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Abstract 

Sub-second full-field tomographic microscopy at third-generation synchrotron sources is a reality, opening up new 

possibilities for the study of dynamic systems in different fields. Sustained elevated data rates of multiple GB/s in 

tomographic experiments will become even more common at diffraction-limited storage rings, coming in opera-

tion soon. The computational tools necessary for the post-processing of raw tomographic projections have generally 

not experienced the same efficiency increase as the experimental facilities, hindering optimal exploitation of this 

new potential. We present here a fast, flexible, and user-friendly post-processing pipeline overcoming this efficiency 

mismatch and delivering reconstructed tomographic datasets just few seconds after the data have been acquired, 

enabling fast parameter and image quality evaluation as well as efficient post-processing of TBs of tomographic data. 

With this new tool, also able to accept a stream of data directly from a detector, few selected tomographic slices are 

available in less than half a second, providing advanced previewing capabilities paving the way to new concepts for 

on-the-fly control of dynamic experiments.
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Background

Sub-second tomographic experiments at third-genera-

tion synchrotron sources are becoming reality, thanks 

also to recent developments of detection systems com-

bining CMOS technology with sustained high data rate 

streaming [1]. �e visualization and investigation of 

dynamic processes in 3D through time is now possible, 

opening new possibilities in different disciplines ranging 

from materials (e.g., [2]) to biological sciences (e.g., [3, 

4]). Time-resolved 3D snapshots of dynamic systems are 

important for the validation of theoretical models until 

recently often extrapolated from 2D information. Tomo-

graphic experiments with sub-second time resolution can 

also provide a look at phenomena in 3D, never observed 

so far due to lack of adequate methods.

To fully exploit these recent technological achieve-

ments, the IT infrastructure needs to be matched to these 

high and sustained data rates. In addition to specific 

solutions for efficiently streaming data at elevated rates 

and storing large amounts of data, requirements are also 

high for the post-processing part. Optimal control of 

fast tomographic experiments at synchrotrons requires 

fast access to reconstructed tomographic datasets. Both 

beamline and experimental parameters can in this way 

be adjusted and fine-tuned in a timely manner so that 

they maximize image quality. �e time scales, dynamic 

properties, and sequences for many phenomena never 

investigated in 3D so far are often not known before 

the experiment. Pre-characterization of these systems 

through previewing capabilities is needed for establishing 

adequate acquisition protocols. Although 2D projections 

of an evolving system can provide insightful information, 

this tool might not be sufficient if complex structures 

are present or high density sensitivity is required. Rapid 

availability of a selection of reconstructed tomographic 

slices during the experiment can strongly facilitate its 

control also through on-the-fly adjustments of the rel-

evant parameters (e.g., temperature).

At the TOMCAT beamline [5] at the Swiss Light 

Source, during the past few years a dedicated end station 
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for ultrafast tomographic microscopy has been estab-

lished [6] featuring the unique detector system Giga-

FRoST [1]. �is system can be read out continuously in 

an unlimited manner leading to sustained data rates as 

high as 7.7 GB/s. To fully exploit the potential provided by 

this innovative system, a new and efficient tomographic 

reconstruction pipeline has been developed. Although 

several solutions at other facilities exist (e.g., TomoPy at 

APS [7], Savu at DLS [8], SPOT at ALS [9], PyHST at the 

ESRF [10], UFO at KIT [11, 12]), peculiarities of the local 

IT infrastructures as well as specific goals led to the devel-

opment and implementation of a new pipeline. �e design 

of this new framework aims primarily at computational 

efficiency for fast reconstruction at the beamline during 

experiments taking advantage of a dedicated cluster. It 

however also needs to provide flexibility and easy access 

to the code for non IT-experts such as beamline scientists 

to ensure possibilities for growth of the offered capabili-

ties with time. �e computational hardware landscape at 

the Swiss Light Source is dominated by CPU power. A 

GPU solution is not considered favorable in particular 

because of need for specialized know-how for software 

development and implementation, currently not available 

in-house. �e developed and presented framework does 

however not preclude the future use of GPUs.

