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ABSTRACT

Aim Biotic interactions – within guilds or across trophic levels – have widely

been ignored in species distribution models (SDMs). This synthesis outlines the

development of ‘species interaction distribution models’ (SIDMs), which aim to

incorporate multispecies interactions at large spatial extents using interaction

matrices.

Location Local to global.

Methods We review recent approaches for extending classical SDMs to

incorporate biotic interactions, and identify some methodological and

conceptual limitations. To illustrate possible directions for conceptual

advancement we explore three principal ways of modelling multispecies

interactions using interaction matrices: simple qualitative linkages between

species, quantitative interaction coefficients reflecting interaction strengths, and

interactions mediated by interaction currencies. We explain methodological

advancements for static interaction data and multispecies time series, and outline

methods to reduce complexity when modelling multispecies interactions.

Results Classical SDMs ignore biotic interactions and recent SDM extensions

only include the unidirectional influence of one or a few species. However, novel

methods using error matrices in multivariate regression models allow interactions

between multiple species to be modelled explicitly with spatial co-occurrence

data. If time series are available, multivariate versions of population dynamic

models can be applied that account for the effects and relative importance of

species interactions and environmental drivers. These methods need to be

extended by incorporating the non-stationarity in interaction coefficients across

space and time, and are challenged by the limited empirical knowledge on spatio-

temporal variation in the existence and strength of species interactions. Model

complexity may be reduced by: (1) using prior ecological knowledge to set a

subset of interaction coefficients to zero, (2) modelling guilds and functional

groups rather than individual species, and (3) modelling interaction currencies

and species’ effect and response traits.

Main conclusions There is great potential for developing novel approaches that

incorporate multispecies interactions into the projection of species distributions

and community structure at large spatial extents. Progress can be made by:

(1) developing statistical models with interaction matrices for multispecies

co-occurrence datasets across large-scale environmental gradients, (2) testing the

potential and limitations of methods for complexity reduction, and (3) sampling

and monitoring comprehensive spatio-temporal data on biotic interactions in

multispecies communities.
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INTRODUCTION

Whether the impacts of climate change on biodiversity and

species distributions can be accurately predicted remains

unclear. Theoretical and empirical studies suggest that biotic

interactions play an important role in determining the

response of species and communities to changing environ-

ments (Araújo & Luoto, 2007; Heikkinen et al., 2007; Kissling

et al., 2007; Tylianakis et al., 2008; Gilman et al., 2010). The

lack or limited incorporation of biotic interactions within

forecast models might therefore be one reason for their failure

to predict the consequences of global change on species and

ecosystems (Gilman et al., 2010; Kissling et al., 2010). Thus

far, little emphasis has been given to incorporating biotic

interactions into species distribution models at large spatial

scales (Pearson & Dawson, 2003; Araújo & Luoto, 2007;

Heikkinen et al., 2007; Schweiger et al., 2008).

A species’ niche may be defined as encompassing the

combinations of conditions that allow a species to survive in a

region (i.e. a population growth rate r > 0; Hutchinson, 1957,

1978). These conditions include abiotic (i.e. physical–chemi-

cal) environment factors, and also abiotic and biotic consum-

able resources (e.g. soil nutrients, plants, animal prey) and the

whole biotic interaction milieu (e.g. competitors, predators or

prey, pathogens or hosts etc.) (Hutchinson, 1957, 1978).

Quantifying species’ niches may also require models that

account for the impacts of species on the ecological commu-

nities they inhabit (Chase & Leibold, 2003). This includes

ecosystem engineers and apex consumers, which may exert

massive impacts on their biotic and abiotic environment

(Linder et al., in review). However, translating species’ niches

into geographic distributions is a complex and difficult task

(Holt, 2009), and the modelling of spatio-temporal dynamics

in multispecies communities remains a significant challenge in

ecology (Solé & Bascompte, 2006).

In this paper, we provide a synthesis of how biotic

interactions can be modelled. Our goal is to stimulate the

development of novel models for the projection of large-scale,

multispecies distribution patterns. We focus on species that

interact locally and where those interactions scale-up to coarse

spatial extents and resolutions. Such models should allow

interactions between multiple species to be estimated simul-

taneously, enabling projections of spatial and temporal

patterns of species assemblages in changing environments.

We start by summarizing how classical species distribution

models (SDMs; Elith & Leathwick, 2009) have recently been

extended to incorporate biotic interactions to a limited extent

(‘SDM extensions’). We then review principal ways of

modelling multispecies interactions and illustrate promising

new tools for incorporating multispecies interactions via

interaction matrices. Collectively, we refer to these novel

approaches as ‘species interaction distribution models’

(SIDMs). SIDMs offer novel avenues for modelling multispe-

cies assemblages across large spatial extents and for describing

the structure of species assemblages that could arise under

global environmental change.

BIOTIC INTERACTIONS IN SPECIES

DISTRIBUTION MODELS

Biotic interactions have been modelled and quantified using a

diversity of methods that cover a range of spatial extents

(Table 1). In contrast to the many traditional models that

mainly focus on local spatial extents (Table 1) and fine

resolutions (e.g. 10 · 10 m vegetation plots), SDMs aim to

model species distributions across large extents by linking

observation records (usually presence-only or presence/

absence data) to abiotic environmental variables (Elith &

Leathwick, 2009). These classical SDMs usually neglect biotic

interactions. A range of different statistical methods is used to

fit response surfaces (Elith et al., 2006), which can also be

extrapolated to assess the effects of climate change on species

distributions by using climatic surfaces from a range of

regional or global circulation models.

