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Abstract

In this paper we propose a new interior-point method, which is based on an extension
of the ideas of self-scaled optimization to the general cases. We suggest using the primal
correction process to find a scaling point. This point is used to compute a strictly feasible
primal-dual pair by simple projection. Then, we define an affine-scaling direction and
perform a prediction step. This is the only moment when the dual barrier is used. Thus,
we need only to compute its value, which can even be done approximately. In the second
part of the paper we develop a 4n-self-concordant barrier for n-dimensional p-cone, which
can be used for numerical testing of the proposed technique.
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1 Introduction

Motivation. Despite its very powerful theory [7, 10], the practical applications of primal-
dual conic programming are mainly restricted to symmetric cones [1, 8, 9]. This situa-
tion has remained unchanged for many years for several serious reasons. First of all,
conic constraints do not often arise naturally in real-world problems. Even a single non-
homogeneous constraint can destroy the pure conic structure. Theoretically, any convex
set can be converted into a cone by an appropriate projective transformation. However,
such a transformation leads to a multiplication of the complexity parameters of the cor-
responding barriers by a factor of hundreds (see [2]). This looks like a paradox, but up
to now almost no practically interesting example of nonlinear nonsymmetric cone with
acceptable value of parameter is known1. The only possible exceptions are the hyperbolic
cones [3], but their practical importance is questionable.

Further, even if we manage to put the primal problem into a conic form and construct
the corresponding barrier function, this is not the end of the story. For the full power
of interior-point methods, we need also the dual cone and the dual barrier. Since the
latter barrier function must be easily computable, we get one more limitation on the
applicability of the primal-dual schemes.

Finally, for general conic problems the primal-dual machinery looks quite heavy [6, 12].
At the same time, from the viewpoint of worst-case complexity analysis, the primal-dual
problems have no advantages with respect to the primal ones. In the case of symmetric
cones, we can believe in the power of long step methods and try to confirm our hopes
by computational practice. For general cones this does not work, since up to now the
available computational experiments are extremely limited (see [13]).

Since this situation has already remained unchanged for a long time, it looks natural to
sacrifice some elements of the beautiful primal-dual picture, since they may be responsible
for keeping the theory so far from implementations. In [4] the authors decided to skip
the conic form of the feasible set, but to keep a computable primal barrier function and
its Fenchel transform. In this way they managed to get long-step interior point methods,
but the cone structure and any hope of a meaningful dual problem was lost.

In this paper we have decided to keep a conic description of the problem. The main
reason for our conservatism is that we are now able to confirm the efficiency of new
primal-dual methods by numerical experiments with a nontrivial nonlinear cone. This
is the epigraph of the n-dimensional p-norm, for which we construct a self-concordant
barrier with parameter 4n. Recall that the previously known barriers for this cone have
parameters ranging from 200n to 400n + 200 [13].

From an algorithmic point of view, we work mainly in the primal space and use the
dual problem only to justify the long path-following steps. We develop a framework, which
can be seen as a shift towards the algorithmic ideas used for symmetric cones. It appears
that primal centering can be interpreted as a process for finding a strictly feasible scaling
point w. Using this point, we can compute a strictly feasible primal-dual pair (x, s), which
is still well centered, and which satisfies the exact scaling condition

s = F ′′(w)x,

1We mean the cones which cannot be obtained as intersections of symmetric cones by linear subspaces.

1



where F is the primal barrier function. This computation, which we call primal-dual
lifting, is carried out by solving the standard primal Newton system. Thus, no special
machinery is needed to compute the generalized affine-scaling direction even for self-scaled
cones. Note that in the latter case, this direction automatically becomes the standard one
[9].

In our approach, the dual barrier is used only to define an appropriate step size. Hence,
we only need a procedure for computing the value of the dual function. This computation
does not need high accuracy. In some situations, the value can even be computed by
an auxiliary numerical procedure. For the proposed primal-dual scheme, we prove the
standard O(

√
ν ln 1

ǫ ) complexity result keeping the possibility of long-step acceleration
with eventual local quadratic convergence.

Contents. In Section 2 we introduce the conic primal-dual problem and describe the
generic long-step predictor-corrector path-following scheme [6]. In Section 3 we study the
primal correction process. We show that its output, a primal point w, can be interpreted
as a scaling point for some special strictly feasible primal-dual pair (x, s). This pair is well
centered. Moreover, it can be easily computed by simple projection in the local metric
defined by F ′′(w), the Hessian of the primal barrier at w. In Section 4 we introduce and
study a generalized scaling direction (∆x,∆s) defined by

∆s + F ′′(w)∆x = s.

Formally, this definition is the same as that for self-scaled barriers [9]. We show that
along this direction the functional proximity measure grows very slowly. Sections 5 and
6 are devoted to complexity analysis of the main and preliminary phases of a new non-
symmetric predictor-corrector primal-dual interior-point method. For both phases, we
prove the standard O(

√
ν ln 1

ǫ ) complexity result, where ν is the parameter of the self-
concordant barrier and ǫ is the required accuracy of the solution.

The second part of the paper is devoted to the development of background material for
the future numerical experiments. In Section 7 we suggest a (4n)-self-concordant barrier
for the epigraph of the n-dimensional p-norm, 1 ≤ p ≤ ∞. It is formed as a combination of
4-self-concordant barriers for three-dimensional p-cones. The whole construction requires
2n+1 variables linked by one linear equation. In Section 8 we show that the dual barrier for
the above three-dimensional cone can be easily computed. For this computation we need
to solve a nonlinear equation in one variable. It can be shown that after seven bisection
steps we can generate an approximate solution in the region of quadratic convergence of
Newton’s method.

Notation and generalities. Let E be a finite dimensional real vector space with dual
space E∗. We denote the corresponding scalar product by 〈s, x〉, where x ∈ E and s ∈ E∗.
If E = Rn, then E∗ = Rn and we use the standard scalar product

〈s, x〉 =
n∑

i=1
s(i)x(i), s, x ∈ Rn.

For the space of symmetric n × n-matrices Sn = (Sn)∗, the scalar product is defined as

〈S, X〉 =
n∑

i=1

n∑

j=1
S(i,j)X(i,j), S, X ∈ Sn.

2



The actual meaning of the notation 〈·, ·〉 can be always clarified by the space containing
the arguments.

For a linear operator A : E → E∗
1 we define its adjoint operator A∗ : E1 → E∗ in a

standard way:
〈Ax, y〉 = 〈A∗y, x〉, x ∈ E, y ∈ E1.

If E1 = E, we can talk of self-adjoint operators: A = A∗.
Let K ⊆ E be a convex cone. We call it proper if it is a closed pointed cone with

nonempty interior. For a proper cone, its dual cone

K∗ = {s ∈ E∗ : 〈s, x〉 ≥ 0 ∀x ∈ K}

is also proper. For interior-point methods (IPM), the cone K is represented by a self-
concordant barrier F (x), x ∈ intK, with parameter ν ≥ 1 (see Chapter 4 in [5] for
definitions and main results). The important examples of convex cones are the positive
orthant:

Rn
+ = {x ∈ Rn : x ≥ 0}, F (x) = −

n∑

i=1
lnx(i), ν = n,

the Lorentz cone

Ln = {(τ, x) ∈ R × Rn : τ ≥ 〈x, x〉1/2}, F (τ, x) = − ln(τ2 − 〈x, x〉), ν = 2.

and the cone of positive semidefinite matrices

Sn
+ = {X ∈ Sn : X º 0}, F (X) = − ln detX, ν = n,

In all these examples, the cones are symmetric and the barriers are self-scaled [8]. However,
in general this cannot be true. A nontrivial example of a nonsymmetric convex cone in
Rn with computable (4n)-self-concordant barrier is considered in Sections 7 and 8.

