
 Open access  Journal Article  DOI:10.1103/PHYSREVD.101.124055

Towards numerical relativity in scalar Gauss-Bonnet gravity: 3 +1 decomposition
beyond the small-coupling limit — Source link 

Helvi Witek, Helvi Witek, Leonardo Gualtieri, Paolo Pani

Institutions: University of Illinois at Urbana–Champaign, King's College London, Sapienza University of Rome

Published on: 15 Jun 2020 - Physical Review D (American Physical Society)

Topics: Theory of relativity, Numerical relativity, General relativity, Scalar (mathematics) and Coupling constant

Related papers:

 New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories

 Black holes and binary mergers in scalar Gauss-Bonnet gravity: scalar field dynamics

 Black hole hair in generalized scalar-tensor gravity: An explicit example

 Dilatonic black holes in higher curvature string gravity

 Observation of Gravitational Waves from a Binary Black Hole Merger

Share this paper:    

View more about this paper here: https://typeset.io/papers/towards-numerical-relativity-in-scalar-gauss-bonnet-gravity-
hxwdxzzexk

https://typeset.io/
https://www.doi.org/10.1103/PHYSREVD.101.124055
https://typeset.io/papers/towards-numerical-relativity-in-scalar-gauss-bonnet-gravity-hxwdxzzexk
https://typeset.io/authors/helvi-witek-ydzv69iz8p
https://typeset.io/authors/helvi-witek-ydzv69iz8p
https://typeset.io/authors/leonardo-gualtieri-2o6wb4a65n
https://typeset.io/authors/paolo-pani-46a2owuke2
https://typeset.io/institutions/university-of-illinois-at-urbana-champaign-1mpdu76r
https://typeset.io/institutions/king-s-college-london-1zpc3ckw
https://typeset.io/institutions/sapienza-university-of-rome-1cpc8o4e
https://typeset.io/journals/physical-review-d-agj9oh33
https://typeset.io/topics/theory-of-relativity-2n00abg4
https://typeset.io/topics/numerical-relativity-37lr8awr
https://typeset.io/topics/general-relativity-skfoyinj
https://typeset.io/topics/scalar-mathematics-1avhv9h6
https://typeset.io/topics/coupling-constant-2dujspfv
https://typeset.io/papers/new-gauss-bonnet-black-holes-with-curvature-induced-53t00k1b09
https://typeset.io/papers/black-holes-and-binary-mergers-in-scalar-gauss-bonnet-274hc3yjn5
https://typeset.io/papers/black-hole-hair-in-generalized-scalar-tensor-gravity-an-3sinb20smq
https://typeset.io/papers/dilatonic-black-holes-in-higher-curvature-string-gravity-1b7f0czfry
https://typeset.io/papers/observation-of-gravitational-waves-from-a-binary-black-hole-4rh4uhrtr9
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/towards-numerical-relativity-in-scalar-gauss-bonnet-gravity-hxwdxzzexk
https://twitter.com/intent/tweet?text=Towards%20numerical%20relativity%20in%20scalar%20Gauss-Bonnet%20gravity:%203%20+1%20decomposition%20beyond%20the%20small-coupling%20limit&url=https://typeset.io/papers/towards-numerical-relativity-in-scalar-gauss-bonnet-gravity-hxwdxzzexk
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/towards-numerical-relativity-in-scalar-gauss-bonnet-gravity-hxwdxzzexk
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/towards-numerical-relativity-in-scalar-gauss-bonnet-gravity-hxwdxzzexk
https://typeset.io/papers/towards-numerical-relativity-in-scalar-gauss-bonnet-gravity-hxwdxzzexk


 

Towards numerical relativity in scalar Gauss-Bonnet gravity: 3 + 1
decomposition beyond the small-coupling limit

Helvi Witek ,
1,2,*

Leonardo Gualtieri ,
3,†

and Paolo Pani
3,‡

1
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
2
Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom

3
Dipartimento di Fisica, “Sapienza” Universitá di Roma & Sezione INFN Roma 1,

P.A. Moro 5, 00185 Roma, Italy

(Received 13 April 2020; accepted 29 May 2020; published 25 June 2020)

Scalar Gauss-Bonnet gravity is the only theory with quadratic curvature corrections to general relativity

whose field equations are of second differential order. This theory allows for nonperturbative dynamical

corrections and is therefore one of the most compelling case studies for beyond-general relativity effects in

the strong-curvature regime. However, having second-order field equations is not a guarantee for a healthy

time evolution in generic configurations. As a first step toward evolving black-hole binaries in this theory,

we here derive the 3þ 1 decomposition of the field equations for any (not necessarily small) coupling

constant, and we discuss potential challenges of its implementation.

