates for αp and βp over the period 1 July – 18
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4.5 Conclusions

Compared to the model with fixed parameters, online parameter estimation

with an EKF improves the model fit over a longer time period, especially

in periods further away from the time of initial parameter estimation. Af-

ter tuning of the filter, the parameters in the sub-models were adapted, so

that changes in the system were dealt with. The estimation of parameters

only works well if the number of parameters to be estimated is not too large

compared to the available measurement data. Splitting a large compartment

model in smaller pieces with the use of measurement data for the inputs at

the boundary is a good way to deal with parameter estimation in practical

situations.

The use of the EKF is a valuable addition to current greenhouse climate

models to bridge the gap between current practice in commercial greenhouse

control and more advanced control systems. In future work, the described

EKF will be used in a model based adaptive control framework for control of

the climate in the Watergy greenhouse.

Acknowledgements

This research was funded by the European Union under contract number

NNE5/2001/683.

106



5
Adaptive Optimal

Control for the

Watergy

Greenhouse



5.1 Introduction

The greenhouse developed in the Watergy project is a completely new design

that needs a custom made control system to regulate the climate. As the

Watergy greenhouse produces both water and plants, there are multi-criteria

goals and mutual interactions that make the greenhouse climate difficult to

control. The control methods used nowadays in horticultural practice are not

able to deal with complications in an explicit way. Nor do they take pre-

dictions of the future (e.g. weather) into account. For example, it is easy

to see that high temperatures and humidity levels could improve water pro-

duction, but, obviously, these conditions are potentially harmful for plants.

Another example is the limited amount of available cooling liquid, which must

be used in the best possible way to accommodate an optimal operation of the

greenhouse in terms of water production, energy use, and plant production.

An advanced controller that takes into account weather predictions and the

changing capacity of the cooling system (due to weather changes), could sub-

stantially improve the performance of the system and is therefore a valuable

tool.

With these considerations in mind, it was decided to develop a receding

horizon optimal controller (rhoc) to regulate the climate inside the Watergy

greenhouse. The use of a greenhouse climate model enables the controller

to explicitly take the couplings and multi-criteria goals into account, which

should result in a better overall performance of the system (e.g. more water

production in combination with a better environment for the plants).

The application of a receding horizon optimal controller in practice hinges

on the fulfilment of two conditions. First, the model in the controller must

be simple enough to allow for fast computation times as the optimal control

trajectory is calculated every few minutes. Second, the model should have

good prediction capabilities, since a model based controller is as good as the

model it uses. Especially this second issue is troublesome, since a greenhouse

is a lively system of which properties tend to change over time. Therefore

a model needs to be re-calibrated continuously – especially if the underlying

model structure, for reasons of fast computation and manageable data needs,

does not include all the mechanisms that explain variations of temperature

and humidity over time. Hence, in such models parameter values change over

time. For example, the greenhouse cover light-transparency will change as a
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result of pollution (by dust), which is a process that is not easy to model in

practice.

In this study we choose to adjust parameter values automatically to chang-

ing circumstances so that the model accuracy is improved upon (of course,

within the limitations of the model structure itself). With this principle a

model can be developed that only describes the main dynamics of the green-

house, and uses lumped parameters that cover un-modeled processes. This

greatly improves the applicability of optimal control in practice.

The outline of this chapter is as follows. First some examples of optimal

greenhouse controllers from literature are presented. Second, the methodology

of the adaptive optimal control scheme is discussed, including some consid-

erations on the goal function. In the third part, results of the controller in

the Watergy greenhouse are given, followed by simulations with an improved

version of the Watergy greenhouse. Finally a discussion on the applicability

of the control method in practice and conclusions are presented.

Control inputs

As an optimal controller quickly becomes more complicated with an in-

creasing number of controls, not all controls are considered independent. For

example the fan speed is coupled to the pump speed; if the pump is on, so

is the fan. This is a natural choice, since the heat exchanger only works well

when both the fan and the pump are on. The inlet and outlet of the heat

storage tank are selected so that the stratification is maintained to maximize

the amount of stored coolant. The sprinkler installation in the inner roof

compartment is assumed to be active constantly during the day, as it always

adds to the amount of produced water. Of all the possible controls, only the

pump speed for the cooling water remains as manipulated variable.

5.2 Background

Currently, most greenhouse controllers work with rules that are specified by

the growers. For all common crops, blue prints are available that help the

grower selecting the right rules (Van Straten et al., 2002). This system works

well, although large differences in yield and energy efficiency amongst growers

are reported. This can be improved by applying optimal model-based con-

trol – a control strategy that will calculate the optimal settings (temperature,

CO2-level and humidity) for the greenhouse climate automatically using ad-
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vanced dynamic optimization algorithms. For optimal control three building

blocks are required: (i) a model of the system, (ii) a goal function and (iii) a

method or algorithm to solve the optimal control problem.

Optimal control problems in horticulture have typically two (and some-

times three) timescales. Plant growth and fruit production are slow processes

that have large time constants (days/weeks). Fluctuations in the exogenous

signals (e.g. solar radiation, wind speed) are in the order of minutes, which is

a completely different timescale. The use of a heat buffer introduces a third

timescale (Willigenburg et al., 2000) (typically changing in terms of hours).

The fast dynamics of the greenhouse and the weather are highly relevant if

the controller should exploit the effects of the external disturbances. This is

not the standard approach in current horticultural practice, but it may be an

important opportunity (Tap and Willigenburg, 1996). A way to deal with the

combination of slow and fast dynamics is to split the optimal control problem

into a long term and a short term optimization. The long term optimization

contains the long term goals, which are subsequently taken into account in

the short term optimization problem. In this way, it is possible to exploit

the fast dynamics optimally and at the same time keep the system within the

long term goals.

Long term economic optimization is not possible if reliable crop develop-

ment models are not available. Van Straten et al. (2000b) argue that the

long term goals must be set by the grower, whereas the short term effects are

handled by a receding horizon optimal controller. If the crop development

models are reliable, the long term problem can be solved off-line, which lead

to a seasonal pattern for the co-states of the amount of assimilates (produced

by photosynthesis), the fruit and leaf weights (Van Straten et al., 2002). These

co-states are used in a receding horizon optimal controller with short predic-

tion horizon. In this framework, the short term receding horizon controller

could have a prediction horizon of and hour to a day, with an update interval

of one minute. This means that each minute inputs, states and disturbances

are measured and an optimal control trajectory is calculated for the next

hours. From this trajectory the first control action is send to the greenhouse.

This process is repeated every minute.

The goal function should combine expected benefits, costs and risks. Ex-

amples of goals for an optimal controller are (Van Straten et al., 2000b):

1. Focus on maximal output, such as crop yield and quality.
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Cost are not considered. This approach follows the line of the blue

prints that are available for the current cultivations.

2. Focus on maximum product yield per unit of resource input.

Cost are not directly taken into account, but since heating is a major

consumer of resources (and thus money), they are indirectly taken into

account. As early as 1984 (Gall et al., 1984) attempts have been made

to control a greenhouse in an optimal way. Later Seginer (2000), and

Van Henten (2003b) studied optimal temperature regimes.

3. Focus on minimal resource input per unit product.

Plants can average out temperature variations during a specific period

of time (Körner, 2003), usually this effect is referred to as the temper-

ature integral of the plant. This means that lower temperatures can

be compensated by higher temperatures later on. This approach gives

the possibility to save energy by waiting for the sun to appear, without

turning on the heater.

4. Focus on expected economic return.

When economic return is used in the goal function, the three points

above re-appear. Rapid fluctuations can have a large effect on the con-

trol actions that must be taken, so the dynamics of the greenhouse will

have to be taken into account. Also constraints and the effects of hu-

midity control have a large effect. Finally, the actual weather conditions

must be fed back to the controller.

Examples from literature: relatively simple approaches

Chalabi et al. (1996) minimize energy use (q) inside the greenhouse under

the constraints of a minimum temperature, a maximum temperature and a

required average value of the temperature over the control horizon (24h). So,

the problem is to find the heating temperature setpoint trajectory Ts(t), such

that the total energy consumption is minimized:

min Ts

tf
∫

ti

q dt (5.1)
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subject to constraints imposed concerning the average temperature (T̄ ) and

the upper and lower limit to the temperature in the greenhouse (Tu and Tl).

:

1

tf − ti

tf
∫

ti

Ts (t) dt = T̄ (5.2)

and Tl ≤ Ts (t) ≤ Tu (5.3)

This control strategy was implemented in an existing greenhouse and

tested for a period of three months. Every hour, a new temperature set-

point was calculated for the low level climate computer, which was assumed

to be ideal. Weather forecasts for the coming 24h period were obtained on-

line. Unfortunately, it was not possible to measure the energy consumption

experimentally, so the total energy savings could not be determined.

Piñón et al. (2005) optimally control the temperature in a greenhouse

with a combination of two control schemes; feedback linearization and model

predictive control. They found that the combination of these schemes results

in much lighter computational requirements than the full nonlinear model

predictive control scheme.

The crop temperature was estimated with an extended Kalman filter. The

goal function is a combination of the deviation from a certain trajectory and

the required control actions:

J (k) =
NP
∑

i=1

‖ y (k + i|k) − yr (k + i|k) ‖2
Q +

NC
∑

i=1

‖ v (k + i|k) ‖2
R (5.4)

The predicted output at k is given by y (k + i|k), the reference trajectory by

yr (k + i|k). The sequence of computed control inputs at time k is given by

v(k), the prediction horizon by NP and the control horizon by NC.

To save energy, the error and the control signal are weighted differently

during day and night. During the day temperature is not allowed to deviate

more than 3˚C from the reference (25˚C). During the night, temperature

is allowed to drop to 10˚C. During the simulations, the main advantage of

the combination of feedback linearization and model predictive control is that

it turned out to be much more efficient than MPC alone, offering a general

approach to the solution of nonlinear control problems. The main drawback

is tat the goal function of the type of equation 5.4 is difficult to interpret in
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economic terms.

Gutman et al. (1993) propose a method of solving an optimal control

problem by linear programming. They use the minimization of energy (h(t)

in the goal function (c is the cost per heating unit):

J =

tf
∫

t0

−ch (t) dt (5.5)

Constraints for the plants were given and the tolerance of the plants to

deal with temperature variations was set to 20Kh (meaning 20 hours a 1 K

deviation from the setpoint). No constraints or setpoints for air humidity

were taken into account. The simplex algorithm in the optimization package

GAMS is used to calculate the optimal control sequence. Gutmans work can

be considered as a first step towards the development of a model predictive

controller that contains a model of the system, a disturbance predictor, sensors

to observer the measurable outputs and a state estimator (if necessary).

Examples from literature; taking the plants into account

Ioslovich et al. (1995) describe an application of sub-optimal control of CO2

enrichment in ventilated greenhouses. In their goal function, they maximize

the amount of the CO2 that is fixed in the plants with respect to the total

amount of CO2 supplied to the plants. Constraints on the temperature in the

greenhouse were not taken directly into account. Instead, high temperatures

were avoided by the controller because they have a diminishing effect on the

photosynthesis rate (and thus on the amount of CO2 that is fixed in the

plants). Extremely high CO2 rates were avoided by the control due to the

costs of CO2 and the diminishing fraction of CO2 that is fixed in the plants.

