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Abstract—The development of photovoltaics as a serious means
of producing renewable energy has accelerated greatly in the last
ten years, with prices for silicon-based solar cell systems dropping
dramatically in the last few years. The next great opportunity for
photovoltaics following this competitiveness in prices will be to
enhance the cell and panel efficiencies. It is quite generally seen
that the most viable platform on which this should be realized
will be as augmented silicon solar cells, in which a top cell will be
combined with the silicon bottom cell in a tandem configuration,
by which the efficiency can be enhanced by a factor from 20%
to 50%, depending on details of the approach. In this paper, we
report on the status of one such approach, namely, with a top cell
comprising III–V nanowires, connected to the bottom silicon cell
in a two-terminal or four-terminal configuration. Among the most
important opportunities, we show that a substrate-free growth,
called Aerotaxy, offers a radical reduction in the total price picture.
Besides the description of the key technical approaches, we also
discuss the environmental issues.

Index Terms—Environmental impact, nanowires (NWs),
photovoltaics (PVs), tandem cells.
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F. Dimroth, G. Siefer, and O. Höhn are with the Fraunhofer Insti-
tute for Solar Energy Research, Freiburg 79115, Germany (e-mail:, frank.
dimroth@ise.fraunhofer.de; gerald.siefer@ise.fraunhofer.de; oliver.hoehn@
fraunhofer.de).

H. Riel, H. Schmid, and S. Wirths are with IBM Research Lab-
oratory, Ruschlikon CH-8803, Switzerland (e-mail:, hei@zurich.ibm.com;
sih@zurich.ibm.com; ZRLWIR@ch.ibm.com).
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I. INTRODUCTION

S
ILICON (Si)-based photovoltaic (PV) cells are the domi-

nant technology for terrestrial solar energy conversion. Af-

ter many decades of research and development, efficiencies have

essentially saturated with the best devices measuring 26.7% in

the laboratory [1], [2]. Significantly higher conversion efficien-

cies up to 38.8% under one sun illumination have been reached

with multijunction cells based on III–V semiconductors in flat

plate configuration [3]. However, this technology has been too

expensive for use in large area flat-plate modules, and the com-

bination of high-efficiency solar cells in tandem configuration

on a Si platform has recently attracted great attention using thin

film III–V materials [4] as well as perovskites [5]. The use of

III–V nanowires (NWs) allows a significant reduction in mate-

rial needs and has the potential to exceed the performance of

conventional devices after optimizing synthesis, and process-

ing for materials quality, surface passivation, and minimizing

contact resistance. NWs offer to combine lattice mismatched

materials with band gaps optimized for absorption of the solar

spectrum due to the reduction in lattice matching requirements

making it possible to grow them monolithically on Si [6], [7].

The efficiency of NW-based PVs is rapidly increasing [8], and

references therein, with recent record efficiencies of 13.8% for

vapor liquid solid (VLS) [9] grown indium phosphide (InP)

NWs [10] and 15.3% efficiency for VLS grown gallium arsenide

(GaAs) NWs [11]. The current record in NW PV efficiency is

17.8%, reported for top down etched InP NWs [12]. III–V NWs

in combination with today’s Si PV technology have the potential

of simultaneously allowing very high performance, efficient use

of materials, and low cost. The first step to multijunction tech-

nology has been taken where InP NW PV has been integrated

into Si [13]. More importantly, open-circuit voltage addition of

GaAs NW PV grown on a Si solar cell, previously modeled [14],

was recently shown [15]. For improved performance, the NW

materials band gap has to be tuned for an optimal absorption

of the solar spectra in combination with Si. This involves the

use of ternary NW materials like (doped) gallium indium phos-

phide (GaInP) and gallium arsenide phosphide (GaAsP), which

represent the high band gap segment in a tandem junction ge-

ometry. In this contribution, we report on the concepts and most

recent advances made with respect to integrating NWs into a Si

solar cell platform. Together we pursue three main concepts for
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Fig. 1. Simple sketch of the three different concepts. (a) Schematic of
template-assisted epitaxy (TASE) and SEM image of a fabricated structure,
(b) SEM image of epitaxially grown NWs, peeled off and held with a tweezer,
intended for transfer to a Si cell. The membrane is black due to efficient light ab-
sorption in the NW membrane, (c) substrate-free growth by Aerotaxy, example
of NWs grown by Aerotaxy.

increasing the efficiency of Si-based PV by integration with

NWs and evaluate the environmental performance of using NWs

instead of thin films by means of a life-cycle assessment (LCA)

approach in which different impact categories as well as toxicity

are considered.