DOI: 10.1103/PhysRevD.101.124055

I. INTRODUCTION

Gravitational-wave (GW) observations are providing us

with novel tests of general relativity (GR) in the strong-

field/highly dynamical regime and of fundamental physics

at large [1–5]. These tests will become increasingly more

accurate in the near future, owing to a better sensitivity of

the GW interferometers and to the large number of mergers

to be detected in future runs.

While there is no shortage of observational data, the

theoretical modeling of beyond-GR effects in the non-

linear regime of gravity is the real bottleneck of this kind of

tests. Indeed, current tests of gravity based on the inspiral-

merger-ringdown signal from a black-hole coalescence

either adopt phenomenological waveforms [6,7] or focus

separately on the phases of the coalescence that can be

studied perturbatively, namely the inspiral [8] and the

ringdown [9] (see Refs. [2,5] for further reviews). This

is due to the fact that studying a black-hole coalescence in a

modified theory of gravity is a formidable task that has only

recently been attacked for a few theories admitting a per-

turbative treatment of the field equations [10–13]. These

studies will be highly informative to develop a consistent

inspiral-merger-ringdown waveform in extensions of GR

at the perturbative level, but fail to capture any possible

nonperturbative dynamics that might significantly affect the

GW signal precisely in the hitherto poorly explored merger

phase. An example of such a nonperturbative effect is the

dynamical scalarization in neutron-star binaries in some

scalar-tensor theories [14–16], and a similar effect is

expected for binary black holes in a certain class of theories

with quadratic curvature corrections [17,18].

It is thus of utmost importance to study extensions of

GR in their full glory, i.e., beyond a perturbative regime.

However, in such an attempt one would face two major

challenges. First, many extensions of GR are constructed as

effective field theories and, as such, they are perturbative by

construction [2]; if treated nonperturbatively, these theories

lead to instabilities and other pathologies [19]. Second,

even for the subclass of theories that are not manifestly

pathological, it is unclear (i) how to set up an initial-value

problem, i.e., how to write the field equations as a set of

first-order-in-time independent differential equations (in

this case we call the problem “well formulated”); (ii) if the

problem is well posed, i.e., if it admits a unique solution

with continuous dependence on given initial data [20].

Proving well-posedness of a theory is very challenging

(see, e.g., [21]) and, in fact, solving this problem in GR

took several decades (see Ref. [22–24] for a review). A

proof of well-posedness beyond GR has been recently

obtained, but only for the simplest theories (namely, the so-

called Bergmann-Wagoner scalar-tensor theories [25,26]),

in Einstein-Æther theory [27], and for higher derivative

theories such as Horndeski or Lovelock gravity in the

weak-field regime [28–30]. Clearly, extending such results

to a well-motivated, nonperturbative modified theory of

gravity would be extremely important.

With these motivations in mind, here we study scalar

Gauss-Bonnet (sGB) gravity—the only theory with quad-

ratic curvature corrections to GR whose field equations are
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of second differential order [4,31–33]. While this theory

can be studied perturbatively [34,35], its differential struc-

ture does not make it manifestly pathological even when

treated exactly. However, having second-order field equa-

tions is not a guarantee for a healthy time evolution in

generic configurations [36,37]. This has only been shown

in spherically symmetric configurations [38,39], where it

was found that the character of the equations governing

the spherical collapse in sGB changes from hyperbolic to

elliptic in some spacetime regions and for open sets of

initial data.

As a first step toward evolving black-hole binaries, here

we present the 3þ 1 decomposition of the field equations

for any (not necessarily small) coupling constant, and we

preliminarily discuss the possibility of a well-formulated

and well-posed time evolution.

II. ACTION AND EQUATIONS OF MOTION

The action describing sGB gravity involving a real,

massless scalar field Φ is given by [4,31–33]

S ¼ 1

16π

Z

d4x
ffiffiffiffiffiffi

−g
p �

ð4ÞR −
1

2
ð∇ΦÞ2 þ αGB

4
fðΦÞRGB

�

;