Numerous assumptions are made during model fitting and

subsequent application of classical SDMs (Guisan & Thuiller,

2005), including the assumption that biotic interactions are

equally strong and important across the entire species’ range

and unimportant for range dynamics at large spatial scales. In

most cases, the coarse resolutions (e.g. 10 · 10 km) of SDM

applications are used to justify the omission of biotic

interactions (Pearson & Dawson, 2003). However, it remains

unclear how biotic interactions scale-up from local to global

scales and whether coarse grain sizes of sampling units are

unsuitable for detecting and representing biotic interactions.

Additionally, the projection of SDMs into the future assumes

that the strength and direction of biotic interactions remain

stable over space and time even though a wide range of

empirical studies show that species interactions are altered by

global environmental change (Tylianakis et al., 2008).

An increasing awareness of the importance of biotic

interactions has stimulated attempts to incorporate species

interactions into the classical SDM framework. These SDM

extensions include the following.
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1. Adding an interacting species as additional predictor. This is

the most straightforward and widely used approach for SDM

extensions and has been implemented for a variety of

interaction types. For instance, competition between trees

has been considered by adding plot-level predictors repre-

senting frequency or count data (Leathwick & Austin, 2001),

basal area (Rouget et al., 2001), or proportion data (Meier

et al., 2010) of co-occurring tree species. Similarly, the

distribution of host plants has been added as a predictor to

model butterfly distributions (Araújo & Luoto, 2007; Preston

et al., 2008). Interactions between animals have also been

attempted, e.g. by using occurrence data of woodpeckers

(providing nesting cavities for secondary cavity nesters) to

model their effects on owl distributions (Heikkinen et al.,

2007).

2. Modelling the distributions of interacting species separately by

using abiotic variables, and then representing interactions by

restricting the distribution of one species to the modelled

distribution of the other. This approach has been implemented

for butterfly distributions that can be restricted to the

distribution of their larval host plants (Schweiger et al., 2008,

2012). It differs from 1 (above) by minimizing potential

problems of false absences of the butterfly due to missing host

plants and collinearity within regression models when a

predictor species responds to similar ecological factors as the

response species.

3. Integrating classical SDMs with process-based models of biotic

interactions. This has been predominantly applied to plant

species distributions by modelling bioclimatic limits and

physiological representations of competition for resources

(e.g. light and water) as derived from process-based forest gap

models (e.g. Lischke et al., 2006; Hickler et al., 2012). These

models can be combined with classical SDM approaches (e.g.

Meier et al., 2011b).

Table 1 Examples of how biotic interactions have been quantified and modelled. The list is intended to exemplify various approaches but is

not intended to be exhaustive.

Model type Biotic interaction

Spatial

extent

Implementation of

interaction Data Reference(s)

Species

distribution

models

Competition,

facilitation,

trophic

interactions

Regional

to global

Additional predictors in

statistical models or

constraining model

predictions to the

presence of interacting

species

Frequency or count

data, basal area,

proportional

abundance,

presence/absence,

presence-only

(all georeferenced)

Leathwick & Austin (2001),

Rouget et al. (2001), Araújo &

Luoto (2007), Heikkinen et al.

(2007), Schweiger et al. (2008,

2012), Meier et al. (2010,

2011a)

Lotka–Volterra

models

Competition,

predator–prey,

host–parasitoid

Local Differential equations with

interaction coefficients

Density data,

simulations

Lotka (1925), Volterra (1926),

Nicholson & Bailey (1935),

May (1973), Solé &

Bascompte (2006)

Zone of influence

models

Plant competition Local Modelling overlap of

individuals’ areas of

influence

Physiological data of

resource uptake

Gates & Westcott (1978),

Schiffers et al. (2011)

Population

dynamic

models

Competition,

host–parasitoid

Local to

regional

Discrete-time stochastic

Gompertz model,

coupled-map lattice

model

Abundance data, e.g.

time-series from

trapping, surveys and

counts

Mutshinda et al. (2009, 2011)

Epidemiological

models

Infectious diseases Local to

global

Wavelet time series analysis,

individual-based models,

stage-based (susceptible,

infected, recovered,

SIR) models

Frequency of outbreaks,

abundance,

transmission rates,

demographic rates,

behavioural data, etc.

Grenfell et al. (2001), Keeling

et al. (2001)

Multivariate

regression

models

Competition,

facilitation,

mutualism

Local to

regional

Spatial associations in

residuals of regression

models (cross-covariance

matrices)

Presence/absence,

abundance

Banerjee et al. (2008), Latimer

et al. (2009), Ovaskainen et al.

(2010), Sebastián-González

et al. (2010)

Dynamic

vegetation

models

Plant competition Landscape

to global

Simulation of individuals,

cohorts or populations

competing for resources

(e.g. space, light or water)

Mathematical functions

for growth, mortality,

establishment etc.

Lischke et al. (2006), Prentice

et al. (2007), Rüger et al.

(2008)

Ecological

networks

Mutualistic

interactions,

food webs,

host–parasitoid

Local Analysis of linkages

between species, network

properties

Presence/absence of

feeding links, per capita

interaction strengths,

visitation frequencies

Berlow et al. (2004), Wootton

& Emmerson (2005), Scotti

et al. (2007), Ings et al. (2009)
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These examples illustrate how biotic interactions are

increasingly represented within extensions of classical SDMs.

However, in most cases only one or a few species that

potentially interact with a target model species are included

and data usually come from a single snapshot in time. In all

cases, the interaction type is unidirectional, i.e. one species

depends on one or several others (Fig. 1a), and reciprocal

effects of interactions have usually been neglected. Most

important, species interactions have not been explicitly (or

directly) modelled and are usually assumed to be static in space

and time. Hence, the classical SDM framework with its

extensions needs to be complemented by SIDMs, which

explicitly model interactions among multiple species.