II. NANO-TANDEM CELL CONCEPTS (SEE FIG. 1)

A. Concept I: Direct Growth of NWs on a Silicon Solar Cell

In this approach, we use a catalyst-free growth technique

to directly integrate III–V semiconducting NWs into Si using

selective area epitaxy within nanotube templates. The benefit

of this template-assisted selective epitaxy (TASE) growth mode

is the ability to precisely control the crystal morphology and

location of the III–V NWs, as well as to directly grow III–Vs

on many Si crystalline orientations, even poly-Si [16]. TASE,

hence, enables the growth of vertical NWs on standard (001) Si

and thus the use of cost-efficient substrates. Furthermore, TASE

offers an attractive way to establish epitaxial contact with Si at

the NW/Si interface and its use as a tunnel junction [17]. The

use of metal organic vapor phase epitaxy (MOVPE), which is

a mature technique and direct growth on Si, allows large area

deposition, which can be facilitated by holographic methods or

nano-imprint lithography for patterning.

In this approach, the Si bottom solar cell uses a planar pn-

junction with a polished front surface. Therefore, light trapping

structures for increasing absorption may only be integrated into

the back of the Si substrate.

B. Concept II: NWs Synthesized on InP or GaAs Substrate for

Peel Off, Transfer, and Substrate Reuse

The benefit of this approach is that NW nucleation on a native

substrate is the most controlled, and the use of mature MOVPE.

Here, the NWs are embedded in a polymer film after growth,

peeled off from the substrate, and bonded to Si. Then, the III–V

substrate can be reused for further growth. The process of peel-

ing off and transferring micro-NWs has successfully been shown

by the Atwater group [18], [19]. The challenge is to develop the

method for NWs with dimensions and frictional properties much

smaller than those for micrometer diameter NWs. Economically

viable prepatterning, in this case with metal nanoparticles as a

catalyst for the NW growth, is essential. In concept I, the two

cells are monolithically integrated, and therefore by necessity

Fig. 2. Schematic of the Aerotaxy process, where Au seed particles are grown
into GaAs(P) NWs in a continuous flow. The sequential growth of the intended
NW device design is shown in the enlarged model NWs to the right.

current matched, which creates performance issues since the

color content in the sunlight varies as a function of time of

the day and year. In concept II, the option is either to integrate

the NW array by forming a direct semiconductor–semiconductor

contact, or to form a (semi) transparent contact on the bottom

side of the NW-containing membrane. The second case allows

the top and bottom cells to operate individually with a total

of four leads out which results in an advantage not requiring

current matching. In this case, light-trapping structures can be

integrated into the Si front surface between the NW film and the

Si bottom cell. This helps to enhance the light propagation and

therefore absorption in the Si bottom cell.

C. Concept III: Substrate-Less NW Growth: Aerotaxy

Aerotaxy was invented partly to test the fundamentals of NW

growth in the absence of a substrate and to address the high cost

of producing NWs for large-area applications, especially solar

cells. In Aerotaxy, NWs grow from seed particles directly in

the gas phase, and the resulting NW aerosol can be transferred

into an ink for storage and further processing. One remarkable

aspect of Aerotaxy is that this continuous process results in

growth rates on the order of 1 µm/s, which is 100–1000 times

faster than MOVPE growth [20]. Fig. 2 shows an illustration of

the Aerotaxy process, for the case of GaAsP pn-junction NWs.

