Towards Normal Design for Safety-Critical
Systems

Derek Mannering!, Jon G. Hall?, and Lucia Rapanotti?

! General Dynamics UK Limited
2 Centre for Research in Computing, The Open University

Abstract. Normal design is, essentially, when an engineer knows that
the design they are working on will work. Routine ‘traditional’ engi-
neering works through normal design. Software engineering has more
often been assessed as being closer to radical design, i.e., repeated inno-
vation. One of the aims of the Problem Oriented Software Engineering
framework (POSE) is to provide a foundation for software engineering to
be considered an application of normal design. To achieve this software
engineering must mesh with traditional, normal forms of engineering,
such as aeronautical engineering. The POSE approach for normalising
software development, from early requirements through to code (and
beyond), is to provide a structure within which the results of different
development activities can be recorded, combined and reconciled. The
approach elaborates, transforms and analyses the project requirements,
reasons about the effect of (partially detailed) candidate architectures,
and audits design rationale through iterative development, to produce
a justified (where warranted) fit-for-purpose solution. In this paper we
show how POSE supports the development task of a safety-critical sys-
tem. A normal ‘pattern of development’ for software safety under POSE
is proposed and validated through its application to an industrial case
study.

1 Introduction

Vincenti ([1]) defines ‘normal design’ as what the engineer is engaged in when
s/he knows from the outset

“how the device in question works, what are its customary features, and
that, if properly designed along such lines, it has a good likelihood of
accomplishing the desired task.”

Much of the routine design encountered in traditional engineering disciplines
works ‘normally’. Some have recently observed that software engineering does
not: Maibaum [2] states that

“SE ignores the principles of engineering design and almost always adopts
radical design methods, to its detriment.”

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 398-{411,]|2007.
© Springer-Verlag Berlin Heidelberg 2007

Towards Normal Design for Safety-Critical Systems 399

Jackson [3] states that

“Though less conspicuous than radical design, normal design makes up
by far the bulk of day-to-day engineering enterprise. Unfortunately, this
is not true of software engineering.”

Through regulation, standardisation and its co-location with traditional engi-
neering disciplines, safety-critical software intensive systems engineering may be
tending to normality. This view has something to recommend it: typically, indus-
trial standards and practices require integration with other normal engineering
processes.

Vincenti [I] characterises normal design processes as: (a) relying on engineer-
ing judgement in the searching of past experience; (b) allowing the conceptual
incorporation of the novel features that come to mind in solving a problem:;
and (c) allowing the “mental winnowing of the conceived variations” to pick out
those most likely to work.

In a previous case study [4], we made a record of a current industrial safety-
critical software intensive design process, using the Problem Oriented Software
Engineering (POSE) framework [5]. Working from this record, the goal of this
paper is to show how it might reflect Vincenti’s three characteristics, and so
be called ‘normal’. To do this, we apply the record in the design of a different,
functionally unrelated avionics system component and find that the record is
a good fit to the needs of safety-critical development and consider this to be
evidence that—to some limited extent—POSE offers an approach to normal
design for software engineering.

The paper is organised as follows: background and related work are presented
in Section 2. The basics of the POSE framework are described in Section 3.
Section 4 demonstrates the use of POSE on a case study involving the develop-
ment of requirements and high level architecture for a component of an aircraft
defensive aids system. Section 5 contains a discussion and conclusions.

2 Background and Related Work

POSE is an extension and generalisation of Jackson’s Problem Frame approach
[6]. Problem Frames attempt to keep the focus of the software engineer on de-
veloping their understanding of the problem to be solved, rather than on a
(premature) move to solution of a poorly understood problem. Problem Frames
make certain fundamental assumptions: primary is the separation of descriptions
of what is given—the indicative parts of a problem—from what is required—the
optative parts of a problem. Originally confined to Requirements Engineering,
the influence of Problem Frames has spread to the fields of domain modelling,
business process modelling, software architectures and early design—see [7I8/[9]
for collections of recent work.