PRINCIPAL WAYS OF MODELLING

INTERACTIONS BETWEEN MULTIPLE SPECIES

In addition to simple unidirectional interaction effects that

have occasionally been used in SDM extensions (Fig. 1a; see

above), we distinguish three ways of describing biotic

interactions for multispecies systems: (1) simple qualitative

linkages between species (Fig. 1b), (2) quantitative interaction

(a)

(b)

(c)

(d)

Figure 1 Graphical representations (left)

and matrix representation (right) of

interactions between species. (a)

Unidirectional, i.e. one species is affected by

others (as typically implemented in

extensions of classical species distribution

models), (b) multispecies interactions

quantified by simple linkages between species

pairs, (c) multispecies interactions where the

strength of interaction is included

(interaction coefficients), and (d)

interactions mediated by currencies (e.g.

resources). In (c) and (d) the thickness of

arrows represents the strength of interactions

(thickness is proportional to values in the

interaction matrix). Column and row names

(in bold) of the matrices refer to species

(numbers 1–4) and currencies (letters A and

B). In (d) the first matrix represents the

impact of a species on currencies (e.g.

resources) whereas the second matrix

represents the currency requirements of

species (i.e. the effect of the currency on the

species). Pairwise species interactions (e.g.

highlighted in grey for species pair 1–2) can

thus be unidirectional and asymmetric (a),

reciprocal and symmetric in strength (b),

reciprocal and asymmetric in strength (c),

and via mediating currencies (d).

W. D. Kissling et al.
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coefficients that reflect interaction strengths (Fig. 1c), and (3)

parameters describing how each species has an effect on, and

responds to, interaction currencies that mediate interactions

(i.e. resources or conditions, Fig. 1d). All three approaches can

be described by interaction matrices (either between species, or

between species and interaction currencies; Fig. 1b–d). These

interaction matrices quantify the effects of many species upon

each other for each species pair, either as pairwise interaction

coefficients or as functions that describe how pairwise

interactions depend on other factors (e.g. environmental

variables). Pairwise interactions can also be retrieved from

interaction currencies. An advantage of using interaction

currencies is that pairwise interactions between species do not

need to be quantified directly, but emerge indirectly from

modelling the dependencies of species on currencies. In the

following, we illustrate these principal ways of modelling

multispecies interactions via interaction matrices.

Simple linkages between species

Many ecological studies are interested in discovering whether

interactions occur between species in a community (Fig. 1b).

This approach typically investigates communities of a single

locality. Interactions can be summarized with a matrix Z of

size S2, where S is the number of species. If species i interacts

with species j this is indicated by Zij = 1, and Zij = 0 indicates

no interaction. Such binary information (0 = no interaction,

1 = interaction occurs) has played a key role in ecological

network studies (Montoya et al., 2006; Bascompte & Jordano,

2007) where simple linkages between species in a community

context have been described for food webs (e.g. Zij = 1

indicating consumption), mutualistic networks (e.g. Zij = 1

indicating flower visitation in a plant–pollinator network), or

host–parasitoid networks (e.g. Zij = 1 indicating parasitism)

(Ings et al., 2009). Recent network studies have discovered new

structural patterns in community-level interactions (Montoya

et al., 2006; Bascompte & Jordano, 2007) that can help to

simplify the parameterization of SIDMs (see section ‘Ways to

reduce complexity’, below). However, no study has yet

extended the essentially non-spatial network approach to

actual species distribution data or modelled species’ distribu-

tions or species’ niches along large-scale environmental

gradients. The review of Dale & Fortin (2011) considers some

aspects of this challenge. For instance, network theory could be

extended to analyse ‘graph of graphs’ where each node of a

spatial graph contains a network of multispecies interactions

(Dale & Fortin, 2011). Another starting point for extending the

network approach to a spatial domain could be the ‘niche

model’ of Williams & Martinez (2000) where diet breadth and

food web interactions are modelled using simple assumptions

along a one-dimensional trophic niche space (a resource axis).

This model has been developed further to describe binary (0/1)

interactions in a probabilistic way, which enables likelihood

and Bayesian approaches to parameterize the model (Williams

et al., 2010). Network models such as the niche model are

usually parameterized with data from local food webs.

However, this approach could be combined with data across

environmental gradients and provides a route to predicting

how species interact across large spatial extents.

Interaction coefficients defined by interaction

strengths

Moving beyond binary information on linkages between

species, interaction coefficients can describe the strength of

the effect of one species on another, and vice versa (Fig. 1c).

Pairwise interactions have traditionally been represented as

interaction coefficients describing the per capita effects of one

species on the growth rate of a population of the other species,

e.g. for the dynamics of two species competing by direct

interference (Lotka, 1925; Volterra, 1926; May, 1973; Solé &

Bascompte, 2006) or for modelling host–parasitoid interac-

tions using discrete (rather than continuous) generation life

cycles (Nicholson & Bailey, 1935). Interaction strengths for

competitive interactions can also be specified by quantifying

species’ relative positions along a resource axis and then

calculating the overlap of their utilization curves (MacArthur

& Levins, 1967; MacArthur, 1972, pp. 40–41). In ecological

networks such as food webs, numerous measures of predator–

prey interaction strength have been applied, ranging from

simple linear Lotka–Volterra interaction coefficients to more

complex (i.e. nonlinear) prey density-dependent coefficients

and even multiple predator interference (see reviews by Berlow

et al., 2004; Wootton & Emmerson, 2005). In mutualistic

interactions such as plant–frugivore and plant–pollinator

networks, interaction frequencies are often considered to be

surrogates for interaction strengths (Vázquez et al., 2005;

Scotti et al., 2007).

