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Abstract

We propose an occupancy grid mapping algorithm for

mobile robots operating in environments where objects

change their locations over time. Virtually all existing

environment mapping algorithms rely on a static world

assumption, rendering them inapplicable to environments

where things (chairs, desks, . . . ) move. A natural goal

of robotics research, thus, is to learn models of non-

stationary objects, and determine where they are at any

point in time. This paper proposes an extension to the

well-known occupancy grid mapping technique. Our ap-

proach uses a straightforward map differencing technique

to detect changes in an environment over time. It employs

the expectation maximization algorithm to learn models

of non-stationary objects, and to determine the location

of such objects in individual occupancy grid maps built at

different points in time. By combining data from multiple

maps when learning object models, the resulting models

have higher fidelity than could be obtained from any sin-

gle map. A Bayesian complexity measure is applied to de-

termine the number of different objects in the model, mak-

ing it possible to apply the approach to situations where

not all objects are present at all times in the map.

1 Introduction

The field of robotic mapping is among the most active in

mobile robotics research [7, 16]. Mapping addresses the

problem of acquiring an environment model with a mo-

bile robot, suitable for navigation and visualization. Re-

cent innovations include scalable online techniques for

concurrent mapping and localization [5, 8], algorithms

for generating compact three-dimensional maps [6], and

autonomous exploration techniques for controlling robots

during mapping [14].

However, most existing robotic mapping algorithms pos-

sess one important deficiency – they all assume that the

world is static. Thus, things may not move when acquiring

a map. Dynamic effects, such as people that may briefly

obstruct the robot’s sensors, are filtered away at best, and

lead to mapping failure at worst. The static world assump-

tion in robotic mapping is motivated by the fact that even

for static worlds, the mapping problem is very hard [15].

Efforts have been made to learn certain types of dynamic

effects, e.g. the presence of doors [13], but have limited

applicability due to their specificity. However, most nat-

ural environments are not stationary. For example, of-

fice environments contain objects such as chairs, desks,

and people, which frequently change their location. The

goal of this research, thus, is to devise methods that can

identify such non-stationary objects and model their time-

varying locations.

This paper proposes an occupancy grid mapping

algorithm—called robot object mapping algorithm or

ROMA—capable of modeling non-stationary environ-

ments. Our approach assumes that objects in the envi-

ronment move sufficiently slowly that they can safely be

assumed to be static for the time it takes to build an oc-

cupancy grid map. However, their locations may change

over longer time periods (e.g., from one day to another).

An example of such a situation is an office delivery robot,

which may enter offices in regular time intervals. From

one visit to another, the configuration of the environment

may have changed in unpredictable ways (e.g., chairs

moved around and in or out of a room). Since the robot

may not witness the motion directly, conventional track-

ing techniques [2, 9] are inapplicable. The algorithm de-

scribed in this paper is capable of identifying such moving

objects, learning models of them, and determining their

locations at any point in time. It also estimates the total

number of different objects in the environment, making

the approach applicable to situations where not all non-

stationary objects are visible at all times.

ROMA builds on the well-known occupancy grid map-

ping paradigm [11]. In regular time intervals, the robot

acquires a static occupancy grid map [17]. Each map cap-

tures a “snapshot” of the environment at a specific point

in time. Changes in the environment are detected us-

ing a straightforward map differencing technique. Our

approach learns models of these objects using a mod-

ified version of the expectation maximization (EM) al-

gorithm [4, 10], in a way similar to techniques previ-

ously developed for traffic surveillance [12]. The E-step

of ROMA’s EM establishes correspondence between dif-



ferent object sightings at different points in time. The

M-step uses these probabilistic correspondences to gener-

ate refined object models, represented by occupancy grid

maps. By iterating both steps, high fidelity object mod-

els are learned from multiple sightings, and the location

of each individual object in each map is also determined.

Since the total number of non-stationary objects may be

unknown, our approach employs a model selection tech-

nique for determining the most plausible number of ob-

jects, under an exponential prior.

