
Journal Pre-proof

Towards monocular vision-based autonomous flight through deep
reinforcement learning

Minwoo Kim, Jongyun Kim, Minjae Jung, Hyondong Oh

PII: S0957-4174(22)00211-1
DOI: https://doi.org/10.1016/j.eswa.2022.116742
Reference: ESWA 116742

To appear in: Expert Systems With Applications

Received date : 27 April 2021
Revised date : 10 November 2021
Accepted date : 22 February 2022

Please cite this article as: M. Kim, J. Kim, M. Jung et al., Towards monocular vision-based
autonomous flight through deep reinforcement learning. Expert Systems With Applications (2022),
doi: https://doi.org/10.1016/j.eswa.2022.116742.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.eswa.2022.116742
https://doi.org/10.1016/j.eswa.2022.116742

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofTowards Monocular Vision-Based Autonomous Flight Through

Deep Reinforcement Learning

Minwoo Kima (red9395@unist.ac.kr), Jongyun Kimb(jongyun.kim@cranfield.ac.uk),

Minjae Junga(starshirts@unist.ac.kr), Hyondong Oha(h.oh@unist.ac.kr)

a Ulsan National Institute of Science and Technology (UNIST), Korea
b Cranfield University, United Kingdom

Corresponding Author:

Hyondong Oh

Associate professor in Department of Mechanical Engineering, Ulsan National Institute of

Science and Technology (UNIST), Korea

Tel: (+82) 052-217-4419

Email: h.oh@unist.ac.kr

Helen
Text Box
Expert Systems with Applications, Volume 198, July 2022, Article number 116742
DOI: 10.1016/j.eswa.2022.116742

Helen
Text Box
Published by Elsevier. This is the Author Accepted Manuscript issued with: Creative Commons Attribution Non-Commercial No Derivatives License (CC:BY:NC:ND 4.0).
The final published version (version of record) is available online at DOI:10.1016/j.eswa.2022.116742. Please refer to any applicable publisher terms of use.

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Towards Monocular Vision-Based Autonomous Flight
Through Deep Reinforcement Learning

Minwoo Kima, Jongyun Kimb, Minjae Junga, Hyondong Oha,∗

aUlsan National Institute of Science and Technology (UNIST), Korea
bCranfield University, United Kingdom

Abstract

This paper proposes an obstacle avoidance strategy for small multi-rotor drones with

a monocular camera using deep reinforcement learning. The proposed method is com-

posed of two steps: depth estimation and navigation decision making. For the depth

estimation step, a pre-trained depth estimation algorithm based on the convolutional

neural network is used. On the navigation decision making step, a dueling double deep

Q-network is employed with a well-designed reward function. The network is trained

using the robot operating system and Gazebo simulation environment. To validate the

performance and robustness of the proposed approach, simulations and real experi-

ments have been carried out using a Parrot Bebop2 drone in various complex indoor

environments. We demonstrate that the proposed algorithm successfully travels along

the narrow corridors with the texture free walls, people, and boxes.

Keywords: Obstacle avoidance, depth estimation, vision-based, deep reinforcement

learning, Q-learning, navigation decision making

1. INTRODUCTION

Recently, there is an increase in demand for small drones in complex indoor en-

vironments. The employment of small drones enables various tasks such as search

and rescue, environmental mapping, and exploration of unknown areas owing to their

∗Corresponding author.
Email addresses: red9395@unist.ac.kr (Minwoo Kim),

jongyun.kim@cranfield.ac.uk (Jongyun Kim), starshirts@unist.ac.kr (Minjae Jung),
h.oh@unist.ac.kr (Hyondong Oh)

Preprint submitted to Expert Systems with Applications November 29, 2021

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

agility and small size. In order to complete the missions, drones should remain intact

for all situations. For this reason, drones should be equipped with an obstacle avoid-

ance (OA) algorithm that functions well in dangerous circumstances such as sudden

emergence of moving obstacles, corners, and narrow corridors. However, there are var-

ious challenges for development of OA algorithms. One of the biggest problems is that

small drones can not load heavy sensors due to their small size and low battery power,

which could degrade the performance of OA algorithm. Thus, selecting a proper sensor

that best suits to small drones is a crucial task.

Commonly used sensors for OA tasks are ultrasonic sensors, LiDAR (Light de-

tection and ranging) sensors, depth cameras, and monocular cameras. These sensors

have their own strengths and weaknesses. Ultrasonic sensors measure close obstacles

with relatively good performance; however, their accuracy decreases as the distance to

the obstacle increases. LiDAR sensors provide rich information from the surroundings

with high accuracy, long detection range, and wide field of view (FOV), but the cost is

exceptionally expensive compared with other sensors. Besides, the weight of LiDAR

sensors is quite heavy, which makes it difficult to be used on small drones. Depth cam-

eras can provide the distance information of the close obstacles with geometric proper-

ties, but the weight and power consumption might be ineffective. Monocular cameras

provide less information compared with LiDAR sensors and depth cameras, but they

have many advantages such as light weight, small size, low energy consumption, and

wide FOV with reasonable amount of information from surrounding environments.

Therefore, among various sensors, monocular cameras are the most suitable candidate

to be applied in small drones.

In order to fully utilize the aforementioned advantages of monocular cameras, vari-

ous OA algorithms have been developed. However, directly using the RGB information

from a monocular camera is challenging as monocular cameras reduce 3D real-world

data into 2D image pixels, which makes it difficult to get the accurate distance informa-

tion from obstacles. To deal with this problem, various studies utilize the features from

RGB images to their algorithms. Alvarez et al. (2016) builds dense depth maps using

the RGB images from a monocular camera and based on constructed depth maps, way-

points without obstacles are generated. The drone successfully avoids obstacles in most

2

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

of the cases; however, it needs at least 1 sec to compute waypoints, which could lead to

failure for dynamic environments. Green & Oh (2008) and Cho et al. (2019) utilized an

optical flow technique for obstacle avoidance. The optical flow-based methods mimic

the behavior of the insects. As it requires low computational load, it fits well for small

drones where high performance computing boards are unavailable. However, applying

the optical flow to texture-free environments or huge obstacles is inappropriate as fea-

ture points are not easily extracted under these situations (Eresen et al., 2012). There

is another widely-used method called visual simultaneous localization and mapping

(SLAM) based on a feature extracting method. The visual SLAM estimates the current

position and orientation of the unmanned aerial vehicle (UAV) using 3D map informa-

tion. In Mur-Artal et al. (2015), the OA algorithm computes waypoints using the visual

SLAM and the drone navigates through environments with obstacles. However, the vi-

sual SLAM approach requires high computational load and memory since it uses pose

information of UAVs and simultaneously stores the map information (Aulinas et al.,

2008). Besides, both optical flow and visual SLAM methods need appropriate param-

eter settings for effective performance depending on situations and thus applying them

in various scenarios could be problematic.

