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Abstract. We consider average-case strengthenings of the traditional
assumption that coNP is not contained in AM. Under these assumptions,
we rule out generic and potentially non-black-box constructions of various
cryptographic primitives (e.g., one-way permutations, collision-resistant
hash-functions, constant-round statistically hiding commitments, and
constant-round black-box zero-knowledge proofs for NP) from one-way
functions, assuming the security reductions are black-box.

1 Introduction

In the past four decades, many cryptographic tasks have been put under rigorous
treatment in an effort to realize these tasks under minimal assumptions. In par-
ticular, one-way functions are widely regarded as the most basic cryptographic
primitive; their existence is implied by most other cryptographic tasks. Presently,
one-way functions are known to imply schemes such as private-key encryption
[GM84, GGM86, HILL99], pseudo-random generators [HILL99], statistically-
binding commitments [Nao91], statistically-hiding commitments [NOVY98,
HR07] and zero-knowledge proofs [GMW91]. At the same time, some other tasks
still have no known constructions based on one-way functions (e.g., key agree-
ment schemes or collision-resistant hash functions).

Following the seminal paper by Impagliazzo and Rudich [IR88], many works
have addressed this phenomenon by demonstrating black-box separations, which
rules out constructions of a cryptographic task using the underlying primitive
as a black-box. For instance, Impagliazzo and Rudich rule out black-box con-
structions of key-agreement protocols (and thus also trapdoor predicates) from
one-way functions; Simon [Sim98] rules out black-box constructions of collision-
resistant hash functions from one-way functions. Furthermore, these impossibil-
ity results are unconditional.

Yet many classical cryptographic constructions (e.g., [FS90, DDN00, GMW91])
are non-black-box. This begs the question: to what extent does black-box sepa-
rations give us insight into the actual separation of cryptographic primitives?
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In this paper, we directly focus on providing lower bounds for non-black-box
constructions of cryptographic primitives from one-way functions. We emphasize
that although we consider non-black-box constructions, we still assume Turing
(i.e., black-box) security reductions. For some of our results, we heavily lever-
age the existing literature on the impossibility of basing cryptography on NP
hardness (these works also directly consider a Turing reduction of cryptographic
primitives from NP). Perhaps surprisingly, we also make extensive use of known
black-box separations. In other words, we demonstrate that some black-box sep-
arations can be modified to give further insight into the separation of crypto-
graphic primitives.

Before stating our theorems, we first discuss our assumptions. Assumptions
are necessary for non-black-box separations assuming black-box reductions; to
show that a primitive P cannot be constructed using one-way functions, we must
at least assume that a weak notion of so-called somewhere-uninvertable one-way
functions exist—i.e. functions that cannot be inverted on all input lengths (as
opposed to infinitely many lengths as in the traditional definition of one-way
functions)1. As one of the main contributions of the paper, we introduce general
assumptions that we believe are reasonable, and are useful in establishing a
variety of non-black-box separations.

1.1 Our Assumptions

Assumption 1. Dist1sided-coNP �⊆ Heur1/polyAM is an average-case extension of
the well-studied (and widely believed) classical assumption coNP �⊆ AM. Briefly,
Dist1sided-coNP contains all coNP languages coupled with an efficiently samplable
distribution over the no instances of the language. Such a language is considered
to be in Heur1/polyAM if there exists an AM (constant-round) protocol that ac-
cepts the language, with the relaxation that soundness only needs to hold with
high probability over the no instances, as measured by the given distribution.
As we prove later, the assumption is equivalent to the existence of an efficiently
computable function f that is not heuristically co-range verifiable—that is, there
does not exist an AM protocol proving that an element is outside the range of
f , where soundness holds with high probability for a random instance f(x)2.
Assuming that there exists an efficiently computable function that is not heuris-
tically co-range verifiable seems most reasonable (consider, for instance, proving
that an element is not in the range of AES [DR02]). We additionally show that
such a function is implied by the existence of pseudorandom generators3 secure
against “promise-AM ∩ coAM”.

Assumption 2. Our second assumption is of a different flavor: we assume the ex-
istence of one-way functions that are secure against PPTSAMd . Here SAMd refers
1 If Somewhere-Uninvertable OWFs do not exist, then every cryptographic primitive

can be constructed from OWFs, because for every efficiently computable function,
there would be a trivial reduction that inverts the function on all input lengths.

2 See section 3 for a comparison with the literature of “average refutation” [FKO06].
3 Here we refer to BMY-type pseudo-random generators [BM84, Yao82].
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to the depth-d collision finding oracle defined in [Sim98, HHRS07];4 PPTSAMd

refers to the class of probabilistic polynomial time machines with oracle access
to SAMd. This assumption is flexible since we can adjust the parameter d; a
larger d implies a stronger assumption (in fact, if d = n/ logn, the assumption
is simply false since SAMn/ log n can in fact invert one-way functions [PV10]). In
our work, we focus on the case d = O(1) (constant depth), and refer to SAMO(1)

simply as SAM.

Assumption 3. Our final and strongest assumption is Dist1sided-coNP �⊆
Heur1/polyIP[PPTNP] (heuristically verified by an interactive protocol where the
prover is a probabilistic polynomial time machine with access to a NP oracle). It
directly implies assumption 1, and relying on the work of Haitner, Mahmoody-
Ghidary and Xiao [HMX10], we show that it implies assumption 2 as well in the
case d = O(1). Due to their similarity, Dist1sided-coNP �⊆ Heur1/polyIP[PPTNP]
inherits many of the justifications as our first assumption in a weaker form (e.g., it
is based on the classical assumption coNP �⊆ IP[PPTNP], and is equivalent to the
existence of efficient functions whose co-range cannot be verified by IP[PPTNP]
protocols). We treat assumption 3 as a unifying (and strongest) assumption that
implies all of the results in our work.

