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Abstract—In this paper, we address some of the challenges that
arise as model-mediated teleoperation is applied to systems with
multiple degrees of freedom and multiple sensors. Specifically we
use a system with position, force, and vision sensors to explore an
environment geometry in two degrees of freedom. The inclusion
of vision is proposed to alleviate the difficulties of estimating
an increasing number of environment properties. Vision can
furthermore increase the predictive nature of model-mediated
teleoperation, by effectively predicting touch feedback before the
slave is even in contact with the environment.

We focus on the case of estimating the location and orientation
of a local surface patch at the contact point between the slave and
the environment. We describe the various information sources
with their respective limitations and create a combined model
estimator as part of a multi-d.o.f. model-mediated controller. An
experiment demonstrates the feasibility and benefits of utilizing
vision sensors in teleoperation.

Index Terms—Teleoperation - Model-mediation - Multi-modal
estimation

I. INTRODUCTION

Bilateral teleoperation systems allow the user to act on a

remote environment via a robotic slave device while providing

force feedback through a master device. The realization of

bilateral teleoperation is most challenging in the presence of

an inevitable amount of (phase or time) lag between the master

and slave. Lags can be due to limited response times of local

controllers, or due to substantial communication time-delays.

In both cases, classical control approaches typically result in

either poor transparency or poor stability properties [1], [2].

These scenarios form a great potential for the model-

mediated approach [3], [4], [5], which counteracts the loop

lag by the use of lead compensation: the models predict

the response of the environment or human operator. In most

previous works on model-mediated teleoperation, the model

structure was chosen to be consistent with the environment.

Hence, for an unchanging environment, the model estimator

converges to a constant and stability is achieved by assumption

even in the presence of a large loop lag.

The value of teleoperation is, however, highest for opera-

tions in unstructured environments which are at best difficult to

model. So models should be interpreted as time-varying signals

without a correct or constant steady state value [6], [7]. This

observation reintroduces the stability question but also largely

extends the usability of the model-mediated approach.

However, in order to realize the full potential of model-

mediated teleoperation, more research is needed on how to

extend the approach to multi-d.o.f. scenarios. So far, most

model-mediated teleoperation research focused on single-d.o.f.

scenarios and the environment model described a geometric

contact property [4], [5], [8] or a dynamic contact property [9],

[10], [11], [12], [13]. For multi-d.o.f. scenarios, the model

estimation itself faces increased complications. Apart from

the fact that geometric and dynamic properties often have

to be estimated simultaneously, there is also an explosion of

the number of measurements and model parameters that is

involved:

• In case of a single-d.o.f. scenario, the dynamic properties

of the environment can be represented with the impedance

Ze. In an n-d.o.f. scenario, however, the dynamics have

to be represented by an n x n impedance matrix Ze, i.e.

n2 instead of one transfer functions have to be defined.

• In the same way, the geometric description of an object in

a single-d.o.f. scenario can be obtained after one motion.

Finding the geometric description of a simple plane,

however, already requires three motions: one to define the

location and two to define the orientation of the plane.

Due to this explosion of the number of model parameters,

simple position and force measurements can no longer be

linked to the model parameters in a comprehensible way.

In the domain of autonomous robots, online contact and

environment modelling is an active research topic [14], [15],

[16]. In [16] e.g., the measured end-effector position, velocity

and force are not only used to estimate the parameters of

environmental contact dynamics but also geometric parameters

such as environment position and orientation. Apart from the

work described in [17], environment modelling for multi-

d.o.f. scenarios received little or no attention in the domain of

teleoperation. In [17], a 2-d.o.f. model-mediated teleoperation

is described, modelling the environment geometrically as a set

of rigid planes. The location and orientation of a plane are

estimated through a heuristic approach using force and position

sensor measurements.

The use of vision sensors can contribute to both the model

estimation challenge as well as to the predictive nature of

model-mediation:

• Vision sensors can be used to obtain the full geometric

properties of the environment from a single image. As



such, they alleviate the model estimation challenge for

multi-d.o.f. scenarios.

• In [6], [7], it was explained how model-mediated teleop-

eration counteracts the lag between the master and the

slave by using lead compensation: the models predict

the response of the environment and/or human operator.

Vision sensors can bring the predictive nature of model-

mediation to a next level by allowing model estimation

before physical contact takes places.

However, vision-based sensing also has limitations. First,

the sensor data can be noisy or incomplete due to poor

visibility conditions or due to occlusion by the manipulator

interacting with the environment you are trying to observe.