ð1Þ

where ð4ÞR is the four-dimensional Ricci scalar, αGB is

the dimensionful coupling constant, and fðΦÞ is a func-

tion coupling the scalar field to the Gauss-Bonnet (GB)

invariant

RGB ¼ ð4ÞR2 − 4ð4ÞRab
ð4ÞRab þ ð4ÞRabcd

ð4ÞRabcd: ð2Þ

ð4ÞRabcd and ð4ÞRab are the four-dimensional Riemann and

Ricci tensors, respectively. In the following we will employ

geometric units G ¼ 1 ¼ c. Typical choices of the scalar

function are (i) the dilaton coupling fðΦÞ ¼ eΦ [32] (which

also appears in low-energy effective actions from string

theory); (ii) the linear coupling fðΦÞ ¼ Φ, for which

the theory is shift symmetric [4,40], i.e., invariant for

Φ → Φþ const; and (iii) the class of couplings for which

f0ð0Þ ¼ 0, such as fðΦÞ ¼ Φ
2 and fðΦÞ ¼ eΦ

2

− 1

[17,18,41,42], which can lead to spontaneous scalarization

of black holes, i.e., to dynamical formation of nonpertur-

bative scalar field configurations.For other possible choices

of the coupling function, see, e.g., Refs. [43,44]. In this

paper we shall consider general coupling functions. We

shall not consider more complicated sGB gravity theories,

such as those with a scalar potential [45,46] or those with

further coupling terms linear in the curvature tensor [47].

In the limit αGB → 0, sGB gravity reduces to GR with a

minimally coupled scalar field; the modification of GR is

thus given by the GB coupling term αGBfðΦÞRGB. While

the theory can be studied in a perturbative regime

where αGBfðΦÞRGB ≪ ð4ÞR, here we do not assume this

small-coupling limit and are interested in the case in which

the constant αGB can take any finite value. For instance, in

the case of a stationary black hole of mass M, the

dimensionless quantity αGB=M
2 can be as large as

∼0.1–1 [32,33,40,48].

Varying the action (1) with respect to the scalar field Φ

and metric gab yields the field equations

□Φ ¼ −
αGB

4
f0ðΦÞRGB; ð3aÞ

Gab ¼
1

2
TΦ

ab −
αGB

8
Gab; ð3bÞ

where f0 ≡ df=dΦ, Gab ¼ ð4ÞRab − 1=2gab
ð4ÞR, and the

canonical scalar field energy-momentum tensor is

TΦ

ab ¼ ∇aΦ∇bΦ −
1

2
gab∇

c
Φ∇cΦ: ð4Þ

The modification due to the GB term reads [32,33]

Gab ¼ 2gcðagbÞdϵ
edfg∇h½�Rch

fgf
0∇eΦ�

¼ 16ð4ÞRc
ðaCbÞc þ 8Ccdðð4ÞRacbd − g

ð4Þ
abRcdÞ

− 8CGab − 4ð4ÞRCab; ð5Þ

where �Rab
cd ¼ ϵabefð4ÞRefcd is the dual Riemann tensor,

ϵabcd is the totally antisymmetric Levi-Civita symbol, and

we have defined the tensor

Cab ¼ ∇a∇bfðΦÞ ¼ f0∇a∇bΦþ f00∇aΦ∇bΦ; ð6Þ

with C ¼ gabCab. To derive the time evolution formulation

of sGB gravity we employ the gravitoelectric and

gravitomagnetic decomposition of the four-dimensional

Weyl tensor Wabcd. In terms of the latter, the GB invariant

RGB and the tensor Gab can be expressed as

RGB ¼ WabcdW
abcd − 2ð4ÞRab

ð4ÞRab þ 2

3

ð4ÞR2; ð7aÞ

Gab ¼ 8ð4ÞRc
ðaCbÞc − 4Cð4ÞRab −

8

3

ð4ÞRðCab − gabCÞ

þ 8Ccd

�

Wacbd −
1

2
gab

ð4ÞRcd

�

: ð7bÞ

III. TIME EVOLUTION FORMULATION

We here derive a formulation of the sGB field equa-

tions (3) as a time evolution problem. We therefore extend

standard methods of numerical GR in 3þ 1 dimensions;

see, e.g., [49].
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A. Decomposition of the spacetime

The basis of any formulation of a gravitational theory as

a time evolution problem is the decomposition of spacetime

into a set of spatial hypersurfaces ðΣt; γijÞ labeled by a time

parameter t and with 3-metric γij given by the space

components of γab ¼ gab þ nanb. Here na denotes the

timelike unit vector normal to the hypersurface and is

normalized to nana ¼ −1. The spatial metric defines a

projection operator

γba ¼ δba þ nanb; ð8Þ

with γban
b ¼ 0 by construction. The line element takes the

form

ds2 ¼ gabdx
adxb

¼ −ðα2 − βkβkÞdt2 þ 2γijβ
idtdxj þ γijdx

idxj; ð9Þ

where α and βi are the lapse function and shift vector,

respectively. We denote the covariant derivative and

Riemann curvature tensor associated with the spatial metric

γij by Di and Rijkl, respectively. Similarly, Rij and R are,

respectively, the Ricci tensor and the Ricci scalar associated

with the spatial metric. To complement the description of

spacetime we introduce the extrinsic curvature

Kij ¼ −γciγ
d
j∇cnd ¼ −

1

2
Lnγij; ð10Þ

where Ln ¼ 1

α
ð∂t − LβÞ is the Lie derivative along na and

Lβ the Lie derivative along the shift vector β
i. Analogously,

we introduce the “momentum” associated with the scalar

field

KΦ ¼ −LnΦ: ð11Þ

We now proceed by deriving the equations of sGB gravity

in terms of ðγij;ΦÞ and their momenta ðKij; KΦÞ, combined

with an appropriate gauge choice for ðα; βiÞ.