Interactions mediated by interaction currencies

A third conceptual approach for modelling species interactions

is to describe how interactions are mediated by interaction

currencies (Fig. 1d). We use the term ‘interaction currency’ to

include not only resources (which can be consumed, i.e.

bionomic variables sensu Hutchinson, 1978), but also other

non-consumable environmental conditions that mediate inter-

actions (e.g. modulated environmental variables sensu Linder

et al., in review). For instance, plants can alter temperature

conditions beneath their canopies and planktonic organisms

can alter pH, but none of these interaction currencies is

actually consumed. Ideally, currencies should be chosen to

capture the most important/limiting factors for the interacting

species. In the classical resource–consumer framework, inter-

action currencies are resources and species interactions are

modelled via their impacts on and requirements for these

resources (May, 1973; Chase & Leibold, 2003). A major

advantage is that the explicit description of species’ effects on

and responses to interaction currencies can yield more realistic

multispecies models. For instance, food web models that

represent energetic and chemical elements as interaction

currencies can ensure that thermodynamic and chemical

Modelling multispecies interactions
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principles are obeyed, which is generally not the case for

models based on pairwise interaction coefficients (Woodward

et al., 2005). Moreover, interactions mediated via interaction

currencies have also been widely implemented in forest models

(Bugmann, 2001; Lischke et al., 2006; Rüger et al., 2008) and

dynamic vegetation models (Hickler et al., 2004; Prentice

et al., 2007), where inter- or intra-specific competition for

light, space and water (and in some cases nitrogen) are

modelled via empirical or physiology-based mathematical

functions describing resource competition, growth and demo-

graphic processes of establishment and mortality.

EXAMPLES OF MODELLING MULTISPECIES

INTERACTIONS WITH INTERACTION MATRICES

USING SPECIES DISTRIBUTION DATA

We now explore how these interaction matrices may be

applied to species distribution data. Possibly the simplest way

to incorporate biotic interactions into classical SDMs is to use

the presence of one species as a predictor for the focal species

or restricting the model of one species to a model of the other

(see above). However, this only models a one-way interaction

(i.e. unidirectional rather than reciprocal interactions)

(Fig. 1a) and does not generally estimate interaction coeffi-

cients between species (Fig. 1b–d). The modelled interaction

will further be biased towards zero if the presence/absence of

the predictor species is not known with certainty because extra

noise added by misclassifications will reduce the observed

correlation between the presences of the two species (Gustaf-

son, 2004, Chapter 3). This approach suffers from at least two

additional methodological problems: when a species is used as

a predictor variable (e.g. prey or host plants) and a responding

species (e.g. predators or herbivores) shares similar ecological

or environmental niches, multicollinearity between predictor

species and environmental variables can lead to problems.

Then it is unclear whether the presence of the chosen

predictor species or specific ecological conditions determine

the focal species’ occurrence. Additionally, the range of

suitable environmental conditions for the responding species

may be outside the range of the predictor species. Classical

SDMs would recognize such empty cells as ‘unsuitable

environmental (climatic) conditions’ and not as ‘missing

predictor species’. At least partially, such problems may be

circumvented by explicitly including an interaction matrix in a

simultaneous analysis of several species (Fig. 2). The precise

way in which this is done will depend on the details of the

ecological system, the model, and the data available. We

outline two basic examples (Fig. 2). The first is based on static

distribution data (Fig. 2a) and the second on temporal

abundance dynamics (Fig. 2b). We also discuss challenges

for modelling non-stationarity in interaction strengths across

space and time.

Static distributions modelled in the error matrix

of multiple regression models

Using a static snapshot of presence/absence patterns, multi-

variate logistic regressions can model species’ co-occurrences

via residual co-variation in the error matrices (Fig. 2a;

Ovaskainen et al., 2010; O’Hara & Zimmermann, in prep.).

The easiest way to understand these models is to see them as

threshold models: there is an unobserved latent variable, yi,

that represents the propensity for species i to be present. If this

latent variable has a value that exceeds a threshold, t, then the

species is present (i.e. if yi > t). The latent variable can then be

modelled in the same way as in regression or generalized linear

modelling (using a matrix X with environmental variables and

a vector b with regression coefficients):

yi ¼ Xibþ ei:

This is identical to a logistic regression if the residual error

(ei) follows a logistic distribution. When assuming that ei is

normally distributed, then this model is identical to a

generalized linear model with a probit link function.

Growth
rate

Interaction matrix

E
nv

iro
nm

en
ta

l c
ov

ar
ia

te
s

Occurrence

Probability 
of presence

Residual
(co-)variation

(a) Static distributions (b) Temporal dynamics

Previous
abundance

Occurrence

Residual
(co-)variation

Time series of multispecies 
abundances

Spatial presence/ 
absence data

Figure 2 Schematic representation of two

methods for modelling multispecies

co-occurrences using interaction matrices.

(a) Static distributions (e.g. spatial presence/

absence data) can be used to model species’

co-occurrences in the error matrices of

multivariate logistic regressions, whereas (b)

temporal dynamics (e.g. time-series of

multispecies abundances) can be modelled

with multivariate versions of population

dynamic models. Both approaches rely on

quantification of the interaction matrix,

which describes pairwise interactions for

multiple species pairs. See text for more

details.
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The advantage of the normal error approach is that it can be

extended to more than one species (e.g. Ovaskainen et al.,

2010; O’Hara & Zimmermann, in prep.). In this case, each

species has its own latent variable and their errors, ei, are

correlated. For example, errors can be drawn from a multi-

variate normal distribution (MVN): ei � MVN(0, R), with R

being a correlation matrix with non-zero covariance (the scale

of the latent variable is arbitrary, so its residual variance can be

set to 1, and hence this covariance matrix is also the correlation

matrix; Chib & Greenberg, 1998). Naı̈vely, this correlation is

the interaction strength mentioned in the previous section

(measured on the scale of the latent variable): a positive

covariance means that if one species has a higher latent

variable, the other is more likely to have a higher latent

variable, so their joint probability of presence is higher.