In the following sections, we discuss the data format 

chosen before describing the different aspects of the 

developed post-processing pipeline. We conclude with a 

detailed performance assessment.

Methods

Data format

Access to rather small files as well as reading and writing 

small chunks (few kB) of data is, in general, largely inef-

ficient and should be avoided to fully exploit the potential 

of modern shared file systems. �is was exactly the case, 

when each single tomographic projection was stored as 

a separate (TIFF) file, as until recently typically done at 

most tomographic microscopy beamlines around the 

world, to directly take advantage of APIs for commercial 

detectors. For high efficiency, few large files (6–8 GB) are 

instead recommended, where data are read or written in 

large chunks (MB).

In this context, an optimized data format has been 

selected permitting fast I/O and compatibility with data 

from other synchrotron sources: we adopted the scien-

tific data exchange format [13], based on the HDF5 tech-

nology [14]. �is technology, a versatile data model for 

very complex data objects and metadata, is particularly 

suited to push I/O efficiency. �ere are no limitations on 

file size and on the number of objects stored in a file. It 

integrates features to maximize access time performance 

and storage space optimization.

In our current implementation, the raw data are writ-

ten to an HDF5 file on disk in a sequential way using the 

direct chunk write function [15] and an n-bit filter. �e 

HDF5 technology also supports parallel writing. We have 

so far not exploited this feature, to keep maximum flex-

ibility with regard to possible compression approaches, 

currently under investigation for tomographic data. It 

could however be integrated in the current framework, if 

increased writing performance will be required.

�e reconstruction pipeline reads instead the raw data 

from file in a parallel fashion. �e theoretical limit of 

5 GB/s (related to our current gpfs file server) has been 

demonstrated while reading from a large HDF5 file using 

the Python h5py library [16]. �e used chunking strategy 

is optimized for fast single frame access, the most natu-

ral and general approach for tomographic data. Other 

options, for specific applications (e.g., absorption tomog-

raphy), could be advantages and are under evaluation.

Pipeline description

Main core

A typical full-field tomographic dataset acquired in few 

minutes at a third-generation synchrotron source con-

sists of few thousand angular views (e.g., 1500–2000), 

each with more than 2000 × 2000 pixels, and a collection 

of dark- and white- (or flat-) field images used for nor-

malization. Such raw dataset routinely exceeds 16 GB.

�e post-processing pipeline consists of 2 main blocks: 

a pre-processing part generating the sinograms and the 

tomographic reconstruction function itself (Fig. 1).

Sinogram generator In this first step, each angular view 

is corrected for the dark current of the detector and 

the background is normalized using the average of the 

acquired white-field images. In addition, the dataset is 

reorganized into sinograms, each containing the neces-

sary information to reconstruct a selected tomographic 

slice. If this operation is performed in a naïve way, all pro-

jection images need to be open and a small chunk of data 

needs to be read to generate a single sinogram resulting 

in poor scalability due to the high I/O load. Furthermore 

if the generation of the sinograms for a typical dataset 

(usually in the order of 2000) is completely parallelized, 

this step would result in 1500 × 2000 simultaneous ran-

dom accesses to the shared file system where the angular 

projections are stored, definitely a non-optimized proce-

dure quickly resulting in a bottleneck, in particular for the 

high data rates of cutting-edge detectors. To overcome 

this bottleneck, here MPI has been used. Larger chunks 

of raw data are read and sent to the dedicated computing 

nodes at once, significantly improving the performance. 

�e read/compute core ratio is determined empirically. A 

ratio between 1:6 and 1:8 is advantageous for medium size 
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clusters. For larger clusters, this ratio will be smaller (it is 

not optimal to have many reading cores, reading just little 

data), for smaller systems it will be larger, to avoid having 

just a single reading core. It is important in particular for 

memory reasons that the reader cores are spread evenly 

across the nodes within the cluster (equal number on each 

node).

Figure 2 shows the skeleton of the developed sinogram 

generation software. �e main application is started on 

all requested cores and performs MPI environment and 

class instance initializations. Based on the MPI process 

rank of each core, it is decided if it is a reading or com-

puting core and the corresponding class method is called. 