In other words, there is no guarantee of getting data. Second,

vision can not observe force-based information. Dynamic prop-

erties, such as friction, impedance, texture, etc. are typically

only detectable by touch and direct manipulation. Hence,

vision has a complementary nature to touch-based sensing.

In this paper, we leverage the respective advantages of

vision and force-based sensing and begin to integrate the

sensing modalities for model-mediated feedback in a multi-

d.o.f. scenario. To do so, we focus on the simple case of planar

2-d.o.f. operations.

Section II describes the considered scenario and the model.

Section III describes all information sources used to estimation

the model-parameters, while the actual estimation strategy is

defined in Section IV. The controller and the experiments are

described in Section V and Section VI, respectively. The paper

ends with conclusions in Section VII.

II. THE PLANAR SCENARIO

This paper describes a 2-d.o.f. model-mediated controller

with a model-estimator that uses different sources of informa-

tion for the scenario shown in Fig. 1(a). In past work [6], [7], it

was claimed that the model should be treated as a time-varying

signal: the model should predict locally and over a short period

of time while allowing quick estimation and adapting to the

system movements. Assuming the objects in the environment

to be locally planar, we propose a simple yet powerful model

of a flat rigid surface.

The model contains a surface location ~p and a surface

normal ~n pointing into the surface. The top view in Fig. 1(a)

shows these model parameters. Note that this model can be

interpreted as a multi-d.o.f. extension of the object location

model described in [5], [7]. A curved environment surface is

modeled as a locally planar segment that has to change its

orientation as the contact location moves. Obviously smaller

radii of curvature need faster model changes and challenge

the algorithm, as we will see below. For simplicity in this

first study, we have considered neither compliant objects nor

corners or edges which would require model jumps [7].

As shown in Fig. 1(b), the experimental setup consists of

the left arm of the PR2 robot and a haptic device designed

and built at the University of Leuven [18]. We confined both

robot motions to the plane and linked the x/y Cartesian axes.

The gripper of the PR2 arm is holding a stick in order to

~n

~p

Camera

(a)

(b)

Fig. 1. (a) A top view of the considered scenario for multi-sensor based
model estimation and (b) the experimental setup.

guarantee point contacts. The tip of this stick is considered

the end-effector of the slave and referred to as ~xs.

III. MODEL INFORMATION SOURCES

To estimate the model parameters ~p and ~n, the following

sources are available: the force sensor at the end-effector of the

slave, the position measurements in the joints, a stereo camera

in conjunction with a textured light projector observing the en-

vironment and also the estimation history. Each (combination

of) source(s) exhibits its own precision and reliability.

A. Force information: ~nF

When applying force to an object, the orientation of the

force vector ~Fe gives an estimate for the orientation of the

object. However, due to the presence of friction in the contact,

this estimated normal ~nF can deviate up to 45o from the actual

normal of the object in the contact point, in case a maximum

friction coefficient of one is assumed. Hence, this information

should only be used as a last resort.

B. Force and Position information: ~pP

Each time the magnitude of the interaction force with the

environment,

∥

∥

∥

~Fe

∥

∥

∥
, exceeds a pre-defined threshold Fthres, the



slave is assumed to be in contact and the actual position of the

end-effector gives an estimate for the location of the object:

~pP . Due to the flexibility and the backlash of the PR2-arm,

there is an uncertainty of more than 10 mm on the position

measurement for the end-effector.

C. Force and Trajectory information: ~nT

While moving along a rigid surface, the surface normal must

be orthogonal to the direction of motion. Hence, the surface

normal can be estimated based on the location of the current

contact point and a set of previous contact points.

To this end, a 2-d.o.f. spatial filter is defined that remembers

nb contact points that are well spread over a specific spatial

constant dT . At each sample time for which the magnitude of

the interaction force with the environment is higher than a pre-

defined threshold Fthres, an old contact point is replaced by a

new contact point in the buffer in such a way that it guarantees

a good spread of the contact points in the buffer.

After the replacement procedure, a search is performed to

find the two points in the buffer that are farthest away from

each other that still respect the spatial constant dT . Then, the

estimated normal ~nT is defined as perpendicular to the line

segment connecting those two points. Note that each time the

slave breaks contact, the buffer is cleared out.

For the experiments, the trajectory based estimate ~nT is

considered reliable if the measure for the error is smaller than

0.25, with this measure calculated as follows:

measure =

√

∑nb
i=1

(di)2)

Max. distance in buffer
(1)

with di the distance between the point i and the estimated

surface. In case the maximum distance between two points in

the buffer is smaller than 75% of the spatial constant dT , the

estimate is always considered unreliable.