The experimental, research scale, Aerotaxy equipment in use

at Lund University yields approximately 2 mg of size-selected

NWs per hour, which is equivalent to 4 NWs per µm2 on a 4′′

wafer. Note that Aerotaxy needs no lithography and is inherently

scalable. Similar to concept II, this approach allows a choice of

current matching or not.

D. Concept I Results

In this approach, a high-energy band gap III–V NW–Si tan-

dem junction solar cell is targeted by epitaxial growth of the

III–V NW junction using TASE on the top of the Si planar cell.

In order to achieve a high-energy band gap absorption com-

plementing that of Si, a ternary III–V NW with a band gap of

approximately 1.7 eV is required. Therefore, we investigated

GaAsP and InGaP directly grown on Si. The vertical oxide tem-

plates were fabricated by spin-coating a sacrificial carbon layer

(1.5 µm thick) on the substrate, which was covered by a silicon

dioxide (SiO2) layer and patterned by lithography (e.g., electron

beam lithography or interference lithography, for cost reasons)

and reactive ion etching. We used the patterned SiO2 layer as
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Fig. 3. (a) Tilted view SEM micrograph of an InGaP NW array grown on
Si(111); the oxide template is stripped. (b) PL intensity map of an NW array
grown at 550 °C. (c) PL peak positions and FWHM for InGaP NWs grown at
550 °C, 600 °C, and 650 °C. PL peaks and FWHM were extracted from spectral
maps covering NW arrays. The step size between PL spectra was 100 –200 nm.
Insets show the temperature-dependent peak distribution.

a hard mask to define sacrificial carbon NWs with diameters

between 100 and 200 nm by dry etching. To create the verti-

cal oxide tube, we deposited SiO2 homogeneously around the

NWs, after which the top part of the shell was opened and the

sacrificial carbon NW was removed by etching. This process is

suitable for large area growth and any Si substrate orientation.

Furthermore, the thermal budget of the developed process in-

cluding NW growth allows for the implementation with Si PV

cell fabrication.

The selective epitaxy of GaAsP and InGaP on Si(001) and

Si(111) within vertical templates was explored at growth tem-

peratures between 550 °C and 650 °C and the influence of the

V/III ratio (20–120) was studied. Higher growth rates were ob-

served for InGaP as compared to GaAsP. Using Si(001), the

composition of GaAsP as well as InGaP was nonuniform under

the process conditions evaluated. This was revealed by cathodo-

luminescence (CL) and electron dispersive x-ray (EDX) mea-

surements using NW arrays as well as individual NWs. We

ascribe the inhomogeneity to different Ga versus In and As

versus P incorporation for InGaP and GaAsP, respectively, on

the growth facets. A previous study showed the formation of

(111)B and {110} growth interfaces on Si(100) [21]. This is

different in the case of Si(111) where only a nearly atomically

flat, a horizontal (111)B top facet is present. We, therefore, fo-

cused on Si(111) substrates, as illustrated in Fig. 3, showing

an X transmission electron micrographs (X-TEM) image of an

InGaP NW with a single (111)B facet. Fig. 3 shows room tem-

perature photoluminescence (PL) data of an NW array, with a

PL area intensity map in Fig. 3(b). We attribute the spots with

higher intensities to nonuniform filling of the templates leading

to parasitic growth outside the template. The PL of an NW array

(7 × 7 µm2) comprising approximately 50 NWs was mapped

using an excitation wavelength of 532 nm and a step size of

100–200 nm. The NWs within the arrays exhibit lengths of up

to 1.5 µm, widths of 150 nm in a pitch of 1 µm and were grown at

a constant V/III and group III gas ratio [TMGa/(TMGa + TMIn),

with TMGa=trimethylgallium and TMIn=trimethylindium] of

Fig. 4. TEM and EDX measurements of a single InGaP NW grown in a
template on Si(111), showing a uniform NW geometry with a flat interface to
Si and flat top facet and a nearly homogeneous composition along the NW.

26 and 0.43, respectively. The highest growth temperature lead

to the most favorable optical properties, like narrow full width at

half maximum (FWHM) and PL peak distribution in the array,

as summarized in Fig. 3(c). The peak position of 1.67 eV (ap-

prox. 30% Ga) is close to the required value for efficient tandem

solar cells.