Supervised learning, as a typical method of deep neural networks, uses a pair of in-

puts and output data and figures out the relationship between them. Park & Oh (2020)

trained neural networks for the OA decision making using sets of RGB images and

corresponding heading commands. The images are obtained from the monocular cam-

era attached on the drone in the virtual simulator, following the behavior of human.

3

ducing a convolutional filter and it becomes a necessity in the computer vision area.

Deep neural networks, on the other hand, effectively reduce the burden of making

sophisticated rules and can thus be applied in various situations with little computation

time in the test phase using pre-trained neural networks. Deep learning methods en-

hanced the performance of algorithms in various fields including robotics, autonomous

systems, and computer vision (Pozna et al., 2009; Ahmed et al., 2019; Back et al.,

2020). Especially in the computer vision field, the level of situation awareness based on

visual information has been dramatically improved. For example, AlexNet (Krizhevsky

et al., 2012) has significantly improved the object classification performance by intro-

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

4

vironments (e.g., depth images) during the training (Loquercio et al., 2021; Ramezani Dooraki

& Lee, 2018; Wu et al., 2018), or use virtual simulators that are similar to real envi-

ronments (He et al., 2020; Roghair et al., 2021; Sadeghi & Levine, 2016). Ahn & Song

(2020) trained the robot arm grasping policy in the simulation using a vision sensor and

deploy the learned policy in the physical worlds with additional training in real-world

environments. Kang et al. (2019) trained an obstacle avoiding policy in the simulation

and successfully verified the performance of the algorithm in a real world with a little

In order to relieve the reality-gap, some studies transfer the learned model from

simulation environments to real environments (i.e., transfer learning) (Ahn & Song,

2020; Kang et al., 2019), use images with common features between virtual and real en-

termed as the reality-gap (Jakobi et al., 1995).

As another big branch of machine learning methods, reinforcement learning is

widely used in OA tasks. Reinforcement learning produces actions based on the states

so as to maximize rewards. In reinforcement learning, the agent learns a specific pol-

icy (e.g., tracking a target, grasping an object, or avoiding obstacles) by trial-and-error,

while automatically collecting training data. As a result, the agent can select the best ac-

tions in various states. As the reinforcement learning is based on trial-and-error search

methods, training the agent from the beginning of the training in real world is ineffec-

tive and risky. However, it might be difficult to be applied directly in real environments

due to the discrepancy between simulation and real-world images, which is normally

Loquercio et al. (2018) trained the network that determines the heading and velocity

commands based on the RGB images from KITTI data sets (Geiger et al., 2013). Yang

et al. (2017) and Chakravarty et al. (2017) trained the neural network that can esti-

mate the depth images from RGB images. Then, the estimated depth images are used

to determine the heading direction of the UAV. However, training a depth estimation

network requires long training time and it sometimes underperforms in unseen envi-

ronments. Above studies reduce the efforts of designing rules or constraints for OA

task; however, they require a lot of time on collecting training data and may cause mis-

sion failure when drones encounter unseen environments. Besides, the trained networks

might not be able to produce the best command as the trained networks are trained with

data labeled manually.

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

As an alternative way, some studies adopt image preprocessing methods that esti-

mate depth images from RGB images. One of the frequently used methods is to use

estimate depth images through deep neural networks. The estimated depth images may

show less performance compared with using real depth images. In reinforcement learn-

ing, however, different from supervised learning methods, the agent can learn a better

policy through continuous trial-and-error training. Singla et al. (2019) used generative

adversarial networks (GANs) for depth estimation. For the OA algorithm, it adopts

deep recurrent neural networks (DRQNs) which solves the partial observability prob-

lem in deep Q-networks (DQNs) using sequential time series data as the network in-

puts. In Xie et al. (2017), the CNN estimates depth images and then, the dueling double

deep Q-networks (D3QNs) use estimated depth images to select the best guidance com-

mands. Above two methods generally show good performance, but they are prone to

produce a zigzag motion (Singla et al., 2019) or a spinning motion (Xie et al., 2017)

due to their reward functions. These motions might require excessive control efforts,

which leads to mission failure especially for small drones with less battery capacity.

Therefore, a new reward function needs to be designed that fits to complex environ-

ments minimizing the battery loss.

5

fine-tuning. However, both studies (Ahn & Song, 2020; Kang et al., 2019) needs further

real-world training and there still remains the potential dangers of mission failures. Lo-

quercio et al. (2021); Ramezani Dooraki & Lee (2018); Wu et al. (2018) trained the OA

algorithm using depth images from a stereo camera. The algorithms are verified using

an unmanned vehicle with a depth camera. Despite the advantage of a stereo camera,

sensory inputs of stereo cameras often contain a large noise, and this could weaken the

performance of the algorithm in real-world environments. Sadeghi & Levine (2016)

trained the agent in real world-like environments entirely made by CAD models. By

using highly randomized rendering settings in CAD models, the agent learns the OA

policy without using real data and verified its performance in physical worlds. Although

the algorithm has good performance, constructing numerous real world-like environ-

ments (Sadeghi & Levine, 2016) requires significant efforts and time. He et al. (2020);

Roghair et al. (2021) use real-like virtual simulators to train the obstacle avoidance

algorithms but they are not evaluated in the real environments.

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

With these backgrounds in mind, in this paper, we consider three conditions for the

development of the efficient OA algorithm. First, the algorithm should be based on a

monocular camera so that it can be applied to a small drone. Second, the algorithm

should show robust performance in both simulation and real environments without fur-

ther real-world training. Third, the algorithm should minimize the unnecessary motions

considering the low battery capacity of small drones. From these conditions, this paper

proposes the deep reinforcement learning algorithm that performs the OA missions for

small drones in various indoor situations only through a monocular camera. For more

stable and better performance of the algorithm, D3QN is used to complement existing

problems of DQN methods (e.g., overestimation of Q-values). The main contributions

of this paper are described as below:

The rest of the paper is organized as follows. Section 2 gives the concept of the

deep reinforcement learning and OA algorithm. Section 3 describes the training and

simulation environment for the deep reinforcement learning. Section 4 shows the sim-

ulation and real experiment results. Finally, Section 5 concludes the paper with the

future work.