Of course, a correlation between two species’ presences

might not necessarily be the effect of a direct interaction. It

may also be caused by a common response to an environmen-

tal driver variable (e.g. both species prefer a warm climate). If

the responses of the latent variable for species 1 and 2 to an

environmental gradient, X, are linear with slopes b1 and b2,

then the covariance between the latent variables is b1 b2Var(X)

+ q12, where q12 is the residual correlation of the latent variable

(i.e. the correlation term in the matrix R). Thus, we can test

whether apparent interactions between species are due to

measured covariates (e.g. environmental variables) which allow

us to estimate the effects of interactions through the correlation

matrix R while accounting for environmental variables

(Fig. 2a). Yet it must always be remembered that there could

be additional unobserved factors that jointly influence several

species which would change the estimate of q12.

This idea of modelling correlations can be extended to cases

where the driver variable is unknown. Conceptually, this is the

same approach as factor analysis (Manly, 2004; Chapter 7),

which assumes that correlations between species result from a

small number of unobserved latent variables, i.e. like covariates

in a regression where the covariate is unobserved. This

approach forms the basis of the joint modelling of densities

of occurrences of species by Latimer et al. (2009) where single

species models are built with the spatial variation in incidence

quantified as a smooth surface representing the decay in

correlation between pairs of points with distance. The

co-occurrences between species can then be modelled by

quantifying such surfaces for each species and by relating those

to the other species’ presences through a spatial weight matrix

of cross-covariance parameters (Latimer et al., 2009).

Statistical methods can also be used to model interactions

mediated by resources or other interaction currencies (as

described in the previous section) or for describing the effects of

ecosystem engineers (see Linder et al., in review). If the

interaction currency is known and measured, then it can be

used as a covariate in the analysis, similar or additional to

environmental covariates. However, even if it is not, a latent

(i.e. unknown) interaction currency can be modelled: if species

1 produces (or requires) c of the interaction currency per

individual and the latent variable of species 2 is increased (or

decreased) by an amount d per unit interaction currency. The

covariance between species is then cdr1
2 + q (noting again that

the latent variables have a residual variance of 1), where r1
2 is

the total variance in the population size of species 1. If the

interaction currency has not been measured, this model should

be interpreted with caution as a supposed ‘currency’ may just

represent the effect of an unmeasured environmental driver.

Temporal dynamics modelled with multispecies time

series

Correlations between two species’ presences or abundances can

be caused by several factors, which cannot be disentangled

from spatial occurrence data alone, unless all drivers that affect

species’ distributions are known a priori. However, if time

series of multispecies co-occurrences (e.g. abundances) are

available, the effects and relative importance of environmental

stochasticity, environmental drivers, and inter-/intraspecific

interactions can be estimated (Fig. 2b). Temporal fluctuations

of species abundances have been modelled with multivariate

versions of population dynamic models for single communities

(Mutshinda et al., 2009, 2011), but could in principle be

extended to whole range dynamics [for a discussion of range

dynamics of a single species see Pagel & Schurr (2011) and

Schurr et al. (in review)].

If the log-abundances x of two species i at time t are xi(t) for

i = 1,2 and for simplicity we assume Gompertz dynamics

(Mutshinda et al., 2009), then the interactions based on

abundance data can be modelled as

x1ðt þ 1Þ ¼ x1ðtÞ þ r1 1� x1ðtÞ þ a12x2ðtÞ
K1

� �
þ e1ðtÞ

x2ðt þ 1Þ ¼ x2ðtÞ þ r2 1� x2ðtÞ þ a21x1ðtÞ
K2

� �
þ e2ðtÞ

where ri and Ki are the intrinsic growth rate and the carrying

capacity of species i, respectively, and ei(t) is the environmental

noise (Mutshinda et al., 2009, 2011). The interaction matrix

described previously enters the model through the a terms.

Interaction coefficients are usually asymmetric, i.e. in general

a12 „ a21. Responses to a common environment will enter

through effects on e1(t) and e2(t), which can be decomposed

into the specific effects of these environmental factors plus any

residual effects (Mutshinda et al., 2011).

An interaction currency (e.g. a common resource) can be

included in the model, but it depends on the time scale of the

interaction of the currency use and the species’ responses. If, for

instance, the production and use of a resource is fast compared

to the time scale of the population dynamics, then a12 will

require a term cd (using the same notation and argument as

above). In contrast, if resource production and use is slow, then

a dynamic notation should be added for the resource, c(t):

cðt þ 1Þ ¼ cðtÞ þ cx1ðtÞ � dx2ðtÞ þ e3ðtÞ

which is equivalent to treating the resource as a species, but

with an infinite carrying capacity. In general, the model
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outlined here captures the dynamics of a single multispecies

assemblage through effects on and responses to interaction

currencies. The model is essentially non-spatial and needs

extension to many sites in order to model species distributions

across large spatial extents.

With presence/absence data the model can be combined

with the latent variable approach above to model correlated

changes in species presences, i.e. xi(t) is a latent variable. This

approach has been used to model the presence of waterbird

species breeding in artificial irrigation ponds (Sebastián-

González et al., 2010) where the presence/absence of each

species is attributed to a set of (environmental and spatial)

covariates and also to the presence of con- and heterospecifics

in the previous year and the presence of heterospecifics in the

same year (Fig. 2b). To describe meta-community dynamics

across large spatial extents, such descriptions of local commu-

nity dynamics have to be integrated with estimates of long-

distance dispersal (Schurr et al., in review). In this context, a

mechanistic understanding of dispersal is particularly valuable

(currently most developed for plants, Nathan et al., 2008)

which quantifies how biotic exchange between local commu-

nities will depend on interspecific variation in functional traits

(Schurr et al., 2007) and environmental variation (Kuparinen

et al., 2009).