For the experiments, the buffer size nb was set to 50. As

mentioned above, for the PR2 arm, there is a big uncertainty of

more than 10 mm on the position of the end-effector calculated

based on the joint positions. Therefore, the spatial constant dT
has to be set quite large, i.e. at 15 mm. The drawbacks of

a large spatial constant are the fact that the estimator is less

sensitive for features with a small radius of curvature and the

fact that a bigger amount of estimation lag is introduced in the

loop.

D. Camera information: ~pV and ~nV

Using the disparity image from the stereo-camera in the

head of the PR2 robot, a local plane search is performed in

front of the end-effector of the PR2-arm.

To select the search region, we need to forward-predict

where the end-effector of the slave is likely to make contact

with the environment. For simplicity, we assume that the end-

effector is already close to the future contact point of the

surface. Hence, the search region is defined as a rectangular

region of 40x20 pixels around the projection of the end-effector

into the image. In case the objects of interest are in the range of

0.8 m of the camera, which is the nominal distance the robot

(a)

%
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Fig. 2. The disparity image of the stereo-camera in the head of the PR2
robot is used to do a local plane search around the green dot. The detail in
(a) shows this green dot that is a projection of the end-effector, marked by the
blue dot, into the camera image. (b) The percentage of inliers with respect to
the error on the estimated angle.

arm can reach, this comes down to a region of 30x15 mm.

A topic of future work is to define a more general solution

to select where to estimate the local plane, involving actual

forward prediction of the slave movement.

Fig. 2(a) shows this scenario, with the estimated surface

in green. The green dot in the center of that local plane

corresponds to the point on the object surface that lies on the

same projective ray as the end-effector, i.e. they project to the

same pixel in the camera image. The algorithm performing the

local plane search is based on RANSAC [19]. The output of

the algorithm is an estimate for both the location ~pV and the

orientation ~nV of the plane in front of the end-effector of the

PR2-arm.

For several reasons, camera information can be unreliable:

• Especially when the end-effector is interacting with the

environment, there can be occlusion.

• When the orientation of the object plane becomes parallel



TABLE I
PERFORMANCE OF THE DISPARITY-BASED LOCAL PLANE SEARCH

ALGORITHM

Angle to camera axis std(estimated angle) std(estimated dist.)

0o 0.5o 1.9 mm

34o 1.0o 4.1 mm

54o 1.1o 6.5 mm

75o 3.2o 16.6 mm

to the camera axis, the disparity image can become too

sparse.

• Camera information is inherently affected by image noise.

Table I shows the standard deviation on the estimated angle

and distance of the plane for four different orientations of the

actual plane. For each orientation, the algorithm is applied to

500 images of the same static scenario. The distance from the

camera to the plane varies from 0.6 to 0.8 m. This table clearly

shows that the measured data becomes more noisy, hence less

reliable, when the orientation of the object plane becomes more

parallel to the camera axis.

The above mentioned issues motivate why the model-

estimation challenge cannot only be approached from a com-

puter vision perspective. Clearly, when considering also com-

pliant objects, the need for multi-modal estimation becomes

even higher.

A good reliability measure for the result of the algorithm,

is the percentage of inliers. Fig. 2(b) shows this percentage of

inliers as a function of the error on the estimated orientation

for 500 local plane estimations in case of a static scenario.

This plot illustrates the general trend that if the error in the

parameter estimate is large, then the corresponding percentage

of inliers is low. For the experiments, the vision based estimate

~pV and ~nV are considered reliable if the percentage of inliers

is higher than 65 %.

The PR2 controller updates the disparity image at a rate

of 15 Hz. Due to the presence of a considerable amount of

noise on the estimate, some severe low-pass filtering is required

which negatively influences the overall phase lag in the loop.

The bandwidth of the low-pass filter is set at 1 Hz and thus

the use of this information source has to be restricted to quasi-

static or static situations.

E. History: ~pH and ~nH

Information about the location and orientation of the surface

at a previous contact point can provide an initial value for

a new estimation. The reliability of this information depends

on a spatial constant dH and a time constant τH : the further

away from the previous contact point the less reliable this

information becomes. The longer ago this previous contact

point was found, the larger the chance that something has

changed in the environment.

For the experiments, the history information is considered

reliable if the current position of the slave is no more than

20 mm away from where the object was last touched. How

much time passed since this last contact, is not taken into

account.

IV. MODEL ESTIMATION

A hierarchical approach has been defined to select what

information source is used at every time step.

For the model parameter ~p, i.e. the location of the model

plane, the following rule applies: In contact, i.e. when

∥

∥

∥

~Fe

∥

∥

∥
>

Fthres, the position sensor based estimate ~pP is considered

most reliable and used. Else, if the slave is moving in free

space and the camera information is reliable, the estimate from

the local plane search algorithm is used, i.e. ~pV . In case the

camera information is not reliable, the history information ~pH
is selected.