The case study work presented in this paper is based on a multi-level safety
analysis process typical of many industries. For example, commercial airborne
systems are governed by ARP4761 [10]. ARP4761 defines a process incorporating
Aircraft FHA (Functional Hazard Analysis), followed by System FHA, followed

400 D. Mannering, J.G. Hall, and L. Rapanotti

by PSSA (Preliminary System Safety Assessment, which analyses the proposed
architecture). This paper is concerned with the latter, PSSA, but uses PSA
(Preliminary Safety Analysis, a combination of hazard identification and pre-
liminary hazard analysis as required by the safety standards) in place of PSSA.
In this paper requirements follow the fundamental clarification work of Jackson
[20] and Parnas [I2] which distinguishes between the given domain properties of
the environment and the desired behaviour covered by the requirements. This
work also distinguishes between requirements that are presented in terms of the
stake-holder(s) and the specification of the solution which is formulated in terms
of objects manipulated by software [I3]. Therefore there is a large semantic di-
vide between the system level requirements and the specification of the machine
solution. One of the reasons for applying POSE is that it bridges the divide by
transforming system level requirements into requirements that apply directly to
the solution.

The POSE notion of problem used in this work fits well with the Parnas 4-
Variable model. This has been used by Parnas et al. as part of a table driven
approach [12], which is particularly well suited to defining embedded critical ap-
plications as shown by its use in SCR [14] and the RSML methods. The RSML
work led to the SpecTRM [I5] methods, which form part of a human centred,
safety-driven process which is supported by an artefact called an Intent specifica-
tion [16]. The work in this paper is located in the area of the second-level System
Design Principles of the Intent specification, and thus may be complementary
to the third, Blackbox level provided by SpecTRM.

The work of Anderson, de Lemos, and Saeed [I7] share many of the principles
and concepts that have driven the development of this work. Particularly the
notions that safety is a system attribute and the need to apply a detailed safety
analysis to the requirements specifications. The main advantages of the POSE
approach over that work are: (a) it provides a framework for transforming re-
quirements; (b) it is rich in traceability; and (¢) the models it uses are suitable
for safety analysis. The latter means it is efficient as there is no need to develop
‘new’ models (with all their attendant validation problems) to be able to perform
a PSA. Further, its support for traceability makes it particularly suited for use
with standards such as DS 00-56 [I8] and the DO-178B [19] software guidelines.

3 Problem Oriented Software Engineering

POSE (see [5] for the formal definition) recognises that software engineering
processes by necessity include the identification and clarification of system re-
quirements, the understanding and structuring of the problem world, the struc-
turing and specification of a hardware/software machine that can ensure satisfac-
tion of the requirements in the problem world, and the construction of arguments,
convincing both to developers, customers, users and other stake-holders that the
developed system will provide the functionality and qualities that are needed.

Briefly, POSE generalises and extends fundamental ideas expressing the com-
pleteness of requirements engineering [20/21] and those of problem orientation
(see, for instance, [6]) to apply to software engineering.

Towards Normal Design for Safety-Critical Systems 401

In POSE, software development is viewed as solving a problem, the solution
(S, a labelled double-barred box in the figures that follow) being a machine—
that is, a program running in a computer—that will ensure satisfaction of the
requirement (R, the dotted oval in the figures) in the given problem world (W)
consisting of real-world domains (the labelled but otherwise undecorated boxes
in the figures). Typically the requirement concerns properties and behaviours
that are located in the problem world at some distance from its interface with
the machine. Like Problem Frames, POSE views the problem world W as a
collections of domains described in terms of their known, or indicative, proper-
ties, which interact through their sharing of phenomena, i.e, events, commands,
states, etc (that decorate the arcs in the figures).

POSE is defined as a Gentzen-style sequent calculus that allows problems to
be transformed into problems that are easier to solve, or that will lead to other
problems that are easier to solve. A set of transformation rule schema defined in
the calculus capture (atomic) discrete steps in development. Each requires a jus-
tification of application in order for the transformation to be solution preserving,
although justifications need not be formal. The combination of the justifications
is an argument that the solution is adequate as a solution to the original problem.
The interested reader should consult [5] for a fuller presentation of POSE.

POSE problem transformations transform problems in ways that respects
solution adequacy: simplifying only slightly, this means that a solution to a
transformed problem is also a solution to the original problem.