2. Reinforcement learning-based obstacle avoidance

6

In this section, we introduce the deep reinforcement learning approach for the OA

algorithm. Most of reinforcement learning algorithms are suffering from reality-gap

• We deploy the learned policy (trained only in simulations) in the physical drone

platform without any adaptation or fine-tuning.

formance compared with the existing approaches; and

• We design an appropriate action space and reward function, and thus the pro-

posed D3QN model successfully performs safe OA tasks and shows better per-

drone using deep reinforcement learning;

• We implement a deep reinforcement learning-based OA algorithm in real com-

plex indoor environments using the estimated depth information with only a

monocular camera while only a few studies reported real flight experiments of a

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

2.1. Depth estimation from RGB images

7

As the proposed OA algorithm is based on only a monocular camera in real-time,

a fast and accurate estimation of depth information is needed. Fully connected residual

network (FCRN) (Laina et al., 2016), inspired by ResNet-50 (He et al., 2016), takes

an RGB image as an input and produces a depth image within 50ms on our setup.

Figure 1 shows an RGB image and corresponding various depth images in the Gazebo

simulator. In Gazebo environment, the agent could obtain both RGB images and true

depth images. Although the true depth images can be directly used in training, the OA

algorithm trained from these depth images could not be transferable to various real-

world situations. Besides, the trained policy should be robust to disturbances such as

sensor noise and illumination conditions. By adding Gaussian noise and blur effects

to the true depth images (obtained in the Gazebo simulator), the network could be

well generalized to most environments, as the network is less-overfitted to training

environments due to the noise in the depth images. In physical world implementation,

a pretrained depth estimation algorithm generates an estimated depth image by using an

RGB image obtained from a monocular camera. Figure 1(c) shows the noisy depth and

Fig. 1(d) shows the estimated depth image through FCRN using RGB images obtained

from the monocular camera; we can see that they look quite alike. Note that the noisy

depth images are used only for training and estimated depth images are used for testing.

problems due to the discrepancy between simulation and real-world environments. Our

framework aims to develop an algorithm trained only in simulation environments and

directly apply the trained policy to a real world without any further fine-tuning. For this,

a depth image is used as a sensory input in the simulation as it has a strong similarity

with the physical world. In our framework, simulated depth images with suitable noises

are used as inputs to the artificial neural networks during training and estimated depth

images from a monocular camera are used for the real world testing. The OA algorithm

is composed of a depth estimation step, followed by a decision making step.

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

(a) RGB image (b) True depth (c) Noisy depth (d) Estimated depth

(training) (testing)

2.2. Decision making through D3QN

2.2.1. Q learning algorithm

Over the last decade, Q-learning based reinforcement learning algorithms, espe-

cially deep Q-network (DQN) (Mnih et al., 2015), show promising results in various

fields. DQN is a type of multi-layered neural networks which produce the action value

a in the form of Q(s,a,θ) while taking the given state s as an input. The variable θ

represents a neural network weight parameter. DQN requires two value functions for

the update process: one is for the online network and the other is for the target network.

The online network is updated at every iteration while the target network is fixed for

a certain amount of iterations and then updated. Since the target network is fixed, the

online network could undergo stable training. For the training of neural networks, the

following loss function is used:

Lt(θt) = Es,a,r,s′ [(y
DQN
t −Q(st ,at ;θt))

2]. (1)

8

(2) ∇θt Lt(θt) = Es,a,r,s′ [(yt
DQN −Q(s,a;θt)∇θi Q(s,a;θt)],

By taking the derivative of the loss function, the learning parameters are updated. Since

the target network is fixed for a certain period, the optimization process becomes more

stable. The gradient updates equation is expressed as:

Figure 1: RGB image and corresponding various depth images.

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofyDQN

t = rt+1 + γmaxa′Q(st+1,a;θ−
t), (3)

where θ−
t is the target network weight parameter and γ is the discount factor. By using

Eq. (1), DQN performs the following update process.

θt+1 = θt +α(yDQN
t −Q(st ,a;θt))∇θt Q(st ,a;θt), (4)

where α is a learning rate. The update of the online network is composed of two steps:

i) selecting an action on each state and then ii) evaluating the action on the online

network.

In the DQN algorithm, both the action selection and action estimation are done

using the same estimator, but updating the network with only one estimator results

in overestimation of an action value function, which degrades the performance of

DQN algorithms. Another Q learning based method, double deep Q-network (DDQN)

(Van Hasselt et al., 2016) is introduced to solve such overestimation problems. DDQN

has the same network architecture with DQN; however, there is a difference in the

updating process. The following equation shows the DDQN target network.

yDDQN
t = rt+1 + γQ(st+1,argmax

a
Q(st+1,a;θt);θ−

t), (5)

where DDQN takes an online network parameter θ for an action selection phase. On

the contrary, instead of using the online network during the action estimation phase, the

target network parameter θ− is used as an estimator. Note that the equation for update

is exactly the same except for the change in the target network equation from yDQN
t to

yDDQN
t .

Unlike DQN and DDQN algorithms, the dueling double deep Q-network (D3QN)

(Wang et al., 2015) has a different network architecture at the end of the convolu-

tional layer. After passing through the several convolutional layers, D3QN splits the

network into two forms: state value function V (S) and advantage function A(s,a). Fig-

ure 2 shows the structure of DQN and D3QN algorithms. The final form of optimal Q

9

where ∇θt represents the gradient of the given loss function with respect to the learning

parameter θt . The corresponding target network is expressed as:

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of(a) DQN (b) D3QN

Figure 2: Q learning architecture. Left figure shows DQN and right figure shows D3QN. DQN has a single

stream, whereas, the D3QN has two streams.

function is described as:

Qπ(s,a) =V π(s)+Aπ(s,a), (6)

with

V π(s) = Ea∼π(s)[Q
π(s,a)], (7)

Aπ(s,a) = Qπ(s,a)−V π(s), (8)

and the advantage function satisfies the following condition:

Ea∼π(s)[A
π(s,a)] = 0. (9)

D3QN evaluates states twice: one with the advantage function and the other with the

state value function. Both state value and advantage functions take part in evaluating

the given states, and they ensure better objective evaluation for given states compared

with DQN and DDQN. D3QN shows the better performance in 38 problems out of

55 problems (about 70 %) (Wang et al., 2015; Mnih et al., 2016; Hessel et al., 2018),

compared with DDQN. Thus in this paper, we adopted the D3QN for the OA algorithm.