�e assigned reading cores read then the raw data from 

disk. �ese data are sent to the computing cores, which 

generate the sinograms.

�e computed sinograms can either be written to disk 

or piped directly into the tomographic reconstruction 

software. In this latter case, at least the correct center 

of rotation needs to be known to ensure high quality 

tomographic reconstructions. �erefore an additional 

routine, to be run prior to the sinogram generation, has 

also been developed. �is routine runs just on one sin-

gle node, using though all available cores. It computes, 

following [17], an estimation of the center of rotation and 

any dependency of this number on the sinogram within 

a dataset. If the center of rotation varies as a function of 

the sinogram number, implying an imperfect experimen-

tal alignment, the projections can be rotated according to 

the computed angle to compensate for the misalignment. 

For tomographic scans performed with the rotation axis 

positioned at the side of the available field of view, with 

the aim of doubling the size of the sample, which can be 

accommodated in an experiment without the need to 

resort to local tomography, the mentioned routine also 

provides the projection overlap. �is is an important fig-

ure for the automatic stitching of projections acquired 

at angular positions spaced by 180°. All these estimated 

parameters are written together with relevant scan infor-

mation (e.g., number of projections) to a log file, where 

they are accessible to the sinogram generator run in the 

next step in the pipeline.

Tomographic reconstruction algorithm Although in the 

future we plan to expand the reconstruction capabilities 

including selected iterative algorithms, the post-pro-

cessing pipeline as currently implemented at TOMCAT 

exclusively uses gridrec [18]. Despite being based on the 

Fourier Transform method, this fast analytic tomographic 

Fig. 1 Diagram illustrating the main blocks and flow of the post-

processing pipeline (solid lines). Dash lines indicate optional modules 

(e.g., phase retrieval) and actions (e.g., writing sinograms to file)

Fig. 2 Skeleton of the sinogram generator package with the main 

software modules and their main tasks
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reconstruction algorithm has been validated as a valuable 

alternative to standard filtered back projection routines. 

�e advantage of Fourier techniques lies in their intrinsic 

smaller number of required operations compared to other 

analytical methods. Gridrec is highly optimized for con-

ventional CPU technology, not requiring more special-

ized architectures such as GPUs, to achieve a competitive 

reconstruction speed.

For integration in the pipeline, the original code has 

been adjusted to be compatible with multi-processing. 

For maximum flexibility two instances of the same func-

tion have been created. To permit the tomographic 

reconstruction of existing sinograms stored on the file 

system, the gridRecMPIWrapper launches as many 

instances of a gridrec standard executable as needed 

to process all sinogram files. To instead reduce the I/O 

load and for highest speed, the gridrec C code compiled 

as shared library is loaded from Python, so that the sino-

grams can be delivered to the reconstruction routine 

directly from memory.

�e pipeline framework has been conceived in a mod-

ular way enabling the integration of additional pre- and 

post-processing steps at a later stage, as they might 

appear in the literature, in an easy manner. Currently 

available is a routine suppressing anomalously bright 

spots (zingers) typically observed on projection data 

when intense polychromatic radiation is used. �ey are 

the consequence of scattered X-ray photons hitting the 

detector chip directly and depositing significantly more 

energy than visible light photons. Zingers translate into 

tomographic reconstructed slices as lines. �e removal 

routine, inspired by [19], works on sinograms, isolates 

the anomalous pixels by thresholding and substitutes 

them through an interpolation scheme. Two functions 

addressing ring artifacts are also included, more will 

be offered in the future. Concentric (half ) rings (with a 

variety of different characteristics) in tomographic slices 

are infamously common. �ey can have different origins 

related to bad (non-linear, dead) detector elements, dam-

aged or dirty scintillator screens, and fluctuating back-

ground beam profiles. �ese possible different causes all 

impair an accurate flat-field correction leading to sino-

grams contaminated by vertical lines, back-projecting 

to circles in tomographic reconstructions. Both imple-

mented routines for the mitigation of these artifacts 

work in the sinogram domain. �e first approach, based 

on [20], takes advantage of the unsharp mask filter idea. 