In the following section we will give highlights of a POSE development of an
avionics case study (more detail of the case study is given in [4]). For brevity, we
present the development in graphical form, using a Problem Frame-like notation
rather than the Gentzen-style presentation in [5]. Moreover, we present only the
relevant details of Problem Frames in this paper as and when they are needed; a
thorough presentation is beyond the scope of this paper, and can be found in [6].

3.1 A Problem-Oriented Approach to Safety Analysis

From previous work [4], we observe that POSE transformations can be combined
to form re-usable process templates or “patterns” [22] for safety-critical devel-
opment. One such process is shown in Fig. [l as a UML activity diagram. The
activities in the figure include the following POSE transformationsy:

Domain and Requirement Interpretation used tocaptureincreasing knowl-
edge and detail in the context and requirement of the problem (used in activi-
ties 1 and 4);

Solution Expansion used to structure the solution according to a candidate
architecture (used in activity 2);

Problem Progression by which the problem is simplified by removing do-
mains (used in activity 3).

The choice point (labelled 5) in the figure is the PSA by which the candidate ar-
chitecture is assessed for suitability. The outcome of the PSA determines whether

! Defined and described in [BI23124].

402 D. Mannering, J.G. Hall, and L. Rapanotti

the current architecture is viable as the basis of a solution or whether backtrack-
ing in needed so that another candidate architecture can be chosen.

The pattern is iterative, ending when an architecture suitable for solution
development is found. This process is iterative in that design choices, through
the choice of candidate architecture, influence requirements, and vice versa.

As we shall see, POSE allows the capture of many important other artefacts of
the process, including a record of the choices that have been made, the rationale
for the revision of requirements statements.

start end

[PSA ok]

Domain & [not PSA ok]
Requirement

Interpretation |

5
Solution Requirement
Interpretation & Problem Progression a .
. Inerpretation
Expansion 2 3 4

Fig. 1. POSE Safety Pattern

4 The Case Study

The POSE pattern emerged from the realisation that PSA feasibility checks can
identify the inadequacy of the architecture early in a development, and avoid
the cost associated with rework. The case study from which it was derived and
that of this paper are real developments, underdone by the first author, based
on systems flying in real aircraft. The case studies are cut-down only in the
sense that some detail has been removed for brevity, and they retain all essential
complexity. The POSE pattern was applied (retrospectively) in the context of
the first case study to confirm that architecture inadequacy could be identified
earlier in development (and, perhaps, therefore result in cost savings). In this
paper, we use the POSE pattern to guide a safety critical development process
capable of satisfying the provisions of DS 00-56 [I§].

The case study concerns the development of the Decoy Controller (DC') com-
ponent of a defensive aids system on an aircraft, as shown in Fig. 2l The DC’s
role is to control the release of decoy flares providing defence against incom-
ing missile attack. The DC interfaces with the Defence System (DS) computer,
which is responsible for controlling and orchestrating all the defensive aids on
the aircraft. The DS and other domains (see Fig. 2) already exist (and so appear
as undecorated boxes in the figure).

As is common practice in the industry, we will assumes that an aircraft level
safety analysis has been completed with safety requirements being allocated to
the main aircraft systems, including the defensive aids system. This analysis

Towards Normal Design for Safety-Critical Systems 403

Dispenser
\ . A
&\s Unit (DU) ~ B
4 \‘{Q“ - e Jey
ON " Safety Pin , <!
VSO Status (SPS) | %y T~
~ SN T~
pC [_DS!{con}| Defence {con} J \
s, System (DS) - K /
Y fait) . — ">
2 Aircraft e
e Status K5
%, - m\d
- AN
Pilot

Fig. 2. The DC Problem (Pryitial)

has allocated requirements to the defensive aids sub-system, including the DC"
in fact, there are two safety hazards allocated to the DC, concerned with the
inadvertent firing of the decoy flares, as follows:

H1. Inadvertent firing of decoy flare on ground. Safety Target: safety critical,
10~7 fpfiZ; and

H2. Inadvertent firing of decoy flare in air. Safety Target: safety critical, 10~7
fpth.