By using quasi steady state setpoint sequences, robustness was gained

at the cost of some performance. The difference between the quasisteady

state and the optimal solution was especially present at fast changing weather

conditions. However, if the short-term weather forecast is not accurate and/or

the control system is not fast enough, the suboptimal solution may be even

better than the true optimum.

Van Straten et al. (2002) choose a goal function with an economic basis.

It contains the costs (CF ) and penalties (Pen) that arise in a growing season:
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J =

tf
∫

t0

(CF + Pen) dt (5.6)

This function can be extended with the investments in plant material (Inv)

(Van Straten et al., 2000b):

J =

tf
∫

t0

(CF + Pen + Inv) dt (5.7)

where:

CF = −pF ẆHF + pcφinj + pHHu

Pen = Pc + PT + PV

Inv = λnẋn + λsLẋsL + λsF ẋsF

In this equation fruit yield (ẆHF ), energy consumption (Hu), CO2 cost (φinj)

penalties for excess of temperature (PT ), humidity (PV ) and CO2 bounds (Pc)

are taken into account.

Tap and Willigenburg (1996) give a goal function that looks similar to the

one given above:

J =

tf
∫

t0

(

−λnẆn + λsẆs − α2Φi − α3Hu − PR

)

dt (5.8)

Here, a distinction is made between non structural dry weight (Wn) and

structural dry weight (Ws). The CO2 input is noted by Φi, the heat input

into the greenhouse by Hu. The penalty functions for the humidity level is

denoted by PR and λ and α are the cost of the subsequent elements.

Van Henten (2003c) describes an optimal control strategy that optimizes

the economic value of lettuce growth in a greenhouse. The goal function is

given by:
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J = (cpri,1 + cpri,2 Xd (tf )) −

tf
∫

tb

(cq Uq (t) + CCO2 Uc (t)) dt (5.9)

where the lettuce price is given by (cpri,1+cpri,2 Xd (tf )), the heating costs

by (cq Uq) and the cost of CO2 by (cq Uq).

Bounds are a way to ensure that the control model stays in its validity

range. For example, in the case of the lettuce, the plant model did not contain

enough information about the negative effects of high temperature and/or

humidity levels. Instead of including these effects in a (more complicated)

model, a penalty function is used that puts bounds on the temperature, CO2

and humidity-levels. These penalties are such that exceeding the bounds is

penalized. Various forms have been proposed to achieve this. A form that is

differentiable, which may be desirable for numerical solution of the problem,

is the soft penalty form:

p (t) = cσ

[

2X (t) − Xmin − Xmax

Xmin − Xmax

]2k

(5.10)

where cσ is a weighting factor, X the state variable and Xmin and Xmax the

lower and upper bounds on state variable (and k = 1, 2, . . .).

Ooteghem (2007) presents a study in which the methods above are applied

to an advanced, energy saving, greenhouse (the Solar Greenhouse). Grid

search methods make the calculations fast enough to calculate year round

control trajectories for ventilation and heating.
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5.3 Method

The adaptive receding horizon optimal controller that is designed for the Wa-

tergy greenhouse consists of an optimal controller and a parameter estimation

algorithm (EKF). First, an optimal control input profile is calculated over the

control horizon using the last updated values of the parameters and the states.

The controller uses the gradient method (described in the following section).

Second, the control signal is sent to the actuators in the real greenhouse and

measured values are taken from it (y). The third step is to estimate and

adjust the model parameters, based on measured values. This process is, in

our case, 6 times faster than the rhoc algorithm (the rhoc has a time-interval

of once per hour, the parameter estimation occurs every 10 minutes). Figure

5.1 gives an impression on the functioning of the adaptive optimal control

algorithm.
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Figure 5.1: Adaptive receding horizon optimal control
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5.3.1 Optimal controller

Given the system:

ẋ = f (x, u, t) (5.11)

The goal of the optimal controller is to minimize the performance index

(J):

J = φ [x (tf )] +

tf
∫

to

L (x, u, t) dt (5.12)

Many books describe methods to solve this type of problems and their

implementation in software (e.g. (Kirk, 2004; Bryson, 1999)). The gradient

method is used to solve this problem. For the general case, the solution is

briefly described here (Bryson, 1999).

The system equation 5.11 acts as constraints that can be adjoined to the

performance index (5.12) with a time-varying Lagrange multiplier ( λ(t) ) to

yield:

J = φ [x (tf )] +

tf
∫

to

{

L [x (t) , u (t) , t] + λT (t) [f [x (t) , u (t) , t] − ẋ]
}

dt

(5.13)

The Hamiltonian is defined as:

H = L [x (t) , u (t) , t] + λT (t) f [x (t) , u (t) , t] (5.14)

Using variation calculus necessary conditions can be derived for J to reach

an extreme as follows:

ẋ = f (x, u, t) (5.15)

λ̇ = −HT
x = −LT

x − fT
x λ (5.16)

u(t) is determined from:

Hu = −Lu + λT fu = 0 (5.17)
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with boundary conditions:

x (t0) must be specified (5.18)

λ (tf ) = φT
x (5.19)

This is a two-point boundary value optimization problem.

Goal function

The goal function that is used in a rhoc gives the user the opportunity to

specify the demands for the system and make sure the controller satisfies

these demands in the best possible way. As the goal function is of prominent

importance in the concept, several options were considered for the Watergy

greenhouse:

• Maximize water production

As the greenhouse should produce both plants and water, a goal function

that contains a combination of both seems a natural choice. However,

due to the lack of proper plant models only water production is modeled

accurately. A work-around is to define a goal function that maximizes

water production under the constraint that the climate inside the green-

house stays within acceptable limits.

• Minimize energy use

The main energy use of the greenhouse is the coolant pump and the

(relatively small) fan in the tower. There is no additional cooling or

heating capacity installed in the greenhouse, so the energy consumption

is in any case quite limited. This leads to the conclusion that optimizing

on energy use is not needed.

• Minimize fresh water use

By controlling the climate in the greenhouse, it is possible to limit the

evapo-transpiration of the plants (which could save water in traditional

greenhouses). However, in practice the control freedom is limited, as a

climate must be maintained that does not propagate diseases (e.g. in a

very humid climate, plants will not transpire much, which saves water.

But at the same time the humid climate will stimulate fungi to grow.).

• Follow a given temperature trajectory

A simple way of greenhouse control is to specify a temperature (and/or
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humidity) trajectory for the climate inside. However, this limits the

freedom for the controller drastically, probably such that the main aim

of the project - water production - is lost. Therefor this seems to be a

bad choice as a goal function.

• Maximize cooling of the coolant at night

The greenhouse system does not have an external source for cooling,

which implies that the energy taken from the greenhouse during the day

must be used/dumped at night. A strategy to maximize the available

cooling capacity during the day is to cool the cold/heat storage tanks

as far as possible at night.

• Use the heat storage tank as efficiently as possible

The limited amount of cooling liquid should be used in the best way to

keep the temperature in the greenhouse within certain bounds. This will

have an effect on the control actions at night (cool the coolant as much

as possible) as well as during the day (do not spend all coolant during

the first hours of the day, but save capacity for the hottest hours).

A major restriction in the selection process to select a suitable goal func-

tion is the lack of a plant development model for the crops grown in the

Watergy greenhouse (green bean and okra). As argued earlier, a plant model

must be detailed and accurate to be used in an optimal controller. At present,

these models are only available for the most common crops (in the Nether-

lands) like tomato and cucumber. As it was out of the scope of this research

to develop a plant model for green bean and okra, only goal functions that

do not require such a model are taken into account.

As the goal of the Watergy greenhouse is to produce both plants and

water and no crop development model is available, a goal function was chosen

that maximizes water production (a1φcondens), while maintaining a suitable

climate for the plants by keeping the temperature within soft bounds. This
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is assured by a penalty function (a2Ptemp):

J =

tf
∫

t0

(a1 φcondens − a2 Ptemp) dt (5.20)

Ptemp =

tf
∑

t0

(T − Tmax)2 if T (t) > Tmax

Ptemp =

tf
∑

t0

(T − Tmin)2 if T (t) < Tmin

Control horizon and constraints

The control and prediction horizon are chosen to be 48 hours. This forces

the controller to take into account that during the night the storage must be

cooled in order to have enough cooling capacity for the next day.

Input constraints to the maximum pump capacity are taken into account

in the optimization. According to Pontryagin’s maximum principle, inputs

can simply be clipped at the lower and upper bounds, provided that there

are no terminal constraints. If the optimization calculates a setting that is

outside the physical bounds of the controller, the input setting is clipped.

Weather

One of the main benefits of receding horizon optimal control is that weather

predictions are explicitly taken into account in the calculated control trajec-

tories. In our case this calls for reliable, local predictions of 48 hour ahead

predictions. Unfortunately, these predictions were not available. Instead the

”modified lazy man weather prediction” is used. This method assumes the

weather of the coming two days to be the same as the weather of the previ-

ous day (Ooteghem, 2007; Tap and Willigenburg, 1996). For solar radiation,

exactly the same pattern is assumed. For outside temperature, the prediction

assumes the temperature of the previous day, corrected by an offset. This

offset is the difference between the currently measured weather and yester-

days weather (so, the temperature profile of the previous day is shifted up

or down). Figure 5.2 shows the results of the weather prediction for three

representative days in spring 2006. The prediction of solar radiation is quite
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good, as is shown in sub-figures 5.2(a) and 5.2(c). However, when the weather

is more unstable and clouds are frequent, the prediction quality becomes sub-

stantially less (figure 5.2(e)). Prediction of the outside temperature is less

good than solar radiation. The pattern is acceptable, but often an offset re-

mains (sub-figures 5.2(b), 5.2(d) and 5.2(f)). It must be noted however, that

the weather prediction is refreshed every control interval (hour), so the short-

term prediction is usually better than the figure suggest. As this prediction is

the best we can use, it will be used in the receding horizon optimal controller.

5.3.2 Greenhouse emulation

Due to time limitations it was unfortunately not possible to apply the con-

troller to the real greenhouse. Instead, the greenhouse model (described in

chapter 3) is used to emulate the behavior of the greenhouse. To make this

simulation study approach the reality as much as possible, values of the plant

parameters (αp and βp) were fluctuated in the emulation model. Also, nor-

mally distributed measurement noise was added to the emulated measured

values to test whether the EKF was able to reconstruct the state (moisture

content in the plant compartment).

5.3.3 Parameter estimation

An extended Kalman filter (EKF) for recursive parameter reconstruction is

used to estimate new values for the parameters in the plant model; αp and

βp. The use and calibration of the EKF is described in more detail in chapter

4, here only a short overview is presented.