2.2.2. Training network configuration

In this section, the overall concept of the RL-based OA algorithm will be delivered.

Figure 3 shows the block diagram of the proposed OA algorithm. The OA algorithm is

composed of two phases: i) estimation of depth image through FCRN and ii) decision

making for control. As the first step, the obtained RGB images from the monocular

camera go into the depth estimation network. The RGB images passes through sequen-

tial convolutional layers and finally are changed into the estimated depth image while

10

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

converting its size from [304,228,3] to [160,128]. In the following step, consecutive

estimated depth images are then passed to D3QN which determines the control com-

mand. Applying successive depth images to the neural network enables the networks

to consider time series problems more effectively. Ramezani Dooraki & Lee (2018)

analyzed the performance of the OA algorithm depending on the number of used suc-

cessive images for the neural network, and it turns out that adopting eight sequential

depth images into the neural network produces the best performance. Based on this,

eight depth images are used for our proposed OA system. The D3QN network has sev-

eral convolutional layers, and, at the end, it splits into two steams: advantage function

and state value function. Adding these two functions generates Q function and this de-

termines the angular and linear velocity compared for the agent. Dividing the action

space into linear and angular velocity increases the possible action candidates, e.g.,

slow turn, fast turn, stop, and thus results in better performance. The linear velocity has

three candidates: [0.8,0.4,0]m/s. For the angular velocity, the agent can choose five

actions: [±0.5,±0.25,0]rad/s. Thus, the drone can make overall fifteen combination of

guided control actions. The zero linear velocity in the action candidates reduces the

collision probability while decreasing its speed in complex environments.

11

Figure 3: The proposed reinforcement learning framework. In the training phase, noisy depth images are used

as an input of D3QN. In the testing phase, the estimated depth images through depth estimation algorithm

are used as an input of D3QN. Best view in color.

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

2.2.3. Reward function

In designing the RL algorithm, we need to properly define Markov decision process

(MDP) to obtain better performance. This requires several components, and among

them, a well-designed reward function is the most critical one, as it directly affects

the intended actions, namely, obstacle avoidance. In this paper, the reward function is

designed to satisfy mainly two conditions. First, our proposed reward function should

reduce the inefficient movements of the agent to increase the endurance. Next, the

reward function should consider the distance to the closest obstacle from the agent.

To this end, three reward functions are devised: velocity reward, depth reward, and

collision reward function. The three reward functions are combined for calculation of

the total reward function rtotal .

• Velocity reward function

The ideal movement of the drone should consider the battery efficiency (i.e., endurance),

by simply moving straight as much as possible. Besides, the drone should avoid the

obstacle with a minimum change in heading angle. To this end, the reward function is

designed as:

rvelocity = vcos(ω)dt − c, (10)

where v is the linear velocity and ω is the angular velocity of the drone. dt is the

frequency of the control command on the virtual simulator and its value is fixed at

5Hz. c is the offset constant that makes the value of reward function stay in the same

range with other reward functions. The drone could maximize its linear velocity and

minimize angular velocity by devising the velocity reward function as in Eq. (10). The

cosine function in the above equation sets the angular velocity value smaller than one

and produces smaller values as angular velocity increases.

• Depth reward function

If there only exists the velocity reward function, the drone tends to flight with high lin-

ear velocity for every action. It may increase the velocity reward value, but at the same

time, this may also increase the collision probability. Thus, we should prevent the drone

from moving too fast near the obstacle. To overcome this side effect, another reward

12

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

function is devised. The drone receives the distance information from a LiDAR during

the training and the information is changed into the relative distance. The definition of

the relative distance to the closest obstacle is described as:

ddepth =
min(d1,d2, . . . ,dn)

σ
, (11)

where di is the absolute distance from drone to the i-th obstacle. σ is a positive constant

for normalization and set as σ = 2.0m. The proposed method suggests two separate

reward functions depending on the relative distance defined in Eq. (11). The area with

a long distance from the drone is defined as Zone I and the other with the short distance

is defined as Zone II. Figure 4 illustrates Zone I and II where the colored fan shaped

sectors represent the sensing area. Note that δ is used as a constant that distinguishes

Zone I and Zone II area.

Figure 4: Illustration of Zone I and II.

Zone I: During the training, in case where the relative distance ddepth is bigger than the

collision threshold δ , the agent receives the reward rdepth = 0.4. We could give a larger

value to rdepth, but considering the range of rtotal value, giving a larger value would

reduce the stability of training. δ is used as a constant that divides sensing range of

depth camera.

Zone II: To cope with imminent collision, we design the Zone II reward. The Zone II

reward directly affects the movement of the drone especially when the drone is about

13

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

to avoid the obstacle. The Zone II reward is defined as:

rdepth = min(0.4, ddepth cos(v)+∆ddepth), (12)

∆ddepth = ε sgn(ddepth(t)−ddepth(t −1)), (13)

where ε is the offset constant set as 0.35. The depth reward rdepth is composed of

two terms. One is the velocity control term. It is expressed with multiplication of the

relative depth value ddepth and cosine of linear velocity v. The other term is the change

in the relative depth value. It represents the change in the depth of the closest obstacle

from the drone compared to previous time step. The velocity control term functions as

a break, decreasing the speed of the drone, as it approaches the obstacle. The change

in the relative depth term lets the drone move away from the closest obstacle. The

maximum value of depth reward rdepth is set as 0.4, which makes the agent receives the

reward below than minimum Zone I reward value. As a result, the drone learns to stay

in the Zone I area while receiving less reward value than that of Zone II.

In order for the drone to move slowly in the Zone II area to avoid the imminent

collision, the velocity reward function value in Eq. (10) is set zero. The drone should

have a proper value of δ . If the constant δ is large, there is an increase in unneces-

sary movements (i.e., jerky motions) of the drone. In contrast, if the value of δ is too

small, the drone tends to start avoiding the obstacles only if it reaches the obstacles

closely. Due to the effect of velocity reward function, the drone moves as fast as possi-

ble until it approaches to the obstacles without experiencing collision. Through various

experiences on simulations, we used the value of δ = 0.5 in this study.

• Collision reward function

Above reward functions may reduce the collision probability in a large scale, however,

after all the drone experiences collision during the training. When a collision happens,

a proper negative reward must be given to the drone. The collision reward is set as -1, if

the relative depth to the closest obstacle ddepth is smaller than a certain threshold value.