These hazards have both systematic (safety related) and probabilistic compo-
nents. To counter these hazards, the architectural design of the overall defensive
aids system introduces a number of safety interlocks as input to the DC to pro-
vide safety protection. These are: an input from the pilot indicating whether the
release should be allowed; an input indicating whether the aircraft is in the air;
and an input indicating whether the safety pin, present when the aircraft is on
the ground, is in place. The expected behaviour is that flare dispensing should
be inhibited if any of the following conditions hold: a) the pilot disallows flares;
b) the aircraft is not in the air; or ¢) the safety pin has not been removed. It
transpires that these interlocks provide extra assurance for hazard H1 but not
for H2. Therefore, the safety task is to demonstrate that H2 can be satisfied,
with the knowledge that if H2 can be satisfied, then so can H1.

4.1 The process

The first activity in the POSE pattern—“Domain and Requirement Interpre-
tation and Expansion,” (labelled 1 in Fig. [[)—details the problem context and
requirement. This works by identification of the major system components, and
the description of their phenomena and their behaviour. The initial problem rep-
resentation is problem Pj;:0; shown in Fig. Bl with interface phenomena given
in Table Il Here we summarise the problems components.

The decoy flare DU (Dispenser Unit) has a number of different flare types
which can be selected by control messages from the DC—the chosen type being

2 fpfh is ‘failures per flight hour.’

404 D. Mannering, J.G. Hall, and L. Rapanotti

communicated in the sel phenomena (DC!{fire, sel}ﬁ, in the figure). The DC is
told which flare type to select by phenomena controlled by the Defence System
(DS !{con})@.

The selected flares are released by the fire command (in DC{fire, sel}) from
the DC' to the DU. The Pilot domain inputs the allow release (P!{0k}) to the
DC. The Aircraft Status domain inputs the in air status (AS!{air}) to the DC.
The SPS provides the safety pin status (out) to the DC.

Table 1. Phenomena of DC Problem

Phenomenon Designation
fire Command to release the selected flare
sel Indicates which flare type should be selected
out Pin status; out = yes indicates pin has been removed
con Contains command to fire and selected flare type
air Aircraft status; air = yes indicates aircraft is in the air
ok Pilot intention; ok = yes indicates allow release

The customer requirement for the DC' can be expressed as follows:

Ra. The DS shall command which flare is selected using a field in its con mes-
sage issued to the DC. The DC shall obtain the selected flare information
from this field in the con message, and use it in its sel message to the DU
to control the flare selection in the DU.

Rb. The DS shall command the DC to issue a fire command in its con message.
This shall be the only way in which a flare can be released.

Rc. The DC shall cause a flare to be released by issuing a fire command to the
DU, which will fire the selected flare.

Rd. The DC shall only issue a fire command if its interlocks are satisfied, i.e.
aircraft is in air (air = yes), SPS safety pin has been removed (out = yes)
and Pilot has issued an allow a release command (ok = yes).

As well as Ra to Rd, the DC must also satisfy its safety targets set by the
aircraft system level safety analysis. Recognising this, we add safety requirement
RS to R:

RS. The DC shall mitigate H1 & H2 (Target: safety critical 10~ fpfh).

Therefore, the overall requirement is R = Ra & Rb & Rec & Rd & RS, and
is indicated in the dotted ellipse in Fig. Bl A complete statement of R should
also include requirements that cover space, weight, environmental performance,
interfaces and so on, but these are beyond the scope of this initial work.

3 That fire and sel are controlled by DC is indicated by the ! on the arc.
4 Note, flare selection and timing are not safety related, it is only applying an inad-
vertent fire command to any flare that is regarded as a safety issue.

Towards Normal Design for Safety-Critical Systems 405

4.2 A DC Candidate Architecture

The next POSE pattern activity— “Solution Interpretation and Expansion”, la-
belled 2 in Fig. [Iintroduces the candidate architecture for DC shown in Fig. Bl
The DC' architecture consists of three components, Safety Controller (SC), De-
coy Micro-controller (DM, shown in Fig.[Bl(b)) and Interlock Input (I7), as shown
in Fig. Bl(a). This choice of architecture is typical of industrial safety design
strategies that attempt to minimise the number and extent of the safety related
functions, localising them to simple, distinct blocks. These strategies justify the
candidature of the architecture, and are recorded, under POSE, as part of the
justification for the transformations involved.