Similarly, for the model parameter ~n, the following rule

applies: In contact, the estimate based on the trajectory infor-

mation, i.e. ~nT , is used if it is reliable. If not reliable, the

vision based estimate ~nV is used and this can be both when in

contact or while moving in free space. If both the trajectory and

the camera information are unreliable, the history information

~nH is used. In case also the history information is unreliable,

the model parameter ~n is re-initialized with the force sensor

information, i.e. ~nF . Thereafter, by construction, the history

information is reliable again.

V. THE MODEL-MEDIATED CONTROLLER

This section describes an implementation of a 2-d.o.f.

model-mediated controller that uses the multi-sensor based

model estimator described above. This controller consists of

four components [6], [7]. At the slave side, the model esti-

mation uses sensory data to continuously estimate the model

for the environment. At the master side, this model is used

by the model rendering to generate the haptic feedback. The

human response to the haptic rendering is monitored by the

task estimation to generate a task description. Back at the slave

side, the task execution regulates the slave to accomplish the

incoming task as well as possible using the current model of

the environment.

A. Model estimation

The model estimator at the slave side, discussed in detail in

the previous section, continuously updates the model parame-

ters ~ps and ~ns.

B. Model rendering

The model maintained at the master side is directly updated

with the most recent incoming model parameters from the slave

side:
~pm = ~ps and ~nm = ~ns. (2)

The virtual plane defined by these model parameters should

behave as a one-sided pure stiffness in the direction of the

normal ~nm. To realize this behaviour, a haptic proxy is used.

The position of this proxy is the perpendicular projection of the

actual position of the master onto the plane in case the master

has virtually penetrated the plane. In front of the plane, the

proxy tracks the master position. The force to be applied by

the master is then:

~Fm = Km
p (~xproxy − ~xm). (3)



Because the environment is assumed to be rigid, i.e. infinitely

stiff in the direction of the normal ~n, the gain Km
p should be

set as high as practically possible.

C. Task estimation

A simple task representation is employed to represent the

user’s intent, namely a location and an interaction force: ~xtask

and ~Ftask. The force vector ~Ftask is the interaction force between

the human operator and the master, i.e. the force the operator is

applying to the model and the position ~xtask is not the actual

position of the master but the proxy location. As such, the

task is feasible against the model, independent of any practical

limitations on the gain Km
p .

D. Task execution

In the x/y-plane, a hybrid controller is used in the same

way as described in [17]: the slave is force controlled in

the direction perpendicular to the model plane and position

controlled in the direction tangent to the model plane:

~Fs = ~ns||~Ftask||+ (1− ~ns~n
T
s )(K

s
p(~xtask − ~xs)−K

s
v~̇xs). (4)

VI. EXPERIMENTAL RESULTS

The experiments are subdivided in two parts. First, the be-

haviour of the model estimator itself is shown and in a second

part, a bilateral experiment is performed. Both parts consider

the scenario with the curved surface in the environment as

shown in Fig. 1(a).

A. Testing the model estimator

To test the model estimator, data was recorded while the

slave tracked the motion of the human operator in a unilateral

teleoperation setting. The resulting slave trajectory is shown

in Fig. 3(a). Apart from the first 950 ms, the slave was

continuously in contact during the recording of the data, i.e. the

interaction force with the environment exceeded the threshold

value Fthres = 1 N.

For this data, Fig. 3(b) shows the estimated orientation

based on the force, camera and trajectory information. This

orientation is measured as the angle between the normal ~n

and the x-axis. Note that the estimates are only shown in case

the reliability measure respects the threshold.

The effect of surface friction on the normal estimation

based on the force vector is clear through the hysteresis-like

behaviour. While moving to the left, the angle of the local

plane with respect to the x-axis is overestimated, while when

moving to the right, this angle is underestimated.

The figure also shows that the estimates obtained from

the camera and the trajectory information correspond quite

well, with the trajectory-based estimates significantly smoother

for a similar amount of phase lag. The downside of the

trajectory-based information is that the resulting estimates also

show some hysteresis-like behaviour. This behaviour originates

from the fact that the points in the buffer typically lag the

latest contact point while moving in one direction and the

magnitude of this hysteresis behaviour thus depends on the

spatial constant dT . The camera-based information has the
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Fig. 3. (a) The slave trajectory that is followed during the recording of the
sensor data used to test the model estimator. (b) The estimation of the normal
based on three different information sources.

disadvantage that it is more noisy and subject to visibility con-

straints. If the end-effector is in contact with the environment it

might occlude the contact point for the camera. The reliability

of the model parameter estimates is also dependent on the

relative alignment between surface normal and camera axis.