The plant evapo transpiration model is given by:

Ep = αp Go + βp Dp (5.21)

The values for αp and βp are difficult to estimate independently from

each other, as they influence each other. For instance, if αp becomes larger,

βp could become smaller, resulting in the same plant evapo-transpiration. In

chapter 4 the filter was already tuned to estimate parameters from year-round

measurement data. In this chapter, the filter is used in a control setting, which

has a different time-scale, so the filter needed to be tuned again. While making

the filter respond faster, the issue of the coupled parameters became more

pronounced, so it was needed to decouple the estimation of both parameters.
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By manipulating the spectral density matrix Q, αp is only estimated at times

when the solar radiation is larger than 50 W m−2 and βp is only estimated

when αp is fixed. To achieve this, Q is set to 0 when the parameter should

not be changed. Also the error covariance matrix (P) is set to zero for the

subsequent element. When the light intensity passes the threshold of 50W

m2, both P and Q are restored to their previous values.

Measurement noise covariance matrix (R)

The measurement noise covariance matrix R in the extended Kalman filter

is deduced from the accuracy of the sensors. It is reasonable to assume that

sensor errors are uncorrelated, so R is a m × m diagonal matrix with the noise

covariance on the diagonal and the off-diagonal elements equal to zero. Our

humidity sensors have an accuracy ± 0.5 g kg−1. This results in a R-matrix

with (0.52=) 0.25 on the diagonal.

Spectral density matrix (Q)

As described in chapter 4, the spectral density matrix (Q) contains the noise

in the model. This noise is more difficult to quantify than the noise in the

measurements, since it is a collection of factors like errors in model structure,

errors in the parameter values, spatial distribution, etc. The values for Q

must be tuned as they cannot be directly derived from data. In our case,

the parameters should adapt relatively slowly (hours/days), so Q should be

chosen small. A good compromise appeared to be the choice diag(Q)=[2·10−6

(g/kg)2 1·12−9 1.5·3−9 ] (for [(xp)
2 (αp)

2 (βp)
2].

5.3.4 Implementation

The software used to calculate the optimal trajectory originates from the book

by Bryson (1999) and was modified to accommodate the greenhouse model.

To solve an optimal control problem with the gradient method, the following

algorithm was used (Bryson, 1999):

1. choose integration step, if no variable gain (or step size) is used

2. enter data, including a guess of u(t) at N+1 future points

3. forward integration. Compute and store x(t) at all time steps for

current time to tf = current time +th (prediction horizon)

4. evaluate φ[x(tf )] and λT (tf) = φx(tf)

5. backward integration. Compute and store impulse response function

Hu(t) for all time steps
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6. compute the change in control signal: δ u(t) = −kHT
u (t). Gain (k) is

variable for better speed of convergence and accuracy

7. stop if average |δu(t)| < tolerance

8. calculate new u(t) =old u(t) + δu(t)

9. goto (3)

To improve the convergence speed, the gain (k) is varied. In our case, a

varying value for k was determined by calculating input patterns (du and u)

for three values of k (0.5k0, k0, 2k0); J1, J2, J3. If J2 was not the maximum

of the three, another value for J was calculated using a value for k that was

either 0.25k or 4k. This procedure was continued until J2 was the optimal

value, with a maximum of three iterations. In our case, an initial value for k

of -0.55 was a good compromise between calculation speed and accuracy.

The implementation of the extended Kalman filter is described in chapter

4 and is not repeated here.
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Figure 5.2: Instantaneous lazy man weather prediction over the coming two
days; at t1, the weather of the preceding 24 hours is projected to the future.
At the next control interval, a new prediction is made in the same fashion,
shifting the curves as described in the text.
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5.4 Simulation results for the existing greenhouse

In this section results are shown for the simulations of the receding horizon

optimal controller with the model of the Watergy greenhouse. It is shown

that the cooling capacity of the greenhouse is fairly limited, leading to high

temperatures inside the greenhouse. Later in this section the effect of increas-

ing the water and airflow is studied as a way of increasing the cooling capacity

without having to make difficult physical changes to the greenhouse.

5.4.1 Parameter adaptation with the extended Kalman filter

The extended Kalman filter needs calibration before it can be used to generate

reliable parameter estimates. Figure 5.3 shows the output of the Kalman filter

for the period of one month in spring 2006. The greenhouse emulation model

was used to emulate the greenhouse behavior, thus to calculate the moisture

content in the plant compartment (xp, [g kg−1]). White (measurement) noise

with a mean of zero and variance of ± 0.5 g kg−1 was added to these emulated

values to generate virtual measurements, which were used as input for the

EKF. For control inputs, a fixed water flow of 2.8 kg s−1 was used. The

parameters in the plant evapo-transpiration emulation model (αreal
p and βreal

p )

were slowly increased over time (the gray line in figures 5.3(b) and 5.3(c)).

Ideally, the estimated values (black lines) should follow this increase, so that

the black lines in figures 5.3(b) and 5.3(c) are close to the gray lines.

The estimated values are not always close to the ’real’ parameter values.

Obviously, a day/night effect shows in the estimates, despite the fact that α

is only changed during sun-up hours and βp during sun-down hours. A more

advanced implementation of the EKF, in combination with automatic tuning

could possibly solve these issues in further research. Still, the prediction

error on moisture content is quite low, as seen in figure 5.9(a), so that the

estimated value of the moisture content in the plant compartment (xp) follows

the emulated value well, despite the relatively large measurement noise that

was added to the emulated values.
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Figure 5.3: Results of an EKF simulation run, without rhoc.
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5.4.2 Open loop optimal control

Open loop optimal control trajectories were calculated to verify the software.

Figure 5.4 shows the (real and predicted) weather and the control inputs for

a two day ahead prediction horizon (1st to 2nd of April 2006). The resulting

greenhouse and heat storage temperatures are shown in figure 5.5. Note that

the negative value of the pump rate indicates that the water flow has reversed

to maintain counterflow in the heat exchanger.

In both figures two situations are shown; the left sub-figures show the case

with the water flow maximized to 0.6 [kg s−1] and the airflow to 1.9 [kg s−1],

which were the real capacities installed in the greenhouse. The right sub-

figures show results with increase water and airflow; maximum water flow is

2.8 [kg s−1], the airflow is set to 5.1 [kg s−1] at times when the pump is on.

These values are larger than the installed capacities. This was done to avoid

the situation where there is not enough cooling capacity and the controller

results in a on-off control (as in the next paragraph). At the start of the

simulations, the water temperature in the heat/cold storage was quite low;

about 12 ˚C. This temperature was measured at the day of the simulations;

the tanks were filled with cold water early in the morning.

Both simulations show that the coolant temperature increases rapidly dur-

ing the day to a maximum of around 35 ˚C. The increase of the water and

airflow has a quite limited effect on the plant compartment temperature. At

night, the gained heat is used to heat the greenhouse thus cooling the coolant

to temperatures in the range of 19 to 23 ˚C. Obviously, these temperatures

are warmer than the day before, resulting in less cooling capacity. This more

limited cooling capacity shows in the greenhouse temperatures during the day;

these are some degree higher, even though the solar radiation is slightly less.

During both days the plant compartment temperatures are above the limit for

the penalty function, which was set at 30˚C. The more limited cooling capac-

ity on the second day shows more clearly in the amount of condensated water

in the heat exchanger. During the first day, with low water temperatures,

around 150 kg of water condensated inside the heat exchanger, both with the

high and low water and air flows. During the second day, only around 130 kg

water condensated in the low coolant flow case. With higher coolant flows,

the buffer is exhausted quicker and the airflow too high, so that only around

90 kg of condensation is produced.
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The effect of the control horizon shows in the graph for u(t) (figure 5.4(c));

during the first night the pump is active to cool the heat buffer for the next

day. During the second night the control setting stays on its initial profile

(which was -1 kg s−1). The reason for this is that there is nothing to gain

for the controller if it cools the storage, because it does not have to take into

account that the heat buffer should be cold for the third day. For application

of the controller in the greenhouse, this behavior is no problem, because as

the control horizon shifts forward in time the controller will take into account

future cooling needs.
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Figure 5.4: Open loop optimal control for the 1st and 2nd of April 2006
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Figure 5.5: Open loop optimal control for the 1st and 2nd of April 2006
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5.4.3 Receding horizon optimal control

After the open loop calculations, the receding horizon controller is imple-

mented and tested. Figures 5.6 to 5.8 show the control profile and the result-

ing temperatures for a simulation period of two weeks, with a control horizon

of 48 hours and a control interval of one hour. Parameters αp and βp slowly

increase in the emulation model, whereas they remain constant in the con-

trol model (figure 5.6(b) and 5.6(c)). This creates a difference between the

emulated, ’real’ process and the model that is used by the optimal control al-

gorithm. In the next section, the same settings are used in combination with

an adaptive receding horizon optimal controller to show the effect of online

parameter adaptation.

The optimal control trajectory (figure 5.7(a)) is highly cyclic; during the

day the pump speed increases, until the upper bound is reached (2.8 [kg s−1]).

At night, the water is cooled to have enough cooling capacity during the next

day. This results in coolant temperatures of 20 to 24˚C in the morning

(figure 5.8(a)). The temperature in the plant compartment is well over 30˚C

at the hottest time of the day, even at days when the ambient temperature is

relatively low (like the 6th of April, figure 5.8(b)).

It must be noted that the maximum water and airflow are well over the

capacity of the installation in the real greenhouse. Despite this increase the

temperature inside the greenhouse has quite high maxima. To further de-

crease the temperature, other measures like increasing the heat exchanger are

probably needed, some suggestions are described in section 5.5.
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Figure 5.6: Conditions for the receding horizon optimal control simulation; (a)
solar radiation (b and c) varying parameters αp and βp in the real (emulated)
greenhouse, and constant(grey line) assumed in the controller.
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Figure 5.7: Results of a receding horizon optimal control simulation without
adaptation. (a) calculated control settings; (b) resulting cumulative conden-
sation.
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Figure 5.8: Results of a receding horizon optimal control simulation with
varying parametersαp and βp; temperatures in the system.

133



5.4.4 Adaptive receding horizon optimal control

Simulation results of the adaptive receding horizon optimal controller are

shown in figures 5.9 and 5.10; the solar radiation is shown in figure 5.6(a).

As in the previous section, parameters αp and βp slowly increase (simulating

plant growth). The parameters are estimated by an extended Kalman filter

and adjusted in the control model; the trajectory of the ’real’ parameters

and the estimates is shown in figures 5.9(b) and 5.9(c). The weather is again

predicted with the lazy-man method, the control horizon is 48 hours and the

simulation period 2 weeks.

As during the simulations without parameter adaptation, the temperature

in the plant area still becomes quite high. A comparison between the adaptive

and non-adaptive rhoc-algorithm is given in the next section.
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Figure 5.9: Results of an adaptive receding horizon optimal control simula-
tion; solar radiation and estimated parameters.
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Figure 5.10: Results of an adaptive receding horizon optimal control simula-
tion; calculated control settings and resulting cumulative condensation.

136



Adaptive Optimal Control for the Watergy Greenhouse

time [dd/mm]

T
em

p
er

at
u
re

[˚
C

]

01/04 03/04 05/04 07/04 09/04 11/04 13/04

12

18

24

30

36

(a) Temperature in the heat storage (min and maximum value)

time [dd/mm]

T
em

p
er

at
u
re

P
la

n
t

co
m

p
.