i\\ DM DS!{con}

\
\

o o1
} ()“\ | 25elp DM!{fire?}<| uP <—DS/{con}
‘ i

‘ >

| 2 .
| Z

/

DM!{sel}

Briefly, component IT collects together the interlock inputs and passes their
status to SC (int). Component DM is a microcontroller used to decode messages
from the Defence System (con), and when appropriate to issue the fire command
request to the SC (via fire?). The Message Buffer (MB, in Fig. Bl(b)) holds the
received control message con from the DS. The micro-controller uP decodes this
message to extract: a) the fire command request status (fire?) sent to the SC,
and b) the selected flare type (sel) sent to the DU. The SC, the component to be
designed, is intended as a simple block that handles the safety critical elements
of the interlocking. SC' is, therefore, expected to relate an active fire? request to
the DU (through phenomenon fire) if the interlocks are satisfied.

The introduction of the DC architecture affects the requirement R as terms
in DC are replaced by terms in DM, SC and II as appropriate. The result is a
new requirement statement

R’=R’a&RDb&Rc&R’d&R’S
in which R’a is Ra with DC replaced by DM; similarly for R’c and R’d,
mutandis mutatis. The most significant change occurs for R’b (changes in bold):

R’b. The DS shall command the DM to issue a fire? command in its con
message. The DM will request the SC to send the fire command.
This shall be the only way in which a flare can be released.

The result of the transformation step is problem Ppryierpreted sShown in Fig. [

406 D. Mannering, J.G. Hall, and L. Rapanotti

— _{con}
— —
~ o
~ ~
re,sel
. Hiresel R)
fouth, — >
- e

— e
Wy
G

A
//s\o\“”/
>

Fig. 4. Solution Interpretation of DC' (problem Prnterpreted)

4.3 Problem Simplification

Of course, this candidate architecture is not guaranteed to lead to a solution;
and we will use a PSA to determine whether the DC architecture can safely
be the basis of the DC. Performing a PSA on the problem shown in Fig. M is
an unnecessarily complex task that can be simplified by removing some of the
contextual domains. Domain removal is achieved in POSE through “Problem
Progression” (labelled 3 in Fig. [I]), which simultaneously allows us to transform
the requirement R’ to apply directly to the safety controller, SC, used in the
simplified PSA.

For brevity, we show only the removal of the Pilot and the associated require-
ments transformation. To remove the Pilot we must alter the requirement so
that shared phenomena constrained by the Pilot’s actions are recorded: in this
case, only that the release command (ok = yes) can occuifl. In this case the
requirement is rewritten to include the assumption A1 “the input ok=yes” as
well as including “II observes the pilot input ok = yes”. Given this rewriting of
the requirement, the Pilot domain can be removed.

Transforming R’ in this way yields a new requirement statement, that we will
call R1, in which R’a becomes R1a, R’b becomes R1b, R’c becomes R1c and
R’S becomes R1S without change. R’d becomes (changes shown in bold):

R1d. The SC shall only issue a fire command if its interlocks are satisfied, i.e.
aircraft is in air (air = yes), the SPS safety pin has been removed (out =
yes) and II observes pilot input ok = yes.

There are a number of domain removals (and assumptions to the require-
ment) that follow which, for brevity, we do not describe fullyﬁ; they result in the
problem shown in Fig. Bl which is a better basis for the PSA.

5 Because the Pilot is an autonomous agent. If we fail to make this assumption, the
problem becomes trivial.
5 See [25] for more details.

Towards Normal Design for Safety-Critical Systems 407

! DM | —
N\\S\S\“e ;{/ 2/"‘67 Se/}
\Y SCIf ;(P@/a I N
SC Hfiref DU 4—{}{\16"@}4 R4 A
> —
K _ =
e m| = ain ok ot

Fig. 5. The Reduced SC problem (problem Pgeduced)

4.4 Formalising the Requirements

The next activity—“Requirements Interpretation” in Fig. [[}is the formalisation
of R4 for input into the PSA. One must ensure that the justification of the
transformation properly relates informal and form requirements, in this case a
simple task. The non-safety aspects of the requirement can be formalised into a
Parnas Table-like form, shown in Table[2], with the safety targets and assumption
appended as shown.