Minimizing the assumption. It is natural to ask if the classical assumption
coNP �⊆ AM, or perhaps the more standard average-case hardness assumption
Dist-coNP �⊆ Heur1/polyAM, are enough for our theorems (Dist-coNP consists of
coNP languages coupled with efficiently samplable distributions that may range
over all instances). We argue that it would be unlikely. In order to rule out
constructions of cryptographic primitives based on OWFs, we first need to as-
sume the existence of OWFs. But, it is unknown even if hard-on-the-average
languages exist assuming only coNP �⊆ AM. Similarly, the stronger assumption
Dist-coNP �⊆ Heur1/polyAM implies the existence of a hard-on-the-average lan-
guage, but, as far as we know, does not imply the existence of OWFs (indeed,
this is related to the question of whether one-way functions can be based on
average-case hardness). Restricting to one-sided distributions (i.e., considering
Dist1sided-coNP instead of Dist-coNP) is the next logical step, and this can be
shown to imply a form of one-way functions (see full version).

1.2 Our Results

As mentioned, we are able to prove many separation results by adapting nu-
merous previous works to take advantage of our assumptions. We highlight the
main separations here (grouped by their assumptions), and leave the numerous
corollaries to the main text.

4 Given an interactive Turing machine M and a transcript of ≤ d rounds, the SAMd or-
acle samples uniformly from the set of random tapes on which the M would produce
the given transcript.
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Based on the work of [Bra83], [AGGM06] and [Pas06], we have

Theorem 1 (Informal). Assuming Dist1sided-coNP �⊆ Heur1/polyAM, one-way
permutations and constant-round public-coin strongly witness-indistinguishable
proofs for all of NP cannot be based on one-way functions with a Turing security
reduction.

Based on the work of [Sim98], [HHRS07] and [PV10], we have

Theorem 2 (Informal). Assuming the existence of one-way functions secure
against PPTSAMO(1) (implied by Dist1sided-coNP �⊆ Heur1/polyIP[PPTNP]),
collision-resistant hash functions, constant-round statistically hiding commit-
ments, and constant-round black-box zero-knowledge proofs for all of NP cannot
be based on one-way functions with a Turing security reduction.

Remark 1. Based on the work of [HMX10], the results in Theorem 2 can be
obtained under the weaker assumption of Theorem 1 if we restrict to security
reductions that have constant adaptivity.

In addition to these theorems, we again stress the following philosophical con-
tribution: with the right assumptions, not only are non-black-box separation
results possible, many such separations can be based on existing techniques. For
example, the black-box separation results of [Sim98], [HHRS07] and [PV10] are
essentially “upgraded” to non-black-box separations using our framework.

1.3 Our Techniques

Regarding the first assumption, Dist1sided-coNP �⊆ Heur1/polyAM, our separation
results are largely based on previous works in the literature of separating cryp-
tography from NP hardness, specifically ruling out constructions of one-way per-
mutations [Bra83], size-verifiable one-way functions [AGGM06] and public-coin
strongly witness-indistinguishable proofs [Pas06]. These works follow a common
pattern: they take a (candidate) Turing security reduction of some cryptographic
primitive P from NP, transform the reduction into an AM protocol, and con-
clude that coNP ⊆ AM, an unlikely consequence. By adapting their techniques,
we show that a (candidate) Turing security reduction of the same primitive P
from a one-way function can be transformed into an AM protocol that inverts
the one-way function, and therefore the AM protocol may verify the co-range
of f . This is a contradiction (not surprising since our assumption is an average
case generalization of coNP �⊆ AM).

Our second assumption is used in a different fashion. Having justified the
assumption that there exist one-way functions secure against SAM = SAMO(1),
it follows that any cryptographic primitive P whose security can be broken using
SAM cannot be based on one-way functions. This is because a Turing security
reduction of primitive P from a one-way function f directly gives an algorithm
that inverts f by using the SAM oracle, if SAMO(1) can be used to break the
security of primitive P . The SAMO(1) oracle (as well as its variants) is particularly
interesting in this aspect, since it is originally studied in the setting of black-box
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separations. Therefore, we know from previous works that in a relativized world
with the SAMO(1) oracle, there do not exist collision-resistant hash functions
[Sim98], constant-round statistically hiding commitments [HHRS07], and zero-
knowledge proofs for all of NP [PV10]. In a similar spirit, other on black-box
separations can also be extended also to non-black-box separations; the work
then lies in justifying the resulting new assumption.
A note on Turing reductions. In this work, we only consider constructions with
Turing security reductions; that is, reductions that use the adversary (supposedly
breaking the security of the construction) as a black box. The non-black-box sim-
ulation technique of Barak [Bar01] demonstrates how the code of the adversary
can be used in security proofs for certain interactive zero-knowledge protocols.
Such non-black-box reductions might potentially also be useful in analyzing the
security of other cryptographic tasks.