Setting a proper collision threshold value is important as it affects the motion of the

UAV. Figure 5 shows the behavior of UAV with different collision threshold value. If

the collision threshold value is too big, the drone can not pass through the obstacles

14

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

even though it has enough space (See Fig. 5(a)). On the other hand, if the collision

threshold value is too small, the drone tends to move from side to side in a narrow

passage, and approaches the obstacle too close (See Fig. 5(b)). For our simulation, the

collision threshold value is set to 0.6. This value may be changed in other simulation

environments since vehicles and sensors applied may have different specification.

(a) Large collision threshold value (b) Small collision threshold value

Figure 5: Behavior characteristics of the UAV depending on the collision threshold value.

To sum up, the drone learns to move with large linear speed, minimizing angular

velocity through the Zone I reward function while avoiding obstacles. If there is no ob-

stacle in the Zone II, the drone will move similarly as it is in Zone I case. If there is any

obstacle in the Zone II area, the drone will move away from the obstacle, decelerating

the linear speed. The total reward function rtotal is expressed as:

rtotal = rvelocity + rdepth + rcrash. (14)

15

For the stable training, several factors are considered. First, the reward function

rtotal is ranged in [-1, 1] for the fast convergence of the loss function during training.

Second, the huber loss function (Huber, 2004) is used, which quickly decreases the

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

loss within [−1,1], while treating values located at the outside this range as an outliers.

The huber loss is optimized with the RMSprop (Ruder, 2016) optimizer. The RMSprop

optimizer calculates the gradients using moving exponential average and stabilizes the

training. The algorithm 1 explains how to compute total reward function.

Algorithm 1 Reward function during the training process

1: Initializing the position of the drone

2: Choose action at ∈ A based on given state st ∈ S

3: while No Crash do

4: rvelocity = vcos(ω)dt − c Eq.(10)

5: ddepth =
min(d1,d2,...,dn)

σ Eq.(11)

6: if ddepth ≥ δ then

7: Zone I:

8: rdepth = 0.4

9: else

10: Zone II:

11: rdepth = min(0.4, ddepth cos(v)+∆ddepth) Eq.(12)

12: rvelocity = 0

13: end if

14: Check the collision

15: if min(ddepth)≤ 0.6 then

16: rcrash =−1

17: rdepth = 0,rvelocity = 0

18: else

19: rcrash = 0

20: end if

21: rtotal = rvelocity + rdepth + rcrash

22: end while

16

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

3. Designing training and simulation environment

3.1. Simulation environment

D3QN is trained using the ROS (Robot operating system) and Gazebo simulator.

For the fast training of D3QN, the network is trained under the Gazebo simulation three

times faster than the real time. The additional acceleration was not possible since hold-

ing the control command frequency at 5Hz is difficult in a faster situation. Furthermore,

a proper batch size setting is also needed to hold the constant command frequency. Ta-

ble 1 shows training environment where multi-GPU is used and tensorflow and keras

are used as the python library for the good performance in Gazebo environments.

Training PC Environment

link: https://github.com/mw9385/Collision-avoidance.

In this section, training environments for simulations and corresponding simulation

setup will be described. More detailed information can be found in the following github

RAM 62.8GB

Processor Intel Xeon cpu E5-1650 v4 @ 3.60Hz * 12

GPU Geforce RTX 2080Ti * 2ea

OS Ubuntu 16.04

Workspace Jupyter notebook

Python Library tensorflow, keras

Table 1: Training PC specification

3.2. State observation through various sensors

In the simulation for the training, the hector quadrotor (Meyer et al., 2012) is used

as a training agent. It uses various sensors such as hokuyo LiDAR, Inertial measure-

ment unit (IMU), and ASUS depth camera. The LiDAR and IMU sensors are used for

reward function calculation. The LiDAR has the maximum FOV of 270◦ with a 40Hz

measurement frequency and maximum detection distance of 30m. It is also used to

17

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

check the collision status of the drone using the depth information and gives succes-

sive rewards for every action. The IMU sensor measures the linear and angular velocity

used to compute the reward. The depth camera is used to obtain input states for D3QN

in the form of depth images. Note that the LiDAR sensor and the depth camera are only

used during the training process and only RGB images from the monocular camera are

used for the real flight tests.

3.3. Gazebo training environment

A well-constructed training environment plays an important role in RL training.

For that reason, the environment for RL training is composed of complex elements

such as texture-free walls, white corridor, boxes, gray cylinders, and a group of people,

considering the diversity of obstacle’s geometry. DQN, DDQN, and D3QN are trained

in the identical training environment depicted in Fig. 6. Once the drone collides with an

obstacle, it restarts a new episode at the designated position shown as red dots. As an

initial condition, the drone has zero velocity and heading angle, and altitude of 1.5m.

Each episode is automatically terminated, if the drone travels in the training map with-

out collision more than 2,000 steps (about 400 sec). This termination condition prevents

the drone from travelling the same path during the training process ensuring training

data are independent and identically distributed (i.e., i.i.d). As a result, the diversity

of the training data set increases as training goes on where the overall performance of

the algorithm becomes better. After the algorithm fully learns the obstacle avoidance

rules, it is tested in new tests maps (i.e., not used in the training). As shown in Fig.

7, test maps have four different environments with numerous obstacles: map (a) con-

tains many obstacles with different sizes; map (b) has a large obstacle right in front of

the initial spawning position; map (c) has wide free space but contains long horizontal

obstacles and people; and map (d) has comparatively simple obstacles such as a wide

texture wall. Among the four maps, map (d) is the most difficult map. By placing a

dense group of people all around the map, there is not enough space for OA. To be ap-

plied to real experiments, the RL algorithm is trained on additional new training maps

as shown in Fig. 8.

18

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure 6: Designed Gazebo indoor training environment.

3.4. Network hyperparameter configuration

For a stable training of the RL, a proper hyperparameter setting is of primary impor-

tance. Table 2 shows the specific information for hyperparameter values. A minibatch

size is designed to prevent the network from overfitting. It extracts a fixed number of

data from the total data batch. The total data batch size is called the replay memory

size (Mnih et al., 2015). It stores the whole rollouts during the training process. If the

overall number of data exceeds the replay batch size, then the network removes the data

that come first and stores the latest information at the end of the memory. The agent

history length determines the number of successive images for the network input. The

target network update frequency means the number of iterations where the target net-

work fixes its weight and bias until the end of the online network update frequency.