Table 2. Formalised Requirement R4, prior to PSA

Monitor Condition Output Constraint
air = yes A out = yes N\ ok = yes A fire? N sel fire N\ sel
—(air = yes A out = yes A\ ok = yes) A fire? A sel —fire N\ sel
—(air = yes A out = yes A\ ok = yes) A ~fire? A\ sel —fire N\ sel

R4S: H1 & H2 safety targets satisfied and Assumptions Al to A4 are valid

4.5 Preliminary Safety Analysis (PSA)

Many techniques can be applied to perform a PSA. The work of this case study
uses a combination of mathematical proof, Functional Failure Analysis (FFA)
[10] and functional Fault Tree Analysis (FTA) [26].

The goal of a PSA is to: (a) confirm any relevant hazards allocated by the
system level hazard analysis; (b) identify if further hazards need to be added to
the list; and (c) analyse an architecture to validate that it can satisfy the safety
targets associated with the identified relevant hazards. The solution preserving
nature of problem transformation under POSE means that any solution of the
progressed PRreguced problem will be a solution to the Prpitia problenﬂ Simply,
if the PSA fails, there is no feasible solution to Preguced-

The structuring provided by the POSE framework and the phased develop-
ment means that it is relatively straightforward to develop a formal Parnas table-
like requirement (as in Table) that applies directly to the solution machine.

" We do not, of course, yet know that either has a solution; it is also worth noting
that P may have a solution without Ppreguced having one.

408 D. Mannering, J.G. Hall, and L. Rapanotti

Table 3. FFA Summary for SC

Id. Failure Mode Effect Hazard
F1 No fire? signal Flare release inhibited No
F2 fire? signal at wrong time Inadvertent flare release Yes
F3 fire? signal when not required Inadvertent flare release Yes
F4 Intermittent fire? signal Could inhibit flare release No
F5 Continuous fire? signal Inadvertent flare release Yes

Simple logic proofs demonstrate that R4 (Table 2)) has the required functional
properties. The remaining feasibility check at this level is to demonstrate that
the behaviour of the design blocks (SC, DM, and II in Fig. [l can satisfy R4S.

The FFA can be used to identify any additional relevant hazards and, more
likely, it will identify credible failure modes that result in an existing hazard.
The FFA should be applied to each architectural component in turn. Functional
FTA can then be used to analyse if the events identified by the FFA satisfy
the targets contained in R4S. There is insufficient space to present the full
PSA, and so we summarise only its main elements to demonstrate the process
followed. The significant results from applying FFA to the DM are shown in
Table Bl

The functional FTA requires a suitable model and the architecture of Fig. B(b)
has an appropriate form. A functional FTA can be applied to this block diagram,
using the three FFA problem cases (i.e. those with ‘Yes’ in the Hazard column)
F2, F3 and F5 as top events. The FTA indicates that a failure in uP (systematic
or probabilistic) could result in the fire? failing on. The Pilot allow input provides
some mitigation, but as soon as this is set (ok = yes) a flare will be released,
which is undesirable behaviour. Making the fire? signal integrity safety related
(not safety critical) would provide sufficient integrity, but this is contrary to the
design aim of making the DM non-safety involved.

The conclusion of the PSA is, then, that the selected DM architecture is not
a suitable basis for the design—no adequate solution can be derived from its
parametrisation. Choices at this point include: a) designing the DM to be safety
related, or b) re-structuring the DM architecture to partition the safety and non-
safety elements. The first option is undesirable due to the expense and long term
impact, i.e. timing and selection are not safety functions and are expected to be
fine-tuned to support different flare types. Making this safety-related would have
a detrimental impact on the affordability of the solution. The second option is
more appealing, and a second candidate architecture is shown in Fig. [6l in which
the simple safety functions (those associated with the fire? request) are routed
separately through MB and FPGA (a Field-Programmable Gate Array, [272]]),
while the other complex functionality is routed through MB and wP. This means
that the MB and FPGA, which have simple functionality, have to be designed to
a safety related standard, but this is still economic compared with the alternative
of making the uP safety related.