[˚
C

]

01/04 03/04 05/04 07/04 09/04 11/04 13/04

12

18

24

30

36

(b) Temperature in the plant compartment

Figure 5.11: Results of an adaptive receding horizon optimal control simula-
tion; temperatures in the system.
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5.4.5 Compare rhoc with a-rhoc

When parameters change over time, an adaptive controller that can adjust

its model parameters theoretically has an advantage over a non-adaptive con-

troller. In the simulations with the optimal controller for the Watergy green-

house, the adaptive controller does perform better than the non-adaptive ver-

sion (see figure 5.12). The difference between the two controllers is not large

though; after 13 days, the difference in cumulative condensation is around

50 kg. The difference in the goal function is larger, because with the non-

adaptive controller the greenhouse gets slightly warmer, resulting is a larger

penalty for the rhoc.
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Figure 5.12: Goal functions and cumulative condensation for a rhoc (gray)
and a arhoc (black) simulation with the same settings.
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5.5 Simulation results for an improved design

From the previous section it becomes clear that the currently built green-

house has a limited functionality, meaning that the temperature inside the

greenhouse reaches levels that are not beneficial for the plants. Due to the

insufficient cooling capacity, the results of the optimal controller are quite

straightforward; when cooling is needed, the full available capacity is almost

always needed, resulting in on-off control patterns.

To show the behavior and the applicability of the receding horizon optimal

controller, simulations have been done pretending that the cooling capacity

of the greenhouse was large. Some simulations with this improved, virtual

greenhouse are presented in this section. First, the real greenhouse was com-

pared with the modified greenhouse with on/off inputs. In the second part,

optimal control trajectories are calculated for the modified greenhouse.

To enhance the cooling capacity of the greenhouse, some of its character-

istics are changed (note that the approach here is not the same as lifting the

control input constraints in the previous sections):

• The cooling of the coolant at night is improved by application of a vir-

tual radiator. At night, the warm water from the cold/heat storage is

lead through the greenhouse heat exchanger, into the outside radiator

that cools the water to the air temperature. Obviously, cooling only

works when night temperatures get low enough. At clear nights cooling

can also occur by radiation against the sky temperature. As this was

not measured, the effect is ignored here, but it will probably make the

cooling more efficient than assumed. Another well known way of cooling

is the use of a cooling tower, which could cool the coolant to approxi-

mately 3˚C above the wet-bulb temperature (which is well below the

air temperature in semi-arid climates). The main drawback of a cooling

tower, its water use, could be alleviated by using sea-water. However,

as this limits the applicability of the greenhouse to coastal regions, the

cooling tower is for the moment not further studied.

• The outer surface of the heat exchanger itself is doubled in size (250 m2

in the old situation to 500 m2 in the new).

• The heat/cold buffer is increased from 45 to 60 m3.

• The maximum water flow through the heat exchanger is highly increased

139



to 10 kg s−1. This is based on the assumption that the maximum cooling

capacity required to cool the greenhouse is in the order of 500 Wm−2 ×

200 m2 = 170 kW. With a temperature difference between greenhouse

air and coolant of 8 ˚C (and the given heat exchanger characteristics),

the water flow is about 2.8 kg s−1 = 10 m3h−1.

• The airflow through the greenhouse is improved. When more air flows

through the heat exchanger in the tower, its capacity increases. As

both latent as well as sensible energy is exchanged, the heat capacity of

the air depends on the climate inside the greenhouse, making a reliable

estimate of the airflow difficult. Therefore the airflow is increased with

around the same percentage as the water flow, to 16·103 m3h−1.

• The roof transmission for infra red radiation is reduced, which can be

done in practice with radiation specific plastic foils. Assumed is a trans-

mission coefficient for radiation that heats the plant compartment of 0.3

and 0.08 for the inner roof compartment.

Table 5.1: Modifications to the Watergy greenhouse to improve the cooling
capacity

Parameter Units Default value New value

Φv,air m3h−1 6 ·103 16·103

Φv,water m3h−1 2 ·103 10·103

Ahex m2 250 500
Vhs m3 20 ·103 60 ·103

ηpa - 0.56 0.3
ηpa - 0.14 0.08

5.5.1 Comparison between the real and the modified green-

house

To show the effect of the proposed modifications, the real greenhouse is com-

pared to the modified greenhouse over a 10 day period with weather data of

April 2006 (figures 5.13 to 5.15). On/off control inputs were used with the

maximum water flows. Because of the larger heat/cold buffer, more coolant

is available. This means that the water flow can be larger without emptying
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the stored coolant before the end of the day. This keeps the maximum tem-

peratures in the cold buffer lower than in the original case. The effect of the

increased coolant availability in combination with the larger heat exchanger

and improved airflow results in temperatures in the plant compartment that

are much lower than originally. Also the different properties of the plastic

film, to reflect heat radiation, help to keep the required cool duty low. In

the improved greenhouse, temperatures are slightly higher than outside tem-

peratures, but they do not reach the penalty-border of 30 ˚C. The relative

humidity in the modified greenhouse is slightly higher, but does not reach

alarming values.
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Figure 5.13: Effects of improving the cooling capacity of the Watergy green-
house in simulation; inputs for improved greenhouse; simple on/off control
(legend: gray=airflow, black=water flow, both (kg s−1))
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Figure 5.14: Effects of improving the cooling capacity of the Watergy green-
house in simulation; simple on/off control
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Figure 5.15: Effects of improving the cooling capacity of the Watergy green-
house in simulation; simple on/off control
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5.5.2 Receding horizon optimal control for the modified green-

house

Figures 5.16 and 5.18 show results for a rhoc simulation with the modified

greenhouse. As in the simulations with the real greenhouse, a lazy man

weather prediction is used, the prediction and control horizons are 48 hours,

the control interval 1 hour and the total duration is 14 days. Comparison with

the simulations in the previous section will allow to examine the benefits that

can be gained from advanced control over simple on/off control strategies.

Compared to the realized Watergy greenhouse (both with and without

improved water and airflows), the improved greenhouse has much more cool-

ing capacity. As a result the temperature in the plant compartment is around

8˚C lower than in the simulations with the real greenhouse. Also the pro-

duced condensation inside the heat exchanger is higher. The controlled pump

speed hardly ever reached its bounds during daytime, indicating that there

is not much to be gained by improving the pump speed. At night, the lower

bound of the pump speed is touched upon more frequently. This is probably

because the controller tries to cool the heat storage as far as possible at night

to have cooling capacity during the day. Again, this indicates the importance

of the coolant cooling at night.

Compared to simple on/off control, the amount of produced water is much

higher when the greenhouse is controlled with the optimal controller; 2700 vs.

almost 3100 kg water over 14 days. This increase can partly be explained by

the higher maximum pump rate, and partly by the ’smartness’ of the optimal

controller, that uses the coolant at times when it is most effective.

The increase of cooling in the greenhouse influences the relative humidity

quite negatively; it is quite high, and often exceeds 90%. When moisture

condensates on the crop diseases are to be expected. To reduce the humidity

in the greenhouse, several options are available, ranging from drying the air by

(very limited) ventilation with outside, to drying the air with an additional

cooling device that operates on lower temperatures than the central heat

exchanger. This is an important issue to study in further research.
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Figure 5.16: Rhoc simulation for improved greenhouse
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Figure 5.17: Rhoc simulation for improved greenhouse; Temperatures in the
heat storage (a) and plant compartment (b)
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Figure 5.18: Rhoc simulation for improved greenhouse; relative humidity in
the plant compartment (a) and total condensation (b)
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5.6 Discussion and conclusions

In this chapter, simulation results for receding horizon optimal control of the

Watergy greenhouse are presented. Also, the performance of an adaptive opti-

mal controller is compared to a non-adaptive controller. As the goal function

plays a very important role in optimal control, many possible functions were

considered. Eventually, the choice was made to use a function that optimizes

the water production of the greenhouse as this is one of the main goals for

the system. For some part, the choice for this goal function was inevitable, as

no model was available that describes the plant development of the crop that

were grown (okra and green bean). A favorable climate for the plants was

taken into account in the goal function by putting penalties to temperature

levels exceeding pre-set bounds.

The weather prediction that is needed in optimal control was generated

with the adapted lazy man method, as no local weather prediction was avail-

able. We argued that as the weather in Spain is fairly stable, the lazy man

would give acceptable predictions. Despite this, still the predicted weather

deviates substantially from the real weather, which has could have some neg-

ative effect on the optimality of the control settings that are calculated by

the rhoc algorithm. Application of a more advanced prediction method would

improve the control, as is shown by Doeswijk (2007).

The results of the open-loop simulations show that the hardware as it is

installed in the greenhouse cannot deliver the amount of cooling that is re-

quired to keep the temperatures in the plant compartment under 30˚C, even

in April. The control actions calculated by the controller result in on-off con-

trol, meaning that the controller is (almost) always at the physical bounds of

the hardware (e.g. pump speed). To make the simulations more interesting

and to truly test the adaptive receding horizon control algorithm, some im-

provements to the greenhouse system were proposed and implemented. First

the bounds on pump speed and airflow were alleviated, a change that could

be implemented in practice without much trouble. Second, some structural

changes to the design were proposed and used in simulations.

When the maximum water and air flow were increased, the temperature

in the greenhouse did not decrease compared to the original case. Also, the

amount of condensing water in the heat exchanger did not increase with the

higher flows. With the configuration of increased water and airflow, both the
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receding horizon controller and the adaptive-rhoc were simulated. In both

cases the calculated control trajectory was cyclic; during the day the pump

rate increased to the upper bound and at night the pump rate reached the

lower bound (indicating that the water flow has reversed to maintain counter

flow in the heat exchanger). The adaptive controller does perform slightly

better than the non-adaptive controller, although the difference in produced,

condensated water is quite small (around 50 kg in 13 days). Partly, this small

difference is due to the limited effect of the parameter variation on the model

outcome; when the evapotranspiration increases (as αp and βp are increased),

the temperature in the plant compartment goes down (evaporative cooling).

The total moisture content of the air does increase, which explains the higher

condensation in the heat exchanger, but the effect is not very large. Probably

the effect of estimating other parameters, that have a more significant effect

in the model outcome, would show a more distinct difference between the

adaptive and non-adaptive controller.

The second improvement to the greenhouse’s cooling system beheld more

than just increasing the maxima for the controls. The heat/cold storage was

improved, the heat exchanger doubled in size and the air and water flows

increased. These changes result in more cooling capacity, which gives the

controller more freedom in its control actions. The results of these simulations

show that the controller is most of the times not hampered by the maximum

pump capacity (it does not reach its bounds often). It is also here - under this

less restrictive design - that the advantages of advanced controllers such as the

developed rhoc become most apparent. With advanced control, considerable

gains can be achieved, resulting, in this case, in much higher water production

as compared to experience based on/off control.