However, as we argue, in the context of basing cryptographic primitives on
one another, Turing reductions provide a semantically stronger notion of secu-
rity than non-black-box reductions. The existence of a Turing reduction from a
primitive P to a primitive Q implies that any “physical device”—which might
rely on physical phenomena—that breaks the security of primitive Q, can be
used to break the security of primitive P . With a non-black-box security reduc-
tion, we would instead require an explicit description of the code of the attack
on primitive Q. Such descriptions might be hard to find: consider, for instance,
a “human-aided” computation, where a human is interacting with a computer
program in order to break a crypto system;5 getting an explicit description of
the attack would require providing an explicit (and “short”) description of the
human brain.

2 Preliminaries

We assume familiarity with common complexity classes such as NP, AM, etc.,
as well as common cryptographic primitives such as one-way functions (OWF),
collision-resistant hash-functions (CRH), zero-knowledge proofs (ZK), and
witness-indistinguishable proofs (WI).

Let [n] denotes the set {1, . . . , n}. Given an interactive protocol (P, V ) (a
pair of interactive Turing machines), let 〈P, V 〉 (x) denote the output of V (the
verifier) at the end of an execution with P (the prover), on common input x.
Given a function f : {0, 1}∗ → {0, 1}∗ and a polynomial q(n), we say g is q(n)
concatenations of f to mean that for x1, . . . , xq(n) ∈ {0, 1}n, g(x1, . . . , xq(n)) =
(f(x1), . . . , f(xq(n))) (on other input lengths, g considers part of the input to be
padding appropriately).

2.1 Distributional Languages

Definition 3 (Distributional Languages). An ensemble of distributions
is a collection D = {D1, D2, . . .} where Dn is a distribution over {0, 1}n.
5 Practical attacks on crypto-systems are often not fully automatized, but do indeed

rely on such interactions; see e.g., [AAG +00].
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The ensemble is efficiently samplable if there exists a probabilistic polynomial-
time algorithm S that, on input 1n, outputs a sample according to Dn. A dis-
tributional language is a pair (L, D) where L is a standard language and D
is an ensemble of distributions.

A well known class of distributional languages is Dist-coNP; it contains the set of
distributional languages (L, D) where L ∈ coNP and D is efficiently samplable.

2.2 Hardness Amplification of One-Way Functions

The following lemma on hardness amplification of one-way functions is due to
Yao [Yao82].

Lemma 4 ([Yao82]). Let f : {0, 1}∗ → {0, 1}∗ be an efficiently computable
function. Given any polynomial q(n), let g be q(n) concatenations of f . Then
there is a PPT oracle machine AO such that whenever O is an oracle that
inverts g with non-negligible probability, i.e., there exists some polynomial p(n)
such that for some set of n’s,

Prx←{0,1}nq(n)

[O(g(x)) ∈ g−1(g(x))
] ≥ 1/p(n)

then AO inverts f with probability 1− 1/q(n), i.e., for the same set of n’s,

Prx←{0,1}n

[AO(f(x)) ∈ f−1(f(x))
] ≥ 1− 1/q(n)

3 On Dist1sided-coNP �⊆ Heur1/polyAM

In this section we discuss our first assumption, Dist1sided-coNP �⊆ Heur1/polyAM,
starting with definitions, followed by its relation to other assumptions, and its
implications on basing cryptography on one-way functions.

Definition 5. A distributional language (L, D) is in Dist1sided-coNP if and only
if L ∈ coNP, D is efficiently samplable, and D only ranges over L̄.

Remark 2. In other words, (L, D) ∈ Dist1sided-coNP if and only if (L, D) ∈
Dist-coNP and D only sample instances not in L.

Definition 6. A distributional language (L, D) is in Heur1/polyAM if for every
polynomial q, there exists an AM (i.e., constant-round public-coin) protocol
(P, V ) such that:

Completeness: If x ∈ L, Pr[〈P, V 〉(x) = 1] ≥ 2/3.
Soundness: For every n ∈ N and every machine P ∗, with probability 1 −

1/q(n), an x ∈ {0, 1}n sampled from Dn conditioned on x /∈ L satisfies
Pr[〈P ∗, V 〉 (x) = 1] ≤ 1/3.



Towards Non-Black-Box Lower Bounds in Cryptography 585

Remark 3. As usual, the choice of 2/3 and 1/3 is arbitrary and can be amplified
to 1− 2−n and 2−n. Intuitively, the soundness condition means that L is almost
in AM, except for a fraction of instances in L̄ that is sampled with (arbitrarily
small) polynomial probability.

Remark 4. In a related work, Feige, Kim and Ofek give positive results in refut-
ing restricted random coSAT instances on average [FKO06]. The main difference
between the notion of average refutation and our definition of heuristic verifia-
bility is in where errors are allowed. An average refutation algorithm may not
refute a random unsatisfiable instance with small probability, but will never re-
fute a satisfiable instance (i.e., perfect soundness). On a philosophical level, the
work of [FKO06] gives a distribution of coSAT instances that may indeed be
heuristically verifiable.

The complexity assumption we consider is Dist1sided-coNP �⊆ Heur1/polyAM,
which is a strengthening of the more standard assumption that Dist-coNP �⊆
Heur1/polyAM, which in turn is the heuristic analog of coNP �⊆ AM.