In our empirical evaluation, we found the ROMA algo-

rithm to be highly reliable in identifying and localizing ob-

jects, and learning high fidelity models of them. The paper

provides experimental results for two room-style environ-

ments, where a collection of natural objects is moved over

time.

2 The ROMA Algorithm

2.1 Static Mapping and Map Segmentation

ROMA identifies objects that move by comparing multi-

ple grid maps of the same environment, recorded at differ-

ent points in time. At each point in time t, the robot builds

a (static) occupancy grid map of its environment, denoted

mt. In a nutshell, occupancy grid maps represent robot

environments by a fine-grained grid, where each grid cell

carries a probability of occupancy [11]. Our implemen-

tation is based on a technique described in [17], which

simultaneously localizes one or more robots during map-

ping.

In a preprocessing step, the ROMA algorithm decomposes

the environmental model into a static occupancy grid map,

and a collection of smaller occupancy grid maps, one for

each non-stationary object. Non-stationary objects are

identified by a map differencing technique, which builds

on well-known algorithms in the field of computer vision.

Our approach identifies objects by finding regions that in

some of the maps are occupied, and free in others. If the

occupancy of a grid cell is the same in all maps, it does

not belong to a non-stationary object; instead, it is either

part of a permanent free region or part of a static object

such as a wall. If the occupancy varies across maps, it is

potentially part of a non-stationary object in those maps

where the grid cell is occupied. This map differencing

technique yields a set of candidate objects. A standard

low-pass computer vision filter [18] is then employed to

remove noise, which is usually found on the border of free

and occupied space. The result is a list of “snapshots” of

non-stationary objects, each represented by a local occu-

pancy grid map.

Let us denote the number of non-stationary objects (snap-

shots) found in the t-th map by Kt, and the individual

objects by

�t = f�1;t; �2;t; : : : ; �Kt;tg (1)

Here �k;t is the k-th snapshot extracted from t-th map

mt, where extracted objects are arranged in no specific

order. Each snapshot �k;t is a local occupancy grid map

extracted from a single occupancy grid map m t. The set

of all sets of object snapshots �t will be denoted

� = f�1; �2; : : : ; �T g; (2)

where T is the total number of available maps. The set �

is the input to the ROMA algorithm.

2.2 Models of Moving Objects

From these object snapshots, the ROMA algorithm con-

structs models of the non-stationary objects. Let the to-

tal number of non-stationary objects be N . The non-

stationary object model, which refers to the set of all non-

stationary objects, will be denoted

� = f�1; : : : ; �Ng: (3)

Each �n is a model of an individual non-stationary object,

represented by a small occupancy grid map.

To learn � from the snapshots �, ROMA uses the follow-

ing probabilistic model. Notice that both the models �n
and the snapshots �k;t are represented by grid cells. Each

grid cell �n[j℄ in �n is a real number in the interval [0; 1℄.

We interpret each occupancy value as a probability of oc-

cupancy. Since the robot scans each grid cell multiple

times during mapping, we use a Gaussian distribution rep-

resenting a single real-valued observation. This yields the

following probability of observing �k;t given that the true

underlying object is �n:

p(�k;t j �n; Æk;t) / e
�

1

2�2

P
j
(f(�k;t;Æk;t)[j℄��n[j℄)2

(4)

The function f(�k;t; Æk;t) denotes the snapshot �k;t at

its optimal alignment, and f(�k;t; Æk;t)[j℄ denotes its j-

th grid cell. The rotation and translation parameters of

the alignment are specified by the Æk;t. This alignment is

easily determined by search in the space of all possible

alignments. The parameter �2 is the variance of the noise.