Future work

The choices to improve the cooling capacity of the greenhouse control sys-

tem were made in an ad-hoc way, more based on educated guesses than on

thorough analysis. As the purpose of the increase in capacity was to test the

control algorithm, we think this approach is justifiable. However, before ad-

justing the real greenhouse and fitting new hardware into the system, further

simulation and design studies should be done. Also more research is needed

into ways to cool the heat/cold storage at night so that enough cooling ca-
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pacity is available for daytime. Ideally, the buffer is cooled to at least the

outside air temperature but preferably even lower. Possible ways to achieve

this are cooling towers (which use evaporative cooling and thus water) and/or

radiating heat to the (cold) sky.

In the original plans testing the adaptive receding horizon optimal con-

troller in the Watergy greenhouse was anticipated upon. Unfortunately, due

to various reasons, this could not be done in the time available. The optimal

control trajectory for the real greenhouse (with the limitations on water and

airflow rates) is an on/off control. Only when the bound on the flow rates

are alleviated, an optimal controller has advantages over an on/off time clock.

In future work, the greenhouse cooling system could be improved and can be

controlled by an optimal controller. Then, simulation results can be verified

and the controller improved upon further.

The adaptive part of the controller, the EKF, is quite sensitive to tun-

ing. A badly tuned filter does not yield any usable results. For practical

applications, automatic tuning is an important issue. Without auto-tuning

implementation in commercial horticultural automation systems is (almost)

impossible due to the ever changing system that greenhouses are. Another

line of research is to look at the theoretical implications on the choices for

the EKF that were made in this chapter, where the parameters were only

estimated during either day (αp) or night (βp), and the correlation between

the two parameters.
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This thesis describes the design and development of an adaptive, receding

horizon optimal controller the Watergy greenhouse. The greenhouse was de-

signed by partners in the Watergy project, with the aim to combine water

and food production and extend the growing season in hot, dry climates. The

greenhouse was built in Almeria (Spain) in 2004 and has been operational for

the last four years. Many experiments were undertaken to gain insight in the

possibilities of the concept with respect to plant growth and water re-cycling.

Published results show that around 65% of the irrigation water is re-gained

in the heat exchanger (Buchholz et al., 2006). At the same time production

levels were comparable to traditional greenhouses (with heat tolerant crops).

This proves that, although improvements are possible, the basic idea of the

Watergy greenhouse works well.

As defined in the introduction, the main aim of this thesis is

“to study a complete model-based control-design and to move forward towards

an experimental setup for adaptive, receding horizon optimal control in the

Watergy greenhouse”.

The work described in this thesis is a contribution to the introduction of

advanced adaptive control methodologies in the context of greenhouse hor-

ticulture. Simulations in chapter 5 show that these methodologies can be

rewarding, and the fact that it has been applied to a completely novel design

underlines the versatility of the approach. Although no new theory has been

presented regarding the methodology of estimating time varying parameters

and the application of this knowledge in a model-based controller, its appli-

cation is very important and significant for the greenhouse industry. The

introduction of these methodologies addresses one of the main drawbacks of

optimal control, being the need for good, well calibrated models. Instead of

using models that describe every tiny detail of a system or process, lumped pa-

rameters could be used to avoid time consuming detailed modeling for which

in practice there is usually not enough time. These lumped parameters can

be estimated and adjusted online by an extended Kalman filter. The method

introduced here could be coined ’self-tuning’, and this is very significant for

the industry. This is not to say that no further research is needed in these

areas, with special emphasis to the problems encountered in greenhouses. Ex-

amples of such research topics are: the fundamentals of calibration in parts,

in particular the data reconciliation on the level of the model as a whole;

tuning rules for the extended Kalman filter to make the method more robust
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and less vulnerable to the skills of the researcher; development of methods to

really integrate design and control (very relevant for the advancement of solar

stills and modern integrated greenhouse concepts); rethinking the relationship

between off-line optimization, and on-line implementation issues.

The control system that is shown in this thesis is not only applicable to

the Watergy greenhouse. The latest trend in Dutch horticulture is the intro-

duction of closed greenhouses (Ooteghem, 2007), that are cooled in summer

and heated in winter. Although water saving is not an issue in The Nether-

lands, the function of the Watergy greenhouse and the closed greenhouse are

basically equal. Both try to keep the windows closed as long as possible to

keep the CO2 inside the greenhouse. Both use the heat that is taken out of

the greenhouse at times when cooling is needed, and use the heat usefully at

other times.

Sub-questions related to main research question that were raised in the

introduction are:

• Into what extend does the currently available commercial hardware for

greenhouse climate and irrigation control facilitate adaptive receding

horizon control and, if it does not facilitate our demands, how can we

address this problem in the best possible way?

• Given the high computational demands of dynamic optimization, how

can the dynamic behavior of the climate in the Watergy greenhouse

be modeled with a relatively small number of states so that receding-

horizon optimal control becomes feasible for a practitioner?

• Into what extend are the (lumped) parameters in the greenhouse model

changing over the seasons and how could this issue be dealt with, within

the constraints of application in an optimal controller?

• Given a choice for the goal function in the receding-horizon optimal

controller (which will be studied separately), what does the optimal

control pattern for the Watergy greenhouse look like?

• How does the optimal control pattern change if the model parameters

are changed online?

• What do we really gain if online parameter adaptation in receding hori-

zon optimal control is included?
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In the next sections, these questions are answered.

Hardware for the control system

Commercially available hardware for greenhouse climate control are not able

to facilitate research to advanced controllers, so a suitable measurement and

control system had to be newly designed. Commercially available systems do

not have the required flexibility and versatility. The measurement and control

system presented in chapter 1 is flexible because of the generally available

components that are connected in a modular way. For the development of

the measurement and control system the methodology of methodic design was

used. This method is commonly used in engineering of for example machinery.

However for control systems it has, to the best of our knowledge, not been

applied. The advantages of methodic design over a more ad-hoc approach

are: (1) the objective of the system is clearly defined, (2) all functions are

systematically reviewed and (3) the construction phase is shortened.

The measurement and control system measured data that are relevant

for later research, like temperatures and humidities at various places in the

greenhouse and in the cooling/heating system, air and water flows, solar ra-

diation, etc. All this data was stored in a central database that also contains

the settings for the controllers (e.g. pumps and valves). The data logger,

power supply, patch panel (for sensor connections) and network equipment

in one process control unit (PCU) proved to be quite robust. The use of the

patch panel with standard (computer network) cable makes it easy to connect

and disconnect the sensors, which is often needed for checking and cleaning of

the sensors. Another difference with commercial greenhouse control systems

is the distribution of the low level technical equipment like motor control,

relays, etc. over the greenhouse. This reduced the number of cables and the

systems remained more flexible than when all the hardware installation would

have been centrally installed.

The measurement and control system, the graphical user interface and

the data storage in a database are programmed in LabVIEW. The programs

that were developed for the group and low level controllers run in embedded

processors, the software at supervisory level (GUI and database) runs on a

personal computer. It is possible to operate the system both in direct as

in cascade control. In the direct control mode, set points for the low level
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controllers are generated at the supervisory level, e.g. when model predictive

controllers are used. In the cascade control mode, setpoints for the group level

are generated at the supervisory level and setpoints for low level controllers are

generated at the group level. The system is accessible through the internet,

making it possible to maintain the software and access the data at a distance.

Compared to commercially available greenhouse control systems, the sys-

tem at hand is very much suited for the research done with the Watergy

greenhouse. The system is easy to expand, stores all the necessary data and

is easy to operate.

6.1 Greenhouse model for optimal control

For the model based control of the greenhouse, the main goal of this thesis, a

model of the system is needed. As the model will be used in a receding horizon

optimal controller, some restraints were put on it. First, the model needed to

be able to accurately predict the greenhouse climate for at least a few days

ahead. Furthermore the number of states was kept low, to ensure that the

computational load remained reasonable (as an optimal greenhouse controller

should be able to calculate new control settings every 1 to 10 minutes). These

constraints lead to the decision to develop a model that only describes the

key-dynamics of the greenhouse and that uses lumped parameters for less

significant processes. For example, pollution of the roof with dust changes its

transmissivity, but is a difficult process to model. Instead the transmissivity

parameter can be estimated (and adjusted on-line).

To estimate these lumped parameters a controlled random search algo-

rithm was used. This method is very robust and the risk of local minima

is quite small as the method searches through the whole parameter space.

Convergence however is slower than more advanced methods and thus the

computational loads are quite high. The algorithm works well in cases with

limited number of parameters to be identified and when the model has a low

calculation time. Therefor the method of estimation in parts was applied; only

the part of the whole model that contains the to-be-identified parameters is

used. Accurate measured data for the states of the neighboring compartments

is used, resulting in in parameter estimates that converge well and relatively

quickly.
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6.2 Parameter estimation

Simulations with the greenhouse model showed that the model fit is especially

good in the same period as was used for parameter estimation. In other

periods, the model fit is less good. This leads to the conclusion that some

(lumped) parameters change over time, which pleads for the use of adaptive

mechanisms with the model.

The extended Kalman filter is a well-known filter for (online) state and

parameter estimation. The main parameters in the model that are subject to

change over time are estimated: parameters of the plant evapo-transpiration

model (αp and βp) and parameters in the heat balance of the plant compart-

ment (ηp and θp). These parameters were selected because of their major

influence on the model output. The estimation of parameters only works well

if the number of parameters to be estimated is not too large compared to the

available measurement data. Splitting a large compartment model in smaller

pieces with the use of (accurate) measurement data for the inputs at the

boundary is a way to deal with parameter estimation in practical situations.

Still, it must be said that further study to the theoretical implications of

parameter estimation in parts and its effects on the final estimates is needed.

Tests showed that calibration of the EKF parameters is crucial to achieve

good estimation results. After the filter was carefully calibrated, the parame-

ter values were estimated over the period of a whole year. The model fit (for

periods longer than 2 weeks) was much better with the adaptive parameters

than with fixed values. Also the estimated values for the parameters turned

out to be good indicators for changes in the systems. For example, in the

values of the plant model is was possible to identify events like pruning of the

crop (which showed as a sudden, sharp decrease in the parameters).

Despite the remaining theoretical questions on estimation in parts and the

filter calibration, the use of an EKF is a valuable addition to current green-

house climate models to bridge the gap between current practice in commer-

cial greenhouse control and more advanced control systems.

Adaptive receding horizon optimal control

The results of the open-loop simulations show that the hardware as it is

installed in the greenhouse cannot deliver the amount of cooling that is re-
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quired to keep the temperatures in the plant compartment under 30˚C, even

in April. The control actions calculated by the controller result in on-off con-

trol, meaning that the controller is (almost) always at the physical bounds of

the hardware (e.g. pump speed). To make the simulations more interesting

and to truly test the adaptive receding horizon control algorithm, some im-

provements to the greenhouse system were proposed and implemented. First

the bounds on pump speed and airflow were alleviated, a change that could

be implemented in practice without much trouble. Second, some structural

changes to the design were proposed and used in simulations.