B. Dynamical variables

In this section we summarize a set of new dynamical

variables and shorthand notations that we will use in the

derivation of the sGB time evolution problem.

Decomposition of the auxiliary scalar field tensor: We

decompose the auxiliary tensor Cab given in Eq. (6) into its

normal and spatial components. The different projections

with the operator defined in Eq. (8) yield

Cnn ¼ Cabn
anb

¼ f00K2

Φ
−
f0

α
DkαDkΦ − f0LnKΦ; ð12aÞ

Ci ¼ −γain
bCab

¼ f00KΦDiΦþ f0DiKΦ − f0Kj
iDjΦ; ð12bÞ

Cij ¼ γaiγ
b
jCab

¼ f0ðDiDjΦ − KΦKijÞ þ f00DiΦDjΦ: ð12cÞ

Trace-free decomposition: We further decompose the

extrinsic curvature Kij and the intrinsic (spatial) curvature

determined by the three-dimensional Ricci tensor Rij into

their trace and trace-free parts

Kij ¼ Aij þ
1

3
γijK; Rij ¼ Rtf

ij þ
1

3
γijR: ð13Þ

Here, tf denotes the trace-free part of a spatial tensor

defined by Xtf
ij ¼ Xij −

1

3
γijX with trace X ¼ γklXkl. Our

convention for the Ricci tensor is as follows:

Rij ¼ ∂kΓ
k
ij − ∂iΓ

k
jk þ Γ

k
klΓ

l
ij − Γ

k
ilΓ

l
jk; ð14Þ

where Γ
k
ij is the Christoffel symbol associated with the

spatial metric γij. In the following we use as dynamical

variables Aij, K, the three-metric γij, the scalar field Φ, and

the scalar field momentum KΦ.

Decomposition of the Weyl tensor: We define the

gravitoelectric and gravitomagnetic components of the

Weyl tensor Wabcd,

Eij ¼ γaiγ
b
jn

cndWacbd; ð15aÞ

Bij ¼ γaiγ
b
jn

cnd�Wacbd; ð15bÞ

respectively, where �Wabcd denotes the dual Weyl tensor.

The Weyl tensor can be expressed in terms of Eij and Bij

as [49]

Wabcd ¼ 2ðla½cEd�b − lb½cEd�a

−n½cBd�eϵ
e
ab − n½aBb�eϵ

e
cdÞ; ð16Þ

where ϵijk is the three-dimensional Levi-Civita tensor

(ϵabc ¼ ndϵdabc), and

lab ¼ gab þ 2nanb ¼ γab þ nanb: ð17Þ

Note that

WabcdW
abcd ¼ 8ðEijEij − BijBijÞ; ð18Þ

which contributes to the GB invariant RGB; see Eq. (7a).

We now derive a geometric relation between the extrinsic

curvature and the gravitoelectric and gravitomagnetic fields

defined in Eqs. (15). Therefore, we decompose the Weyl

tensor in terms of the 3þ 1 variables, i.e., in terms of the 3-

metric and extrinsic curvature. By inserting the resulting

expression in Eqs. (15) we find
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Eij ¼
1

2

�

LnAij þ Rtf
ij þ

1

α
½DiDjα�tf

�

þ 1

3
γijA

2 þ 1

6
KAij;

ð19aÞ

Bij ¼ ϵðij
klDkAjjÞl ; ð19bÞ

where A2 ≡ AklAkl. Note that these relations are of purely

geometric origin and so are independent of the specific field

equations. By construction the gravitoelectric and gravito-

magnetic parts of the Weyl tensor are trace-free and spatial,

i.e., γijEij ¼ 0, Eabn
a ¼ 0, and likewise for Bij.