Relation to other assumptions. To get a more concrete handle on our assumption,
we prove that Dist1sided-coNP �⊆ Heur1/polyAM is equivalent to the existence of
an efficiently computable function f that is not heuristically co-range verifiable,
i.e., there does not exist an AM protocol proving that an instance is outside
the range of f , where soundness holds only with high probability with respect
to random instances of f(x). We then present several candidates for such a
function (such as AES [DR02] and Learning Parity with Noise [BFKL93]). Using
this equivalence, we also show that Dist1sided-coNP �⊆ Heur1/polyAM is implied
by the existence of pseudorandom generators secure against BPP(Promise(AM∩
coAM))6.

3.1 Heuristic co-Range Verifiable Functions

Given a function f , consider the language Rangef =
{
f(x) | x ∈ {0, 1}∗}.

Definition 7. f is heuristically co-range verifiable if for any polynomial p,
there exists an AM (i.e., constant-round public-coin) protocol (P, V ) such that:

Completeness: For every y /∈ Rangef , Pr[〈P, V 〉(y) = 1] ≥ 2/3.
Soundness: For every n ∈ N and every machine P ∗, with probability 1−1/p(n)

over x← {0, 1}n, Pr[〈P ∗, V 〉 (f(x)) = 1] ≤ 1/3.

Theorem 8. Dist1sided-coNP �⊆ Heur1/polyAM if and only if there exists an ef-
ficiently computable function that is not heuristically co-range verifiable.

Proof. We show each direction separately.
6 Traditionally, NW-style [NW94] PRGs against AM have been considered in the

literature (see e.g., [MV05]); in contrast, we require a BMY-style [BM84, Yao82]
“cryptographic” PRG.



586 R. Pass, W.-L.D. Tseng, and M. Venkitasubramaniam

“if” part: Let f be a function that is not heuristically co-range verifiable. By
padding the input/output of f , construct another efficiently computable
function g that is length preserving (i.e., |g(x)| = |x| for all x). It is easy to
see that padding preserves heuristic co-range verifiability, and so g is also
not heuristically co-range verifiable. Consider the Dist1sided-coNP distribu-
tional language (L, D) where L = Rangeg and Dn is the distribution that
results from computing g on a uniformly random x ∈ {0, 1}n. Because g is
not heuristically co-range verifiable, (L, D) /∈ Heur1/polyAM.

“only-if” part: Let (L, D) be a distributional language such that (L, D) ∈
Dist1sided-coNP and (L, D) /∈ Heur1/polyAM, and let t(n) be a bound on
the random bits required to efficiently sample from Dn. Define f on input
x ∈ {0, 1}t(n) to be the result of sampling from Dn given randomness x
(for other input lengths, f may treat part of the input as padding). f is an
efficient function since D is efficiently samplable, and f is not heuristically
co-range verifiable precisely because (L, D) /∈ Heur1/polyAM. �

The statement “f is heuristically co-range verifiable” can be viewed as an average-
case (heuristic) variant of the statement “Rangef ∈ coAM”. (Also observe that if f
is efficiently computable then Rangef ∈ NP ⊆ AM.) We believe that the existence
of such functions is a reasonable average-case generalization of SAT /∈ coAM:
Just as it seems “unlikely” that there exist AM proofs for proving that a string
is outside an arbitrary NP set, it seems “unlikely” that there is a AM proof for
proving that a string is outside the range an arbitrary efficiently computable
function, even if we only require soundness to hold for a random string in the
range of the function.

Candidate functions that are not heuristic co-range verifiable. Although many
traditional one-way functions (based for example on the hardness of factoring,
RSA, discrete log [Rab80], or lattice-based problems [GG00, AR05]) are co-range
verifiable, there are also "natural" one-way functions for which we do not know
of co-range verifiability protocols. We here briefly discuss a few functions that
are not known to be heuristically co-range verifiable.

Generalized AES: AES is a permutation on 128 bits [DR02]; that is, for a 128-
bit seeds, AESs is a permutation on defined on {0, 1}128. However, due to
the algebraic nature of the construction of AES, it can easily be generalized
to longer input lengths. Let AESn denote this generalized version of AES to
n-bit inputs. Now, consider the (one-way) function f(x) = AES|x|x (0|x|). It
would seems unlikely that this function is heuristically co-range verifiable.

Random Binary Linear Codes: A random binary linear code is obtained by
encoding a message x ∈ {0, 1}n as Ax where A is a random m × n binary
matrix. Given the matrix A and a codeword y, it is easy to find the corre-
sponding message x when m ≥ n. However, the problem of finding x becomes
hard when only a “noisy” codeword is given. The learning parity with noise
(LPN) problem requires finding a random secret x, given (A, Ax + e) where
e is a “short” (binary) error vector. The worst-case variant of the LPN prob-
lem (i.e. given a set of equations Ax = s to find x that maximally satisfies
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the equations) is known to be NP-hard even to approximate [Hås01]. The
average-case version of LPN is also believed to be intractable: the LPNp,m

assumption [BFKL93] states that for p ∈ (0, 1
2 ) and polynomial m, there is

no PPT algorithm that finds x with more than negligible probability given
(A, Ax + e mod 2) where A is a random m × n binary matrix and every
component of e is set to 1 independently with probability p. It seems like
a reasonable strengthening of the LPN assumption to say that the func-
tion x �→ (A, Ax + e mod 2) is not heuristically co-range verifiable, for some
choices of m and p. In other words, there is no AM-proof showing that a
binary string y is “far” from Ax for any x, even if soundness only holds for
randomly perturbed codewords.