Varying interactions over space and time

Most models described above assume that the parameters (i.e.

interactions) are constant over the spatial and temporal scales

considered. However, it is reasonable to expect that interaction

effects vary in space (Schemske et al., 2009) and time (Olesen

et al., 2008; Petanidou et al., 2008). For instance, butterflies

and herbivorous insects can change food plants in space and

time, competition between plants may vary across environ-

mental gradients, and pollinators might only be active during

particular seasons. The spatial and temporal resolution of data

thus becomes an important issue. In classical SDMs with fine

resolution data (e.g. vegetation plots), statistical parameters

have been added to describe the spatial and environmental

dependencies of unidirectional species interactions (e.g. Leath-

wick & Austin, 2001). Coarse resolutions (e.g. 10 · 10 km grid

cells) will introduce higher within-cell heterogeneity (both in

space and time), which adds noise to the biotic interaction

signal. Multispecies distribution data at fine spatial and

temporal resolutions covering large spatial extents are there-

fore best suited for developing and testing SIDMs. With the

availability of sophisticated methods for rigorous statistical

inference the modelling of such data sets becomes increasingly

manageable (Hartig et al., in review; Marion et al., in review).

Alternatively, spatial scaling functions may be incorporated

that link interaction parameters and their environmental

dependencies between resolutions.

For regression models a number of methods have been

developed to describe spatial non-stationarity in parameter

estimates by the modelling of one or more smooth surfaces

over space (e.g. Fotheringham et al., 2002; Banerjee et al.,

2008; Finley, 2011; Hothorn et al., 2011). So far, these

approaches have only been used to incorporate the spatial

non-stationarity of environmental predictor variables (e.g.

Finley et al., 2009; Finley, 2011). In contrast, forest growth

and dynamic vegetation models explicitly simulate spatial

variation in the outcomes of competition, but these models

are not generally applicable to a large number of species from

different organism groups or to large spatial extents with fine

resolutions. Spatial and temporal non-stationarity of param-

eter estimates describing species interactions will be an

important component for the future development of SIDMs

(Table 2).

WAYS TO REDUCE COMPLEXITY

Modelling large spatial and temporal data sets with multiple

interacting species and spatially (and maybe temporally)

varying parameter estimates and non-stationary covariance

structures will obviously produce considerable challenges for

statistical model fitting. For instance, the number of param-

eters in a pairwise interaction matrix increases as the square of

the number of species which can make it impractical to

estimate all parameters. A number of statistical methods exist

to reduce the complexity in the modelling (Table 2), including

approximations for spatial processes (e.g. Banerjee et al.,

2008), model selection procedures (Burnham & Anderson,

2002; O’Hara & Sillanpää, 2009), or shrinkage methods, which

simultaneously estimate parameters whilst shrinking the

unimportant ones towards zero (Tibshirani, 1996; Reineking

& Schröder, 2006). However, statistical methods are not

guaranteed to find a correct or biologically sensible answer. We

thus advocate making use of our ecological knowledge to

reduce the complexity of interaction matrices. We highlight a

number of ways (Fig. 3) how this can be achieved through

applying ecological knowledge and developing ecological

theory.

Using prior ecological knowledge to set interaction

coefficients to zero

One way to reduce the size of a full interaction matrix (Fig. 3a)

is to set some interaction coefficients to zero by using a priori

ecological knowledge about species interactions (Fig. 3b). Such

information may come from natural history knowledge (often

being published in the grey literature rather than the primary

literature) or from experiments, e.g. if some species are known

not to interact or if interactions are judged irrelevant for

determining a species’ distribution. For ecosystem engineers,

the massive impact of one or several species (‘modulators’

sensu Linder et al., in review) on a range of other species may

be used to reduce the complexity of the full interaction matrix

by only including the unidirectional influence of ecosystem

engineers or modulators in the model (reciprocal effects can

usually be ignored). Another common approach is to use

community modules (Gilman et al., 2010) – groups of few

species known to interact strongly (e.g. a predator–prey
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module composed of a lion and medium- to large-sized

ungulates). Some community modules are particularly well

studied, for instance in food webs (Amarasekare, 2008).

Ecological networks may also hold useful information that

could reduce the complexity of the interaction matrix. For

instance, many networks are: (1) very heterogeneous (the bulk

of the species have few interactions, but a few species are much

more connected than expected by chance), (2) nested

(specialists have a subset of generalists’ interactions) and

compartmentalized (some groups of species interact more

among them than with the rest of the species), and (3) built on

weak and asymmetric links among species (Montoya et al.,

2006; Bascompte & Jordano, 2007). This knowledge may be

useful to reduce the number of interactions that have to be

considered in models. For instance, the connectance of

empirical food webs (i.e. the number of realized links, L,

divided by the total number of possible links, S2) decreases

hyperbolically with the number of species S (Montoya & Solé,

2003). Thus, for 100 species (for example) the connectance is

around 0.1 and only 10% of possible interactions are realized.

Other examples include searching for forbidden links (i.e.

potential links among species that are not realized; Olesen

et al., 2011), asymmetrical links (strong symmetrical links are

more or less absent in food webs and mutualistic networks,

except where the interaction is very intimate, e.g. plant–ant

domatia relationships; Bascompte et al., 2006), or modularity

(modules consist of strongly connected species which are

weakly interlinked with other modules; Olesen et al., 2007).

Any inference must account for the fact that links might only

be observed at certain time periods (e.g. seasonal dynamics;

Olesen et al., 2008; Petanidou et al., 2008).

Modelling guilds and functional groups

A large body of ecological literature has focused on defining

groups of species with similar ecological, physiological or

morphological characteristics (Simberloff & Dayan, 1991;

Smith et al., 1997). Often termed guilds, functional groups

or functional types, such groups of species are a potentially

useful way to reduce model complexity (Fig. 3c). This might

be particularly helpful when investigating global change effects

on biotic communities (Rüger et al., 2008; Küster et al., 2011).