Fig. 4 shows the cross-section of a representative InGaP NW

enclosed in the template with the corresponding EDX analysis.

A homogeneous in-plane composition is observed with a slight

decrease of In content along the growth direction, which can be

attributed to the difference in surface diffusion length between

In and Ga species, on the oxide mask. This phenomenon is

known in selective area epitaxy where the species fluxes are

modified in the proximity of the masking area. The TEM show

a flat NW growth surface and a zinc blende (ZB) crystal with

planar defects on (111) direction and misfit dislocations located

at the NW–Si interface. These experiments suggest that InGaP

with the proper composition can be integrated directly into Si

using TASE.

Nanoscale analyses are essential to probe individual NW pn-

junctions in order to analyze the material quality, to assess the

NW-to-NW homogeneity, and to detect eventual failures. CL

and electron beam induced current (EBIC) microscopy tech-

niques allow to probe optical properties and current generation

with a resolution of several tens of nanometers.

We performed EBIC microscopy and single NW current–

voltage characterization on TASE grown InGaP NWs contain-

ing a pn-homojunction by introducing diethylzinc (DEZn) and

disilane (Si2H6), respectively. As expected, we observe a strong

induced current at the position of the pn-junction (see Fig. 5).

An important step will be to demonstrate an InGaP–Si tun-

nel junction. Initial results using a highly n-doped InGaP NW

on degenerately p-doped Si show the appearance of a negative

differential resistance but only after cooling to 150 K. While
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Fig. 5. Electrical probe contacting an individual InGaP NW grown on Si.
Under reverse bias, a generated EBIC current reveals the position of the InGaP
pn-junction.

promising, this clearly demands continued work to improve the

tunnel junction. Eventually, surface passivation can be further

improved by stripping the template oxide from the NWs and

growing a higher bandgap III–V shell around the NWs.

E. Concept II Results

In a first step to realize high energy band gap NWs for NW

Si tandem junction solar cells by MOVPE, peel off, and trans-

fer, we synthesized and characterized p-doped ternary GaInP

NWs aiming for a band gap of about 1.7 eV in a pattern de-

fined by nano-imprint lithography for optimal light absorption

in InP NWs [22]. InGaP was chosen over GaAsP due to previ-

ous knowledge of doping. It was found that the use of DEZn for

p-type doping leads to more efficient TMGa pyrolysis, which

increases the Ga content in the NWs as a function of attempted

doping [23]. The opto-electrical properties of ternary InGaP

NWs grown by Au-assisted MOVPE were characterized by CL

and EBIC. CL showed that the NWs had a band gap close to

1.7 eV and a good NW-to-NW and intra-NW compositional ho-

mogeneity. In two analyzed samples, the room-temperature peak

emission and its deviations were 1.739 ± 0.041 eV and 1.640 ±
0.022 eV, respectively. For both samples, the variation of the

peak CL energy along the NW axis was less than 20 meV. EBIC

mapping allowed to directly visualize the internal field region

having a width varying from 500 nm to 1 µm. Diffusion lengths

of minority carriers around 150–200 nm were determined by

analyzing the EBIC profiles.

F. NW Growth, Peel Off, and Reuse of Substrate

In order to make epitaxially grown NW solar cells econom-

ically viable, one requirement within the project is to make

technology for recycling of the substrate available, diminishing

substrate costs. In Fig. 6, scanning electron microscope (SEM)

images are shown of 1) selective area grown NWs grown on an

InP substrate, 2) the sample surface after the first peel off, and

3) NWs grown after recycling the substrate twice, i.e., using the

sample for growth three times. The NWs are indistinguishable,

indicating that further recycling of the substrate is feasible.

Fig. 6. NW growth and peel off. SEM images of (a) selective area MOVPE
grown NWs. First time of substrate use. (b) Substrate after first peel off. A
hexagon of circular markers indicates the position of openings in the SiN growth
mask for clarity. (c) Selective area MOVPE grown NWs, third time of substrate
use. The scale bar for all images is 1 µm. (a) and (c) are taken under a 30° angle
toward the normal of the plane. (b) shows a top view image.