Pseudo-random Generators secure against BPP(Promise(AM ∩ coAM))
While not a specific function, we show that this class of PRGs are not
heuristically co-range verifiable.
Definition 9. Let Un denote the distribution of uniform bit-strings of length
n. A collection of efficiently computable functions G = {gn : {0, 1}n →
{0, 1}n+1}n∈N is a PRG secure against BPP(Promise(AM∩coAM)) if no PPT
adversary with a Promise(AM ∩ coAM) oracle can distinguish the ensembles
{gn(Un)}n∈N

and {Un+1}n∈N
with non-negligible probability in n.

Claim 10. Let g : {0, 1}n → {0, 1}n+1 be a PRG secure against
BPP(Promise(AM ∩ coAM)). Then g is not heuristically range verifiable.

Proof. Assume for contradiction that g is heuristically range verifiable. By
the definition of heuristic range verifiability, there is a AM protocol (P, V )
such that on input g(x) for a uniformly random x ∈ {0, 1}n, V rejects g(x)
with probability at least 1−1/n. Let S = {x ∈ {0, 1}n | Pr[V rejects g(x)] ≤
1/n} (i.e., the set of x where V fails to reject g(x)). Then we must have

Prx←{0,1}n [x ∈ S] ≤ 2/n

Let T = {g(x) | x ∈ S}, i.e., the set of inputs where (P, V ) has high sound-
ness error. Now consider the promise problem Π = (ΠY , ΠN ) = (Rangeg −
T, Rangeg). Note that Π is trivially in NP ⊆ AM, and that Π ∈ coAM by
definition of T (via protocol (P, V )). Therefore Π ∈ AM ∩ coAM.

We now describe a polynomial-time distinguisher D that has oracle access
to a decision procedure for the the promise problem Π . On input y, D simply
outputs Π(y). To show that D is a good distinguisher for g, observe that

Pr
x←{0,1}n

[D(g(x)) = 1] ≥ Pr
x

[g(x) /∈ T ] = Pr
x

[x /∈ S] ≥ 1− 2
n

On the other hand,

Pr
y←{0,1}n+1

[D(y) = 1] ≤ Pr
y

[y /∈ Rangeg] ≤
1
2
�

Claim 10 together with forthcoming theorems yields the following trade-off:
if certain cryptographic primitives can be based on OWFs, then there does
not exist PRGs secure against BPP(Promise(AM ∩ coAM)).
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3.2 Consequences of Dist1sided-coNP �⊆ Heur1/polyAM

The assumption Dist1sided-coNP �⊆ Heur1/polyAM implies some impossibility re-
sults on basing cryptographic primitives on one-way functions. First, we provide
an outline of our proof framework.

Recall that we consider arbitrary non-black-box (and even non explicit) con-
structions based on one-way functions, but restrict our attention to Turing
(black-box) security reductions. This means a primitive P constructed from a
one-way function f is accompanied by a PPT oracle reduction RO, such that
whenever O is an oracle that “breaks the security of P , RO inverts the f with
non-negligible probability. We will show that for certain primitives P and respec-
tive oracles O that break the security of P , the reduction RO can be emulated in
an AM protocol, allowing the verifier of the AM protocol to invert the one-way
function. Coupled with the Yao’s amplification lemma (Lemma 4), the verifier
can actually invert f with very high probability, and therefore heuristically verify
the co-range of f (by checking for a lack of inverses).

We present the lower-bound result for one-way permutations and Strong WI
AM proofs based on OWFs below.

On Basing One-Way Permutations on One-Way Functions. We first
formalize the definition of basing one-way permutations (OWP) on one-way
functions (OWF) with Turing (black-box) reductions, and show that such a
construction is ruled out by the assumption Dist1sided-coNP �⊆ Heur1/polyAM.

Definition 11. We say that OWPs can be based on OWFs if:

Construction: There is a mapping that takes the description of any polynomial-
time function f (candidate OWF) and outputs the description of a permu-
tation φ = φf (candidate OWP).

Reduction: For any polynomial-time function f , there is a PPT oracle algo-
rithm Rf such that whenever O inverts φ, i.e., there is a polynomial p such
that Prx←{0,1}n [O(φ(x)) = x] ≥ 1/p(n), ROf inverts f , i.e., there is some
polynomial p′ such that

Prx←{0,1}n [ROf (f(x)) ∈ f−1(f(x))] ≥ 1/p′(n)

The following theorem is proved using our framework combined with the work
of [Bra83].

Theorem 12. If OWPs can be based on OWFs, then Dist1sided-coNP ⊆
Heur1/polyAM (contradicting our assumption).

Proof. Suppose that OWPs can be based on OWFs. We will show that every effi-
ciently computable function is heuristically co-range verifiable. Fix any efficient
function f and polynomial q(n) (as in the definition of heuristically co-range
verifiability), and define g to be q(n) concatenations of f . By assumption, there
exists a permutation Pg and an efficient security reduction Rg such that, given
an oracleO that inverts φ inverts g, ROg inverts g with non-negligible probability.
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Using Lemma 4, we can construct a new efficient reduction R̃f that, given an
oracle O that inverts φ inverts g, R̃Of inverts f with probability 1− 1/q(n).

Next we recall from [Bra83] an AM protocol that allows the verifier to run R̃f

without access to O. The verifier start by sending the prover a sufficiently long
random string to act as the random tape of R̃f . The prover then runs R̃f with
the given randomness, solving oracle queries as needed. When R̃f terminates,
the prover sends the output of R̃f as well as any oracle query-answer pairs
encountered in the execution of R̃f to the verifier. The verifier can check the
validity of the oracle query-answer pairs, and the validity of the execution using
the given oracle query-answer pairs. On common input y, the verifier accepts if
and only if R̃f (y) fails to find an inverse.