Auxiliary tensors: To write the sGB constraint and

evolution equations in a compact form, we may find it

useful to employ quantities obtained in vacuum GR as

shorthand. In particular, we introduce

HGR ¼ 2Gabn
anb ¼ R − A2 þ 2

3
K2; ð20aÞ

MGR
i ¼ −γain

bGab ¼ DkAik −
2

3
DiK: ð20bÞ

Note that HGR ¼ 0 and MGR
i ¼ 0 are the constraint

equations in vacuum GR. We find it useful to employ

the expression for the gravitoelectric field in vacuum GR as

shorthand. Therefore we take the geometric, i.e., theory-

independent, relation (19a) and substitute LnAij with the

corresponding dynamical (i.e., theory-dependent) evolution

equation obtained in GR. That is, we insert

LnAij ¼ −
1

α
½DiDjα�tf þ Rtf

ij − 2AikA
k
j þ

1

3
KAij ð21Þ

into Eq. (19a), and we find

EGR
ij ¼ Rtf − AikA

k
j þ

1

3
KAij þ

1

3
γijA

2: ð22Þ

Note that γijEGR
ij ¼ 0.

C. Kinematic evolution equations

The geometric relations (10), (11) determine the

kinematic evolution equations for the spatial metric and

scalar field. In terms of the dynamical variables defined in

Sec. III B they are given by

dtΦ ¼ −αKΦ; ð23aÞ

dtγij ¼ −2α

�

Aij þ
1

3
γijK

�

; ð23bÞ

where dt ≡ ∂t − Lβ. We remark that Eqs. (23) are not

affected by the GB coupling: the kinematic evolution

equations in sGB gravity coincide with those of GR (with

a minimally coupled scalar field). This is because the latter

decomposition is of purely geometric nature and therefore

viable for any metric theory of gravity. The dynamics of a

specific theory are determined by its field equations. To

derive the time evolution formulation of sGB gravity, we

need to apply the spacetime split introduced in Sec. III A to

the equations of motion (3).

D. Constraints

We obtain the constraint equations of sGB gravity by

contracting the tensor field equations (3b) with the normal

vector na. The modified Hamiltonian constraint becomes

H ¼ HGR

�

1 −
αGB

3
C

�

−
1

2
ðK2

Φ
þDk

ΦDkΦÞ

þ 2αGBE
GR
kl C

tf kl; ð24Þ

where C ¼ γijCij and Ctf
ij denotes the trace-free part of the

spatial scalar tensor Cij given in Eqs. (12). The momentum

constraint is given by

Mi ¼ MGR
i −

1

2
KΦDiΦþ αGBE

GR
ij Cj −

αGB

6
HGRCi

þ αGBðCj
½iM

GR
j� − ϵijkC

j
lB

klÞ; ð25Þ

where the scalar tensors have been defined in Eqs. (12) and

HGR andMGR
i are given in Eqs. (20). In the limit αGB → 0

the constraints (24) and (25) reduce to those of GR

minimally coupled to a scalar field.

E. Dynamical evolution equations

We obtain the dynamical, i.e., model-dependent, evolu-

tion equations by decomposing the scalar field equation (3a)

and by fully projecting the tensor field equations (3b) on

the spatial hypersurfaces. Here, we express equations in

terms of the Lie derivative along the normal vector; we

remind the reader that it is related to the time derivative

via LnX ¼ 1

α
dtX ¼ 1

α
ð∂t − LβÞX.

The scalar field momentum KΦ evolves according to

0 ¼ −LnKΦ −DkDkΦþ KKΦ −
1

α
Dk

ΦDkα

−
αGB

4
f0RGB; ð26Þ

where the GB invariant can be written as

RGB ¼ −
4

3
HGR

�

LnK þ 1

α
DkDkα − A2 −

1

3
K2

�

þ 8EGRkl

�

LnAkl þ
1

α
½DiDjα�tf þ AjkA

j
l

�

− 8BklB
kl þ 4MGR

k MGRk; ð27Þ

in terms of the Arnowitt-Deser-Misner variables.
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The time evolution of the trace of the extrinsic curvature

is determined by

0 ¼ −

�

1 −
αGB

3
C

��

LnK þ 1

α
DkDkα − A2 −

1

3
K2

�

−
αGB

2
Ctf klLnAkl þ

1

2
K2

Φ

−
αGB

2
Ctf kl

�

EGR
kl þ 1

α
½DkDlα�tf þ AkjA

j
l

�

þ αGB

4
HGR

�

Cnn þ
1

3
C

�

− αGBM
GR
k Ck; ð28Þ

where we have used the Hamiltonian constraint (24).

The auxiliary variable Cnn, defined in Eq. (12a), can be

rewritten in terms of the GB invariant as

Cnn ¼ Cþ αGB

4
ðf0Þ2RGB þ f00ðK2

Φ
−Dk

ΦDkΦÞ; ð29Þ

where C ¼ γijCij is the trace of the spatial scalar

field tensor given in Eq. (12c) and we inserted the

evolution equation (26). That is, we have traded terms

∼LnKΦ with terms ∼ðLnK;LnAijÞ “hidden” in the GB

invariant (27).