This explains why there are no estimates shown for the vision

sensor in Fig. 3(b) in case the angle is smaller than -70o: in

that case the percentage of inliers is mostly smaller than 65

%.

B. Testing the bilateral controller

During this second experiment a human operator interacted

with the same curved environment shown in Fig. 1(a). The

experiment shows distinct phases: first contact was made on

the right side for a short period of time, then the operator

moved towards the centre of the curved surface and finally

slid to the left side and back.

Fig. 4 shows the data obtained during this experiment, i.e.

the trajectory followed by the master and slave as well as

the orientation of the interaction force between the master
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Fig. 4. A 2-d.o.f. model-mediated controller with sensor fusion: (a) the trajectory of the master and slave as well as the orientation of the interaction force. (b)
The information source used to estimate the surface normal.

and the human operator and between the slave and the actual

environment. This force orientation is only shown though, in

case the interaction force exceeds the pre-defined threshold of

1 N. Overall, one can see that the curved surface is reflected

well to the human operator by the model-mediated controller.

Furthermore, Fig. 4(b) shows which source is used to

estimate the surface normal at a certain moment in time:

Force When the environment is contacted at the right

side, i.e. from 0.5 to 2.5 seconds, the initial estimate for the

surface normal is based on the direction of the interaction

force measured at the slave’s end-effector upon initial contact.

During the remainder of this period the trajectory information

is not yet reliable since the range of motion is smaller than

the spatial constant dT . The camera information is not reliable

either, since the camera-axis is almost perpendicular to the

surface normal. Thus, as explained in section IV, the history

information is used, which continues to be the initial estimate.

Vision From 5.5 to 8 seconds, the slave moves towards

and makes contact with the curved surface at a place where

the camera is well aligned with the surface normal. During this

period, the trajectory information is again unreliable and the

camera information is the source used to estimate the surface

normal. From 5.5 to 6.7 seconds the slave is not yet in contact,

and the surface location is also estimated based on the camera

information. Once the slave makes contact with the actual

surface, i.e. after 6.7 seconds, the surface location is estimated

based on the position measurement of the end-effector of the

slave. Due to the compliance in the robotic arm, this means that

the estimated surface location virtually penetrates the actual

surface.

At the master side, this sequence of events entails that the

human operator feels the object before the slave actually

touches it. However, it also means that the operator feels

the object moving slightly backwards. This signals the model

adjustment due to the change in the information source from

vision to position measurements. This phenomenon is visible

in the small circle in Fig. 4.

Trajectory Once the range of motion around the initial

contact point exceeds the spatial constant dT , i.e. at 8 seconds,

the trajectory information becomes reliable and can thus be

used as the source for the estimation of the surface normal. The

position measurement of the end-effector of the slave continues

to be the source for the estimation of the surface location.

Note finally that this model-mediated controller reflects both

the rigidity and the curvature of the environment to the human

operator, while also providing a transparent feeling in free

space. As long as the model estimator produces a reliable

output, there are no stability problems despite the considerable

amount of phase lag introduced by the limited performance of

the slave.

VII. CONCLUSIONS

This paper addressed the use of vision sensors for model-

mediated teleoperation. Vision sensors are the common de-

nominator of two important challenges for model-mediated

teleoperation: (1) to robustly estimate geometric properties of

the environment in a multi-d.o.f. scenario and (2) to predict

environment properties before actually touching the environ-

ment.

For the specific case of estimating the orientation and

location of a surface, this paper described several information

sources including vision sensors with their respective reliability

measures. A hierarchical approach has been defined to select

what information source is used at every time step.



The experiments showed the use of multiple information

sources for robustly estimating model parameters during bi-

lateral teleoperation. Also the ability to predict environment

properties, before actually touching the environment, by using

vision-based sensing is demonstrated.

Lastly, the bilateral experiment also demonstrates the fact,

claimed in [6], [7], that the model for the environment should

capture the locally most salient aspect of the environment, but

can continuously adjust while the human operator explores the

environment.

In future work, we would like to tighten the integration by

performing actual sensor fusion. Instead of switching between

modalities, the estimation should be based on all measurements

and the time-dependent weighting factors at each time step.

As such, the sensors can be used to continually cross-calibrate

each other. Finally, we also want to explore dynamic environ-

ments, where information on compliance, friction and textures

is obtained from touch-based sensing to augment the geometry

obtained from vision-based sensing, i.e. to leverage even more

the complementary nature of both sensing modalities.
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