The natural barriers for cones are logarithmically homogeneous barriers:

F (τx) ≡ F (x) − ν ln τ, x ∈ intK, τ > 0. (1.1)

Let us point out some straightforward consequences of this property:

F ′(τx) = 1
τ F ′(x), F ′′(τx) = 1

τ2 F ′′(x), (1.2)

F ′′(x)x = −F ′(x), (1.3)

〈F ′(x), x〉 = −ν, (1.4)

〈F ′′(x)x, x〉 = ν, 〈F ′(x), [F ′′(x)]−1F ′(x)〉 = ν, (1.5)

(for proofs, see Section 2.3 in [7]). In what follows, we always assume that F (x) is
logarithmically homogeneous.

It is important that the dual barrier

F∗(s) = max
x

{−〈s, x〉 − F (x) : x ∈ intK}, s ∈ intK∗,

is a ν-self-concordant logarithmically homogeneous barrier for K∗. The pair of primal-dual
barriers satisfy the following duality relations:

−F ′(x) ∈ intK, −F ′
∗ ∈ intK∗, (1.6)
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F∗(−F ′(x)) = 〈F ′(x), x〉 − F (x) = −ν − F (x),

F (−F ′
∗(s)) = −ν − F (x).

(1.7)

F ′
∗(−F ′(x)) = −x, F ′(−F ′

∗(s)) = −s, (1.8)

F ′′
∗ (−F ′(x)) = [F ′′(x)]−1, F ′′(−F ′

∗(s)) = [F ′′
∗ (s)]−1, (1.9)

F (x) + F∗(s) ≥ −ν − ν ln 〈s,x〉
ν , (1.10)

and the last inequality is satisfied as an equality if and only if s = −τF ′(x) for some
τ > 0 (see Section 2.4 in [7]). In what follows we assume that both primal and dual
barriers are computable. In some cases, this assumption must be supported by an auxiliary
computational procedure. We give an example of the efficient treatment of such a situation
in Section 8.

At any x ∈ intK we use the Hessian F ′′(x) : E → E∗ to define the following local
Euclidean norms:

‖h‖x = 〈F ′′(x)h, h〉1/2, h ∈ E,

‖s‖∗x = 〈s, [F ′′(x)]−1s〉, s ∈ E∗.

It is well known that for any x ∈ intK the corresponding Dikin ellipsoid is feasible:

W (x) = {u ∈ E : ‖u − x‖x ≤ 1} ⊆ K. (1.11)

We often use two important inequalities:

F (u) ≤ F (x) + 〈F ′(x), u − x〉 + ω(r), (1.12)

F ′′(u) ¹ 1
(1−r)2

F ′′(x), (1.13)

where x ∈ intK, r = ‖u − x‖x < 1, and ω(t) = −t − ln(1 − t).
For a self-adjoint operator B : E → E∗ we define also a point-dependent operator

norm:
‖B‖x = max

h
{‖Bh‖∗x : ‖h‖x ≤ 1}.

In the sequel, we need the following simple result

Lemma 1 Let F be a self-concordant barrier for Q and x, u ∈ intK, r
def
= ‖x − u‖u < 1.

Then

‖F ′(x) − F ′(u) − F ′′(u)(x − u)‖∗u ≤ r2

1−r . (1.14)

Proof:

Indeed,

F ′(x) − F ′(u) =

(
1∫

0
F ′′(u + τ(x − u))dτ

)

· (x − u)
def
= G · (x − u).

In view of Corollary 4.1.4 in [5], we have

−(r − 1
3r2)F ′′(u) ¹ G − F ′′(u) ¹ r

1−rF ′′(u).
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Therefore

‖F ′(x) − F ′(u) − F ′′(u)(x − u)‖∗u = ‖(G − F ′′(u))(x − u)‖∗u

≤ ‖G − F ′′(u)‖u · r ≤ r2

1−r .

✷

2 Primal-dual predictor-corrector IPM

Consider the standard conic optimization problem

min
x

〈c, x〉,

s.t. x ∈ FP
def
= {x ∈ K : Ax = b},

(2.1)

where K ⊂ E is a proper cone, c ∈ E∗, b ∈ Rm, and the linear operator A maps E to
Rm. Then, we can write down the dual problem

max
s,y

〈b, y〉,

s.t. s + A∗y = c,

s ∈ K∗, y ∈ Rm.

(2.2)

Note that the dual cone K∗ is also proper. For a feasible primal-dual point z = (x, s, y)
the following relations hold

0 ≤ 〈s, x〉 = 〈c − A∗y, x〉 = 〈c, x〉 − 〈Ax, y〉 = 〈c, x〉 − 〈b, y〉. (2.3)

In what follows, we always assume existence of a strictly feasible primal-dual point

(x0, s0, y0) : Ax0 = b, x0 ∈ intK, s0 + A∗y0 = c, s0 ∈ intK∗. (2.4)

In this case, strong duality holds for problems (2.1), (2.2).
We assume that the primal cone is endowed with a ν-logarithmically homogeneous

self-concordant barrier F (x). Then, the conjugate barrier

F∗(s) = max
x

{−〈s, x〉 − F (x)}, s ∈ intK∗,

is also ν-logarithmically homogeneous and self-concordant. These barriers define the
primal-dual central path (see, for example, [6]).

Theorem 1 Under assumption (2.4), the primal-dual central path,

x(t) = arg min
x

{t〈c, x〉 + F (x) : Ax = b}

y(t) = arg max
y

{t〈b, y〉 − F∗(c − A∗y)}

s(t) = c − A∗y(t)







, t > 0, (2.5)
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is well defined. Moreover, for any t > 0, the following identities hold:

〈s(t), x(t)〉 = 〈c, x(t)〉 − 〈b, y(t)〉 = ν
t , (2.6)

F (x(t)) + F∗(s(t)) = −ν + ν ln t, (2.7)

s(t) = −1
t F

′(x(t)), x(t) = −1
t F

′
∗(s(t)). (2.8)

Hence, the optimal values of problems (2.1), (2.2) coincide and their optimal sets are
bounded.

Note that the central path z(t) = (x(t), s(t), y(t)) is differentiable. Its derivatives can
be found from the following linear system:

s′(t) + B(t) · x′(t) = −1
t s(t),

Ax′(t) = 0, s′(t) + A∗y′(t) = 0,
(2.9)

where B(t)
def
= 1

t F
′′(x(t))

(2.8)
= 1

t F
′′(−1

t F
′
∗(s(t)))

(1.2)
= tF ′′(−F ′

∗(s(t)))
(1.9)
= [1t F

′′
∗ (s(t))]−1.

Since

s(t)
(2.8),(1.3)

= B(t) · x(t), t > 0, (2.10)

the first equation in (2.9) can be written in an equivalent symmetric form:

x′(t) + B−1(t) · s′(t) = −1
t x(t). (2.11)

Modern IPM’s are often based on different path-following strategies for the primal-dual
problem

min
x,s,y

{〈c, x〉 − 〈b, y〉 : (x, s, y) ∈ F},

F = {(x, s, y) : Ax = b, s + A∗y = c, x ∈ K, s ∈ K∗}.
(2.12)

The main advantage of this formulation lies in the very useful relations (2.6) - (2.8), which
allow one to define different global proximity measures for the primal-dual central path.
One of the most natural is the functional measure (see [6], [9])

Ω(x, s, y)
(1.10)
= F (x) + F∗(s) + ν ln 〈s,x〉

ν + ν

(2.3)
= F (x) + F∗(s) + ν ln 〈c,x〉−〈b,y〉

ν + ν.
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The corresponding generic predictor-corrector path-following scheme looks as follows.

1. Choose parameters β1 > β0 > 0.

2. Find z0 = (x0, s0, y0) ∈ F with Ω(z0) ≤ β0. Define t0 = ν
〈s0,x0〉 .

3. For k ≥ 0 iterate:

a) Compute ∆zk ≈ z′(tk). Find αk : Ω(zk + αk∆zk) = β1.

b) Set z̃k = zk + αk∆zk, and tk+1 = ν
〈s̃k+1,x̃k+1〉 .

c) Using z̃k as a starting point, find

zk+1 ∈ F ⋂{z : 〈c, x〉 − 〈b, y〉 = ν
tk+1

} : Ω(zk+1) ≤ β0.