Completeness: If y /∈ Rangef , and if the prover simulates R̃f (y) honestly, then
the verifier will always accept the simulation, and of course R̃f will never
find an inverse to y under f . Hence we have completeness probability 1.

Soundness: We may assume that the verifier accepts the execution of R̃f (y)
provided by the (possibly cheating) prover. In this case, the simulated exe-
cution of R̃f (y) is identical to a real execution of R̃Of (y) for a “perfect oracle”
O that answers all queries correctly; this is because every oracle has exactly
one answer. Therefore:

Pr
x←{0,1}n

[R̃f (f(x)) ∈ f−1(f(x))] > 1− 1/q(n)

By an averaging argument, we have that with probability at least 1−3/q(n)
over a random x ∈ {0, 1}n, y = f(x),

Pr[R̃f (f(x)) ∈ f−1(f(x))] > 2/3

in which case the verifier would reject.

This concludes that f is heuristically co-range verifiable.

Remark 5. The difficulty of extending Theorem 12 to other cryptographic prim-
itives comes from constructing an AM protocol. For many primitives (e.g., col-
lections of trapdoor one-way functions), an oracle that breaks the security of the
primitive suffers from two caveats: some queries have no answers (which cannot
be checked by the verifier), and some queries have multiple answers (which al-
low a cheating prover to adaptively select the answer). These difficulties are well
known; see [BT03, AGGM06, HMX10].

Theorem 12 can be extended beyond one-way permutations. For example, it
can rule out basing certified collection of (trapdoor) permutations on one-way
functions [BY96]. In this case, an oracle query consists of a candidate permu-
tation description and a candidate image. The verifier can check whether each
description is indeed a valid permutation in the collection (certifiable), and if so
expect a unique inverse of the given image. (We may even extend the definition
of “certified” to mean certifiable under an AM protocol.)
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Another example is to rule out basing size-verifiable, polynomial-sized pre-
image one-way functions on one-way functions [AGGM06]. In this case, size-
verifiable one-way functions allow the verifier to check the pre-image size of any
oracle query (in particular the verifier checks whether a pre-image exists). Then,
the verifier may ask the prover to provide all polynomially many pre-images to
force a unique answer.

On Basing Public-Coin Strongly Witness Indistinguishable Proofs on
OWFs. Using the same framework, we rule out the possibility of basing O(1)-
round public-coin strongly witness-indistinguishable proofs (Strong-WI AM) for
languages in NP on OWFs. Below, we provide the result and brief overview of
the proof. The complete proof will appear in the full version.

The definition of basing Strong-WI AM proofs on OWFs can be extended
similarly to OWPs. Roughly speaking, for any language L, there exists a mapping
from the description of any function f to a protocol (P sWI

f , V sWI
f ) and a reduction

R such that for any adversary O and pair of ensembles of distributions,
{
D1

n

}
n∈N

and
{
D2

n

}
n∈N

, and D1
n and D2

n are distributions over L ∩ {0, 1}n × {0, 1}∗, if
O distinguishes proofs of statements using (P sWI

f , V sWI
f ) sampled from the two

distributions D1
n and D2

n, then RO inverts f with non-negligible probability. The
main result we obtain using the work of [Pas06] is.

Theorem 13. If there exists O(1)-round Strong-WI AM proof systems with per-
fect completeness based on OWFs for all NP-languages, then Dist1sided-coNP ⊆
Heur1/polyAM.

On a high-level, [Pas06] shows how to construct a game Gf from any function
f using a Strong-WI AM protocol for NP languages based on f such that there
exists a reduction from breaking the game to inverting the function f . Addi-
tionally, he shows that a worst-case breaking oracle for Gf can be simulated
using an AM protocol. We obtain our result using the same game Gf but in-
stead of using any one-way function f , we use the function g obtained from any
language (L, D) ∈ Dist1sided-coNP as in the proof for OWP. Since a worst-case
breaker can be simulated using an AM protocol, following the proof technique
from Theorem 12, it essentially follows that (L, D) ∈ Heur1/polyAM.

4 On One-Way Functions Secure against PPTSAMO(1)

In this section we explore our second assumption: the existence of one-way func-
tions that cannot be inverted by PPTSAMO(1) : efficient algorithms that have
access to a SAMO(1) oracle.

4.1 Definition of the SAM Oracle

Let M be a probabilistic interactive Turing machine that runs a d-round pro-
tocol. Let transi = (a1, b1, . . . , ai, bi) be a partial transcript of the messages
exchange with M(1n) in an execution. We use :: to denote appending messages



Towards Non-Black-Box Lower Bounds in Cryptography 591

to a transcript. Define Rtransi
(M) to be the set of all random tapes τ for which

Mτ (1n, a1, b1, . . . , bj−1) = aj for all j < i; we say that such a τ is consistent with
respect to transi. Without loss of generality, we assume that M sends the first
message (i.e., outputs a message on initiation). The oracle SAMd(n) takes inputs
of the form Q = (M(1n),transi, r) where transi−1 = (a1, b1, . . . , bi−1) is a par-
tial transcript and r ∈ {0, 1}∗. On input Q, SAMd(n) outputs (τ ′,transi−1 :: ai)
such that τ ′ ∈ Rtransi−1(M(1n)) and Mτ ′(1n,transi) = ai,7 with the following
restrictions:

1. If i > 1, then (a1, b1, . . . , ai−1) was the result of a previous query of the form
(M, (a1, b1, . . . , bi−2), r′) for some r′ ∈ {0, 1}∗.