When the maximum water and air flow were increased, the temperature in

the greenhouse did not strongly decrease compared to the original case. The

amount of condensing water in the heat exchanger did not increase with the

higher water flow. With the configuration of increased water and airflow, both

the receding horizon controller and the adaptive-rhoc were simulated. In both

cases the calculated control trajectory was cyclic; during the day the pump

rate increased to the upper bound and at night the pump rate reached the

lower bound (indicating that the water flow has reversed to maintain counter

flow in the heat exchanger). The adaptive controller does perform slightly

better than the non-adaptive controller, although the difference in produced,

condensated water is quite small (around 50 kg in 13 days). Partly, this

small difference is due to the limited effect of the parameter variation on

the model outcome; when the evapotranspiration increases (as αp and βp are

increased), the temperature in the plant compartment goes down (evaporative

cooling). The total moisture content of the air does increase, which explains

the higher condensation in the heat exchanger, but the effect is not very large.

The adaptation was performed on a selection of important parameters only;

incorporating the other sensitive parameters is likely to have an additional

effect on the difference between non-adaptive and adaptive control.

The second improvement to the greenhouse’s cooling system beheld more

than just increasing the maxima for the controls. The heat/cold storage was

improved, the heat exchanger doubled in size and the air and water flows

increased. These changes result in more cooling capacity, which gives the

controller more freedom in its control actions. The results of these simulations

show that the controller is most of the times not hampered by the maximum

pump capacity. Moreover, under such circumstances advanced control shows

its true benefits as it brings significant improvements over straight-forward

159



on/off control.

Future challenges

The adaptive part of the controller, the EKF, is quite sensitive for tuning. A

badly tuned filter does not yield any usable results. For practical applications,

automatic tuning is an important issue. Without auto-tuning implementation

in commercial horticultural automation systems is (almost) impossible due to

the ever changing system that greenhouses are. Further research to methods of

automatic tuning of the Kalman filter and their applicability in horticultural

practice will be fruitful.

The application field of on-line parameter adaptation in horticulture reaches

further than just control purposes. One trend in current horticulture is the

introduction of so-called ’soft-sensors’. Mostly these are observers that recon-

struct states that can not be measured, like ventilation flux (Bontsema et al.,

2006) or plant evaporation (Gieling et al., 2005). The models that these

observers use are relatively simple and require at least some basic parame-

ter estimation before they give reasonable results. By introducing automatic

parameter estimation, as shown in this thesis, the hand-calibration of the ob-

servers is not necessary anymore and their predictions would become more

reliable.

In the original planning, testing the adaptive receding horizon optimal

controller in the Watergy greenhouse was anticipated upon. Unfortunately,

due to various reasons, this could not be done in the time available. In

future work, the controller should be implemented in the control system of

the Watergy greenhouse. When that is done, the simulation results can be

verified and the controller improved.

Furthermore, the goal function could be improved, for example by taking

the plants more into account. If a detailed plant growth model is included in

the control model, it becomes possible to find the optimal balance between a

good climate for the plants and water production. Another possibility is to

try to balance the water production with the water need of the crop.

According to the simulations and practical observations, the cooling ca-

pacity of the greenhouse is quite limited. This results in quite high tempera-

tures, that are not favorable to the plants. In chapter 5, the cooling capacity

was enlarged (in simulation) by making some assumptions in an ad-hoc way,
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more based on educated guesses than on thorough analysis. To adjusting the

real greenhouse and fit new hardware into the system, further simulation and

design studies should be done. Also more research is needed into ways to cool

the heat/cold storage at night so that enough cooling capacity is available for

daytime. Ideally, the buffer is cooled to at least the outside air temperature

but preferably even lower. Possible ways to achieve this are cooling towers

(which use evaporative cooling and thus (sea-)water) and/or radiating heat

to the (cold) sky.
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Symbols and their units

description Units

α radiation conversion coefficient kg J−1

αp radiation coefficient crop kg J−1

αh heat transfer coefficient W m−2K1

β vapor pressure deficit coefficient kg m−2Pa−1s−1

βp vapor pr. deficit coefficient crop kg·m−2Pa−1s−1

η solar radiation efficiency factor -
φa air flow rate kg s−1

φw water flow rate kg s−1

Φcon condensation flux kg s−1

Φconv Energy flux due to convection W
ρ density kg m−3

θ1 = cpsp msp JK−1

θ2 = ηsp Asp m2

θ3 = Usp Asp WK−1

θ5 = Cpsi
msi

JK−1

θ6 = ηsi
Asi

m2

θ7 = Usi
Asi

WK−1

A area m2

cp specific heat dry air kJ kg−1K−1

D vapor pressure deficit Pa
E evapo-transpiration kg s−1 m−2

Go solar radiation W m−2

k mass transfer coefficient m s−1

le latent heat of evaporation J kg−1K−1

Le Lewis number -
m mass kg
r specific heat of evaporation of water J kg−1

R heat resistance m2K W−1

t time s
T temperature ˚C
To temperature of outside air ˚C
U heat transfer coefficient W m−2K−1

ucon virtual control parameter for condensation -
ui control parameter for sprinklers (on/off) -

x moisture content kg (water)kg−1
(dryair)
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Notation

Symbols for the optimal control review in chapter 5

description

q energy use
T̄ average temperature
s setpoint
NP prediction horizon
NC control horizon
Tl upper bound to temperature
Tu lower bound to temperature
yr reference trajectory
y measured value
k time step
J goal function
h energy use
c heating cost
CF cost in goal function
Pen penalty in goal function

ẆHF fruit yield
Hu energy consumption
φinj CO2 cost
PT penalties for excess of temperature
PV penalties for excess of CO2 bound
Wn non-structural dry weight of plants
Ws structural dry weight of plants
cpri,1 + cpri,2 Xd (tf ) lettuce price
cq Uq heating costs by
cq Uq cost of CO2

λ(t) time-varying Lagrange multiplier
H hamiltonian
Ptemp penalty function for temperature
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Subscripts

description

a air
con condensation
conv convection
h heat exchanger compartment
i inner roof compartment
in air flow direction is into compartment
m compartment number in heat storage
n compartment number in heat exchanger
o outside
out air flow direction is out of compartment
p plant compartment
r roof
rad solar radiation
s solids
si solids in the inner roof compartment
sp solids in the plant compartment
sat saturated
tot total
w water
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Notation

Default values or value ranges used in simulations

description Default

value

Units

Ap area 200 m2

Apo roof area plant compartment 204 m2

Ai area inner roof compartment 150 m2

Aio roof area inner roof compartment 207 m2

Ah,tot heat exchanger surface area 250 m2

cpa specific heat dry air 1005 kJ

kg−1K−1

cpw specific heat water 4186 J

kg−1K−1

k mass transfer coefficient m s−1

le latent heat of evaporation 2.5e6 J

kg−1K−1

Le Lewis number =a/Dc -
where:

a

thermal diffusivity of air 0.021 W

m−2

k−1

Dc diffusion coefficient of water vapor in air 0.22e-4 -

mha,tot
total mass air in heat exchanger 24 kg

mhw,tot
total mass water in heat exchanger 53 kg

mhs mass water in the cold/heat storage 20e3 kg
mp mass air in plant compartment 704 kg
mi mass air in inner roof compartment 307 kg

Rtot total roof heat resistance m2K

W−1

Rp roof heat resistance on plant

compartment side

m2K

W−1

Upo heat transfer coefficient; plant

compartment–outside

7.9 W

m−2K−1

Upsp
heat transfer coefficient; plant

compartment–solids in plant

compartment

W

m−2K−1

Upi heat transfer coefficient; plant

compartment–inner roof compartment

10 W

m−2K−1
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description Default

value

Units

Ap area 200 m2

Apo roof area plant compartment 204 m2

Ai area inner roof compartment 150 m2

Aio roof area inner roof compartment 207 m2

Ah,tot heat exchanger surface area 250 m2

cpa specific heat dry air 1005 J kg−1K−1

cpw specific heat water 4186 J kg−1K−1

le latent heat of evaporation 2.5e6 J kg−1K−1

Le Lewis number =a/Dc -
where:

a

thermal diffusivity of air 0.021 W m−2

k−1

Dc diffusion coefficient of water vapor in air 0.22e-4 -

mha,tot
total mass air in heat exchanger 24 kg

mhw,tot
total mass water in heat exchanger 53 kg

mhs mass water in the cold/heat storage 20e3 kg
mp mass air in plant compartment 704 kg
mi mass air in inner roof compartment 307 kg

Rtot total roof heat resistance 0.17 m2K W−1

Rp roof heat resistance (inside – roof) 0.13 m2K W−1

Upi heat transfer coefficient; plant

compartment–inner roof compartment

10 W

m−2K−1
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Many parts of the world face increasing problems due to water shortage, a

situation that is likely to be worsened by population growth and global climate

change. Since agriculture is a major water consumer, much can be gained if

water use efficiency is improved upon. One of the initiatives to improve water

use efficiency in horticulture is the Watergy project, of which this thesis is

part.

The Watergy project

The main goals of the Watergy project are twofold: First, we wish to study

the possibilities of local energy savings and waste water treatment in an ur-

ban environment. Second, the possibilities of year-round plant production

combined with fresh water production (from salt or grey water) are studied

with the construction of a new type of greenhouse. The partners in the Wa-

tergy project are the department of architecture at the Technical University

of Berlin (TUB), the experimental plant research station of Cajamar, Las

Palmerillas, in Almeria, Spain, and two groups at Wageningen University

and Research Center, namely the Systems and Control group, and the WUR

greenhouse horticulture group at Plant Research International.

Watergy greenhouse in Spain

The Watergy greenhouse built in Almeria (Southern Spain) is a closed green-

house of 14 × 14 meters with indoor air-cooling during the day. This enables

extension of the growing season when compared to traditional greenhouses

in warm countries where a summer-break is common practice. The excess

heat in the greenhouse is used to produce clean water from either salt or grey

water. The most remarkable feature is the double walled tower with a height

of 10 m. During the day the sun heats the (humid) air inside the plant com-

partment. The heated air rises through the inner roof compartment into the

outer duct of the tower where it is further heated by the sun. As the tower

is closed at the top, the air does not leave the greenhouse but is cooled with

a heat exchanger in the central duct of the tower. The coolant is stored in a

heat buffer. The cooled air flows back into the warm greenhouse, closing the

cycle. During the night, the heat exchanger heats the air and the air move-

ment reverses; hot air rises through the heat exchanger to the top of the tower
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and flows down through the outer duct. The cooled cooling-water returns to

the storage for later use. Since the air cycle in the greenhouse is closed, the

water evaporated by the plants stays inside. During the day, warm, moist air

flows into the tower, where the moisture condenses against the cold surface of

the heat exchanger. To facilitate water desalination, a so-called inner roof is

used over which (salt) water is sprayed. The water that evaporates from the

inner roof follows the air flow and condensates in the heat exchanger.

The crop (first green bean, later followed by Okra) was grown in soil with

a balanced texture of about 20-30 cm deep. A sand bed with a thickness of

about 10 cm was placed on top of the soil. Drip irrigation was used, controlled

by an autonomous fertigation system. The drain water was recovered and

recycled.

The condensate coming from the heat exchanger and from the roof is

recovered, the quantity is measured automatically and it is used again for

irrigation. Temperature and humidity are measured at all vital places inside

and outside the greenhouse and technical installation. Other measured quan-

tities are outside global radiation, wind speed and -direction and the CO2

concentration. All pumps and valves are controlled by data loggers that are

connected to a personal computer on which a database runs. This enables

implementation of controllers in several software packages, including Matlab

and LabVIEW.