(2.13)

Let us discuss the above scheme. First of all, note that the restriction of the proximity
measure Ω(z) onto the hyperplane {z : 〈c, x〉 − 〈b, y〉 = ν

tk+1
} is a self-concordant barrier.

It can be minimized by a damped Newton method, which at each iteration reduces the
value of the objective function by an absolute constant (see, for example, Section 4.2.5
in [5]). Hence, the duration of the correction phase 3c) in (2.13) is bounded by O(β1)
Newton steps. Note that the optimization problem in the correction phase is solved over
the full primal-dual set F .

A reasonable strategy for implementing the predictor step 3a) is not so evident. If
zk belongs to the primal-dual central path, then the expressions for the derivatives (2.9)
and (2.11) are symmetric. However, outside of the path the symmetry is lost. In a
straightforward implementation, an approximate tangent direction to the central path can
be computed using the Hessians of the primal and dual barriers (see Section 9.1 in [6]).
But this can double the computational cost of the predictor step. For self-scaled barriers
[9], the symmetric affine-scaling direction can be found by a scaling point w ∈ intK, which
links two arbitrary points x ∈ intK and s ∈ intK∗ through the equation s = F ′′(w)x.
However, this technique works only for symmetric cones. Moreover, the computation of
the point w is usually rather difficult (see [11]).

In the next sections we will show that an approximate symmetric tangent direction to
the primal-dual central path can be found even for general cones using a non-symmetric
correction phase. Moreover, the computational cost of this direction is exactly the same
as that of the Newton step in the correction phase.

3 Pure primal correction phase

For a feasible primal-dual point z ∈ rintF we define its penalty value as

t(z)
(2.3)
= ν

〈s,x〉 = ν
〈c,x〉−〈b,y〉 . (3.1)

7



Consider z0 = (x0, s0, y0) ∈ rintF . Our goal is to find a close approximation to the point

z(t0) with t0
def
= t(z0). This can be done by solving the problem

min
u

{

ft0(u)
def
= t0〈c, u〉 + F (u) : Au = b

}

. (3.2)

Note that the objective function in (3.2) is self-concordant. Moreover, in view of Theo-
rem 1, the unique minimum of this function is attained at x(t0).

Lemma 2 We have 0 ≤ ft0(x0) − ft0(x(t0)) ≤ Ω(z0).

Proof:

Note that the point y0 is feasible for the maximization problem in (2.5). Therefore

t0〈b, y0〉 − F∗(s0) ≤ t0〈b, y(t0)〉 − F∗(s(t0)).

Hence,

ft0(x0) − ft0(x(t0)) ≤ ft0(x0) − ft0(x(t0)) + t0〈b, y(t0)〉 − F∗(s(t0))

−t0〈b, y0〉 + F∗(s0)

= t0[〈c, x0〉 − 〈b, y0〉] + F (x0) + F∗(s0)

−t0[〈c, x(t0)〉 − 〈b, y(t0)〉] − F (x(t0)) − F∗(s(t0))

(2.6),(2.7)
= t0〈s0, x0〉 + F (x0) + F∗(s0) − ν − [−ν + ν ln t0]

= F (x0) + F∗(s0) + ν + ν ln 1
t0

= Ω(z0).

✷

Thus, we can treat the problem (3.2) by a damped Newton method. Each iteration of
this scheme requires computation of the Newton step

δt0(u) = arg min
δ

{

〈t0c + F ′(u), δ〉 + 1
2〈F ′′(u)δ, δ〉 : Aδ = 0

}

(3.3)

at some point u ∈ intK, Au = b. Then the value λt0(u)
def
= ‖δt0(u)‖u can be seen as the

local norm of the gradient of function ft0 restricted to the affine subspace {u : Au = b}.
If λt0(u) is small, then u is close to the solution x(t0). By the general theory of self-
concordant functions and Lemma 2, this can be achieved in O(Ω(z0)) steps of the damped
Newton method started at u = x0.

Let us write down the optimality conditions for problem (3.3):

t0c + F ′(u) + F ′′(u)δ = A∗y,

Aδ = 0.
(3.4)
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Let y be the optimal dual multipliers of problem (3.3). Denote

xt0(u) = u − δt0(u), st0(u) = c − 1
t0

A∗y, yt0(u) = 1
t0

y. (3.5)

Note that xt0(u) is formed by a shift from u along a direction pointing away from the
primal central path. We call the procedure (3.5) the primal-dual lifting of point u ∈ FP .

Theorem 2 If λt0(u) ≤ β < 1, then the point zt0(u) = (xt0(u), st0(u), yt0(u)) is strictly
feasible and satisfies the following scaling relations

st0(u) = 1
t0

F ′′(u) · xt0(u), (3.6)

‖F ′(xt0(u)) − 1
t0

F ′′(u) · F ′
∗(st0(u))‖∗u ≤ 2β2

1−β . (3.7)

Moreover, the point zt0(u) is well centered:

Ω(zt0(u)) ≤ 2ω(β) + β2, (3.8)

and for its penalty value the following bounds hold:

t(zt0(u)) ≡ ν
〈st0 (u),xt0 (u)〉 ≥ t0

(1+β/
√

ν)2
≥ t0 · e−

2β√
ν ,

t(zt0(u)) ≤ t0
(1−β/

√
ν)2

≤ t0 · e
2β√
ν−β .

(3.9)

Proof:

Indeed, ‖xt0(u) − u‖u = ‖δt0(u)‖u ≤ β < 1. Therefore, xt0(u)
(1.11)
∈ intK. Moreover,

Axt0(u) = Au − Aδt0(u) = Au = b.

Further, note that

t0 · st0(u)
(3.4),(3.5)

= −F ′(u) − F ′′(u) · δt0(u). (3.10)

Therefore,

‖t0st0(u) + F ′(u)‖∗u = ‖F ′′(u)δt0(u)‖∗u = ‖δt0(u)‖u ≤ β < 1.

Thus, st0(u)
(1.11)
∈ intK∗, and we conclude that zt0(u) is strictly feasible. Moreover,

t0 · st0(u)
(1.3)
= F ′′(u) · u − F ′′(u) · δt0(u)

(3.5)
= F ′′(u) · xt0(u).

Let us justify inequality (3.7). Denote

rd = F ′(xt0(u)) − F ′(u) + F ′′(u) · δt0(u).

9



In view of inequality (1.14) and (3.5), we have ‖rd‖∗u ≤ β2

1−β . Consider now

rp
def
= F ′

∗(t0st0(u)) + u + δt0(u)

(1.8)
= F ′

∗(t0st0(u)) − F ′
∗(−F ′(u)) + δt0(u)

(1.9)
= F ′

∗(t0st0(u)) − [F ′
∗(−F ′(u)) + F ′′

∗ (−F ′(u))(−F ′′(u)δt0(u))]

(3.10)
= F ′

∗(−F ′(u) − F ′′(u) · δt0(u)) − [F ′
∗(−F ′(u)) + F ′′

∗ (−F ′(u))(−F ′′(u)δt0(u))] .

Since ‖F ′′(u)δt0(u)‖∗u = ‖δt0(u)‖u ≤ β, by a dual variant of Lemma 1 we conclude that

‖rp‖u ≤ β2

1−β . Therefore,

F ′(xt0(u)) − 1
t0

F ′′(u) · F ′
∗(st0(u))

(1.2)
= F ′(xt0(u)) − F ′′(u) · F ′

∗(t0st0(u))

= rd + F ′(u) − F ′′(u) · δt0(u) − F ′′(u) · (rp − u − δt0(u))
(1.3)
= rd − F ′′(u) · rp.

Hence,
‖F ′(xt0(u)) − 1

t0
F ′′(u) · F ′

∗(st0(u)‖∗u = ‖rd − F ′′(u) · rp‖∗u

≤ ‖rd‖∗u + ‖F ′′(u) · rp‖∗u = ‖rd‖∗u + ‖rp‖u ≤ 2β2

1−β .