Finally, comparing the spatial projection of the tensor

field equations (3b) with the geometric relation (19a) yields

the evolution equation for Aij,

0 ¼ −Hij
kl

�

LnAkl þ
1

α
½DiDjα�tf þ AkmA

m
l

�

þ αGB

3
Ctf
ij

�

LnK þ 1

α
DkDkα − 3A2 −

1

3
K2

�

−
1

2
½DiDjΦ�tf þ ð1þ αGBCnnÞEGR

ij

− αGB½MGR
ði CjÞ�tf − 2αGBϵði

klBjÞkCl: ð30Þ

Here, we introduced the operator

Hijkl ¼ γkðiF jÞl −
1

3
γijF kl; ð31Þ

with

F ij ¼
�

1 −
αGB

3
C

�

γij þ 2αGBC
tf
ij: ð32Þ

The system of equations (26), (28), and (30) is still coupled

in a nontrivial way. Therefore, we write it in matrix form

and analyze the resulting coefficient matrix in detail.

Specifically we obtain

0

B

B

B

@

1 −
αGB
3
f0HGR 2αGBf

0EGRkl

0 1 −
αGB
3
Cþ α2

GB

12
f02ðHGRÞ2 αGB

2
Ctf kl −

α2
GB

2
f02HGREGRkl

0 −
αGB
3
Ctf
ij þ

α2
GB

3
f02HGREGR

ij Hij
kl − 2α2GBf

02EGR
ij EGRkl

1

C

C

C

A

0

B

@

LnKΦ

LnK

LnAkl

1

C

A
¼

0

B

@

SΦ

SK

SA
ij

1

C

A
; ð33Þ

where the (time independent) source terms are given by

SΦ ¼ −DiDiΦþ KKΦ −
1

α
DiαDiΦþ αGB

3
f0HGR

�

1

α
DiDiα − A2 −

1

3
K2

�

− 2αGBf
0EGRkl

�

1

α
½DiDjα�tf þ AkjA

j
l

�

þ αGBf
0ð2BklB

kl −MGR
k MGRkÞ; ð34aÞ

SK ¼ −ð1 − αGB

3
Cþ α2GB

12
f02ðHGRÞ2Þ

�

1

α
DkDkα − A2 −

1

3
K2

�

þ 1

2
K2

Φ
þ αGB

4
f00HGRðK2

Φ
−Dk

ΦDkΦÞ

−
1

2
ðαGBCtf kl þ α2GBf

02HGREGRklÞ
�

1

α
½DkDlα�tf þ AkmA

m
l

�

−
α2GB
4

f02HGRð2BklBkl −MGRkMGR
k Þ

− αGB

�

CkMGR
k −

1

3
CHGR þ 1

2
Ctf klEGR

kl

�

; ð34bÞ

SA
ij ¼

�

αGB

3
Ctf
ij −

α2GB
3

f02HGREGR
ij

��

1

α
DkDkα − A2 −

1

3
K2

�

þ 2αGBϵði
klBjÞkCl − αGB½MGR

ði CjÞ�tf

− ðHij
kl − 2α2GBf

02EGR
ij EGRklÞ

�

1

α
½DkDlα�tf þ AkmA

m
l þ

1

3
γklA

2

�

−
1

2
½DiDjΦ�tf þ EGR

ij ð1þ αGBCþ αGBf
00½K2

Φ
−Dk

ΦDkΦ�Þ − α2GBf
02EGR

ij ð2BklBkl −MGRkMGR
k Þ: ð34cÞ
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The above system of dynamical equations, supplemented

by the constraint equations (24) and (25), is one of the main

results of this work.

IV. ON THE FORMULATION OF THE

EVOLUTION EQUATIONS

A time evolution of the dynamical equations of sGB

gravity should first of all be well formulated; i.e., it should

be written as a system of first-order-in-time field equations.

In addition, it should be well posed; i.e., there should be a

unique solution with continuous dependence on given

initial data. In this section we shall discuss separately

these two requirements.

A. Looking for a well-formulated set of equations

Equations (33) form a linear system in ðLnKΦ;LnK;
LnAklÞ, i.e., in the Lie derivatives along the normal vector

(describing the time evolution) of the dynamical variables

KΦ, K, and Aij. The Lie derivatives of the other dynamical

variables, Φ and γij, are given by the kinematical evolution

equations discussed in Sec. III C. The matrix components

and the source terms in Eq. (33), instead, depend on the

entire set of dynamical variables fΦ; γij; KΦ; K; Aklg and

on their space derivatives.