2. τ ′ is uniformly distributed in Rtransi−1(M) over the randomness of SAMd(n),
independent of all other queries.

3. SAMd(n) answers queries only up to a depth d(n), i.e. i ≤ d(n).

Otherwise, SAMd(n) outputs ⊥. The role of r in the query is to obtain new and
independent samples for each r and to allow a verifier to obtain the same sample
query by querying on the same r.

Our above description of the SAMd(n)-oracle is a stateful instantiation of the
oracle defined in [HHRS07]. Just as in [HHRS07], for our results, we need the
oracle to be stateless; [HHRS07] specify how to modify the oracle to achieve this
(using “signatures”); we omit the details. When clear from context, we drop the
input 1n to M .

Definition 14. We say that a (one-way) function f : {0, 1}∗ → {0, 1}∗ is se-
cure against (or hard to invert by) PPTSAMd if for every oracle PPT machine
A there exists a negligible function ν(·) such that

Pr[x← {0, 1}n ; y = f(x) : ASAMd(y) ∈ f−1(y)] ≤ ν(n)

In this work, we focus on the SAMO(1) and in the rest of the paper, we refer to
this oracle simply by SAM.

Definition 15. We say that a language L is in BPPSAM if there exists an oracle
PPT machine M such that the following holds:

Completeness: For every x ∈ L, Pr[MSAM(x) = 1] ≥ 2/3
Soundness: For every x �∈ L, Pr[MSAM(x) = 1] ≤ 1/2

The second assumption that we consider to establish non black-box lower bounds
is the existence of one-way functions that are secure against PPTSAM. We justify
our assumption in the next section.

7 It suffices to consider an oracle that merely outputs τ ′, however, we consider SAM
that additionally outputs transi−1 :: ai for ease of exposition.
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4.2 Relation to Dist1sided-coNP �⊆ Heur1/polyIP[PPTNP]

Definition 16. A distributional language (L, D) is in Heur1/polyIP[PPTNP] if
for every polynomial q, there exists an interactive protocol (P, V ) where P ∈
PPTNP (oracle PPT machine with oracle access to an NP oracle) such that:

Completeness: If x ∈ L, Pr[〈P, V 〉(x) = 1] ≥ 2/3.
Soundness: For every n ∈ N and every machine P ∗, with probability 1 −

1/q(n), an x ∈ {0, 1}n sampled from Dn conditioned on x /∈ L satisfies
Pr[〈P ∗, V 〉 (x) = 1] ≤ 1/3.

The assumption Dist1sided-coNP �⊆ Heur1/polyIP[PPTNP] is a heuristic extension
of the worst case assumption coNP �⊆ IP[PPTNP], i.e., there are no interactive
proofs for coSAT where the prover is efficient with a NP oracle. While coNP �⊆
IP[PPTNP] is not as well studied as more standard assumptions like coNP �⊆ AM,
the search for the aforementioned interactive proof for coSAT has been open since
the question was raised by Babai, Fortnow and Lund in 1991 [BFL91]. Next we
show that Dist1sided-coNP �⊆ Heur1/polyIP[PPTNP] implies the existence of one-
way functions secure against PPTSAM; the bulk of the technical content of the
proof is taken from [HMX10].

Lemma 17. If Dist1sided-coNP �⊆ Heur1/polyIP[PPTNP], then there exists a one-
way function that is secure against PPTSAM.

Proof. We prove the contrapositive. Suppose all efficiently computable func-
tions can be inverted by PPTSAM. Fix any (L, D) ∈ Dist1sided-coNP and any
polynomial q as in the definition of Heur1/polyIP[PPTNP]. We will show that
(L, D) ∈ Heur1/polyIP[PPTNP].

Let t(n) be a bound on the randomness required to efficiently sample from
Dn, define f on input x ∈ {0, 1}t(n) to be the result of sampling from Dn given
randomness x, and let g = gq be q(n) concatenations of f . By assumption,
there is a PPT oracle algorithm R such that RSAM inverts g with polynomial
probability. By Lemma 4, we can further construct a PPT oracle algorithm R̃
such that R̃SAM inverts f with probability 1− 1/q(n).

By the work of Haitner et. al [HMX10], the reduction R̃ can be simulated
in an interactive proof (P, V ) where the P is an efficient algorithm with access
to an NP oracle. Specifically, using Theorem 5.2 of [HMX10]8, with parameter
δ = 1/q, (P, V ) has two properties:

Completeness: (P, V ) has completeness error 1/q(n) (the probability that V
aborts).

Soundness: For any (possibly cheating) prover P ∗, if V does not abort,
〈P ∗, V 〉 (y) (the output of V ) and the output of R̃SAM(y) has statistical
difference at most 1/q(n).

8 The theorem number refers to the full version of [HMX10] on ECCC.
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We modify the protocol so that V on input y accepts if and only if V does not
abort during the simulation of R̃, and that R̃ does not find an inverse of y under
f . The resulting protocol shows that (L, D) ∈ Heur1/polyIP[PPTNP]:

Completeness: On input y ∈ L, i.e., y /∈ Rangef , V only rejects during the
simulation of R̃ because R̃ can never find an inverse to y. Therefore V rejects
with probability at most 1/q(n).