Further, in order to prove (3.9), note that

t0〈st0(u), xt0(u)〉 (3.6)
= ‖xt0(u)‖2

u ≤ (‖u‖u + ‖δt0(u)‖u)2
(1.5)

≤ (
√

ν + β)2.

Therefore,

t(zt0(u)) = ν
〈st0 (u),xt0 (u)〉 ≥ t0

(1+β/
√

ν)2
≥ t0 · e−

2β√
ν .

For the second part of the inequality note that t0〈st0(u), xt0(u)〉 ≥ (
√

ν − β)2.
In order to prove (3.8), we need a more accurate estimate for the new penalty value:

t0〈st0(u), xt0(u)〉 = ‖xt0(u)‖2
u = ‖u‖2

u − 2〈F ′′(u)u, δt0(u)〉 + ‖δt0(u)‖2
u

(1.3),(1.5)

≤ ν + 2〈F ′(u), δt0(u)〉 + β2.

Therefore,

Ω(zt0(u))
(3.10)
= F (xt0(u)) + F∗

(
1
t0

(−F ′(u) − F ′′(u)δt0(u))
)

+ ν + ν ln
〈st0(u),xt0 (u)〉

ν

(1.1)
= F (xt0(u)) + F∗ (−F ′(u) − F ′′(u)δt0(u)) + ν + ν ln

t0〈st0 (u),xt0 (u)〉
ν

Note that

F∗(−F ′(u) − F ′′(u)δt0(u))
(1.12)

≤ F∗(−F ′(u)) + 〈−F ′′(u)δt0(u), F ′
∗(−F ′(u))〉 + ω(β)

(1.8)
= −ν − F (u) + 〈F ′′(u)δt0(u), u〉 + ω(β)

(1.3)
= −ν − F (u) − 〈F ′(u), δt0(u)〉 + ω(β).
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Hence, we conclude that

Ω(zt0(u)) ≤ F (xt0(u)) − F (u) − 〈F ′(u), δt0(u)〉 + ω(β)

+ν ln
(

1 + 2
ν 〈F ′(u), δt0(u)〉 + 1

ν β2
)

(3.5)

≤ F (u − δt0(u)) − F (u) + 〈F ′(u), δt0(u)〉 + ω(β) + β2

(1.12)

≤ 2ω(β) + β2.

✷

Remark 1 Using a finer assumption on the properties of the barrier function F (x), it is
possible to guarantee a smaller right-hand side in inequality (3.7). For example, for self-
scaled cones the right-hand side is zero. However, this does not improve the worst-case
complexity bounds of the corresponding IPM.

Thus, we have found a new interpretation of the auxiliary problem (3.2). It can be
used to compute the scaling point u in a neighborhood of the primal central path. Using
this point, we can form a strictly feasible primal-dual point zt0(u), which is well centered
and satisfies the scaling relations (3.6), (3.7). In the next section we will show that these
relations are crucial for defining a symmetric approximation of a tangent direction to the
primal-dual central path.

4 Affine-scaling direction for general cones

In Section 3 we have proved that for any value of the centering parameter β ∈ (0, 1) it is
possible to compute a scaling point w =

√
t0 ·u ∈ intK and a strictly feasible primal-dual

point z = zt0(u), which belongs to a small neighborhood (3.8) of the central path and
satisfies the following scaling relations

s
(1.2)
= F ′′(w) · x,

‖F ′(x) − F ′′(w) · F ′
∗(s)‖∗w ≤ 2β2

1−β · √t0.

(4.1)

Now we can define an approximate tangent direction ∆z = (∆x,∆s,∆y) to the central
path in the following symmetric way (compare with (2.9):

∆s + F ′′(w) · ∆x = s,

A∆x = 0,

∆s + A∗∆y = 0.

(4.2)
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We call ∆z the affine scaling direction. Our definition coincides with the definition of the
affine-scaling direction for self-scaled barriers (see Section 5.1 in [9]). Note that

〈∆s,∆x〉 = −〈A∗∆y, ∆x〉 = −〈A∆x,∆y〉 = 0. (4.3)

Let us present the main properties of the affine-scaling direction.

Lemma 3 The following relations hold:

〈s,∆x〉 + 〈∆s, x〉 = 〈s, x〉, (4.4)

〈c, x − ∆x〉 − 〈b, y − ∆y〉 = 0, (4.5)

‖∆x‖2
w + (‖∆s‖∗w)2 = 〈s, x〉, (4.6)

|ν + 〈F ′(x), ∆x〉 + 〈∆s, F ′
∗(s)〉| ≤ 1

2〈s, x〉1/2 · ‖F ′(x) − F ′′(w)F ′
∗(s)‖∗w

(4.1)

≤ 〈t0s, x〉1/2 · β2

1−β

(3.9)

≤ β2

1−β · (β +
√

ν).

(4.7)

Proof:

Indeed, in view of definition (4.2) and relation (4.1), we have

〈s,∆x〉 + 〈∆s, x〉 = 〈s,∆x〉 + 〈s − F ′′(w)∆x, x〉 = 〈s, x〉.

Therefore

〈c, x − ∆x〉 − 〈b, y − ∆y〉 = 〈s + A∗y, x − ∆x〉 − 〈b, y − ∆y〉

= 〈s, x − ∆x〉 + 〈Ax,∆y〉

= 〈s, x〉 − 〈s,∆x〉 − 〈∆s, x〉 = 0.

Further, multiplying (4.2) by ∆x, we get ‖∆x‖2
w = 〈s,∆x〉. Multiplying the same in-

equality by [F ′′(w)]−1∆s, we get (‖∆s‖∗w)2 = 〈∆s, x〉. Adding these equalities and using
(4.4), we obtain (4.6). Let us prove the remaining inequality.

Multiplying the first equation in (4.2) by F ′
∗(s), we get

〈∆s, F ′
∗(s)〉 + 〈F ′′(w)F ′

∗(s), ∆x〉 = 〈s, F ′
∗(s)〉

(1.4)
= −ν.

Multiplying the same equation by [F ′′(w)]−1F ′(x), we obtain

〈∆s, [F ′′(w)]−1F ′(x)〉 + 〈F ′(x),∆x〉 = 〈s, [F ′′(w)]−1F ′(x)〉 (4.1)
= 〈F ′(x), x〉 (1.4)

= −ν.

Adding these equalities, we have

−2ν = 〈F ′(x),∆x〉 + 〈∆s, F ′
∗(s)〉 + 〈F ′′(w)∆x, F ′

∗(s)〉 + 〈∆s, [F ′′(w)]−1F ′(x)〉

= 2〈F ′(x), ∆x〉 + 2〈∆s, F ′
∗(s)〉 + 〈F ′′(w)∆x − ∆s, F ′

∗(s) − [F ′′(w)]−1F ′(x)〉.

Therefore

|ν + 〈F ′(x), ∆x〉 + 〈∆s, F ′
∗(s)〉| ≤ 1

2‖∆s − F ′′(w)∆x‖∗w · ‖F ′
∗(s) − [F ′′(w)]−1F ′(x)‖w.
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It remains to note that (‖∆s − F ′′(w)∆x‖∗w)2
(4.3)
= ‖∆x‖2

w + (‖∆s‖∗w)2
(4.6)
= 〈s, x〉. ✷

Thus, a unit step along the affine-scaling direction results in zero duality gap. Let
us show that along this direction the functional proximity measure grows very slowly.
Indeed,

Ω(z ± α∆z) − Ω(z) = F (x ± α∆x) + F∗(s ± α∆s) + ν ln 〈s±α∆s,x±α∆s〉
ν

−F (x) − F∗(s) − ν ln 〈s,x〉
ν

(4.4)
= F (x ± α∆x) + F∗(s ± α∆s) − F (x) − F∗(s) + ν ln(1 ± α)

(1.12)

≤ ±α[〈F ′(x), ∆x〉 + 〈∆s, F ′
∗(s)〉] + ν ln(1 ± α)

+ω(α‖∆x‖x) + ω(α‖∆s‖s)

(4.7)

≤ αβ2 · β+
√

ν
1−β + ω(α‖∆x‖x) + ω(α‖∆s‖s).