Watergy greenhouse control system

In this thesis our primary focus is on the closed greenhouse in Spain and,

more specifically, on the development of an advanced control system for the

climate in this greenhouse. The requirements for the control system hardware

are quite different from the current horticultural standards. Hence, it was

decided to design the control system from scratch, using a so-called methodic

design method. This allows the design of the control system in a methodic way

where, at each stage, sub-goals and hardware requirements are summarized

as to make an optimal choice for an innovative new control system for the

greenhouse. More specifically, the design method divides the design process

in three different phases; (i) problem definition, (ii) alternatives that solve

the problem in (i) and (iii) the construction phase. The objective of our

measurement and control system is “to measure all relevant states and to

183



be able to control all actuators with advanced software controllers in the

experimental greenhouse”. The requirements are defined in more detail in

chapter 2, and these range from measurement specifications to requirements

on the flexibility of the control system.

Separate functions in the control system were identified (e.g. ‘measure

data’, or ‘calculate setpoints’) and for all functions alternative solutions were

studied in chapter 2 of this thesis. After weighting alternative solutions, the

final system was designed and built. The control system contains data log-

gers installed near the greenhouse to log the required data and send control

signals to the actuators. Furthermore, a personal computer was installed that

contains a database for data storage and software to calculate new setpoints.

The PC is connected to the data loggers over a standard wireless computer

network. The installed sensors include temperature sensors for air, soil and

water temperature, and also sensors for the measurement of humidity, air ve-

locity, water flow, CO2-level, global radiation, wind speed and wind direction.

All sensors are low in maintenance and have a good accuracy. To control the

actuators, a flexible system of distributed relay technique is deployed.

Due to the use of the methodic design method, the measurement and

control system that is developed for the greenhouse in Spain is generally

applicable for development of an advanced greenhouse climate control system

in horticulture. This is illustrated by the fact that another control system

was developed for the second prototype in Berlin (also part of the Watergy

project), which is designed along the same lines and the same methodology.

Climate model

The third chapter describes the development of a physics based state-space

model of the climate inside the Watergy greenhouse in Spain. To keep the

number of states in the model limited, it was decided to aggregate underlying

process details into (lumped) compartments. The values of the parameters in

each compartment are location specific so that these values must be calibrated

carefully. Calibration is performed with a controlled random search (CRS) al-

gorithm that is used on partial models, a method we refer to as ‘estimation in

parts’ in this thesis. This means that only a part of the whole model was used

in combination with measured data for state values of neighboring compart-

ments. This method results in parameter estimates that converge well and
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computation times are much faster in comparison to a full-model calibration.

The parameter fluctuations over the year were studied by repeated parameter

estimation for each month. Since some parameters fluctuate significantly, the

use of adaptive mechanisms to change model parameters is motivated which

leads us to chapter 4 of the thesis.

Model adaptation and adaptive receding horizon op-

timal control

In chapter 4 an extended Kalman filter (EKF) is introduced to allow on-

line estimation of parameter values over the year. The application of an

EKF for parameter estimation is tested with measured data recorded over

a period of one year using a model that describes the air temperature and

moisture content in the Watergy greenhouse. To increase the accuracy of

the estimates, partial models are used in combination with observations at

the borders of these partial models. The filter adequately adjusts parameter

values, which improves the model fit substantially compared to simulations

with non-varying parameters. Furthermore the filter tracks sudden changes

in the system adequately and events such as pruning of the plants or opening

of the greenhouse windows can be observed through sudden variations in the

on-line estimated parameter values. For horticultural practice, these results

are significant since application of advanced model-based controllers in hor-

ticultural practice is often hampered by the laborious work to derive good

models for specific situations. As adaptive models (including an EKF recur-

sive algorithm) calibrate their parameters online, application of these models

is much easier and this result paves the way for self-learning controllers in

practice.

Finally, in chapter 5 the adaptive model (including an EKF for parameter

adjustments) is utilized in a simulation exercise of a receding horizon optimal

controller (based on Bryson’s well-known dynamic optimization algorithms)

for truly model based optimal control of the Watergy greenhouse. First we

make a motivated choice of ‘optimality’ through the choice of a goal function

that leads the dynamic optimization algorithm in its search for an optimal

control strategy. The adaptive model-based receding horizon controller is

then exploited to study the benefits of adaptive receding horizon optimal
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control by introducing a drift on two plant evapotranspiration parameters

and comparing this situation with the case where only nominal (constant)

values of these parameters were used. As expected, the results are in favor of

the adaptive setup.

Other benefits of the model-based approach become apparent when mak-

ing a model based ‘what-if’ analysis in which some of the limitations of the

current setup are remedied in simulation study. We found that if the cool-

ing capacity is increased by improving the night-cooling of the cold storage,

around 3 times as much condensation can be captured in the heat exchanger.

Also the temperatures in the plant compartment would be drastically lower

(5 to 8 ˚C) than in the standard case, which would favor plant growth. More-

over, under such circumstances advanced control shows its true benefits as it

brings significant improvements over straight-forward on/off control.
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Grote delen van de wereld hebben te kampen met toenemende water teko-

rten. Deze situatie zal in de toekomst waarschijnlijk verder verslechteren door

bevolkingsgroei en klimaatverandering. Omdat de landbouw een grootver-

bruiker van water is, is in deze sector veel te winnen door de efficientië van

watergebruik te verhogen. Eén van de initiatieven hiertoe is het Watergy

project, waarvan dit proefschrift deel uitmaakt.

Het Watergy project

Het doel van het Watergy project is tweeledig; allereerst worden de mogeli-

jkheden van lokale energie besparing en afvalwaterzuivering in een stedeli-

jke omgeving onderzocht. Ten tweede worden de mogelijkheden voor jaar-

rond plantproductie in combinatie met de productie van zoet (uit zout) water

bestudeerd in een nieuw type kasontwerp. De partners binnen het Watergy

project zijn: leerstoel architectuur van de Technische universiteit in Berlijn

(TUB), onderzoeksinstituut Cajamar, Las Palmerillas, in Almeria, Spanje, en

twee groepen van Wageningen Universteit en Research Center; te weten WUR

glastuinbouw en de leerstoel Meet-, Regel- en Systeemtechniek (waaraan dit

onderzoek is uitgevoerd).

De Watergy kas in Spanje

De Watergy kas – die is gebouwd in Almeria (zuid Spanje) – is een gesloten

kas van 14 × 14 meter waarin de lucht gedurende de dag gekoeld kan worden.

Door deze koeling is het mogelijk het productie seizoen te verlengen in vergeli-

jking tot de traditionele kassen in warme landen, waar een productie stop in

de zomer gebruikelijk is. Het energieoverschot wordt gebruikt om zoet water

te produceren uit zout of ‘grijs’ water. Het meest opvallende onderdeel van

de kas is de dubbel-wandige toren met een hoogte van 10 m. De werking van

het systeem is als volgt: gedurende de dag warmt de zon de (vochtige) lucht

in het plant compartiment op. De verwarmde lucht stijgt op door het ‘inner

roof’ compartiment (de ruimte tussen het verlaagde plafond en het kasdek),

naar de buitenste kanaal in de toren, waar de lucht verder wordt verwarmd

door de zon. Aangezien de toren bovenaan is gesloten, verlaat de lucht de kas

niet, maar wordt gekoeld door de warmtewisselaar in het centrale kanaal in de

toren. De koelvloeistof hiervoor wordt opgeslagen in een warmte buffer. De
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gekoelde lucht stroomt onderuit de toren terug de warme kas in, waarmee de

cirkel gesloten is. Gedurende de nacht verwarmt de warmtewisselaar de lucht

waardoor de luchtstroom omdraait: warme lucht stijgt door de warmtewisse-

laar naar de top van de toren en stroomt door het buitenste kanaal terug. Het

koelwater wordt hierdoor gekoeld en opgeslagen in de opslag tanks voor later

gebruik. Aangezien geen luchtuitwisseling met de buitenlucht plaatsvindt,

blijft het vocht dat door de planten is verdampt in de kas. Gedurende de dag

condenseert het vocht uit de in de warmtewisselaar in de toren. Om ontzilting

van zout of brak water mogelijk te maken, wordt over het verlaagde (folie)

plafond zout water gesproeid. Dit water verdampt, volgt de luchtstroom en

condenseert in de warmtewisselaar.

Het gewas (eerst snijbonen, later Okra) werd geteeld in de volle grond met

gebalanceerde structuur met hierop een zandbed van 10 cm. De druppel irri-

gatie werd aangestuurd door een autonoom irrigatie systeem. Het drainwater

is opgevangen en opnieuw gebruikt.

De condensatie die is opgevangen uit de warmtewisselaar en van het kas-

dek werd gemeten en opnieuw gebruikt voor irrigatie. De temperaturen en

luchtvochtigheden zijn gemeten op alle belangrijke plaatsen in de kas, buiten

en in de technische installatie. Overige gemeten grootheden zijn globale zonin-

straling, wind snelheid en richting en de CO2 concentratie in de kas. Alle pom-

pen en kleppen werden bestuurd door dataloggers die verbonden zijn met een

personal computer waarom een database loopt. Hierdoor is het mogelijk om

regelaars te implementeren in verschillende software pakketten, waaronder

Matlab en LabVIEW.

Besturingssysteem van de Watergy kas

De primaire focus van dit proefschrift is de gesloten kas in Spanje en, meer

specifiek, de ontwikkeling van een geavanceerd regelsysteem voor het klimaat

in deze kas. De eisen die aan het regelsysteem gesteld worden verschillen be-

hoorlijk van de huidige standaards in de (Nederlandse) tuinbouw. Daarom

is besloten het regelsysteem van nul af te ontwikkelen met behulp van de

methodisch ontwerp methode. Hierdoor kon het ontwerp voor het regelsys-

teem op een methodische manier, waarbij tijdens iedere fase in het proces

(sub)doelen en eisen worden gespecificeerd om te komen tot een zo goed mo-

gelijke keuze. Methodisch ontwerpen bestaat uit drie fasen; (i) probleem
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definitie, (ii) zoeken van alternatieven om het probleem in (i) op te lossen,

en (iii) de constructie fase. De doel van ons meet-, en regelsysteem is “het

meten van alle relevante toestanden en het mogelijk maken alle actuatoren te

besturen met geavanceerde software regelaars in de experimentele kas”. De

eisen die aan het systeem gesteld zijn, staan beschreven in hoofdstuk 2, en

lopen uiteen van specificaties met betrekking tot de metingen tot eisen over

de flexibiliteit van het regelsysteem.

Losse functies binnen het regelsysteem zijn gëıdentificieerd (bijvoorbeeld

‘meet data’, en ‘bereken gewenste waarde’). en voor alle functies zijn alter-

natieve oplossingen bestudeerd en beschreven in hoofdstuk 2. Na weging van

deze alternatieve oplossingen is het totale systeem ontworpen en gerealiseerd.