The epsilon decaying value represents the ratio of exploration to exploitation of the

agent during the fixed number of iteration steps. Finally, the number of no action steps

represents the number of collected episodes before starting the training for the sake of

data diversity.

19

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Map (a) Map (b)

Map (c) Map (d)

Figure 7: Test maps for the obstacle avoidance algorithm.

4. Simulation and experiment results

This section presents the simulation and experiment results of the proposed OA

algorithm. For the comparison of the OA algorithms, several scenarios are considered

during the simulation. Real flight experiments using D3QN are performed in complex

indoor environments.

20

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Hyperparameters Value

loss function huber loss

minibatch size 16

replay memory size 50,000

agent history length 8

target network update frequency 10,000

learning rate 0.00025

epsilon decaying 10,000

initial epsilon 1.0

final epsilon 0.01

optimizer RMSprop (Ruder, 2016)

number of no action steps 5

Table 2: Hyperparameters

4.1. Simulation results

4.1.1. Result analysis of the depth reward function on different zones

From now on, we investigate the effect of using different values of δ which sepa-

rates the sensing area into Zone I and Zone II. For a fair comparison, D3QN is applied

for all cases and trained in the environment shown in Fig. 6. As for test environments,

the maps in Fig. 7 are used. As the aim of the proposed algorithm is fast and safe obsta-

cle avoidance in complex indoor environments, we set the total flight time and travelled

distance as a performance measure. Table 3 shows the performance of OA algorithms

with different values of δ . The tests have been conducted 35 times for all cases with

random initial positions. For the performance comparison, the algorithm in Xie et al.

(2017) which uses δ = 0 is selected as the baseline algorithm since it is similar to our

approach in that i) it uses estimated depth images and the direction command from

D3QN and ii) it uses the same velocity reward function as in our approach; however,

it does not use the separate two zones as opposed to our approach. The baseline algo-

rithm shows worse performance than the proposed method. The algorithm with δ = 0.5

shows the best performance among the three cases. The baseline algorithm has no big

21

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

difference with the proposed method, but shows worse performance than the proposed

method in all cases. When the Zone II reward function is used only (i.e., δ = 1.5), the

drone moves slowly since it acts as if there is an imminent collision threat, which gives

22

Figure 8: Additional training environments for real-world implementation.

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

a poor performance. Based on this result, if the zone reward function is used properly,

then the proposed algorithm shows the better performance in various environments.

The sample simulation result using the proposed D3QN algorithm is shown in Fig. 9.

The red paths represent the position of the drone for the each environment during 2,000

steps.

Map a b c

δ value TD∗ T∗∗ TD T TD T

(m) (sec.) (m) (sec.) (m) (sec.)

0 (Xie et al., 2017) 136.62 1206.2 59.86 400.91 84.74 729.03

0.5 150.74 1387.45 136.38 919.57 140.18 1259.51

1.5 17.08 1153.0 36.76 1506.74 17.97 960.63

TD∗: Traveled distance

T∗∗: Time

Table 3: Performance comparison with different δ values.

4.1.2. Comparison of OA algorithms

The trained RL algorithm is compared with the existing OA algorithm. The exist-

ing baseline algorithm is Xie et al. (2017) as mentioned above. For the fair evaluation

of the algorithm, four maps in Fig. 7 are used with the same initial position, velocity

and orientation with five methods: straight flight, baseline, DQN, DDQN, and D3QN.

The simple straight flight is used to represent how complex the environments are. Ta-

ble 4 shows the averaged traveled distance and flight time in different maps over 35

tests. As expected, the drone with the straight flight method collides with an obstacle

within few time steps. The baseline algorithm (Xie et al., 2017) shows the second best

performance in the test maps. The DQN algorithm shows long flight time over the four

maps, but its travel distance is relatively short, which means the agent travels at a low

speed. The D3QN algorithm shows the best performance in most cases. In summary,

we verify that adopting the depth reward function to D3QN algorithm enhances the

overall performance of the OA algorithm while maintaining its speed fast in complex

23

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Map (a) Map (b)

Map (c) Map (d)

Figure 9: Sample position history of D3QN after training in the test environments.

environments.

4.2. Experimental results

For experiments, the Parrot Bebop 2.0 with the ROS bebop autonomy package was

used. The FOV of the Parrot is 90◦ which is smaller than that of the simulation envi-

ronment 110◦. Although the drone with more limited specification is employed for the

real experiment, it successfully navigates through complex environments, which shows

24

Journal Pre-proof

d

T

(sec.)

122.02

400.91

2000.0

610.89

591.85
Jo
ur

na
l P

re
-p

ro
of

Map a b c

Algorithm
TD∗

(m)

T∗∗

(sec.)

TD

(m)

T

(sec.)

TD

(m)

T

(sec.)

TD

(m)

Straight 5.18 51.0 9.14 79.45 5.86 51.65 15.52

Xie et al. (2017) 136.62 1206.2 94.07 715.54 84.74 729.03 59.86

DQN 28.34 1801.4 23.79 1140.46 18.53 1486.23 29.97

DDQN 130.55 1457.57 43.02 455.94 108.69 1482.03 55.78

D3QN (Proposed) 150.74 1387.45 136.38 919.57 140.18 1259.51 76.44

TD∗: Traveled distance

T∗∗: Time

Table 4: Obstacle avoidance performance analysis in various test environments.

the robustness of the proposed algorithm. The communication between a laptop as an

off-board computing device and a drone is connected through Wifi and the control com-

mand frequency is fixed at 5Hz. The drone controls its position and velocity through

the estimated navigation information using the downward camera and IMU sensor. In

order to operate the drone in a safe way, smaller values of velocity actions than those of

the simulation are used for the real experiment. Corresponding linear velocity values

are [0.4,0.2,0]m/s and angular velocity values are [±0.3,±0.15,0]rad/s. The off-board

computing device has the following specification: Intel Core i7-7700 CPU, NVIDIA

GeForce GTX 1050 GPU, and 8GB RAM. On this computing environment, our algo-

rithm could operate at maximum 20Hz.

The location of experiments is corridors of Ulsan National Univeristy of Science

and Technology (UNIST) campus buildings. To verify the proposed algorithm on var-

ious real environments, we use three scenarios with different obstacles and geometric

properties:

• A mid-sized corridor with texture and windows;

• A wide corridor without texture; and

• A narrow corridor without texture and low light intensity.