Let us estimate the sum of the last two terms. Note that function ψ(t)
def
= ω(

√
t) is convex:

ψ′(t) = ω′(
√

t) · 1
2
√

t
, t > 0,

ψ′′(t) = ω′′(
√

t) · 1
4t − ω′(

√
t) · 1

4t
√

t
= 1

4t
√

t
·
(√

t · ω′′(
√

t) − ω′(
√

t)
)

= 1
4t
√

t
·
( √

t
(1−

√
t)2

−
√

t
1−

√
t

)

> 0.

Denote r
def
= [‖∆x‖2

x + ‖∆s‖2
s]

1/2. Then

ω(α‖∆x‖x) + ω(α‖∆s‖s) = ψ(α2‖∆x‖2
x) + ψ(α2‖∆s‖2

s)

≤ ψ(α2r2) = ω(αr).
(4.8)

In view of (1.13), we have

F ′′(x) ¹ 1
(1−β)2

F ′′(u)
(1.2)
= t0

(1−β)2
F ′′(w),

1
t20

F ′′
∗ (s)

(1.2)
= F ′′

∗ (t0s)
(3.10)

¹ 1
(1−β)2

F ′′
∗ (−F ′(u))

(1.9)
= 1

(1−β)2
[F ′′(u)]−1 (1.2)

= 1
t0(1−β)2

[F ′′(w)]−1.

Thus,
r2 ≤ t0

(1−β)2

[
〈F ′′(w)∆x,∆x〉 + 〈∆s, [F ′′(w)]−1∆s〉

]

(4.6)
= t0〈s,x〉

(1−β)2

(3.9)

≤ (β+
√

ν)2

(1−β)2
.
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We have proved the following statement.

Theorem 3 For all α ∈
[

0, 1−β
β+

√
ν

)

we have

Ω(z ± α∆z) − Ω(z) ≤ αβ2 · β+
√

ν
1−β + ω

(

α · β+
√

ν
1−β

)

. (4.9)

If the barrier F is self-scaled, then

Ω(z ± α∆z) − Ω(z) ≤ ω
(

α · β+
√

ν
1−β

)

. (4.10)

Proof:

We need to justify only the second statement. Indeed, if the barrier F is self-scaled, then
the first inequality in (4.1) implies F ′(x) = F ′′(w)F ′

∗(s) (see Theorem 3.2 in [8]). Taking
into account this simplification, we come to the estimate (4.10). ✷

Theorem 3 justifies the high quality of the tangent direction ∆z. To the best of our
knowledge, in all existing general approaches the coefficient of α in the right-hand side of
estimate (4.9) depends linearly on the centering parameter β (see, for example, Lemma 10
in [6]). In our case, this dependence is quadratic. Another advantage of definition (4.2) is
that it automatically results in the standard search directions when our barrier appears
to be self-scaled.

5 Non-symmetric primal-dual IPM

We are ready now to analyze a new predictor-corrector path-following method. It is
controlled by two parameters β, γ ∈ (0, 1). At each iteration of the method we perform
two operations.

Prediction

Input: Point u ∈ rintFP and penalty value t > 0 such
that

λt(u) ≤ β.

1. Compute z = zt(u) by (3.5). Set w =
√

t · u.

2. Compute ∆z by (4.2) and find α > 0 such that

Ω(z − α∆z) = Ω(z) + β2γ + ω(γ).

Output: pt(u)
def
= z − α∆z.

(5.1)

In order to avoid unnecessary complications, we assume that it is possible to find an exact
solution to the equation of Step 2 in (5.1).
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Lemma 4 The output of the predictor step (5.1) satisfies the following inequalities:

t(pt(u)) ≥ t · exp
(

γ · 1−β
β+

√
ν
− 2β√

ν

)

, (5.2)

Ω(pt(u)) ≤ 2ω(β) + β2(1 + γ) + ω(γ). (5.3)

Proof:

Denote τ = α · β+
√

ν
1−β . In view of the rule of Step 2 in (5.1), we have

β2γ + ω(γ) = Ω(z − α∆z) − Ω(z)
(4.9)

≤ β2τ + ω(τ).

Thus, τ ≥ γ, and we obtain

t(z − α∆z)
(4.3)
= ν

〈s,x〉−α(〈s,∆x〉+〈∆x,s〉)
(4.4)
= 1

1−α · ν
〈s,x〉

(3.9)

≥ 1
1−α · t

(1+β/
√

ν)2
≥ t · exp

(

α − 2β√
ν

)

≥ t · exp
(

γ · 1−β
β+

√
ν
− 2β√

ν

)

.

The remaining inequality (5.3) follows from (3.8). ✷

The second operation of our method is the correction process.

Correction

Input: Point z ∈ rintF with penalty value t = 〈s, x〉.
1. Set u0 = x.

2. while λt(uk) > β do uk+1 := uk + δt(uk)
1+λt(uk) .

Output: σt(z)
def
= uN , where uN is the last point in the

sequence.

(5.4)

Lemma 5 The number of points generated in the correction process (5.4) is bounded as
follows:

N ≤ ω(z)
ω∗(β) , (5.5)

where ω∗(τ) = τ − ln(1 + τ).

Proof:

Indeed, in Step 2 of (5.4) we apply the Damped Newton Method for the minimization
of a self-concordant objective function ft(x) subject to the linear constraints Ax = b. In
view of Theorem 4.1.12 in [5], at each iteration of the process the objective function is
decreased at least by the value ω∗(λt(uk)). Since the process is running while λt(uk) > β,
we get the estimate (5.5) from Lemma 2. ✷
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Now we can put the two pieces together.

Non-symmetric primal-dual IPM

Input: Point u0 ∈ rintFP and penalty value t0 > 0 such
that λt0(u0) ≤ β.

Iteration k ≥ 0:

z̃k = ptk(uk),

tk+1 = t(z̃k),

uk+1 = σtk+1
(z̃k).

(5.6)

Theorem 4 Let parameters β, γ ∈ (0, 1) satisfy inequality

ρ
def
= γ · 1−β

1+β − 2β > 0. (5.7)

Then the rate of convergence of process (5.6) is given by

〈sk, xk〉 ≤ 〈s0, x0〉 · e−ρk/
√

ν . (5.8)

At the same time, the number of iterations in the correction process never exceeds

N(β, γ) ≤ 1
ω∗(β)(2ω(β) + β2(1 + γ) + ω(γ)). (5.9)

Proof:

Indeed, in view of inequality (5.2) we have

tk+1 ≥ tk · exp
(

γ · 1−β
β+

√
ν
− 2β√

ν

)

= tk · exp
(

1√
ν
·
[

γ · (1−β)
√

ν
β+

√
ν

− 2β
])

≥ tk · exp
(

1√
ν
·
[

γ · 1−β
1+β − 2β

])

= tk · exp
(

ρ√
ν

)

.

This proves (5.8). Inequality (5.9) follows from (5.3) and (5.5). ✷

Remark 2 The main goal of Theorem 4 is to establish the polynomial-time complexity
bounds for method (5.6). Therefore, we did not try to get the best possible value in the
right-hand side of inequality (5.9). An immediate improvement can be obtained by dividing
the correction process (5.4) into two stages:

{k : λt(uk) ≥ 1
3}, {k : λt(uk) ∈ (β, 1

3)}.

Then the duration of the first stage cannot exceed 2ω(β)+β2(1+γ)+ω(γ)

ω∗( 1
3
)

iterations. The dura-

tion of the second stage is very short since it corresponds already to the region of quadratic
convergence of the Damped Newton Method. We leave to the reader a possibility to play
with the numbers and improve the estimate (5.9).
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6 Non-symmetric primal-dual IPM for Phase I

In order to start method (5.6), it is necessary to have a scaling point in a small neighbor-
hood of the primal central path. This point can be found by an auxiliary procedure, which
is called Phase I of the method. Let us show that such a procedure can be implemented
in the same vein as the main scheme (5.6).