�e second technique [21] decomposes the sinogram in 

the wavelet/FFT domain so as to clearly separate the arti-

facts from real features. In this way, the artifact contribu-

tion is collapsed along the abscissa in the Fourier space 

where it can be easily suppressed. For user comfort, the 

pipeline offers also the possibility to just reconstruct a 

region-of-interest, save the results in different image for-

mats, and reconstruct a rotated version of the scanned 

object. �e signal-to-noise ratio and sharpness in the 

tomographic volume can be simply controlled by select-

ing different reconstruction filters (Ram-Lak, Hanning, 

Parzen,…) and adjusting their cut-off frequency.

Phase contrast

Propagation-based phase contrast Single distance prop-

agation-based phase contrast, a technique exploiting the 

coherence of synchrotron radiation, is highly utilized by 

the user community at TOMCAT. Its experimental sim-

plicity (no specific hardware required) coupled to compu-

tationally efficient phase retrieval algorithms and signifi-

cant contrast-to-noise (and dose) ratio improvement in 

tomographic volumes [22], makes it a very appealing tool 

and about 50% of the TOMCAT users take advantage of 

it. Phase contrast imaging is particularly suited to investi-

gate biological samples characterized by small cross sec-

tions for hard X-rays. It is also a very powerful method 

for increasing contrast in samples composed of materials 

with a similar X-ray linear attenuation coefficient and is 

increasingly exploited also for material science applica-

tions. It has also been shown that phase retrieval (requir-

ing projections at one single distance) can largely com-

pensate for sub-optimal experimental conditions, such as 

low photon counts typical for time-resolved experiment 

[22] and is a fundamental tool for the study of dynamic 

processes.

�e modular design and implementation of the pipe-

line facilitates a posteriori integration of different phase 

retrieval algorithms as simple Python functions. Cur-

rently available are routines based on the Paganin [23] 

(with a deconvolution step partially restoring the dete-

riorated spatial resolution [24]), the MBA [25], and the 

Moosmann [26] approach.

Grating interferometry In contrast to simple single dis-

tance phase retrieval techniques, grating interferometry 

provides quantitative information on the electron den-

sity distribution in a sample with a higher sensitivity [27], 

albeit requiring a dedicated rather complex setup and 

still calling for multiple projections at each angular posi-

tion. �ese multiple projections encode information not 

only on the electron density distribution but also on the 

absorption and scattering properties of the investigated 

specimen. �is complementary information can be sepa-

rated by a pixelwise FFT analysis.

Such an X-ray grating interferometer is installed at 

the TOMCAT beamline [28] and the required data 

manipulations and calculations prior to tomographic 

reconstruction are integrated in the pipeline. For grat-

ing interferometry data, the post-processing pipeline 
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includes an additional step before the sinogram genera-

tion, delivering 3 sets of tomographic projections based 

on 3 complementary contrast mechanisms: absorption, 

differential phase (DPC), and dark field. �is stage is par-

allelized by distributing the computation for each angu-

lar position to individual cores. A wavelet-FFT filter [21] 

is used to remove residual horizontal stripes (related to 

beam vibrations) from the DPC projections to guaran-

tee highest reconstruction quality. �ese 3 datasets are 

then independently reconstructed following the tradi-

tional steps described above, using dedicated filters (e.g., 

Hilbert filter for DPC reconstruction), if necessary. �e 

entire process can be launched with one single command, 

where the contrast of interest can be specified.

Software technologies

Most of the pipeline code is written in Python, compat-

ible with both the Enthought [29] and Anaconda [30] 

distribution. Python might not provide the ultimate com-

putational speed and has some drawbacks (e.g., Global 

Interpreter Lock) in comparison for example to C. It is 

however very flexible, intuitive, and does not require 

compilation, which are the characteristics that will pro-

mote the further development of the code to integrate 

new routines necessary to address new problems and 

needs, even by non-expert programmers such as beam-

line staff, after the initial implementation phase. Python 

provides a large selection of fast, reliable, and easy-to-

use scientific libraries. �e pipeline implementation was 

for instance facilitated using the PyWavelets [31] and the 

more general NumPy libraries. �e NumPy array broad-

casting technology is extensively used for standard arith-

metic operations guaranteeing C-like performance.