The form (33) is not appropriate for a well-formulated

time evolution problem, because the components of the

vector ðLnKΦ;LnK;LnAklÞ are not independent. Indeed,

the symmetric and traceless tensor Aij has nine compo-

nents, but only five of them are independent. Note that

LnAkl is symmetric but not traceless; however, it has five

independent components due to the relation γklLnAkl ¼
−2A2 [see Eq. (19a)]. Therefore the trace-free part of LnAij

is given by

LnAij ¼ LnAij
tf −

2

3
γklA

2: ð35Þ

Note also that LnAij appears in Eq. (33) multiplied by the

trace-free tensors Ctf
ij, E

GR
ij , and Hij

kl; therefore only its

trace-free part, LnAij
tf , contributes to Eq. (33).

To extract a set of independent degrees of freedom,

we decompose Aij and LnAij
tf in a basis of symmetric-

trace-free (STF) tensors as suggested in [50] (see also [51],

Chap. 1). Following the notation of [50], we denote the

components of an lth rank STF tensor Ti1���il as ThLi.
For l ¼ 2, ThLi ¼ Tij symmetric and traceless, and (we

remind the reader that repeated indices i; j;… are summed

from 1 to 3)

T2m ¼ Yij2mTij Tij ¼ N2

X

2

m¼−2

Y�
ij2mT2m; ð36Þ

Nl ¼ 4πl!=ð2lþ 1Þ!! and

Yij2m ¼ N−1
2

Z

zhijiY�
2mðθ;ϕÞdΩ; ð37Þ

where zhiji ¼ zhizji ¼ zðizjÞ − 1

3
δij, zi ¼ ðsin θ cosϕ;

sin θ sinϕ; cos θÞ, � denotes complex conjugation, and

Ylmðθ;ϕÞ are the spherical harmonics.

Therefore, defining the variables Am and LnA2m (with

five independent components for m ¼ −2;…; 2 each)

through
1

Akl ¼ N2Y
�
kl2mA2m;

LnAkl
tf ¼ N2Y

�
kl2mLnA2m; ð38Þ

i.e.,

A2m ¼ Ykl2mAkl;

LnA2m ¼ Ykl2mLnAkl
tf ; ð39Þ

and defining

EGR
m ¼ N2Y

�
kl2mE

GR kl;

Cm ¼ N2Y
�
kl2mC

tf kl;

SA
m0 ¼ N2Yij2m0SAij;

Hmm0 ¼ N2

2
Yij2m0Y�

kl2mH
ijkl; ð40Þ

the field equations (33) reduce to the 7 × 7 system

M

0

B

@

LnKΦ

LnK

LnA2m

1

C

A
¼

0

B

@

SΦ

SK

SA
m0

1

C

A
; ð41Þ

where

M ¼

0

B

@

1 − 1

3
αGBf

0HGR 2αGBf
0EGR

m

0 1 −
αGB
3
Cþ α2

GB

12
f02ðHGRÞ2 αGB

2
Cm −

α2
GB

2
f02HGREGR

m

0 −
αGB
3
C�
m0 þ α2

GB

3
f02HGREGR�

m0 Hmm0 − 2α2GBf
02EGR

m EGR�
m0

1

C

A
ð42Þ

1
Note that the quantities LnA2m are the (trace-free) Lie derivative of a rank-two tensor, projected on the l ¼ 2 spherical harmonics.

WITEK, GUALTIERI, and PANI PHYS. REV. D 101, 124055 (2020)

124055-6



is a seven-dimensional square matrix. Note that, to obtain

Eq. (42) from the matrix in Eq. (33), we have raised the

indices ði; jÞ and multiplied the bottom lines with N2Yij2m0 .

The system (41) is one of the main results of this work.

This is a system of seven first-order-in-time differential

equations in terms of the seven independent variables

fKΦ; K; A2mg. Awell-formulated system of field equations

would have the form

0

B

@

LnKΦ

LnK

LnA2m

1

C

A
¼ M−1

0

B

@

SΦ

SK

SA
m0

1

C

A
: ð43Þ

Thus, we can write a well-formulated time evolution of the

sGB field equations if and only if the matrixM is invertible,

i.e., if

detðMÞ ≠ 0 ð44Þ

along any physically significant evolution.

We cannot prove that Eq. (44) is always satisfied.

However, we have an indication that this may be the case.