Fig. 7. Process flow for integrating peeled off NWs into cells, ready to stack on
the Si cell according to concept II. After NW growth (a), the NWs are embedded
in a polymer and transferred to a carrier substrate (e.g., UV-release/PET tape)
by peeling (b). The rear transparent conductor is added (c) and after bonding to
a glass substrate, the carrier is released (d) prior to the deposition of the front
transparent conductor.

Regarding the quality of the NWs regrown on the used sub-

strates, we identify the NW crystal as wurtzite. From the SEM

images in Fig. 6(a) and (c), it can be seen that the NWs are

self-similar with respect to morphology. We evaluated the op-

tical quality by PL spectroscopy and observed characteristic

behavior that can be explained by differences in twinning se-

quence leading to varying lengths of wurtzite and ZB segments

in the NWs [24], [25], independent of the number of times the

substrate had been used.

G. Cell Integration of Peeled Off Membranes

While substrate reuse was demonstrated using selective area

grown NWs, the highest efficiency of epitaxially grown NWs

has been shown by GaAs or InP NWs grown by the VLS method.

Therefore, such NWs were peeled and integrated according to

the process flow shown in Fig. 7.

The mechanical properties of the NW-polymer-carrier system

determine the ability to peel the NWs. For integration, we grew

GaAs NWs on a 2′′ GaAs wafers using a square pattern with

500 nm pitch. One important parameter is the diameter of the

NW, which together with the pitch is set by the requirements for

optical absorption, but also by the need for additional radial pas-

sivation layers [11]. To enable peeling, we had to limit the radial

passivation layer thickness to 15 nm on a ∼165 nm diameter

core, less than the ideal 30–40 nm required for ideal passiva-

tion [11]. The current voltage curve of a 5 × 5 mm2 peeled NW

GaAs cell with the efficiency of 3.5% is shown in Fig. 8. The

short-circuit current density (Jsc = 6.8 mA/cm
2
) is lower than

on the best GaAs NW cells made from epitaxially grown NWs

(Jsc > 20 mA/ cm2). In addition to the thinner than the ideal

passivation layer, this can be attributed to losses from the Au

catalyst seed particle not being removed [26]. For comparison,

sister wafers with cells integrated into wafer resulted in Jsc
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Fig. 8. Current–voltage curve of a peeled GaAs NW cell. The test conditions
are close to 1 sun, AM1.5G, and measured at room temperature; however, the
measurement was not calibrated.

Fig. 9. (a) A peeled GaAs NW membrane, after transfer to a 2′′ glass carrier.
(b) We found that NWs on these membranes are tilted. Subsequent dry etching
damages the side-wall of the emitter and pn-junction, causing shunt leakage in
many cells. Specifically, the oxide near the top of the NWs is fully etched (see
circles). We can avoid this issue by combining the NWs and cell integration
concepts from concept II with the membrane procedure of concept III.

of 7 mA/cm
2

(with 15 nm passivation) and Jsc of 12 mA/ cm2

(with 40 nm passivation). Both of these wafers were integrated

with the Au seed particle remaining. This shows that the peel-

ing process and removing the native wafer substrate are not

the reason for the low current. The open-circuit voltage was

nearly identical to the open-circuit voltage of cells integrated

into wafer, while the fill factor was significantly lower, a result

of series resistance at least in part due to the not yet optimized

rear contact.

Note that the high open-circuit voltage observed in this cell

was higher than typical. Most cells under test on several peeled

membranes were heavily shunted. We determined that despite

the appealing visual appearance of the peeled membranes, as

shown in Fig. 9(a), the NWs in the membranes were tilted by

approximately 45°, causing a narrow process window for the

emitter contact etch, causing shunting of the pn-junction located

near the top of the NW [see Fig. 9(b)]. While the exact reason

for the NW tilt is not clear, an investigation showed that such

tilt is present already before peeling after the polymer dried out.