Raw data in TIFF or preferably for highest performance 

in HDF5 format are read using the tifffile [32] and h5py 

[16] libraries, respectively.

Parallelization at the different stages of the pipeline is 

achieved using the Python implementation of the mes-

sage passing interface (MPI for Python (Mpi4Py) [33]). 

�e pipeline software can be run on a multi-core single 

machine and also take advantage of high performance 

computing facilities. To have access to such facilities 

and also to optimally exploit the available computational 

resources on dedicated clusters, a batch-queuing sys-

tem is mandatory. Our implementation works with both 

sun grid engine (SGE—being discontinued) and SLURM 

(simple linux utility for resource management [34]). 

�ese cluster management and job scheduling systems 

are responsible for accepting, scheduling, dispatching, 

and managing the distributed execution of a large num-

ber of different jobs, including job arrays. Job dependen-

cies can be defined too. �ey also manage and schedule 

the allocation of distributed resources such as processors, 

memory, and disk space. Different priorities for different 

jobs can be defined: on a dedicated beamline cluster with 

simultaneous multiple users, it is possible to take advan-

tage of the computational resources for offline calcula-

tions, without significantly affecting the performance of 

jobs related to an ongoing experiment.

Hardware

�e TOMCAT beamline runs few dedicated small clus-

ters with a total of more than 100 cores, with different 

queues and priorities. At the Paul Scherrer Institute, 2 

additional larger scale computational facilities (more 

than 700 cores) can also be accessed via a queue sys-

tem. �e newer one will be opened (also remotely) to 

the user community. �e post-processing pipeline can 

be deployed on all these different systems, in an almost 

transparent way for the standard user.

�e nodes of each cluster are interconnected by Infini-

Band. To optimally exploit its power, the size of the dis-

patched MPI packages should be at least of few MB. 

InfiniBand is also used for connecting the nodes to the 

gpfs storage, making the time spent for I/O operations 

negligible compared to the overall run time.

Graphical user interface (GUI)

�e microtomography user community is very broad 

and the beamline users have a very diverse IT knowl-

edge and experience, going from standard Windows 

users (most common) familiar with menus and buttons 

to computer experts (rare). To facilitate the independ-

ent reconstruction of the tomographic data by the users, 

without continuous support from the beamline staff, we 

have developed a simple graphical user interface (GUI) 

(Fig.  3). It enables easy tweaking of phase retrieval and 

reconstruction parameters and submission of the full 

reconstruction of a standard tomographic dataset to the 

computing cluster, without the need for any command 

line commands, usually prone to error. �e users do not 

need to know and understand where and in which for-

mat the raw data are stored. �ey also do not have to 

be familiar with high performance computing: clicks on 

few buttons are enough for reconstruction optimiza-

tion and submission. For more complex dynamic experi-

ments, for instance those that produce single HDF5 files 

with multiple datasets, the current GUI is not adequate 

and reconstruction via command line is still necessary. 

Work is ongoing to standardize the scripts steering ultra-

fast experiments and the data acquisition in these more 

elaborated cases. �is standardization should help the 

extension of the current GUI for the most common time-

resolved experiments.

�e GUI is written in Python/Jython and has been 

developed as a plugin for Fiji [35]. It has been necessary 
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to implement only the aspects strictly related to the 

post-processing pipeline, while common tools for image 

analysis (histogram plot, line profile, filters, contrast 

enhancement,…) are readily available from the Fiji 

package.

Results and discussion

Performance

General considerations

To assess different performance aspects of the recon-

struction pipeline, a selection of 4 real datasets, covering 

different experimental typologies routinely performed at 

the beamline, has been used (Table 1). �e first 2 datasets 

(Ultrafast and Fast) are proxies for dynamic studies. �e 

total acquisition time for Ultrafast was less than 50 ms, 

for Fast just few seconds. �e other 2 datasets stand 

instead for standard tomographic experiments with 

medium (Standard) and large size (Highres) sensors. In 

this case, the typical total acquisition time is of 5–10 min.