In animal studies, the guild concept has been applied to define

groups of species that exploit the same class of environmental

resources (e.g. food or suitable habitat) in a similar way

(Simberloff & Dayan, 1991), e.g. for modelling environmental

responses of bird species with similar dietary preferences across

large spatial extents (Kissling et al., 2011). Recently, there have

been suggestions for animal ecology to develop more com-

prehensive grouping schemes that consider traits other than

those involved in resource acquisition (Blaum et al., 2011). In

plant ecology, global scale vegetation patterns (at equilibrium)

can be predicted from climate and soil characteristics assuming

simple competition rules between such functional types

(Prentice et al., 1992). Dynamic global vegetation models

(DGVMs) and landscape-scale process-based forest models use

Table 2 Important components for the future development of approaches to modelling biotic interactions in multispecies assemblages

across large spatial extents.

Component Related references (as a starting point)

Statistical models

Models for spatial multispecies co-occurrence patterns Latimer et al. (2009), Ovaskainen et al. (2010), O’Hara & Zimmermann,

in prep.

Models applying interaction matrices to temporal patterns of

multispecies co-occurrences

Mutshinda et al. (2009, 2011), Sebastián-González et al. (2010)

Exploratory and predictive models for spatio-temporal data Fotheringham et al. (2002), Banerjee et al. (2008), Fink et al. (2010),

Hothorn et al. (2011)

Models incorporating spatial non-stationarity of parameters Banerjee et al. (2008), Finley et al. (2009), Finley (2011), Hothorn et al.

(2011)

Methods for complexity reduction

Statistical methods (approximation of spatial processes, model

selection, shrinkage methods, etc.)

Tibshirani (1996), Burnham & Anderson (2002), Reineking & Schröder

(2006), Banerjee et al. (2008), O’Hara & Sillanpää (2009)

A priori ecological knowledge (ecological networks, modules, apex

consumers, ecosystem engineers etc.)

Bascompte & Jordano (2007), Olesen et al. (2007), Gilman et al. (2010),

Linder et al., in review

Functional group classifications (guilds, functional types, etc.) Simberloff & Dayan (1991), Smith et al. (1997), Rüger et al. (2008),

Blaum et al. (2011)

Interaction currencies and effect and response traits (trait-based

community models)

Lavorel & Garnier (2002), Eviner & Chapin (2003), McGill et al. (2006),

Suding et al. (2008)

Data collection and quantification of interaction patterns

Collecting long-term time-series of multispecies distribution and

abundance patterns

Woiwod & Harrington (1994), Sauer et al. (2007)

Quantifying how interaction strength and effectiveness vary with

environment, space and time

Berlow et al. (2004), Wootton & Emmerson (2005), Olesen et al. (2008),

Schemske et al. (2009)
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a large number of physiological and demographic parameters

to determine the outcome of competition for resources among

plant functional types (Prentice et al., 2007; Rüger et al.,

2008). Overall, functional group-based approaches to com-

plexity reduction (Fig. 3c) seem to be particularly useful for

modelling biotic interactions when data on responses of

individual species are scarce, for example in species-rich

tropical ecosystems or for studies with a global spatial extent.

In most cases, these approaches are used within a trophic level

but applications across trophic levels might also be possible.

For instance, in plant–pollinator interactions flowers are

classified as being pollinated by specific groups (guilds) of

insects according to their morphology (‘pollination syn-

dromes’, e.g. Faegri & van der Pijl, 1979). This could reduce

the complexity of the interaction matrix, but often this does

not mean that the pollinators of particular plant species can be

predicted (Ollerton et al., 2009). An interesting avenue for

future research could be to use functional groups defined by

species’ position within interaction networks, e.g. by ordering

species by their topological importance within the network

(e.g. important connectors or generalist consumers, e.g.

Montoya et al., 2009; Guimerá et al., 2010), by interaction

strengths, or by trait-related network parameters (e.g. degree of

size matching; Stang et al., 2009).

Modelling interaction currencies and effect

and response traits

The classification of species into discrete categories (e.g. guilds,

functional groups or plant functional types) is sensible if the

traits, which are relevant for interactions, vary more between

categories than within. However, it has been shown that plant

species classified into the same functional group may show

large variation in interaction-relevant traits (Wardle et al.,

1998) and many plant species can have unique trait combi-

nations (Eviner & Chapin, 2003). Discrete categorizations may

then be of limited use if they miss a large proportion of

interspecific variation or require an excessive number of

categories. It has been suggested that categorical classification

of communities should be replaced by continuous trait-based

descriptions whenever possible (Eviner & Chapin, 2003;

McGill et al., 2006). Continuous trait-based descriptions could
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Figure 3 Simplified schematic examples for reducing the complexity and dimensionality when modelling biotic interactions in variable

environments. (a) A full interaction matrix with S2 species quantifies all possible species-by-species interaction coefficients and how they

vary as a function of e environmental conditions. (b) Based on a priori ecological knowledge the number of interacting species is smaller

than in the full interaction matrix because some species are known not to interact (from field studies, experiments, ecological networks, or

natural history information). (c) Aggregating species into groups with similar biological, ecological, physiological or morphological char-

acteristics allows the modelling of guilds, functional groups, or functional types. (d) Modelling species’ impacts and responses to interaction

currencies (e.g. consumable resources, microclimatic conditions, or pollination and seed dispersal services) can reduce the complexity if the

number of interaction currencies is smaller than the number of species. (e) The impacts and responses of species as derived from modelling

continuous species’ effect and response traits. Here, quantitative traits (rather than species) are used to describe the responses to, and

impacts on, specific currencies that mediate interactions.
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reduce the dimensionality of the interaction matrix if species

interactions can be described via their impacts on, and

requirements for, shared currencies (Fig. 3d).