2.3 Expected Log Likelihood of the Data

The measurement probability p(�k;tj�n) enables us to cal-

culate the likelihood of the snapshots � given the models

�—a necessary step for defining our maximum likelihood

algorithm for finding new models �. To do so, it will be

convenient to define so-called correspondence variables:

�t. Each �t specifies the correspondence between the set

of snapshots �t, and the set of models �. Thus,

�t = f�1;t; : : : ; �Kt;tg (5)

where each correspondence variable �k;t assigns to the k-

th observed object in �t the index of the corresponding

model �n. Thus,

�k;t 2 f1; : : : ; Ng (6)



Of great importance is a mutual exclusion constraint [3,

9, 12] which specifies that the same model �n cannot be

observed at two different locations in any of the maps m t.

This implies that for any two different snapshots k and k 0

we have that the correspondence variables point to differ-

ent models in �:

k 6= k0 =) �k;t 6= �k0;t (7)

Clearly, the correspondences �t are latent variables, that

is, they cannot be observed. Thus, the problem of identify-

ing the maximum likelihood models � is an optimization

problem with latent variables.

We will now derive the exact likelihood function, used to

maximize the joint probability over the snapshots �, the

learned occupancy grids � and the alignment parameters

Æ:

argmax

�;Æ

p(�; Æ; �) (8)

EM starts with a random initial set of correspondences and

generate a sequence of models � [1℄; �[2℄; : : : and alignment

parameters Æ[1℄; Æ[2℄; : : : with non-decreasing likelihood.

Let h�[i℄; Æ[i℄i be the i-th such set of parameters. EM find

an (i+ 1)th model h�[i+1℄; Æ[i+1℄i for which

p(�[i+1℄; Æ[i+1℄; �) � p(�[i℄; Æ[i℄; �) (9)

We achieve this goal by maximizing the expected log like-

lihood [10]

h�[i+1℄; Æ[i+1℄i

= argmax

�;Æ

E�

h
log p(�; �; Æ; �)

����[i℄; Æ[i℄; �
i

(10)

Here E� is the mathematical expectation over the latent

correspondence variables �, relative to the distribution

p(� j �[i℄; Æ[i℄; �). The probability inside the logarithm in

(10) factors as follows, exploiting natural independences

and assuming uniform priors over correspondences �:

p(�; �; Æ; �) = p(�) p(Æ) p(�) p(� j Æ; �; �)

/ p(� j Æ; �; �) (11)

The probability p(� j Æ; �; �) of the snapshots � given the

object models � and the correspondences � is essentially

defined via (4). Here we recast it using a notation that

makes the conditioning on � explicit:

p(� j Æ; �; �) / (12)

TY
t=1

KtY
k=1

e
�

1

2�2

P
N

n=1
I(�t(k)=n)

P
j
(f(�k;t;Æk;t)[j℄��n[j℄)

2

where I( ) is an indicator function which is 1 if its ar-
gument is true, and 0 otherwise. Substituting the product

(11) with (12) into the expected log likelihood (10) gives
us:

h�[i+1℄; Æ[i+1℄i = argmax

�;Æ

�

NX
n=1

TX
t=1

KtX
k=1

p(�t(k)=n j 	[i℄; �)

�2

X
j

(f(�k;t; Æk;t)[j℄ � �n[j℄)
2

In deriving this expression, we exploit the linearity of the

expectation, which allows us to replace the indicator vari-

ables with probabilities (expectations).

That defines the E-step of the EM algorithm. The next

step is the M-step through which we generate a new set of

models. The M-step requires the calculation of the most

likely object models �n given the snapshots � and cor-

respondences �. Assuming constant alignment, this cal-

culation can be carried out separately for each grid cell,

exploiting the additive nature of (4). The occupancy value

of model grid cell �
[i℄
n [j℄ is set to the weighted sum of the

corresponding snapshot grid cells:

TX
t=1

X
�t

p(�tj�
[i�1℄

; �)

KtX
k=1

dk;t[j℄

TX
t=1

X
�t

p(�tj�
[i�1℄; �)Kt

(13)

After calculating a new set of models � [i℄, the alignments

between the models �n and the individual snapshots �k;t

are recomputed.