A dedicated cluster with 4 nodes has been used for the 

performance assessment. Each node has 2 Intel Xeon 

processors clocked at 2.70 GHz, with 256 GB RAM and 

12 cores.

Table 2 presents the time required for the tomographic 

reconstruction of the different datasets listed in Table 1. 

�e measured wall-clock time includes reading from 

Fig. 3 Graphical user interface (large panel on the left) enabling parameter optimization and job submission to a cluster facility for the reconstruc-

tion of full 3D volumes without the need for complex and error-prone command line activity. It is implemented as a Fiji plugin (Fiji main menu top 

left): all Fiji tools (e.g., contrast optimization tool bottom right) are available for projection (top right) and reconstruction (middle right) quality evalua-

tion
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and writing the data to storage, while not considered are 

MPI initializations and the import of the different Python 

modules. �e total reconstruction time is split into the 

time required for the sinogram generation and the recon-

struction part itself. When possible, the reconstruction 

has been performed starting from projections in TIFF 

and HDF5 format. For standard tomography datasets, 

on the used medium size cluster, the reconstruction job 

lasts about 1  min or less and is significantly faster than 

the acquisition part. A fully reconstructed dataset can 

therefore be visualized shortly after the end of a scan 

enabling quick beamline and experimental parameter 

assessment as well as image quality confirmation. During 

a beamtime, the acquisition and reconstruction process 

can easily proceed in parallel ensuring that at the end of 

an experiment all data are ready to be delivered to the 

users, without the need for longer stays at the facility. 

For dynamic experiments, the reconstruction process is 

currently an order of magnitude slower than the acquisi-

tion. Full 3D volumes can however be previewed few sec-

onds after a scan guaranteeing fast feedback for instance 

about the beamline and experimental settings. Since 

dynamic studies are usually experimentally quite com-

plex (e.g., in-situ devices) with adjustments to the setup 

often required, the actual acquisition time is significantly 

smaller than the available beamtime. Also for these 

experiments with bursts of high data rates leading to 

tens of TB of data, the post-processing pipeline ensures 

fully reconstructed volumes at the end of 2–3  days of 

beamtime.

As expected the time required for the pure reconstruc-

tion job is independent from the projection format. �e 

speed of the sinogram generation can instead strongly 

profit from an optimized format choice. If the projections 

are stored in one single HDF5 file, the sinogram genera-

tion can be sped up by about 50% compared to the case 

where the projections are individually stored in TIFF 

files. �is significant improvement takes advantage of the 

optimization of modern shared file systems for access to 

large files and large chunks (MBs) of data.

Phase retrieval requiring projections at one single 

distance (e.g., [23]) is an invaluable tool to improve the 

contrast-to-noise ratio [22] often required for the seg-

mentation and quantitative analysis of data acquired dur-

ing time-resolved experiments. Table  3 summarizes the 

time required for phase retrieval for the datasets listed 

in Table 1. Projections in dynamic experiments (Ultrafast 

and Fast) are typically smaller and fewer than in stand-

ard high resolution experiments (Standard and High-

res). Phase retrieval for the former case requires only a 

fraction of the total reconstruction time. For standard 

tomographic datasets, the phase retrieval time becomes 

larger than the reconstruction time, although it is less 

than 2 min even for the large sensor case (Highres). �e 

total reconstruction time, also when phase retrieval is 

needed, remains smaller than the typical acquisition time 

of standard and high resolution datasets ensuring prompt 

post-processing of the acquired data during beamtime.

�e phase retrieval algorithm works independently 

on single projections. �e total required time scales 

therefore linearly with the number of projections and is 

inversely proportional to the number of available cores. 