Towards Normal Design for Safety-Critical Systems 409

The failed PSA leads to iteration of the process. We note, only the information
associated with the revised architecture is new, the remainder of the performed
transformations can be carried across from the first iteration, simplifying the
second (and any subsequent) iteration. The second iteration of the POSE pat-
tern will be similar to the first. Indeed, the revised DM of Fig. [l has the same
interfaces as that of Fig. Blb), hence the requirement resulting from the sec-
ond set of reductions is the same as that obtained from the first, that shown in
Table 2l Although we do not show it, the PSA applied to this revised architec-
ture shows that the modified architecture satisfies R4S; the revised architecture
model obtained from the second run through of the POSE pattern can form a
suitable basis for the remainder of the development.

DM!{fire?} < FPGA

MB |<— DS!{con}

uP

v
DM!{sel}

Fig. 6. Revised Candidate Architecture for DM

There is still work to do—we do not have SC' as yet; a fresh application of
the process would be possible at this point. This concludes our description of
the controller synthesis.

5 Discussion and Conclusions

We have illustrated the synthesis of a controller for a safety-critical system under
POSE. We have had, from necessity, to omit many details of the process, but we
hope that some of the complexity of the development has remained, in particular,
those showing how POSE structures and guides development of the product
whilst recording the related justifications and, hence, the adequacy argument
for it.

The process by which the synthesis was achieved was captured and re-used
from a previous unrelated safety-critical development. The process appears to
exhibit Vincenti’s three characteristics, namely:

— The safety analysis of Section demonstrated that failures in the DM
domain could result in the safety targets not being satisfied. This is a form
of “winnowing of the conceived variation” in that choices are restricted by
the need to satisfy extra constraints, in this the safety analysis.

— A revised (but not new) architecture was developed, by which“engineering
judgement was used to search past experience”;

— And this was used to mitigate failure; novel features “that come to mind”
were incorporated.

410 D. Mannering, J.G. Hall, and L. Rapanotti

We might therefore conclude that the study provides early validation that
the pattern may be suitable as the front-end of an integrated safety critical de-
velopment approach for embedded applications, hence supporting the goal of
extending the normal design concept to critical software. Of course, further and
more conclusive validation is still required and we are working closely with in-
dustrial partners to exercise the framework on further real-world safety critical
problems. A wider application of the pattern to other software engineering do-
mains is also under investigation.

The case-study as presented was cut-down to its most important, and complex,
aspects to fit within the page limit. Most of the routine detail was omitted, but
in its original form it was based directly on an industrial avionics example,
and from a conceptual viewpoint the POSE pattern worked well. However, as
size and complexity grow the desirability for tool support to handle the detail,
the more mundane tasks and keeping track of progress is greatly increased. Tool
support for POSE is ready to start development, based on an existing, successful
commercial tool for safety-critical analysis and assurance.

Acknowledgements

We are pleased to acknowledge the financial support of IBM, under the Eclipse
Innovation Grants. Thanks also go to our colleagues in the Centre for Research in
Computing and the Computing Department at The Open University, especially
Michael Jackson. The comments of the three anonymous reviewers have helped
in improving the paper greatly.

References

1. Vincenti, W.G.: What Engineers Know and How They Know It: Analytical Studies
from Aeronautical History. The Johns Hopkins University Press (1990)

2. Maibaum, T.: Mathematical foundations of software engineering: a roadmap. In:
ICSE 2000, King’s College, London (2000)

3. Jackson, M.: Problem frames and software engineering. Information and Software
Technology 47(14) (2005) 903-912

4. Mannering, D., Hall, J.G., Rapanotti, L.: Relating safety requirements and system
design through problem oriented software engineering. Technical Report 2006/11,
Open University, Dept. of Computing (2006)

5. Hall, J.G., Rapanotti, L., Jackson, M.A.: Problem oriented software engineering.
Technical Report 2006/10, Open University, Dept. of Computing (2006)

6. Jackson, M.A.: Problem Frames: Analyzing and Structuring Software Development
Problem. 1st edn. Addison-Wesley Publishing Company (2001)

7. Cox, K., Hall, J.G., Rapanotti, L., eds.: Proceedings of ICSE 1st International
Workshop on Applications and Advances of Problem Frames, IEEE CS Press (2004)