Het regelsysteem bevat datalogers, gëınstalleerd bij de kas, die relevante data

registeren en de actuatoren aansturen. Een personal computer bevat een

database voor opslag van de meet en regeldata, en sofware om nieuwe gewenste

waarden voor de kas uit te rekenen. De PC is verbonden met de dataloggers

over een standaard draadloos computer netwerk. De gëınstalleerde sensoren

meten de temperatuur van lucht, water en bodem, de luchtvochtigheid, lucht-

snelheid, waterdebieten, CO2-niveau, globale zoninstraling, windsnelheid en

windrichting. Een flexibel systeem van gedistribueerde relais-techniek bestu-

urde de actuatoren.

Door de het gebruik van de methodisch ontwerp methode is het meet-

en regelsysteem dat nu is ontworpen voor de Watergy kas algemeen toepas-

baar voor het ontwikkelen van een geavanceerd kas klimaat regelsysteem in

de tuinbouw. Dit wordt gëıllustreerd door het tweede prototype binnen het

Watergy project dat in Berlijn is gebouwd en waarvoor het regelsysteem is

ontworpen volgens dezelfde methode als hier beschreven.

Kas klimaat model

Hoofdstuk drie beschrijft de ontwikkeling van een fysisch toestandsmodel

model van het klimaat in de Watergy kas te Spanje. Om het aantal toe-

standen binnen het model laag te houden zijn ingewikkelde, onderliggende

processen samengevoegd in compartimenten. De waarden van de parame-

ters in deze compartimenten zijn locatie specifiek en moeten dus nauwkeurig

gekalibreerd worden. De kalibratie is gedaan met het zg. ‘controlled random

search’ algoritme toegepast op deel-modellen, een methode die we ‘estimation
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in parts’ (schatting in delen) zullen noemen in dit proefschrift. Dit betekent

dat slechts een deel van het hele kasmodel wordt gebruikt in combinatie met

gemeten data voor de waarden van de toestanden van buurcompartimenten.

Deze methode resulteert in parameter schattingen die goed convergeren en

rekentijden die veel korten zijn vergeleken met parameter kalibratie met het

hele model. Parameter fluctuaties over het hele jaar zijn bestudeerd door

elke maand opnieuw een parameterschatting uit te voeren. Sommige param-

eters fluctueren significant, wat het gebruik van adaptieve mechanismen om

de model parameters aan te passen motiveert hetgeen ons bij hoofdstuk vier

brengt.

Model aanpassing en adaptieve optimale regelaar met

wijkende horizon

In hoofdstuk vier wordt een extended Kalman filter (EKF) gëıntroduceerd

ten einde de waarden van parameters online te schatten gedurende het jaar.

Het gebruik van het EKF voor parameter schatting is getest met meetdata

van één jaar en een model dat de lucht temperatuur en vochtigheid in de Wa-

tergy kas beschrijft. Deelmodellen in combinatie met meetdata zijn gebruikt

om de nauwkeurigheid van de schattingen te verhogen. Het Kalman filter

past de parameter waarden aan, waardoor de modelfit substantieel beter is in

vergelijking met simulaties met vaste parameter waarden. Ook detecteert het

filter plotselinge veranderingen in het systeem zoals snoeien van de planten of

openen van de ramen doordat de on-line geschatte parameter waarden plot-

seling van waarde veranderen. Voor de tuinbouwpraktijk zijn dit belangrijke

resultaten aangezien het afleiden van goede modellen voor specifieke situaties

veel tijd vergt en dit een grote bottleneck is voor toepassing van geavanceerde

model-gebaseerde regelingen in de praktijk. Aangezien adaptieve modellen (in

combinatie met een EKF recursief algoritme) hun parameter waarden online

bijstellen is het gebruik van deze modellen veel makkelijker. Dit heft dus een

van de grootste beperkingen op voor de toepassing van zelf-lerende regelingen

in praktijk toepassingen.

In hoofdstuk vijf wordt het adaptieve model gebruikt in een simulatie

met een wijkende horizon optimale regelaar (eng. receding horizon optimal

controller; RHOC), gebaseerd op de dynamische optimalisatie algoritmes van
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Bryson.

Eerst wordt een gemotiveerde keuze gemaakt voor een doelfunctie die

wordt gebruikt door het dynamisch optimalisatie algoritme bij het zoeken naar

de optimale regelacties. De adaptieve model gebaseerde regeling met wijkende

horizon wordt gebruikt om de voordelen van adaptieve regeling te bestuderen

door twee parameters in het plantverdampingsmodel te laten variëren. Deze

situatie wordt vergeleken met een situatie waarbij de parameters niet worden

gevarieërd. Zoals verwacht zijn de resultaten van de adaptieve regeling beter

dan van de niet adaptieve.

Meer voordelen van de model-gebaseerde aanpak worden duidelijk bij het

doen van ‘wat-als’ simulatie analyse waarin enkele limitaties van de huidige

kas worden opgeheven. We vonden dat als de capaciteit van het koelsysteem

wordt vergroot door de nacht-koeling van de koude opslag te vergroten, de

hoeveelheid geproduceerde condensatie met een factor 3 stijgt. Ook wordt

in deze situatie de temperatuur in het plant compartiment drastisch lager

(5 to 8 ˚C) dan in de standaard case waardoor de plantgroei bevorderd

wordt. Bovendien worden onder deze omstandigheden de voordelen van gea-

vanceerde regelstrategieën duidelijk, aangezien er significante verbeteringen

zijn ten opzichten van simpele aan/uit regelaars.
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Dankwoord

Een proefschrift schrijf je voornamelijk alleen. Maar ieder systeem dat onder-

hevig is aan weerstand, heeft aandrijving van buitenaf nodig om op gang te

blijven. Net als een wielrenner die een berg beklimt en een duwtje krijgt van

iemand uit het publiek, ben ik in de afgelopen vijf jaar door vele gesteund

of ‘uit de wind gezet’. Al deze mensen (en ongetwijfeld zijn het er meer dan

genoemd in het namenlijstje op volgende pagina) wil ik van harte bedanken;

samen hebben jullie eraan bijgedragen dat het proefschrift uiteindelijk toch

is afgekomen.

Enkele mensen verdienen een speciaal woord van dank; Om te beginnen

is de hulp van mijn begeleider Hans Stigter en promotor Gerrit van Straten

natuurlijk onontbeerlijk geweest. De discussies over de inhoud en richting

van het proefschrift waren soms wat confronterend, maar toch hoofdzakelijk

leuk en leerzaam. Het contrast tussen jullie beiden bleek al vrij snel en is tot

het einde gebleven; Hans die enthousiast en opbeurend bleef. Gerrit die de

kwaliteit goed in de gaten hield door tot het laatst kritische vragen te stellen.

Zelfs op het kerstdiner presteerde je het nog om te zeggen dat we ’nog eens

naar de resultaten van hoofdstuk 3 moesten kijken’, terwijl ik het toch echt

voor publicatie geschikt vond. Al met al waren jullie samen een prima team,

waarvoor hartelijke dank.

Los van het inhoudelijke aspect van mijn promotie periode heb ik de sfeer

in de leerstoelgroep altijd als erg leuk en bijzonder ervaren. De dagelijkse,

stevige, discussies waren altijd gepassioneerd en bijna altijd amusant. Ook

de weekendjes weg of ons volleybalspel op de WE-day waren ieder jaar op-

nieuw een groot succes (sociaal gezien dan; sportief hebben we helaas nooit

iets klaargemaakt. De (voor MRS begrippen) grote groep AIO’s die bijna

gelijktijdig begon zorgde voor een gezellige sfeer waarin het goed klagen was

over begeleiders en ander promoveer-ongemak.

In het eerste deel van mijn AIO periode hebben we met veel mensen hard

gewerkt om de kas in Spanje te automatiseren. Voor mij de eerste keer dat

ik in zo’n groot project meeliep, maar gelukkig bracht de ervaring van Hans

Janssen vaak uitkomst. Samen hebben we veel tijd doorgebracht in Spanje

waar altijd te veel werk en te weinig vrije tijd was. Toch hebben we veel van de

omgeving van Almeria gezien en uitgebreid genoten van de Spaanse keuken.

Hans, de vele discussies en je nuchtere kijk op het vele werk dat steeds op ons
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wachtte, heeft ervoor gezorgd dat het toch vooral leuk was om naar Spanje

toe te gaan en dat het niet te veel op een werkkamp leek. Overigens past het

hier om alle overige mensen die hebben meegewerkt aan het tot standkomen

van het meet- en regelsystem van harte te bedanken; zonder jullie was het

niet gelukt twee werkende prototypes te automatiseren.

Voor het Watergy project was ieder half jaar overleg met alle partners,

waarin de stand van zaken besproken kon worden en aan de contacten kon

worden gewerkt. Ondanks dat er zo nu en dan wat hete hangijzers besproken

moesten worden, was het avondprogramma zonder uitzondering geweldig leuk.

Dat ik ooit met jullie op kroegentocht door nachtelijk Almeria zou dwalen was

een zeer aangename verrassing.

Nadat de officiele looptijd van het Watergy project verstreken was, kreeg

ik de mogelijkheid nog meer ervaring met internationaal onderzoek op te doen

door deel te nemen aan de summer school van IIASA, in Oostenrijk. Hier kon

ik me in alle rust richten op het uitwerken van de optimale besturing voor de

kas, geholpen door Sergey Aseev en de dynamic systems groep. Dit was een

erg leuke tijd waarin ik veel geleerd heb over optimale besturing en culturele

verschillen.

Sinds oktober vorig jaar werk ik buiten de universiteit en het afronden

van een proefschrift naast een gewone baan bleek niet de best denkbare com-

binatie. Dat dit toch is gelukt, is voor een groot deel te danken aan de flexi-

bele opstelling bij Ecofys waar ik de ruimte kreeg tijdelijk minder te werken;

hartelijk bedankt voor het begrip.

Als AIO heb je de neiging om te denken dat je het druk hebt en dat je werk

erg belangrijk is. Ook ik ontkwam soms niet aan dit soort gedachten. Dan

was het heel fijn dat Charlotte hiervoor begrip kon opbrengen, zonder al te ver

in mijn zelfmedelijden mee te gaan. Je steun, begrip tijdens tegenslagen en

vreugde tijdens de successen maakten de pieken hoger en de dalen minder diep.

Ook mijn vrienden, zussen hen hun aanhang droegen hieraan bij; relativeren

en het in het juiste perspectief zetten van mijn werk lukte jullie goed. De

gezamelijke wandelvakanties en kroegavonden waren een welkome afleiding

van het werk.

En, zoals de Engelsen het zo mooi zeggen, ’last but not least’ gaat mijn

dank uit naar mijn ouders. Toen ik de kans kreeg AIO te worden waren jullie

erg enthousiast over het onderwerp en de mogelijkheden van het werken in

een Europees project. Dat enthousiasme is nooit afgenomen; altijd waren jul-
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lie gëınteresseerd en motiverend. Maar ook wisten jullie op tijd de dagelijkse

beslommeringen te relativeren; ‘als je alles van tevoren weet, kom je met een

dubbeltje de wereld om’ is een veel gehoorde uitspraak bij ons thuis. Het

kostte meer dan een dubbeltje, maar het is af.
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