We need the following non-restrictive assumption.

Assumption 1 The primal feasible set FP is bounded.

Note that assumption (2.4) and Theorem 1 guarantee only the boundedness of optimal
set in the primal-dual problem (2.12). Hence, FP may be unbounded. However, if we
know a point x0 ∈ rintFP , then we can modify the initial problem (2.1) as follows:

min
κ,x

{−κ : 〈c, x〉 + κ = 〈c, x0〉 + 1, Ax = b, x ∈ K, κ ≥ 0} . (6.1)

This problem has the same form as (2.1), but now its feasible set is bounded.
From now on, we assume that Assumption 1 holds and we know a feasible point

x1 ∈ rintFP . Let us define an auxiliary central path

x̂(τ) = arg min
x

{−τ〈F ′(x1), x〉 + F (x) : Ax = b}, τ ≥ 0. (6.2)

Since FP is bounded, this trajectory is well defined for all τ ≥ 0. Moreover, x̂(1) = x1.
Our goal is to trace x̂(τ) as τ → 0. For that, we need to modify the sense of some

notation. Up to the end of this section, we assume that definitions (3.3), (3.4) and (3.5)
correspond to c = −F ′(x1). The definition of the prediction step has also changed.

Prediction at Phase I

Input: Point v ∈ rintFP and penalty value τ > 0 such
that

λt(v) ≤ β.

1. Compute z = zτ (v) by (3.5). Set w =
√

τ · v.

2. Compute ∆z by (4.2) and find α > 0 such that

Ω(z + α∆z) = Ω(z) + β2γ + ω(γ).

Output: p+
τ (v)

def
= z + α∆z.

(6.3)

Lemma 6 The output of the predictor step (6.3) satisfies the following inequalities:

t(p+
τ (v)) ≤ τ · exp

(

− γ·(1−β)
γ·(1−β)+β+

√
ν

+ 2β√
ν−β

)

, (6.4)

Ω(p+
τ (v)) ≤ 2ω(β) + β2(1 + γ) + ω(γ). (6.5)
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Proof:

As in the proof of Lemma 4, we argue that α · β+
√

ν
1−β ≥ γ. Therefore

t(z + α∆z)
(4.3)
= ν

〈s,x〉+α(〈s,∆x〉+〈∆x,s〉)
(4.4)
= 1

1+α · ν
〈s,x〉

(3.9)

≤ 1
1+α · t

(1−β/
√

ν)2
≤ t · exp

(

− α
1+α + 2β√

ν−β

)

≤ τ · exp
(

− γ·(1−β)
γ·(1−β)+β+

√
ν

+ 2β√
ν−β

)

.

The remaining inequality (6.5) follows from (3.8). ✷

In Phase I, we can use the correction process (5.4) without any change. Thus, we come
to the following scheme.

Non-symmetric primal-dual IPM for Phase I

Input: Point v0 = x1 ∈ rintFP and penalty τ0 = 1.

Iteration k ≥ 0:

z̃k = p+
τk

(vk),

τk+1 = t(z̃k),

vk+1 = στk+1
(z̃k).

Stopping criterion: λ0(vk) ≤ 2β.

(6.6)

Theorem 5 Let parameters β, γ ∈ (0, 1) satisfy inequality

ρ1
def
= γ·(1−β)2

γ·(1−β)+β+1 − 2β > 0. (6.7)

Then the rate of convergence of process (6.6) is given by

τk ≤ e
−kρ1√

ν−β . (6.8)

At the same time, the number of iterations in the correction process never exceeds

N(β, γ) ≤ 1
ω∗(β)(2ω(β) + β2(1 + γ) + ω(γ)). (6.9)

The proof of this theorem is very similar to that of Theorem 4.
For a direction g ∈ E∗ and primal point u ∈ rintFP define now the local norm

|g|∗v
def
=

[

max
δ

{2〈g, δ〉 − ‖δ‖2
v : Aδ = 0}

]1/2

.
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Note that (6.6) keeps λτk
(vk) = |F ′(vk) − τkF

′(x1)|∗vk
≤ β. Therefore

λ0(vk) = |F ′(uk)|∗vk
≤ β + τk|F ′(x1)|∗vk

.

From this inequality, it is easy to derive that the process (6.6) terminates in

O(
√

ν ln |F ′(x1)|∗x̂(0))

iterations (see Section 4.2.5 in [5] for details).
Further, let l be the last iteration of process (6.6). For our actual objective vector

c ∈ E∗, we can choose coefficient t0 = β/|c|∗vl
. Then, choosing ũ = vl, we get

|t0c + F ′(ũ)|∗ũ ≤ 3β.

If β is small enough, one iteration of the Damped Newton Method from ũ results in the
point u0, which satisfies the input conditions of (5.6).

7 Primal barrier for epigraph of power function

Let us fix some α ∈ (0, 1). Consider the following homogeneous function of two variables:

ξ(x, y) = xα · y1−α, (x, y) ∈ R2
+.

We are going to find a barrier description of the cone

Qα = {(x, y, z) ∈ R3 : ξ(x, y) ≥ |z|}.

Since function ξ(·) is concave, the cone Qα is convex. In this section we construct a
self-concordant barrier for the set Qα using a well-known 2-self-concordant barrier for the
cone {(τ, z) ∈ R2 : τ ≥ |z|}, that is

f1(τ, z) = − ln(τ2 − z2).

First of all, let us mention some properties of the function ξ. Let us fix a point
(x, y) > 0. Consider an arbitrary direction d = (x′, y′) ∈ R2. Denote by

ξ0 = ξ(x, y), ξk = Dkξ(x, y)[d, . . . , d
︸ ︷︷ ︸

k times

], k = 1 . . . 3,

the directional derivatives of function ξ. Let δx = x′

x , and δy = y′

y .

Lemma 7 We have the following relations:

ξ1 = ξ0 · [αδx + (1 − α)δy],

ξ2 = −ξ0 · α(1 − α)(δx − δy)
2,

ξ3 = −ξ2 · [(2 − α)δx + (1 + α)δy].

(7.1)
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Proof:

Indeed,

Dξ(x, y)[d] = α · xα−1 · y1−α · x′ + (1 − α) · xα · y−α · y′ = ξ0 · (αδx + (1 − α)δy),

D2ξ(x, y)[d, d] = α(α − 1) · xα−2 · y1−α · (x′)2 + 2α(1 − α) · xα−1 · y−α · x′ · y′

−α(1 − α) · xα · y−α−1 · (y′)2 = −ξ0 · α(1 − α)(δx − δy)
2.

Therefore, from the last equation we have

D3ξ(x, y)[d, d, d] = −ξ1 · α(1 − α)(δx − δy)
2 − ξ0 · 2α(1 − α)(δx − δy)(−δ2

x + δ2
y)

= α(1 − α)(δx − δy)
2 · [−ξ1 + ξ0 · 2(δx + δy)]

= ξ0 · α(1 − α)(δx − δy)
2 · [(2 − α)δx + (1 + α)δy]. ✷

In this and the next section it is convenient to use ∇-notation for partial derivatives
of different order. Let us prove the main statement of this section.

Theorem 6 For any α ∈ [0, 1] the function

Fα(x, y, z) = − ln
(

x2α · y2(1−α) − z2
)

− lnx − ln y

is a 4-self-concordant barrier for the cone

Qα =
{

(x, y, z) ∈ R2
+ × R : xα · y1−α ≥ |z|

}

.