Soundness: Let P ∗ be an arbitrary machine. On a random input y /∈ L dis-
tributed according to Dn, i.e., y = f(x) for a random x ∈ {0, 1}t(n), R̃SAM(y)
would find an inverse of y with probability 1− 1/q(n). Therefore, if V does
not reject the simulation of R̃ provided by P ∗, V would find an inverse of y
with probability at least 1− 2/q(n). By an averaging argument, with proba-
bly at least 1− 3/q(n) over choosing y from Dn, Pr[〈P ∗, V 〉 (y) = 0] ≥ 2/3.

4.3 Consequences of the Existence of One-Way Function Secure
w.r.t PPT SAM

Assuming the existence of one-way function secure against PPT SAM we show
separation of collision-resistant hash-functions, O(1)-round statistically-hiding
commitments and O(1)-round zero-knowledge proofs for NP from OWFs. On a
high-level, for each of these primitives, we show that there exists an adversary
that can break the security with oracle access to SAM. Therefore, if these prim-
itives could be based on one-way functions, then we arrive at a contradiction
under the assumption.

As with the case of one-way permutations, we consider arbitrary non-black-
box (and even non explicit) constructions, but as before restrict attention to
Turing (i.e., black-box) security reductions. The definitions of basing CRHs,
statistically-hiding commitments and zero-knowledge proofs on one-way func-
tions can be extended analogously from OWP. Below we discuss briefly how the
SAM oracle can be used to break each primitive.

Collision-Resistant Hash-Functions: Recall that, the SAM oracle can sam-
ple uniform collisions for probabilistic interactive Turing machines. If we
consider the efficient Turing machine that computes the CRH function, it
follows that SAM can find a collision for a uniform input to the CRH if one
exists. Since any length-compressing function with high-probability has col-
lisions for uniformly chosen inputs, SAM breaks any CRH. We remark that
it suffices to consider the potentially weaker SAM1-oracle to break CRHs.
As a consequence, we obtain the following theorem.

Theorem 18. Assuming the existence of one-way functions that are secure
against PPTSAM, we have that worst-case CRHs cannot be based on OWFs.

As a corollary, we also obtain (a potentially weaker statement) that
worst-case CRHs cannot be based on OWFs unless Dist1sided-coNP ⊆
Heur1/polyIP[PPTNP].
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Statistically-Hiding Commitments: We show that, for every O(1)-round
statistically hiding commitment based on one-way functions, there exists
a cheating sender who with oracle access to SAM violates the binding prop-
erty of the commitment. Haitner, Hoch, Reingold and Segev [HHRS07] prove
that using the stronger SAMπ oracle (that finds collisions for PPT machines
that access a random permutation oracle π), there is a cheating committer
that can break the binding property of any fully black-box construction of
a statistically-hiding commitment scheme based on one-way permutations.
It essentially follows using the same proof that without access to any oracle
π, SAM can break any statistically-hiding commitment scheme with a PPT
committer. As a consequence, we obtain the following theorem.

Theorem 19. Assuming the existence of one-way functions secure w.r.t.
PPTSAM, then there exists no O(1)-round statistically-hiding bit-commitment
scheme based on one-way function.

As for the case of CRHs, we also have that there exists no O(1)-round
statistically-hiding bit-commitment scheme unless Dist1sided-coNP ⊆
Heur1/polyIP[PPTNP].

Zero-Knowledge Proofs: Using similar techniques we show how to extend to
lower-bound of [PV10] on O(1)-round zero-knowledge proofs based on one-
way functions. Goldreich-Krawczyk [GK96b] showed that only languages in
BPP have constant-round public-coin black-box zero-know-ledge protocols.
In [PV10], this lower bound was extended to “fully black-box” constructions
of black-box zero-knowledge proofs (that could be private-coin) based on
one-way functions. More precisely, they show that only languages decidable
by oracle PPT machines with oracle access to SAMπ (for random permu-
tation π) can have constant-round fully black-box zero-knowledge proofs.
On a high-level, they establish this lower-bound, by providing a transforma-
tion that takes any private-coin zero-knowledge proof based on OWFs and
produces a public-coin zero-knowledge proof in a SAMπ-relativized world
and then concluding using the result of Goldreich-Krawczyk for public-coin
protocols. Based on the result of [PV10], we obtain the following theorem.

Theorem 20. Assume the existence of one-way functions that are secure
w.r.t. PPTSAM, there does not exist O(1)-round computational zero-knowledge
proofs for all of NP based on one-way functions.

Following the proof of [PV10], we can show that only languages in PPTSAM

have O(1)-round computational zero-knowledge proofs based on one-way
functions. We complete the argument by noting that our assumption implies
that NP �⊆ BPPSAM, since otherwise, we can construct an oracle PPT ma-
chine that with oracle access to SAM inverts OWFs. We provide the formal
proof in the full version.

Finally, we remark that Theorem 20 implies Theorem 19 relying on the result
of Goldreich and Kahan [GK96a] and Theorem 19 implies Theorem 18 relying
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on the result of Damgård, Pedersen and Pfitzmann [DPP98]. Nevertheless, the
direct proofs are simpler and as mentioned before, it suffices to assume the
weaker SAM1-oracle for Theorem 18.
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