One disadvantage of the formulation above is that the sum

over all �t in (13) is exponential in the number of map ob-

jects Kt. In our test environments,Kt was generally small

(e.g., less than 4), in which case the full sum could easily

be computed. In cases where this exponential complexity

poses a serious computational burden, however, MCMC

sampling techniques such as the chain flipping algorithm

in [3, 12] can be adopted to lead to provably polynomial

approximations of the true expectation.

2.4 Determining the Number of Objects

The ROMA algorithm outlined so far assumes knowledge

of the total number of objects N . In practice, N is un-

known. Bounds on N can easily be extracted from the

data. In particular, N is bounded below by the maxi-

mum number of objects identified in a single map K t, and

bounded above by the total number of object snapshots:

max
t=1:::T

Kt � N �
X

t=1:::T

Kt (14)

From an estimation standpoint, increasing the model ca-

pacity N increases the likelihood. Thus, maximum likeli-

hood estimation would fail to estimate the number of ob-

jects N in any reasonable way. Our approach follows



(a) (b)

(c)

Figure 1: (a) The Pioneer robot used to collect laser

range data. (b) The robotics lab where the second data

set was collected. (c) Actual images of non-stationary ob-

jects used in the second data set.

common statistical methodology by assigning an expo-

nential prior over N . That is, a priori we assume that large

values of N are exponentially less likely:

p(N) = onst � e�pN (15)

where p > 0 is a penalty factor. The robot object mapping

algorithm optimized the Bayesian posterior, given (in log-

arithmic form) by:

log p(N; �j�) = onst + log p(�jN; �) + log p(N)

= onst + log p(�jN; �)� pN (16)

where log p(�jN; �) is approximated by the expected log-

likelihood (12) defined in the previous section. Put differ-

ently, our approach maximizes the expected log likelihood

while simultaneously minimizing a complexity penalty

term. Since N is usually small, our approach does this

by running EM with fixed values of N , starting with the

lower bound established in (14). When the log posterior

goes down, the search is terminated, and the value of N

that maximizes the log posterior is assumed to reflect the

correct number of objects in the map.

3 Experimental Results

The ROMA algorithm was extensively tested in both sim-

ulated and physical environments. For brevity, we omit

any simulation results and only provide real robot results.

We consistently found that ROMA is able to infer the cor-

rect number of objects, and to learn models that are more

accurate than the snapshots extracted from a single occu-

pancy grid map—as long as the objects were sufficiently

apart from each other that they were segmented correctly

in the preprocessing stage. The correspondence estimates

were accurate when all objects looked different. When

multiple objects of the same shape were present, the cor-

respondence estimates were split accordingly.

In the following sections, we cover our results for data

collected from two real-world room-style environments.

(a)

(b) (c)

Figure 2: (a) Four maps used for learning models of non-

stationary objects using a fixed number of objects per

map. (b) Overlay of optimally aligned maps. (c) Differ-

ence map before low-pass filtering.

The laser range data used for mapping was collected with

the Pioneer robot shown in Figure 1a. In the first data set,

we collected maps with a fixed number of objects per map

which are shown in Figure 2a. In the second data set we

collected maps from the robotics lab shown in Figure 1b.

These maps used a variable number of non-stationary ob-

jects per map; actual photos of the four objects used in

these maps are shown in Figure 1c. The collected maps

for this data set are shown in Figure 3a.

3.1 Map Segmentation and Object Extraction

The object snapshot extraction worked very reliably. Fig-

ures 2a and 3a show the maps used for learning in the two

data sets. An overlay of these maps for each of the respec-

tive data sets is shown in Figures 2b and 3b. Results from

image differencing with the overlay are shown for the re-

spective data sets in Figures 2c and 3c. Once the differ-

enced maps are produced, they are run through a low-pass

noise filter [18]. After filtering, each object of sufficient

size is extracted into its own occupancy grid map. For the

given data sets, this final step worked flawlessly, extract-

ing exactly the number of expected non-stationary objects

for each of the respective static maps.