�e time for the phase retrieval of one single projection 

is dominated by the required 2D FFT whose complex-

ity is O (N log(N)), with N the number of pixels in one 

projection. Projections are always padded to the nearest 

Table 1 Dataset characteristics

Dataset name Image size (pixels) Number of projections Data format Acquisition time

Ultrafast 816 × 616 461 TIFF/HDF5 <50 ms

Fast 2016 × 1008 910 HDF5 Few s

Standard 2048 × 2048 1441 TIFF/HDF5 5–10 min

Highres 2560 × 2160 1801 TIFF 5–10 min

Table 2 Reconstruction time of di�erent tomographic volumes

Dataset TIFF (s) HDF5 (s)

Sinogram Reconstruction Total Sinogram Reconstruction Total

Ultrafast 3.8 1.0 4.8 2.7 1.0 3.7

Fast – – – 6.6 6.0 12.6

Standard 17.7 14.7 32.4 10.2 15.2 25.4

Highres 26.5 50.2 76.7 – – –
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higher power of 2 image size to comply with the require-

ments of typical FFT routines, guaranteeing highest com-

putational performance. �is padding explains the equal 

time required for the phase retrieval of single projections 

for the Standard and Highres datasets.

Scaling properties

�e post-processing pipeline can be easily deployed on 

different systems, from a single node machine to high 

performance computing clusters with hundreds of cores. 

To design an optimized strategy for the reconstruc-

tion of multiple datasets exploiting at best the available 

resources, the scaling properties of the post-processing 

pipeline have been analyzed in detail.

Figure 4 shows the time required for the sinogram gen-

eration and the actual reconstruction for the Highres 

dataset as a function of the number of cores used. Two 

different configurations have been used. In one case, 

the number of used cores is homogeneously distributed 

among all nodes, leaving some cores idle on each node 

when the full resources have not been requested. In the 

other case, the used cores are chosen on as few nodes as 

possible. With this configuration, the cores on the used 

nodes are all busy (except for one node if the requested 

cores are not a multiple of the cores per node), while the 

cores on the unused nodes are all idle. �e results show 

that for the sinogram generation the difference between 

these two configurations is marginal except when few 

cores are requested, where the utilization of 8 cores on 

one single node would be more favorable than distribut-

ing the jobs among 4 available nodes. For the reconstruc-

tion part, homogeneous distribution of the load is instead 

always advantageous with performance improvements 

up to 20%. Considering the pipeline parallel architecture, 

clustering all requested cores on as few nodes as possible 

is expected to perform better, since in this case it is not 

necessary to move data to a different memory address 

once they have been read in. �e reading and computing 

cores are all on the same node. �is is however not what 

is observed in practice, where more aspects than just 

the parallel architecture have to be taken into account. 

Modern shared parallel file systems as gpfs work most 

efficiently if the load is shared between many different 

nodes. �e net result favors a homogeneous distribution 

of the cores among the available nodes.

Figure  4 also shows that the post-processing pipeline 

scales well with the number of cores, with the sinogram 

generation almost perfectly matching the theoretical 

expectations. �e performance of the reconstruction 

step is instead slightly sub-optimal, with a deteriorating 

yield (in the order of 25%) with the increasing number 

of cores, to be ascribed to the saving step of the recon-

structed slices to file.

Depending on whether peak or average computational 

performance is more important, the available computa-

tional resources can be configured in different ways. If 

one single dataset has to be reconstructed in the fastest 

way possible, all available cores should be assigned to this 

one job. If the reconstruction speed of a series of hun-

dreds of datasets, as typical for dynamic experiments, 

needs instead to be optimized, requesting just few nodes 

for the reconstruction of each volume and post-process-

ing several datasets simultaneously is also a viable alter-

native solution.

Direct data streaming

For optimal performance of the entire acquisition–

reconstruction workflow, the post-processing pipe-

line can also accept a ZMQ [36] stream directly from a 

detector instead of reading data from file. �is alterna-

tive non-file-centric approach ensures a performance 

not influenced by the capabilities of the used shared file 

system and complete independence from the restric-

tions of the different file formats. An HDF5 file can for 

instance only be read once it has been closed, i.e., once 

the measurement has been terminated, unless the new 

SWMR (single-writer multiple-reader) feature is used. 

Direct streaming enables instead the transfer of the 

data in memory during the measurement and immedi-

ate start of pre-processing steps (e.g., dark and flat fields 

averaging) once the relevant data are available. Since our 

implementation is based on the PUB/SUB messaging 

pattern, the data can be distributed to an arbitrary num-

ber of subscribers. In our case, the raw data can there-

fore be simultaneously streamed to the pipeline and 

written to disk.