Indeed, let us compare sGB gravity with a different

quadratic gravity theory, dynamical Chern-Simons gravity

(see, e.g., [52] and references therein). In that case, as noted

in [21] [see their Eqs. (41) and (54)], the evolution equation

for the auxiliary variable Xij (related to LnAij) has the form

∂tðδðkði ϵ
lÞm
jÞ ðDmΦÞXklÞ ¼ Sij; ð45Þ

which is necessarily degenerate due to the presence of

the Levi-Civita tensor. These terms have been a key

obstruction in inverting the coefficient matrix in dynami-

cal Chern-Simons gravity. They are absent in sGB gravity,

so one of the core bottlenecks is absent and one might be

able to find an inversion for M. Of course, this does

prevent other, different obstructions to be present in sGB

gravity.

Finally, note thatM is invertible if sGB gravity is treated

perturbatively. In this case it is sufficient to require thatM is

invertible at zeroth order, since detðMÞ can be expanded in

the coupling constant and, if it does not vanish to zeroth

order, it cannot change sign due to perturbative corrections.

Owing to the simplified block-diagonal form of Eq. (42) in

the αGB → 0 limit, the requirement that detðMÞ ≠ 0 to

zeroth order reduces to the invertibility of the 5 × 5

submatrix Hmm0 . Since, from Eq. (31),

Hijkl ¼ γkðiγjÞl −
1

3
γijγkl when αGB ¼ 0; ð46Þ

we obtain

Hmm0 ¼ N2

2
Ykl

2m0Y�
kl2m ¼ δmm0 : ð47Þ

Thus, to zeroth order in αGB, the M matrix reduces to the

identity matrix, which is trivially invertible and constant

in time.

Beyond the small-coupling limit, it is tempting to

conjecture that if M is invertible at t ¼ 0, it must be so

during the evolution as a consequence of the field equa-

tions. We were not able to prove such a statement and its

(dis)proof is left for future work.

B. On the well-posedness of sGB gravity

Once the field equations of sGB gravity are written as a

well-formulated time evolution problem—i.e., assuming

the matrix M presented in Eq. (42) is invertible—the next

step is to look for a well-posed formulation. That is, one

would typically attempt to express the field equations as a

strongly hyperbolic system. A full hyperbolicity analysis is

beyond the scope of this paper. However, it is useful to look

at the structure of the equations by identifying their highest

derivative terms. Inspection of Eqs. (33) and (41) shows the

presence of terms such as

EGR
ij EGR

kl ∼ Rtf
ijR

tf
kl; HGREGR

ij ∼ RRtf
ij; ð48Þ

which are quadratic in the second spatial derivatives of the

spatial metric. They are present both in the coefficient

matrix (42) and in the source terms (34c). These terms are

nonlinear and can, therefore, spoil the strong hyperbolicity

of the system, leading to characteristic crossing (and thus

multivalued dependence on the initial data) or to a change

of the character of the equations in different spacetime

regions, as shown in [38] in the spherically symmetric case.

We remark, however, that the existence of such a term

does not rule out the possibility of a well-posed formu-

lation. For instance, in the case of cubic Horndeski gravity a

strongly hyperbolic formulation has been found [30]

despite the presence of terms quadratic in the second

spatial derivatives [see, e.g., Eq. (107) of [30] ]. A similar

analysis in sGB gravity will be the subject of a forthcoming

publication.

V. CONCLUSIONS AND OUTLOOK

We have presented the 3þ 1 decomposition of the field

equations in sGB gravity, writing them as a set of evolution

equations and of elliptic constraints. This work is only the

first step toward evolving black-hole binaries in sGB

gravity and could be useful for a general proof of well-

posedness of this theory.

The initial-value problem for this theory is significantly

more involved than in GR. We managed to recast the

standard 3þ 1 system of equations into a seven-dimensional

first-order-in-time system of equations for seven independent

dynamical variables [cf. Eq. (41)]. This requires the inver-

sion of a seven-dimensional matrix written in terms of the

dynamical variables and their spatial derivatives. We have
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proved the invertibility of this matrix in the small-coupling

limit, and we have found indications that it should also be

invertible for finite values of the coupling (at variance with

other theories, such as dynamical Chern-Simons gravity

[21]). A complete proof of the invertibility of this matrix

(i.e., of the existence of a well-formulated time evolution) is

left for future work.

The derived field equations contain nonlinear terms,

quadratic in the secondspatial derivatives of the spatialmetric,

which can spoil the strong hyperbolicity of the system.

However, such terms do not necessarily prevent a well-posed

formulation, which should therefore be analyzed in detail.

We also derived the explicit form of the constraint

equations for sGB with a generic coupling function.

These (elliptic) equations are significantly more involved

than in the GR case. Future work will also focus on finding

approximated or numerical solutions to the constraints

equations, to be used in simulations of black-hole binaries

in nonperturbative sGB gravity.
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