One plausible explanation is that evaporation of solvents from

the polymer may have resulted in stress, tilting the NWs. To

address the shortcomings of the peeling method, we will instead

use the membrane formation process developed for substrate-

less Aerotaxy grown NWs (concept III) also for MOVPE grown

Fig. 10. Top: SEM images of typical Aerotaxy NWs after Zn and Sn doping,
where the dopant is introduced together with the TMGa. Bottom: Influence of
dopants on the NW length. Note that the TESn concentration is 100× less than
that of DEZn.

Fig. 11. Left: 30 × 30 mm GaAs NW membrane made from a colloidal
solution, bonded to a glass carrier substrate. The scale bar is 10 mm. Right:
Close-up view of aligned NWs in the membrane. The scale bar is 1 µm.

NWs, sonicated from the wafer substrate. As discussed further

below, we have shown that GaAs NWs having optimized radial

passivation layers can be nearly perfectly aligned without tilt

on a centimeter scale (see Fig. 11). The rest of the integration

process remains the same, as per Fig. 7. Thus, there is a clear path

to address the issues encountered in the initial cells fabricated.

H. Concept III Results

Aerotaxy can produce NWs of excellent crystalline and op-

tical quality, and we have so far demonstrated the following

materials and dopants: pure GaAs [20], p-GaAs (with Zn) [27],

n-GaAs (with Sn) [28], pn-GaAs (Zn and Sn) [29], and undoped

GaAs1−xPx in the range 0 < x < 42% [30], which is why we

chose GaAsP rather than GaInP for Aerotaxy; the ideal compo-

sition for a tandem diode on Si is approximately GaAs0.75P0.25.

Zn and Sn doping behave quite differently, as illustrated in

Fig. 10. While DEZn does not have a detrimental effect on the

NW growth rate, even a small amount of TESn reduces the NW
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length measured after growth. It is also clear from the SEM

images that the use of TESn as a dopant precursor can give

rise to parasitic radial growth, especially at the base end of the

NW. For this reason, we are planning to evaluate n-type doping

by use of dihydrogensulfide (H2S) as a dopant precursor. For

Aerotaxy using DEZn as a p-type dopant source, we note that

the seed particle diameter observed after growth increases with

dopant molar fraction used. The NW diameter does not show a

corresponding increase, which most probably is a consequence

of the expected changes in a wetting angle due to the presence of

DEZn [31], [32]. PL and electrical characterization confirm that

the doping with Zn(Sn) results in p(n)-type NWs with carrier

concentrations around 1 − 5 × 1019 cm−3.

Aerotaxy is a promising route to low-cost GaAs NW material

fabrication for large-scale solar applications. However, with this

approach, the control of NW position on a substrate is lost as

the NWs are grown continuously and directly in the gas phase,

forming a dust of randomly oriented NWs. Sol Voltaics has de-

veloped a proprietary technology to align randomly distributed

NWs, collected in a liquid solvent, into a thin membrane of

ordered, vertically aligned, and oriented NWs.

Fig. 11 shows a 30 × 30 mm2 GaAs NW membrane bonded

to a glass substrate; to illustrate that this method not only applies

to Aerotaxy-grown NWs, these NWs are radially passivated and

grown by use of MOVPE. The average alignment and orientation

yield over the membrane is 98.9% and 99.4%, respectively,

with a surface density of 4.6 NWs per µm2 demonstrating the

technology.

I. Environmental Impacts

We assessed the environmental impacts of the three basic

concepts developed for integrating NWs into a Si solar cell

platform by performing a preliminary LCA. The LCA is based

on the evaluation of the environmental impacts from cradle-to-

gate: production of raw materials, use, disposal of materials,

and energy requirements to manufacture the technology in the

laboratory. The laboratory technology is the basis for the de-

velopment of scenarios and the development of a sustainability

roadmap for the up-scaled commercial production of NW-based

tandem solar cells. The functional unit of lab-scale production

of one 4-in NW film on a Si wafer was selected as the basis

for the LCA. The system boundaries include the laboratory pro-

cesses and the related material and energy inputs for production

of one wafer for the different manufacturing routes. We quan-

tified the system of processes for the different manufacturing

routes and the related material and energy data, and used the

EcoInvent database (version 2.2) to compile data for the life cy-

cle inventory of the background system. The CMLCA software

developed at Leiden University was used to compile the system

of processes for the different manufacturing routes, the related

material and energy inputs, and the actual impact assessments.