Proof:

Assume α ∈ (0, 1). Consider f2(x, y, z) = f1(ξ(x, y), z). Let us write down the derivatives
of this function along the direction d̂ = (x′, y′, z′) ≡ (d, z′). Denote l = (ξ1, z

′). Then

∆1
def
= Df2(x, y, z)[d̂] = ∇τf1(ξ0, z) · ξ1 + ∇zf1(ξ0, z) · z′ = 〈∇f1(ξ0, z), l〉,

∆2
def
= D2f2(x, y, z)[d̂, d̂]

= ∇2
ττf1(ξ0, z) · ξ2

1 + ∇τf1(ξ0, z) · ξ2 + 2∇2
τzf1(ξ0, z) · ξ1 · z′ + ∇2

zzf1(ξ0, z) · (z′)2

= 〈∇2f1(ξ0, z)l, l〉 + ∇τf1(ξ0, z) · ξ2
def
= σ1 + σ2.

Note that σ1, σ2 ≥ 0. Finally, denoting e1 = (1, 0) ∈ R2, we get

∆3
def
= D3f2(x, y, z)[d̂, d̂, d̂]

= ∇3
τττf1(ξ0, z) · ξ3

1 + 3∇3
ττzf1(ξ0, z) · ξ2

1z
′ + 3∇2

ττf1(ξ0, z) · ξ1 · ξ2

+3∇2
τzf1(ξ0, z) · ξ2z

′ + ∇τf1(ξ0, z) · ξ3 + 3∇2
τzzf1(ξ0, z) · ξ1 · (z′)2

+∇3
zzzf1(ξ0, z) · (z′)3

= D3f1(ξ0, z)[l, l, l] + 3ξ2〈∇2f1(ξ0, z)l, e1〉 + ∇τf1(ξ0, z) · ξ3.
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Since f1 is a self-concordant barrier for a cone with recession direction e1, we have

ξ2 · 〈∇2f1(ξ0, z)l, e1〉 ≤ 〈∇2f1(ξ0, z)l, l〉1/2 · (−ξ2) · 〈∇2f1(ξ0, z)e1, e1〉1/2

≤ 〈∇2f1(ξ0, z)l, l〉1/2 · (ξ2 · 〈∇f1(ξ0, z), e1〉)

= σ
1/2
1 · σ2.

Denote σ3 = δ2
x + δ2

y . Then, using self-concordance of f1 again, by (7.1) we obtain

∆3 ≤ 2σ
3/2
1 + 3σ

1/2
1 · σ2 − σ2 · [(2 − α)δx + (1 + α)δy]

≤ 2σ
3/2
1 + 3σ

1/2
1 · σ2 + σ2 · σ1/2

3 ·
[
(2 − α)2 + (1 + α)2

]1/2

≤ 2σ
3/2
1 + 3σ2 ·

(

σ
1/2
1 + σ

1/2
3

)

.

(7.2)

Finally, consider the function f3(x, y) = − lnx−ln y. Clearly, this is a 2-self-concordant
barrier for the positive orthant in R2. Note that

Fα(x, y, z) = f2(x, y, z) + f3(x, y).

Let us estimate its derivatives along direction d̂.

D2
def
= D2Fα(x, y, z)[d̂, d̂] = ∆2 + D2f3(x, y)[d, d] = σ1 + σ2 + σ3,

D3
def
= D3Fα(x, y, z)[d̂, d̂, d̂] = ∆3 + D3f3(x, y)[d, d, d]

(7.2)

≤ 2σ
3/2
1 + 3σ2 ·

(

σ
1/2
1 + σ

1/2
3

)

+ 2σ
3/2
3

=
(

σ
1/2
1 + σ

1/2
3

)

·
(

3σ2 + 2σ1 + 2σ2 − 2σ
1/2
1 σ

1/2
3

)

=
(

σ
1/2
1 + σ

1/2
3

)

·
(

3D2 −
(

σ
1/2
1 + σ

1/2
3

)2
)

≤ 2D
3/2
2 .

Thus, we have proved that function Fα(x, y, z) is convex and satisfies the characteristic

condition for derivatives of self-concordant functions, namely, D3 ≤ 2D
3/2
2 . It remains to

note that this function is logarithmically homogeneous of degree four.
For α = 0 and α = 1 the statement of the theorem is trivial. ✷

Note that for α → 0, the set Qα approaches the direct product {x ≥ 0} × {y ≥ |z|},
for which the parameter of self-concordant barrier cannot be less than three.

Let us present now a self-concordant barrier for p-cone

Kp =
{

(τ, z) ∈ R × Rn : τ ≥ ‖z‖(p)

}

, p ≥ 1,

where ‖z‖(p) =

[
n∑

i=1
|z(i)|p

]1/p

. Without loss of generality, assume α
def
= 1

p ∈ (0, 1).
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Theorem 7 Point (τ, z) belongs to Kp if and only if there exist x ∈ Rn
+ satisfying condi-

tions
(x(i))α · τ1−α ≥ |z(i)|, i = 1, . . . , n,

n∑

i=1
x(i) = τ.

(7.3)

Thus, a self-concordant barrier for the cone Kp can be implemented by restricting the
(4n)-self-concordant barrier

Φp(τ, x, z) = −
n∑

i=1

[

ln
(

(x(i))2α · τ2(1−α) − (z(i))2
)

+ lnx(i) + ln τ
]

onto the linear hyperplane
n∑

i=1
x(i) = τ .

Proof:

Indeed, let the triple (τ, x, z) satisfy relations (7.3). Then

τ =
n∑

i=1
x(i), x(i) · τp−1 ≥ |z(i)|p, i = 1, . . . , n,

Therefore, τp ≥
n∑

i=1
|z(i)|p.

Consider now an arbitrary point (τ, z) ∈ Kp. Without loss of generality assume τ > 0.
Then, we can choose

ǫ = τp −
n∑

i=1
|z(i)|p ≥ 0,

x(i) = 1
τp−1

(
ǫ
n + |z(i)|p

)

, i = 1, . . . , n.

Clearly, the triple (τ, x, z) satisfies relations (7.3). The remaining statements follow from
Theorem 6. ✷

Alternatively, the cone Kp can be seen as an intersection of Qn
1/p by a linear subspace.

Indeed, it is easy to see that (τ, z) ∈ Kp if and only if there exist non-negative vectors x
and y from Rn such that

(x(i), y(i), z(i)) ∈ Q1/p, i = 1, . . . , n,

y(i) = τ, i = 1, . . . , n,

n∑

i=1
x(i) = τ.

(7.4)

The main advantage of such a representation consists in separability of the corresponding
barrier function

Ψp(x, y, x) =
n∑

i=1
F1/p(x

(i), y(i), z(i)).

In particular, this opens the possibility of employing the dual barriers.
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8 Dual barrier

It is well known that the cone Qα is self-dual. For completeness of presentation, let us
provide this statement with a simple proof. Recall, that for a primal cone K ⊂ E, the
dual cone is defined as follows:

K∗ = {s ∈ E∗ : 〈s, x〉 ≥ 0 ∀x ∈ K}.

The cone K is called self-dual if there exists a self-adjoint positive-definite operator B :
E → E∗ such that K∗ = BK. In our situation, E = R3, and E∗ = R3. For x ∈ E and
s ∈ E∗, we define the scalar product in the standard way:

〈s, x〉 =
3∑

i=1
s(i) · x(i).

Lemma 8 For α ∈ (0, 1), define

Bα =






α 0 0
0 1 − α 0
0 0 1




 .

Then Q∗
α = BαQα.

Proof:

Indeed, s ∈ Q∗
α if and only if

s(1)x(1) + s(2)x(2) + s(3)x(3) ≥ 0 ∀x : (x(1))α(x(2))1−α ≥ |x(3)|.

Hence,

s(1)x(1) + s(2)x(2) − |s(3)| · (x(1))α(x(2))1−α ≥ 0 ∀x(1), x(2) ≥ 0

Clearly, the only nontrivial case is s(3) 6= 0 and x(2) > 0. Then the minimum of the last

expression in x(1) is achieved for x(1) = x(2) ·
(

s(1)

α|s(3)|

)− 1
1−α . Substituting this value, we

come to the following characteristic inequality of the dual cone:

(
s(1)

α

)α (
s(2)

1−α

)1−α
≥ |s(3)|.