3.2 ROMA Applied to a Fixed Number of Objects

The first set of results that we provide assumes a fixed

number of objects and uses the map data shown in Fig-

ure 2a. Figure 4a shows successive EM iterations of the



(a)

(b) (c)

Figure 3: (a) Nine maps used for learning models of non-

stationary objects using a variable number of objects per

map. (b) Overlay of optimally aligned maps. (c) Dif-

ference map before low-pass filtering. The objects are

clearly identifiable.

ROMA algorithm starting from an initial random models

(unshown). On each successive iteration of the EM algo-

rithm we note that the models resemble the objects in the

original maps with increasingly higher fidelity and that the

final set of objects clearly represents a fairly accurate rep-

resentation of the four objects in the original maps. Fur-

thermore, the final maximum likelihood correspondences

perfectly match the objects in the original maps with the

objects in the final iteration models.

3.3 ROMA Applied to a Variable Number of Objects

The second set of results that we provide allows a vari-

able number of objects per map and uses the map data

shown in Figure 3a. This algorithm uses the extension pre-

viously described for determining the number of objects

in the model (Equations 14-16). Since the entire ROMA

algorithm has to be run once for each hypothesized num-

ber of objects, we can compute the final iteration model

score (i.e. Bayesian posterior) of each algorithm run. This

score is the log of the model likelihood minus the com-
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Figure 4: (a) Seven iterations of EM for the data set con-

taining a fixed number of objects per map. (b) Seven itera-

tions of EM for the data set containing a variable number

of objects per map. (c) Correspondence probabilities be-

tween an observed object and different object models.

plexity penalty as given in (16). Figure 5 shows the model

score for a varying number of model objects for the cur-

rent data set. Note that for a complexity penalty coeffi-

cient of p = 120:0 this graph peaks for N = 4 objects

which is in fact the actual number of different objects in

the original set of maps.

Figure 4b shows successive EM iterations for the data set

in Figure 3 under the maximal Bayesian posterior estimate

of N = 4 objects. The correspondences between a sam-

ple observed object and the different models is shown in

Figure 4c. While the correspondences are initially ran-

domly distributed, the observed object quickly establishes
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Figure 5: Graph of model score vs. number of objects.

a strong correspondence to the correct model as EM pro-

gresses. Moreover, on each successive iteration, it is clear

that the object models more closely reflect the objects in

the original maps. Additionally, under the maximal model

score hypothesis of N = 4 objects, the final maximum

likelihood correspondences perfectly match the objects in

the original maps with the objects in the final iteration

models.

4 Conclusion

The paper proposed an occupancy grid mapping algo-

rithm for non-stationary environments, where objects may

change their locations over time. In a preprocessing stage,

the algorithm extracts sets of non-stationary object “snap-

shots” from a collection of occupancy grid maps, recorded

at different points in time. The EM algorithm is applied to

learn object models of the individual non-stationary ob-

jects in the world, represented as local occupancy grid

maps. The number of objects is estimated as well. Exper-

imental results presented in this paper demonstrate the ro-

bustness of the approach. In simulated and real-world set-

ting, we consistently found that high-fidelity object mod-

els were learned from multiple sightings of the same ob-

ject at different locations.

In its present state, the ROMA algorithm possesses a range

of limitations which warrant future research. First, ob-

jects have to move slowly enough that they are captured as

static objects in each occupancy grid map. This precludes

the inclusion of fast-moving people in the map. Second,

it would be desirable to develop a hierarchy of objects,

paying tribute to the fact that many objects may look alike

(e.g., chairs; see [1]). Finally, we believe that the same

techniques can be applied to more advanced representa-

tion than occupancy grid maps (e.g. integrating multi-

modal sensor input from camera images, etc. . . ). How-

ever, such an extension is subject to future research.
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