The initial LCA showed that carbon emissions induce the

majority of the environmental impacts. Carbon emissions for

the production of one 4-in Si wafer at the laboratory scale equal

140 kg CO2-eq, which is equal to 54 250 kg CO2-eq for the lab-

scale production of 1 m2 of the solar cell surface. Fig. 12 shows

a breakdown of the carbon emissions per process for concept II.

Fig. 12. Carbon emissions contribution per process for concept II (no substrate
reuse, no stamp reuse), RIE = reactive ion etching.

Fig. 13. Carbon emissions contributions per process upstream in the value
chain for concept II.

As can be seen from Fig. 12, production of the III–V sub-

strate, fabrication of the stamp, and MOVPE processes have

the highest impacts in terms of carbon emissions. As substrate

and wafer production make up more than 50% of the total car-

bon emissions, reuse of the substrate and stamp will have an

important impact in reducing carbon emissions.

Contribution analysis allows investigating which processes

up-stream in the value chain contribute most to carbon emis-

sions. Fig. 13 shows that mainly nano-imprint lithography and

reactive ion etching contribute to carbon emissions.

The preliminary LCA for the laboratory production of one

4-in NW Si wafer shows that it is mainly the electricity require-

ments of the processes that contribute to carbon emissions. No

more than 5% of the carbon emissions are due to disposal of sol-

vent mixtures and material usage has a very small impact. Given

likely options for reuse of materials and reduction of energy in-

put, up-scaling of the concepts toward commercial production

of the solar cell technology will most likely induce a significant

reduction of the environmental impacts.
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III. CONCLUSION

Based on the research presented here, NWs offer a highly in-

teresting opportunity in augmenting the performance of standard

Si PV cells by adding a layer of vertically oriented III–V NWs

on the top of the Si cell. In such a tandem cell configuration,

NWs with inherently efficient light absorption can potentially

enhance the Si-only cell efficiency by more than 20% relative,

as shown for thin films [1].

ACKNOWLEDGMENT

The authors would like to thank Dr. E. Barrigón, G. Otnes,

V. Dagyte, X. Zeng, Dr. N. Anttu, Prof. M.-E. Pistol, Y. Cheng,

I. Geiselaars, G. Pallas, Dr. W. Metaferia, S. Sivakumar,

Dr. M. Heurlin, L. Johansson, G. Vescovi, Dr. D. Lindgren,

C. Sundvall, D. Asoli, Dr. J. Castillo-León, N. Bologna, M.

Knoedler, J. Benick, J. C. Goldschmidt, and H. Hauser for help-

ful collaboration within the Nano-Tandem project.

This publication reflects only the authors’ views and the fund-

ing agency is not responsible for any use that may be made of

the information it contains.

REFERENCES

[1] M. A. Green et al., “Solar cell efficiency tables (version 50),” Prog. Pho-

tovolt., vol. 25, no. 7, pp. 668–676, 2017.
[2] K. Masuko et al., “Achievement of more than 25% conversion efficiency

with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt.,
vol. 4, no. 6, pp. 1433–1435, Nov. 2014.

[3] M. A. Green and S. P. Bremner, “Energy conversion approaches and
materials for high-efficiency photovoltaics,” Nature Mater. Rev., vol. 16,
no. 1, pp. 23–34, 2017.

[4] S. Essig et al., “Realization of GaInP/Si dual-junction solar cells with
29.8% 1-sun efficiency,” IEEE J. Photovolt., vol. 6, no. 4, pp. 1012–1019,
Jul. 2016.

[5] K. A. Bush et al., “23.6%-efficient monolithic perovskite/silicon tandem
solar cells with improved stability,” Nature Energy, vol. 2, 2017, Art. no.
17009.
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