25

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure 10(a) shows the scenario with a wide corridor with windows and texture free

walls. The width of the corridor is about 2.5m. Figure 10(b) has more limited space

(i.e., width of 1.5m) and the drone has to face with dead end during the flight. At the

beginning of the test in the scenario (a), the drone moves along a narrow corridor and

then encounters the wide space. In the middle of the wide space, there exist static and

dynamic obstacles (i.e., slowly moving human). Even though the drone is not trained

with a dynamic obstacle, the drone successfully avoids it. In the scenario (b), the drone

avoids the dead end and corners in more limited space. The supplementary movie clip

of the experiments can be found at https://youtu.be/oSQHCsvuE-8.

Figure 11 shows the recorded position history estimated by optical flow information

obtained from the downward camera and IMU sensor. Since this value is the estimated

value, there could be some errors; nevertheless, we provide overall trajectories by using

the estimated value for the visualization purpose. As shown in Fig. 11, the drone could

travel through wide or narrow indoor environments successfully.

5. Conclusions and Future work

26

This paper has proposed the OA algorithm for a small drone using only a monocular

camera through deep reinforcement learning (DRL). The estimated depth images for

the DRL inputs are obtained by the convolutional neural network. Adopting estimated

depth images for the neural network input rather than raw RGB images, we overcame

the drawbacks of DRL by reducing the dissimilarity between virtual simulation and

real environments. Furthermore, in order to increase the performance, we proposed

specific reward functions using the relative depth to the closest obstacle, which results

in better performance than that of the existing DRL algorithm, especially in narrow

indoor environments. We also show that applying the D3QN algorithm is better than

the existing Q functions: DQN and DDQN. As for the future work, the development

of OA algorithms combined with navigation decision making (i.e., path planning with

a goal point) will be considered. Besides, we plan to develop an image-based collision

probability computation algorithm for better OA performance extend OA algorithm to

more general path/trajectory planning such as going towards the goal position while

Journal Pre-proof

Estimated

Depth
Jo
ur

na
l P

re
-p

ro
of

Scenario (a) Scenario (b)

Estimated

3D view Onboard Depth 3D view Onboard

Figure 10: Images of obstacle avoidance experiment result for two scenarios.

27

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Map 1 Map 2 Map 3

Figure 11: Indoor experiment environments and UAV trajectories.

6. CRediT authorship contribution statement

Minwoo Kim: Conceptualization, Methodology, Investigation, Writing - original

draft. Jongyun Kim: Writing - review & editing. Minjae Jung: Writing - review &

editing, Software. Hyondong Oh: Project administration, Supervision, Investigation,

Writing - review & editing.

7. Declaration of competing interest

The authors declare that they have no known competing financial interests or per-

sonal relationships that could have appeared to influence the work reported in this pa-

per.

8. Acknowledgements

This research was supported by Theater Defense Research Center funded by De-

fense Acquisition Program Administration under Grant UD200043CD, Basic Science

28

avoiding obstacles. More comparison studies with the state-of-the-art algorithms in

various real-world scenarios will also be followed.

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Research Program through the National Research Foundation of Korea(NRF) funded

by the Ministry of Education (2020R 1A6A1A03040570), Unmanned Vehicles Core

Technology Research and Development Program through the National Research Foun-

dation of Korea(NRF), Unmanned Vehicle Advanced Research Center(UVARC) funded

by the Ministry of Science and ICT, the Republic of Korea (2020M3C1C1A01082375)

and the Institute of Information and Communications Technology Planning and Evalu-

ation (IITP) Grant (No.2017-0-00067, Development of ICT Core Technologies for Safe

Unmanned Vehicles) funded by the Ministry of Science and ICT (MSIT), Republic of

Korea.

References

Ahmed, M. U., Brickman, S., Dengg, A., Fasth, N., Mihajlovic, M., & Norman, J.

(2019). A Machine Learning Approach to Classify Pedestrians’ Events Based on

IMU and GPS. International Journal of Artificial Intelligence (IJAI), 17, 154–167.

Ahn, K.-H., & Song, J.-B. (2020). Image Preprocessing-based Generalization and

Transfer of Learning for Grasping in Cluttered Environments. International Jour-

nal of Control, Automation and Systems, 18, 2306–2314.

Alvarez, H., Paz, L. M., Sturm, J., & Cremers, D. (2016). Collision Avoidance for

Quadrotors with a Monocular Camera. In Experimental Robotics (pp. 195–209).

Springer.

Aulinas, J., Petillot, Y. R., Salvi, J., & Lladó, X. (2008). The SLAM Problem: A

Survey. CCIA, 184, 363–371.

Back, S., Cho, G., Oh, J., Tran, X.-T., & Oh, H. (2020). Autonomous UAV Trail

Navigation with Obstacle Avoidance Using Deep Neural Networks. Journal of

Intelligent & Robotic Systems, 100, 1195–1211.

Chakravarty, P., Kelchtermans, K., Roussel, T., Wellens, S., Tuytelaars, T., & Van Ey-

cken, L. (2017). CNN-Based Single Image Obstacle Avoidance on a Quadrotor. In

International Conference on Robotics and Automation (ICRA) (pp. 6369–6374).

IEEE.

29

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Cho, G., Kim, J., & Oh, H. (2019). Vision-Based Obstacle Avoidance Strategies for

MAVs Using Optical Flows in 3-D Textured Environments. Sensors, 19, 2523.

Eresen, A., İmamoğlu, N., & Efe, M. Ö. (2012). Autonomous Quadrotor Flight with

Vision-Based Obstacle Avoidance in Virtual Environment. Expert Systems with

Applications, 39, 894–905.

Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision Meets Robotics: The Kitti

Dataset. The International Journal of Robotics Research (IJRR), 32, 1231–1237.

Green, W. E., & Oh, P. Y. (2008). Optic Flow-Based Collision Avoidance. Robotics &

Automation Magazine, 15, 96–103.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image

Recognition. In Computer Vision and Pattern Recognition (CVPR) (pp. 770–778).

He, L., Aouf, N., Whidborne, J. F., & Song, B. (2020). Integrated Moment-Based

LGMD and Deep Reinforcement Learning for UAV Obstacle Avoidance. In 2020

IEEE International Conference on Robotics and Automation (ICRA) (pp. 7491–

7497). IEEE.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan,

D., Piot, B., Azar, M., & Silver, D. (2018). Rainbow: Combining Improvements

in Deep Reinforcement Learning. In Conference on Artificial Intelligence.

Huber, P. J. (2004). Robust Statistics volume 523. John Wiley & Sons.