The development of such trait-based community models

involves two conceptual steps. The first step simplifies the full

interaction matrix into a matrix quantifying how each species

affects interaction currencies, and a second matrix describing

how each species responds to these currencies (Figs 1d & 3d).

These interaction currencies are not only consumable

resources (e.g. nutrients, prey) but also microclimatic condi-

tions (light, temperature) or pollination and seed dispersal

services (i.e. non-consumable factors that mediate interac-

tions). The second step replaces species-specific effects and

responses by quantitative traits, which describe how trait

values affect a given interaction currency (‘effect traits’) and

how in turn they respond to that currency (‘response traits’)

(Fig. 3e; see also Lavorel & Garnier, 2002; McGill et al., 2006;

Suding et al., 2008). For instance, plant competition might be

mediated through seed mass, relative growth rate, leaf

characteristics and plant height (Lavorel & Garnier, 2002),

frugivory and seed dispersal might be affected by fruit size,

energy content and body size (Schurr et al., 2009; Peters et al.,

2010), and body size and stoichiometry may determine the

strength of trophic interactions (Brown et al., 2004; Wood-

ward et al., 2005). The complexity will be reduced when the

number of interaction currencies (step 1) and the number of

traits (step 2) are smaller than the number of species. Such

trait-based approaches typically move the focus from the

responses of single species to community-level changes in

ecosystem structure and functioning, an approach that might

not always be desirable (McGill et al., 2006).

CONCLUSIONS

Our synthesis suggests that there are promising new ways to

model multispecies interactions using interaction matrices.

Interaction matrix 

Methods for complexity reduction 

Trait 
information 

Prior 
knowledge 

Functional 
classification 

Spatial 
processes 

Model 
selection 

Shrinkage 
methods 

Statistical methods Ecological methods 

Environmental 
co-variates Error matrix 

Data on multispecies assemblages  

Spatial, temporal, or spatio-temporal co-occurrences (e.g. 
presence/absences or abundances of species)   

Interaction data (e.g. presence/absence, strength, or effectiveness of 
interactions)  

Species-level information (e.g. functional roles, trait information, life history 
data, behaviour, etc.) 

Species 
interaction 

distribution model 
(SIDM) 

Figure 4 A general framework for

implementing species interaction distribution

models (SIDMs). Data on multispecies

assemblages are combined with methods for

complexity reduction to estimate the

interaction matrix. The interaction matrix

together with environmental covariates

and the error matrix are used to specify

the final SIDM.

Modelling multispecies interactions

Journal of Biogeography 39, 2163–2178 2173
ª 2011 Blackwell Publishing Ltd



These novel approaches – collectively referred to as SIDMs –

provide a general framework for modelling multispecies

assemblages (summarized in Fig. 4). Although no single SIDM

will fit all biotic interaction types across all spatial and

temporal extents and grain sizes, a number of features emerge

that are particularly important for the future development of

such models (Table 2). We suggest the following areas as

research priorities.

1. Statistical modelling. There is a general paucity of modelling

studies estimating interaction coefficients for multispecies

assemblages (interaction matrices) across multiple sites and/or

multiple time-steps. The recent increase in ecological network

studies is promising but most are non-spatial (i.e. come from a

single location) and/or have no temporal dimension. An

important step will be the development and testing of

statistical models that allow spatial, temporal, and spatio-

temporal multispecies co-occurrence data to be modelled.

Estimating and quantifying the non-stationarity of interaction

coefficients across space and time will become important here.

Models explicitly including interaction currencies are largely

lacking and their reliability and applicability needs to be tested.

2. Methods for complexity reduction. Ecological and statistical

methods for complexity reduction are available and might be

useful in particular circumstances (see above). However, it is

unclear which ecological aspects of community-level dynamics

and species interactions can be adequately captured if the

complexity of the interaction matrix is reduced. For instance,

the variability of effect and response traits and their relation-

ships to interaction currencies across large-scale environmental

and spatial gradients is largely unexplored. Additionally,

complexity reduction through functional groupings based on

species’ positions within ecological networks is a promising

research avenue. Overall, complexity reduction approaches

(both ecological and statistical) have not yet been widely tested

nor embedded into a statistical framework suitable for

projecting large-scale multispecies assemblages under environ-

mental change.

3. Collating comprehensive spatio-temporal data on multispecies

systems. There are few time-series of multispecies abundance

dynamics available across large-scale environmental gradients,

which limits our ability to infer biotic interactions. Most

existing datasets are either purely spatial (e.g. no temporal but

a large geographic extent) or purely temporal (e.g. time-series

of multispecies abundances, but only from few local sites), and

interaction types, strengths or currencies are usually not

measured. Our review reinforces the importance of establish-

ing and maintaining long-term and large-scale ecological

monitoring programmes that measure abundances, interaction

strengths, and interaction currencies for multiple species,

locations and time steps. If possible, these monitoring

programmes should be complemented by manipulative exper-

iments that directly measure the same interactions. For

instance, there is an urgent need to collect data on how

interaction parameters of multiple species (e.g. presence/

absence, strength, and effectiveness of interactions) vary with

environmental conditions and along geographic gradients.

Particularly needed are multispecies distribution data at fine

spatial and temporal resolutions covering large spatial extents.

We are far from being able to accurately predict the

consequences of global change for ecological communities and

human well-being. Given the central role of biotic interactions

in the origin and maintenance of biodiversity, we see a pressing

need to develop novel models, which incorporate the effects of

multispecies interactions into the projection of species distri-

butions and community structure across large spatial extents.

The methods and studies illustrated in our synthesis suggest

that realistic progress in the development of SIDMs can be

made in the coming decade and we have highlighted where

important steps forward can be made.
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