This proves the required statement. ✷

Note that in the primal-dual setting we need to work with a pair of conjugate barriers
for the primal and the dual cones. In our situation, for the primal cone Qα we can use
the barrier

Fα(x) = − ln
(

(x(1))2α(x(2))2(1−α) − (x(3))2
)

− lnx(1) − lnx(2), x ∈ rintQα.

Unfortunately, the conjugate barrier

F ∗
α(s) = max

x
[−〈s, x〉 − Fα(x)], s ∈ rintQ∗

α, (8.1)
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cannot be written in a closed form. However, there exists an efficient strategy for com-
puting the value and the derivatives of this barrier .

Denote by x(s) the solution of the optimization problem in (8.1). It is well known that

∇F ∗
α(s) = −x(s),

∇2F ∗
α(s) = [∇2F (x(s))]−1.

(8.2)

Note that the point x = x(s) can be found from the following system of nonlinear equa-
tions:

s(1) = 2α
ω · β

x(1) + 1
x(1) ,

s(2) = 2(1−α)
ω · β

x(2) + 1
x(2) ,

s(3) = −2x(3)

ω ,

(8.3)

where ω = (x(1))2α(x(2))2(1−α) − (x(3))2, and β = (x(1))2α(x(2))2(1−α) = ω +(x(3))2. Thus,

x(1) = 1
s(1)

[

1 + 2αβ
ω

]

,

x(2) = 1
s(2)

[

1 + 2(1−α)β
ω

]

,

x(3) = −ω
2 s(3).

(8.4)

Therefore,
s(1)x(1) + s(2)x(2) + s(3)x(3) = 2 + 2β

ω − ω
2 (s(3))2

= 2 + 2 β−(x(3))2

ω = 4,

(1 − α)s(1)x(1) − αs(2)x(2) = 1 − 2α.

(8.5)

Consequently, we can express x(1) and x(2) as linear functions of x(3):

s(1)x(1) = 1 + 2α − αs(3)x(3),

s(2)x(2) = 3 − 2α − (1 − α)s(3)x(3).

(8.6)

Then, substituting the above expressions in (8.1), we come to the following representation:

F ∗
α(s) = max

x(3)

[

ln

((
1+2α−αs(3)x(3)

s(1)

)2α (
3−2α−(1−α)s(3)x(3)

s(2)

)2(1−α)
− (x(3))2

)

+ ln 1+2α−αs(3)x(3)

s(1) + ln 3−2α−(1−α)s(3)x(3)

s(2)

]

− 4.

(8.7)

Without loss of generality, we can assume s(3) 6= 0. Therefore, denoting τ = s(3)x(3)

and ignoring the additive constant terms, we get the following univariate minimization
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problem:

f∗ = min
τ

[ f(τ)
def
= − ln

(

q2 · (2 + 1
α − τ)2α(2 + 1

1−α − τ)2(1−α) − τ2
)

− ln(2 + 1
α − τ) − ln(2 + 1

1−α − τ) ],

(8.8)

where q = |s(3)|
(

α
s(1)

)α (
1−α
s(2)

)1−α
< 1. Let us show that this minimization problem can be

easily solved up to any desired accuracy by a quadratically convergent procedure. Using
its solution, the point x(s) can be formed by (8.6), and then, applied in (8.1), (8.2) to
compute the value, the gradient, and the Hessian of the dual barrier.

In view of Theorem 6, the objective function of problem (8.8) is a 4-self-concordant
barrier. Note that f ′(0) < 0. On the other hand, for any feasible τ we have

|τ | ≤ q exp
[

α ln
(

2 + 1
α − τ

)

+ (1 − α) ln
(

2 + 1
1−α − τ

)]

≤ q exp [ ln(4 − τ) ] = q · (4 − τ).

Hence, τ ≥ −4r, where r
def
= q

1−q . At the same time, for τ̂ = −2r we have

q2 · (2 + 1
α − τ̂)2α(2 + 1

1−α − τ̂)2(1−α) = q2 · (2 + 1
α + 2q

1−q )2α(2 + 1
1−α + 2q

1−q )2(1−α)

= q2 · ( 1
α + 2

1−q )2α( 1
1−α + 2

1−q )2(1−α) > τ̂2.

Thus, τ̂ ∈ dom f .
Denote by τ∗ the optimal solution of problem (8.8) and let ρ = 1

[f ′′(τ∗)]1/2 . Since f is

a self-concordant barrier with parameter ν = 4, we have

τ∗ + (ν + 2
√

ν)ρ · [−1, 1] ⊇ dom f ⊇ [0, τ̂ ] ⇒ 16ρ ≥ 2r.

Note, that for problem (8.8), the Newton method converges quadratically from any point
τ0, |τ0 − τ∗| ≤ 1

4ρ.2 We can find such a point by a bisection procedure based on computa-
tions of the derivative f ′(·) starting from the middle point of the initial interval [0,−4r].
Clearly, we need at most k = 7 bisection steps:

4r · 2−k ≤ 32ρ · 2−k = 1
4ρ.

Acknowledgements. The author would like to thank Laurence Wolsey for useful comments
on the text and the anonymous referees for their suggestions.

2This can be justified, for example, by the results of Section 4.1.5 [5]. Indeed, the Damped Newton Method

converges quadratically from any point τ with λ(τ)
def
= |f ′(τ)|

[f ′′(τ)]1/2
< 1

2 . In view of Theorem 4.1.13 [5], the latter

inequality follows from |τ − τ∗| ≤ 1
4ρ.

25



References

[1] F. Alizadeh. Interior point methods in semidefinite programming with applications
to combinatorial optimization . SIAM Journal of Optimization, 5(1995), 13 – 51.

[2] R. W. Freund, F. Jarre, and S. Schaible. On self-concordant barrier functions for
conic hulls and fractional programming. Mathematical Programming, 74 (1996), 237
– 246.

[3] O. Guler. Hyperbolic Polynomials and Interior Point Methods for Convex Program-
ming. Mathematics of Operations Research, 22(1997), 350 – 377.

[4] A. Nemirovski, L. Tuncel. Cone-free path-following and potential reduction poly-
nomial time interior-point algorithms. Mathematical Programming, On line First
issue, DOI: 10.1007/s10107-004-0545-4 (2004).

[5] Yu. Nesterov. Introductory Lectures on Convex Optimization. Kluwer, Boston, 2004.

[6] Yu. Nesterov. Long-Step Strategies in Interior-Point Primal-Dual Methods. Mathe-

matical Programming, 76(1996) 1, 47 – 94.

[7] Yu. Nesterov and A. Nemirovsky, Interior Point Polynomial Algorithms in Convex
Programming, SIAM, Philadelphia, 1994.

[8] Yu. Nesterov, M. J. Todd. Self-scaled Barriers and Interior-Point Methods for Con-
vex Programming. Mathematics of Operation Research, 22(1997) 1, 1 – 42.

[9] Yu. Nesterov, M. J. Todd. Primal-dual interior-point methods for self-scaled cones.
SIAM Journal of Optimization, 8(1998), 324 – 364.

[10] J. Renegar. A Mathematical View of Interior-Point Methods in Convex Optimiza-
tion. MPS/SIAM Series on Optimization 3. SIAM Publications, Philadelphia, 2001.

[11] M. J. Todd, K. C. Toh and R. H. Tutuncu. On the Nesterov-Todd direction in
semidefinite programming. SIAM Journal on Optimization, 8(1998), 769 – 796.

[12] L. Tuncel. Generalization of primal-dual interior-point methods to convex optimiza-
tion problems in conic form. Foundations of computational mathematics, 1 (2001):
229 – 254.

[13] G. Xue, Y. Ye. An efficient algorithm for minimizing a sum of p-norms. SIAM

Journal on Optimization, 10(1998) 2, 551 – 579.

26