Although this feature is not yet used routinely and 

needs further characterization and optimization, we have 

successfully reconstructed a 2016  ×  900 pixels dataset 

with 1000 projections streamed with a 1 kHz rate without 

the need for intermediate storage on disk.

Taking advantage of this possibility, we are also devel-

oping a preview mode based on selected reconstructed 

slices instead of projections as typically done. Although 

at least at the beginning, this advanced preview will be 

Table 3 Time needed for  phase retrieval [23] for  di�erent 

datasets

Dataset Phase retrieval time (s)

Single projection Full dataset

Ultrafast 0.3 1.4

Fast 0.6 6.6

Standard 6 85.5

Highres 6 106.6
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slower than a traditional one, reconstructed slices will 

provide more insightful information on the ongoing 

dynamic experiment than projections. �e post-process-

ing pipeline can currently already deliver 20 tomographic 

slices for the Standard datasets only 1.4 s after receiving 

the last image from the ZMQ stream. For smaller data-

sets (e.g., Ultrafast), 13 slices are available in 0.4  s. �is 

capability will lead to unprecedented control ability ena-

bling more objective real-time tuning of the experimen-

tal parameters in in-situ experiments in response to the 

dynamic evolution of the study system, usually poorly 

known in advance.

Conclusions

Sub-second tomographic microscopy at third-generation 

synchrotron sources is a reality and sustained elevated 

data rates of multiple GB/s in tomographic experiments 

will become even more common at diffraction-limited 

storage rings. �e computational tools necessary for the 

post-processing of raw tomographic projections have 

generally not experienced the same efficiency increase, 

often leading to a strong mismatch between the speed 

of a tomographic experiment and the time required for 

the reconstruction of a 3D volume needed to assess the 

validity of the experiment. We present here an efficient 

post-processing pipeline overcoming this mismatch and 

delivering reconstructed tomographic datasets just few 

seconds after the data have been acquired, despite being 

optimized for a CPU architecture. It is flexible and able to 

handle raw data exploiting different contrast mechanisms 

(standard absorption contrast, propagation-based phase 

contrast, differential phase contrast, and dark field). �is 

new pipeline is based on a modular framework and can 

easily be extended with new features even by non-expert 

programmers thanks to its implementation in Python. It 

is supplemented with a user-friendly graphical interface 

easing the tomographic reconstruction work mostly run-

ning in parallel with the actual experiment. �e pipeline 

software can be deployed in a transparent way on sin-

gle- and multi-node systems as well as high performance 

computing facilities.

In addition to reading raw data from file, the post-

processing pipeline can also accept a ZMQ stream, for 

instance directly from the detector. �is feature makes the 

pipeline independent from the performance of the shared 

file system and the intrinsic characteristics of the adopted 

file format. It also opens up new possibilities for objective 

and active control of the performed dynamic experiments, 

Fig. 4 Pipeline scaling properties: time (in s) required for the sinogram generation (circle) and tomographic reconstruction (triangle) as a function 

of the number of used cores for 2 different computational resource configurations [used cores homogenously distributed on all available nodes 

(dashed line) and used cores concentrated on as few nodes as possible (solid line)]. The square symbols illustrate the behavior of a perfect scaling 

system (blue and orange for the sinogram generation and the tomographic reconstruction, respectively)
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when previewing tools based on 2D tomographic slices 

instead of raw projections are used. Although further 

mathematical and computational optimization is needed 

to achieve a true real-time tomographic preview offering 

also for instance on-the-fly 3D visualization (and eventu-

ally data quantification), the presented post-processing 

pipeline can already provide selected tomographic slices 

in less than 0.4 s for typical ultrafast experiments.

�e bottleneck in the entire workflow has now moved 

to the transfer of tens of TBs of raw and reconstructed 

data to the host institutions of our users, either using 

external hard drives, network-attached storage (NAS) 

devices, or per remote transfer. At the Paul Scher-

rer Institute on-site long-term storage possibilities are 

becoming available as well as remote access to a large 

computing facility for data quantification, another weak 

point in the general tomographic workflow at most facili-

ties, starting to be addressed by the scientific community.
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