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A climate forecast is intrinsically five-dimensional, spanning space,
time and probability. Mainstream climate modelling has, so far,
sacrificed probabilistic resolution almost completely in favour of the
other four dimensions1. Correcting this imbalance requires a new
approach. Hitherto, forecasts have explored uncertainty in initial
conditions2,3 (see Box 1 Figure opposite) as well as the impact of
altering boundary conditions, such as adopting different scenarios of
future concentrations of greenhouse gases4. For many variables,
however, the main uncertainty in multi-decade climate prediction is
not in the initial state nor in the external driving, but in the climate
system’s response5. Where this issue has been addressed with
atmosphere–ocean general circulation models (AOGCMs) it is
primarily through unconstrained ‘ensembles of opportunity’ based on
comparisons between different models with no direct reference to
observations4,6. These, we have argued, are likely to provide a
misleadingly small (over-optimistic) impression of forecast
uncertainty7.

At the most basic level, the community needs to agree on what is
meant by a ‘correct’ estimate of risk in climate forecasting. A
probabilistic climate forecast (for example, of the risk of global
precipitation increasing by more than 10% by 2050) cannot be
checked against observations as can a probabilistic weather forecast.
If a two-day weather forecast is wrong at the 5% level much more than
5% of the time, then something is amiss with the forecasting system. If
a 50-year climate forecast is ‘wrong’ at the 5% level, we could simply
have been unlucky. This apparent difficulty with verification has led to
the view that estimates of uncertainty based on expert opinion (for
example, the range for climate sensitivities used by ref. 8) are as good
as any other9. This leaves the field open to the charge of subjectivism.

Objectively, we need to ask: ‘given the observations available now,
what range of forecasts might we have obtained had we started again
from scratch many times over and made completely independent sets
of decisions about model formulation and resolution?’ A probabilistic
forecast can only be said to have converged when including additional
models is unlikely to make much difference to the forecast distribution
of a particular variable. But there are complications. For example, we
have no way of defining how ‘close’ two models are solely in terms of
their formulation7, so we cannot design a representative sampling
strategy over ‘all possible AOGCMs’ even if we had the resources to
do so. In practice, therefore, a probabilistic forecast must begin with a
very large ensemble of possible models, obtained by varying
parameter values, parameterization schemes, resolution and entire
model components, and extracting a sub-sample weighted according
to the different models’ ability to simulate recent observed climate
change. A probabilistic forecast based on this sub-sample will have
converged if its spread is determined primarily by the constraint of
consistency with observations and not by the choice of models within
the original ensemble — this is the crucial distinction between a
constrained ensemble and an unconstrained ensemble of opportunity.

For some variables, probabilistic forecasts may be converging
already. Given the emergent constraints relating past to future
greenhouse warming that seem to hold across all available climate
models, the distribution of forecast global-mean temperature
changes in Fig. 1 is determined not by the choice of model(s), but by
uncertainty in how much recent warming can be attributed to CO2

increase. This uncertainty is due primarily to other signals and internal
variability in the observed climate record. It will reduce as the signal
strengthens5, but it may not change much as models improve. We
would argue that this is both more robust (less subject to short-term
revision) and more reliable (acceptable to non-specialists as a basis
for action) than a forecast based on expert opinion.

When will we be able to say that forecast changes in the
hydrologic cycle have converged enough to be trusted? We made a
tentative estimate of the distribution of global-mean precipitation
change in Fig. 2, primarily to show that distributions based only on
the spread of current AOGCMs should not be trusted. To extend this
to regional changes, we need to repeat the analysis behind Fig. 1 with
a full-scale AOGCM. Figure 1 required many hundreds of integrations
to explore just three uncertain parameters in a two-dimensional
climate model10, and there are hundreds of such uncertainties in an
AOGCM. The chaotic nature of an AOGCM means that many of the
techniques used in shorter-range forecasting to select perturbations11

are not directly applicable to the climate problem12; it also means that
several simulations will be needed to assess the impact of every
perturbation to the model’s formulation.

Thus, objective probabilistic forecasts of regional changes in
rainfall and other climate variables will require numbers of simulations
several orders of magnitude larger than the CMIP-2 experiment, the
largest ensemble of AOGCM simulations undertaken to date. New
approaches utilizing distributed computing and the emerging
electronic ‘grid’ may provide a way forward13,14, and readers
interested in participating in such an initiative15 may wish to contact
us on http://www.climateprediction.net.
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Box 1
Towards objective probabilistic climate forecasting
Myles R. Allen & David A. Stainforth

Box 1 Figure The three-dimensional surface shows a forecast probability distribution 
of a one-dimensional quantity (global-mean warming above pre-industrial), accounting
for uncertainty in the climate response, while the lines show the (smaller) impact of
initial condition uncertainty in an ensemble of model simulations. Data courtesy of 
P. Stott (Met Office) and J. Kettleborough (Rutherford Appleton Laboratory)5, based on
the IPCC SRES A2 scenario.
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