Jakobi, N., Husbands, P., & Harvey, I. (1995). Noise and the Reality Gap: The Use of

Simulation in Evolutionary Robotics. In European Conference on Artificial Life

(pp. 704–720). Springer.

Kang, K., Belkhale, S., Kahn, G., Abbeel, P., & Levine, S. (2019). Generalization

Through Simulation: Integrating Simulated and Real Data into Deep Reinforce-

ment Learning for Vision-Based Autonomous Flight. International Conference

on Robotics and Automation (ICRA), (pp. 6008–6014).

30

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet Classification with

Deep Convolutional Neural Networks. Advances in neural information processing

systems (NIPS), 25, 1097–1105.

Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., & Navab, N. (2016). Deeper

Depth Prediction with Fully Convolutional Residual Networks. In International

Conference on 3D vision (3DV) (pp. 239–248). IEEE.

Loquercio, A., Kaufmann, E., Ranftl, R., Müller, M., Koltun, V., & Scaramuzza, D.

(2021). Learning High-Ppeed Flight in the Wild. Science Robotics, 6, eabg5810.

Loquercio, A., Maqueda, A. I., Del-Blanco, C. R., & Scaramuzza, D. (2018). Dronet:

Learning to Fly by Driving. Robotics and Automation Letters (RAL), 3, 1088–

1095.

Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., & von Stryk, O.

(2012). Comprehensive Simulation of Quadrotor UAVs using ROS and

Gazebo. In Simulation, Modeling and Programming for Autonomous Robots

(SIMPAR). URL: https://github.com/tu-darmstadt-ros-pkg/

hector_quadrotor.git.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., &

Kavukcuoglu, K. (2016). Asynchronous Methods for Deep Reinforcement Learn-

ing. In International Conference on Machine Learning (ICML) (pp. 1928–1937).

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G. et al. (2015). Human-

Level Control Through Deep Reinforcement Learning. Nature, 518, 529–533.

Mur-Artal, R., Montiel, J. M. M., & Tardos, J. D. (2015). ORB-SLAM: A Versatile and

accurate Monocular SLAM System. Transactions on Robotics, 31, 1147–1163.

Park, B., & Oh, H. (2020). Vision-Based Obstacle Avoidance for UAVs via Imitation

Learning with Sequential Neural Networks. International Journal of Aeronautical

and Space Sciences (IJASS), (pp. 1–12).

31

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Pozna, C., Troester, F., Precup, R.-E., Tar, J. K., & Preitl, S. (2009). On the Design

of an Obstacle Avoiding Trajectory: Method and Simulation. Mathematics and

Computers in Simulation, 79, 2211–2226.

Ramezani Dooraki, A., & Lee, D.-J. (2018). An End-to-End Deep Reinforcement

Learning-Based Intelligent Agent Capable of Autonomous Exploration in Un-

known Environments. Sensors, 18, 3575.

Roghair, J., Ko, K., Asli, A. E. N., & Jannesari, A. (2021). A Vision Based Deep

Reinforcement Learning Algorithm for UAV Obstacle Avoidance. arXiv preprint

arXiv:2103.06403, .

Ruder, S. (2016). An Overview of Gradient Descent Optimization Algorithms. arXiv

preprint arXiv:1609.04747, .

Sadeghi, F., & Levine, S. (2016). Cad2rl: Real Single-Image Flight Without a Single

Real Image. arXiv preprint arXiv:1611.04201, .

Singla, A., Padakandla, S., & Bhatnagar, S. (2019). Memory-Based Deep Reinforce-

ment Learning for Obstacle Avoidance in UAV with Limited Environment Knowl-

edge. Transactions on Intelligent Transportation Systems, .

Van Hasselt, H., Guez, A., & Silver, D. (2016). Deep Reinforcement Learning with

Double Q-Learning. In AAAI Conference on Artificial Intelligence.

Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., & De Freitas, N. (2015).

Dueling Network Architectures for Deep Reinforcement Learning. arXiv preprint

arXiv:1511.06581, .

Wu, K., Abolfazli Esfahani, M., Yuan, S., & Wang, H. (2018). Learn to Steer Through

Deep Reinforcement Learning. Sensors, 18, 3650.

Xie, L., Wang, S., Markham, A., & Trigoni, N. (2017). Towards Monocular Vision-

Based Obstacle Avoidance Through Deep Reinforcement Learning. arXiv

preprint arXiv:1706.09829, .

32

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Yang, S., Konam, S., Ma, C., Rosenthal, S., Veloso, M., & Scherer, S. (2017). Ob-

stacle Avoidance Through Deep Networks Based Intermediate Perception. arXiv

preprint arXiv:1704.08759, .

33

Journal Pre-proof

Highlights

A rei

A mo

A ne

Depl

Jo
ur

na
l P

re
-p

ro
of

nforcement learning-based obstacle avoidance algorithm for small drones

nocular vision-based obstacle avoidance using the estimated depth information.

wly-designed reward function for the fast and safe algorithm

oying the learned policy from simulations to physical worlds without further training

Journal Pre-proof

ORCID Information

Minw

Jong

Minja

Hyon

Jo

ur
na

l P
re

-p
ro

of

oo Kim: 0000-0001-9643-322X

yun Kim: 0000-0003-1698-2726

e Jung: 0000-0002-6204-3132

dong Oh: 0000-0002-1051-9477

Journal Pre-proof

Minwoo Kim: Conceptualization, Methodology, Investigation,
Wri
& e
Hyo
Wri
Jo
ur

na
l P

re
-p

ro
of

ting – original draft preparation. Jongyun Kim: Writing - review
diting. Minjae Jung: Writing - review & editing, Software.
ndong Oh: Project administration, Supervision, Investigation,

ting - review & editing.

Journal Pre-proof

Decla

☒ Th ips
that

☐Th ed
as po

Jo
ur

na
l P

re
-p

ro
of

ration of interests

e authors declare that they have no known competing financial interests or personal relationsh
could have appeared to influence the work reported in this paper.

e authors declare the following financial interests/personal relationships which may be consider
tential competing interests:

Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2022-03-09

Towards monocular vision-based

autonomous flight through deep

reinforcement learning

Kim, Minwoo

Elsevier

Kim M, Kim J, Jung M, Oh H. (2022) Towards monocular vision-based autonomous flight

through deep reinforcement learning, Expert Systems with Applications, Volume 198, July 2022,

Article number 116742

https://doi.org/10.1016/j.eswa.2022.116742

Downloaded from Cranfield Library Services E-Repository