8. Cox, K., Hall, J.G., Rapanotti, L., eds.: Journal of Information and Software
Technology: Special issue on Problem Frames. Volume 47. Elsevier (November
2005)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Towards Normal Design for Safety-Critical Systems 411

Hall, J.G., Rapanotti, L., Cox, K., Jin, Z.: Proceedings of the 2nd International
Workshop on Advances and Applications of Problem Frames, ACM SIGSOFT
(2006)

SAE: ARP4761: Guidelines and methods for conducting the safety assessment
process on civil airborne systems and equipment. Technical report (December 1996)
Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans-
actions on Software Engineering and Methodology VI(1) (1997) 1-30

Courtois, P.J., Parnas, D.L.: Documentation for safety critical software. In: 15th
International Conference on Software Engineering, Baltimore, USA (1997) 315-323
van Lamsweerde, A.: Requirements engineering in the year 00: A research per-
spective. In: ICSE’00, 22nd International Conference on Software Engineering,
Limerick (2000)

Bharadwaj, R., Heitmeyer, C.: Developing high assurance avionics systems with
the SCR requirements method. In: Proceedings. DASC. The 19th. Volume 1. (2000)
pages 1D1/1 -1D1/8

Leveson, N.G.: Completeness in formal specification language design for process-
control systems. Proceedings of the third workshop on Formal methods in software
practice 2000, Portland, Oregon. ACM Press (2000) 2000

Leveson, N.G.: Intent specifications: An approach to building human-centered spec-
ifications. IEEE Transactions on Software Engineering Vol. 26(1) (2000) 15-35

de Lemos, R., Saeed, A., Anderson, T.: On the integration of require-
ments analysis and safety analysis for safety-critical systems. Technical Report
http://citeseer.ist.psu.edu/536230.html, University of Newcastle upon Tyne (1998)
UK-MoD: Safety management requirements for defence systems part 1 require-
ments. Interim Defence Standard 00-56 Issue 3, MoD (17 December 2004)
RTCA/DO-178B: Software considerations in airborne systems and equipment cer-
tification. Technical report (December 1 1992)

Zave, P., Jackson, M.A.: Four dark corners of requirements engineering. ACM
Transactions on Software Engineering and Methodology 6(1) (1997) 1-30
Gunter, C.A., Gunter, E.L., Jackson, M., Zave, P.: A reference model for require-
ments and specifications. IEEE Software 17(3) (2000) 37-43

Coad, P.: Object oriented patterns. Communications of the ACM 35(9) (1992)
152-160

Rapanotti, L., Hall, J.G., Jackson, M.: Problem-oriented software engineering:
solving the package router control problem. Technical report 2006/07, Open Uni-
versity, Dept. of Computing (2006)

Rapanotti, L., Hall, J.G., Li, Z.: Deriving specifications from requirements through
problem reduction. 153(5) (October 2006) 183-210

Mannering, D., Hall, J.G., Rapanotti, L.: A problem-oriented approach to normal
design for safety-critical systems. Technical Report 2006/14, Centre for Research
in Computing (2006)

Vesely, W., Goldberg, F., Roberts, N., Haasl, D.: Fault Tree Handbook. Volume
NUREG-0492. U.S. Nuclear Regulatory Commission (1981)

Hilton, A.J., Townson, G., Hall, J.G.: FPGAs in critical hardware/software sys-
tems. In: FPGA 2003, Proceedings of the ACM/SIGDA International Symposium
on Field Programmable Gate Arrays. (2003) 244

Hilton, A., Hall, J.G.: Developing critical systems with PLD components. In
Margaria, T., Massink, M., eds.: FMICS ’05: Proceedings of the 10th international
workshop on Formal methods for industrial critical systems, New York, NY, USA,
ACM Press (2005) 72-79

	Introduction
	Background and Related Work
	Problem Oriented Software Engineering
	A Problem-Oriented Approach to Safety Analysis

	The Case Study
	The process
	A DC Candidate Architecture
	Problem Simplification
	Formalising the Requirements
	Preliminary Safety Analysis (PSA)

	Discussion and Conclusions

